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Abstract. Wake steering is a technique that optimizes the energy production of a wind farm by employing yaw
control to misalign upstream turbines with the incoming wind direction. This work highlights the important de-
pendence between wind direction variations and wake steering optimization. The problem is formalized over
time as the succession of multiple steady-state yaw control problems interconnected by the rotational constraints
of the turbines and the evolution of the wind. Then, this work proposes a reformulation of the yaw optimization
problem of each time step by augmenting the objective function by a new heuristic based on a wind predic-
tion. The heuristic acts as a penalization for the optimization, encouraging solutions that will guarantee future
energy production. Finally, a synthetic sensitivity analysis of the wind direction variations and wake steering
optimization is conducted. Because of the rotational constraints of the turbines, as the magnitude of the wind
direction fluctuations increases, the importance of considering wind prediction in a steady-state optimization is
empirically demonstrated. The heuristic proposed in this work greatly improves the performance of controllers
and significantly reduces the complexity of the original sequential decision problem by decreasing the number
of decision variables.

1 Introduction

As global energy consumption increases, there is a strong
willingness and necessity to decarbonize electricity produc-
tion. Hence, renewable energies are becoming increasingly
important (Chu and Majumdar, 2012). Wind energy, particu-
larly, is the focus of considerable research and development,
with turbines becoming larger and more numerous within
wind farms. Ensuring efficient control as wind turbines oper-
ate is necessary to maximize the benefits of wind energy.

In the context of global warming, designing more efficient
wind farms is essential. Wake steering is the subject of grow-
ing interest within the community to optimize the energy
production of wind farms. However, most research regard-
ing wind farm control technologies disregards the relevance
of the wind direction variation. This work is motivated by
a central question: from what magnitude of wind direction
fluctuations is it necessary to consider the wind evolution in

a wake steering optimization? To answer this question, this
work proposes a new controller based on wind predictions
and conducts a synthetic sensitivity analysis of wake steer-
ing and wind evolution using steady-state models and artifi-
cial wind data.

In wind farm optimization, the use of low-fidelity mod-
els (usually based on steady-state models) is favored over
higher-fidelity models (usually based on computational fluid
dynamics and real-time wake interaction) due to the com-
plexity and computational load associated with solving dy-
namic equations for every turbine in the farm. Some recent
works such as Janssens and Meyers (2024) explore real-
time optimal control of wind farms using large-eddy simula-
tions (LESs). However, this research area is still in the early
stages and for large-scale wind farm optimization, steady-
state models are still widely used.

In wind farm flow control (WFFC), developing effective
closed-loop controllers is essential for scaling to larger wind
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farms and dealing with unpredictable wind conditions. These
controllers dynamically adapt their strategies in real time
using continuous sensor feedback to guide their decisions.
Model-based, closed-loop controllers, in particular, rely on
simulators of the environment to conduct continuous opti-
mization while the farm is in operation. Fast and computa-
tionally efficient simulation is crucial for these controllers to
quickly react to wind and turbines changes. This work fo-
cuses on the optimization process itself, adhering to commu-
nity standards by using widely accepted, open-source, low-
fidelity simulators.

1.1 Wake effect

A single wind turbine reaches its maximum power output
when fully aligned with the wind. When the wind direction
changes, a turbine uses its yaw to rotate its nacelle on a hor-
izontal plane. By using active yaw control, a wind turbine
can keep track of the changes in the wind direction and en-
sure maximum energy production over time by minimizing
its misalignment with the wind. It corresponds to greedy con-
trol, where a wind turbine solely tries to maximize its power
output (Yang et al., 2021).

In the space immediately behind a turbine, the wind speed
is slower and more turbulent. Such a phenomenon is called
the “wake effect” and is the natural consequence of wind
power extraction by the machine. When a wind turbine is
located in the wake of another, its power output is reduced
(because of a slower wind speed) and its fatigue increased
(because of the turbulence). Within a wind farm, depending
on the wind direction and the farm layout, most of the tur-
bines can be affected by the wake of others.

Because of wake effects, greedy control can be subopti-
mal within a farm. Therefore, instead of keeping every tur-
bine aligned with the wind, yaw control can also be used to
voluntarily misalign some turbines in relation to the direc-
tion of the wind (Boersma et al., 2017). When a turbine is
misaligned with the wind, its wake effect is steered. By in-
telligently yawing the turbines and steering the wake effects,
the wind flow across the turbines can be optimized. Such a
method is known as WFFC (Meyers et al., 2022). A simple
example of a two-turbine wind farm is given in Fig. 1.

Current implemented wake steering strategies usually
involve lookup tables (LUTs) (Fleming et al., 2017;
Siemens Gamesa Renewable Energy, 2019). Wake steering
strategies are computed for a finite set of different wind con-
ditions prior to the farm operation. The yaw angles of each
turbine are computed with steady-state models, regardless
of the wind and turbine dynamics. Because a wake steer-
ing strategy creates misalignment with the wind, it is highly
dependent on variations in the direction of the wind. The
wind direction can change over time, and yaw control is con-
strained by the limited rotational speed of the nacelles. If the
wind varies in directions and frequencies that the yaw actu-

Figure 1. Example of WFFC on a two-turbine wind farm with the
wind coming from the west. The first (upstream) turbine is mis-
aligned and its wake effect is steered away from the second (down-
stream) turbine. By letting the wind flow more freely to the sec-
ond turbine, the misalignment of the first turbine increases the total
power output of the farm.

ators cannot easily track, computing adequate wake steering
strategies over time can be a challenging task.

1.2 Wind direction dynamics

The study of wind direction dynamics is gaining interest
within the research community. Wind direction dynamics can
be broken down into large-scale drifts and small-scale fluc-
tuations (van Doorn et al., 2000) and can be observed on dif-
ferent scales: the synoptic scale describes long distances and
extended time periods, the mesoscale depicts the farm level
and time periods from days to weeks, and the microscale cor-
responds to the turbine level and variations from seconds to
minutes. The wind direction is fundamentally nonstationary,
and there is incomplete knowledge regarding the physical
and statistical characteristics of wind direction fluctuations
across specific length scales and timescales that are essential
for effective WFFC (Dallas et al., 2024).

As the farm operates, the wind direction varies in both time
(at the farm level) and space (at the turbine level). The study
by von Brandis et al. (2023) found that spatial wind direction
changes relevant to the operation of wind farm clusters in the
German Bight exceed 11° in 50 % of cases. In this present
work, numerical simulations are run with steady-state wake
models. Therefore, only variations in the wind at the farm
level are studied. When the direction varies over time, this
work considers it to affect the whole wind farm.

WFFC is most beneficial at low wind speeds because this
is where small changes in the wind speeds can lead to impor-
tant power output variations. The same wake steering strat-
egy will lead to higher power gains at low speeds compared
to higher wind speed. Because the wind direction variabil-
ity is higher for low wind speeds (von Brandis et al., 2023;
van Doorn et al., 2000; Dallas et al., 2024), the study of de-
pendence between wind direction variations and yaw control
is important. Also, because the impact of climate change on
wind dynamics is unknown, designing robust controllers is
necessary for long-term operation.
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1.3 Related works

As tracking wind direction is essential for wind turbines,
the literature is rich in studies seeking better wind direction
tracking mechanisms. Song et al. (2018) developed a model
predictive control (MPC)-based controller on a finite control
set to track the wind directions. Hure et al. (2015) designed
a yaw controller based on very short-term wind predictions.
But performing WFFC and wake steering is a more complex
optimization problem.

LUTs can be adapted for dynamic control with different
methods. Usually, a low-pass filter is used to apply control
only for high variations of the direction. A sampling method
can be used to adjust the yaw control frequency, and hys-
teresis mechanisms avoid unnecessary yaw control and re-
strict the yaw actuators (Kanev, 2020a). Simley et al. (2021)
improved a traditional LUT by anticipating the wind direc-
tion changes ahead of upstream turbines. Kanev (2020b) per-
formed WFFC with a receding horizon using gradient-based
optimization and ran tests in large-eddy simulations under
realistic variations in wind direction and speed. But the wake
steering strategies of an LUT fundamentally do not consider
the wind dynamics; only their implementation does.

Regarding machine learning (ML) methods, and more par-
ticularly reinforcement learning (RL), which is becoming a
source of great interest to the scientific community, wind di-
rection variations are often overlooked. The importance of
the wind direction dynamics is clearly pointed out by Saenz-
Aguirre et al. (2019) and Saenz-Aguirre et al. (2020), but
most of the studies carried out later only consider static or
quasi-static wind directions. Some recent works have started
to consider time-varying wind directions in WFFC optimiza-
tion (Kadoche et al., 2023).

1.4 Contributions

The remainder of this paper is structured to mirror the three
main contributions. Each contribution forms the basis of an
individual section, and Sect. 5 concludes. The contributions
and their corresponding sections are as follows.

– This work proposes a discretized formalization of the
WFFC problem over time as the succession of multi-
ple steady-state optimization problems interconnected
by the rotational constraints of the turbines and the evo-
lution of the wind. Due to the discretization hypothe-
sis and the yaw actuation constraints, the important hy-
potheses regarding the transition between one steady
state and the next are formulated. This formalization is
conducted in Sect. 2.

– To develop a prediction-based controller, this work
presents a reformulation of the instantaneous, steady-
state original sequential decision problem over a fu-
ture time window. The default objective function is aug-
mented by a new heuristic, computed on a prediction

of the wind. The proposed heuristic acts as a penaliza-
tion for the optimization without increasing its dimen-
sion and encourages solutions that will guarantee future
energy production. The heuristic and the other studied
controllers are detailed in Sect. 3.

– This work conducts a sensitivity analysis of the wind
direction variations and wake steering optimization. It
empirically demonstrates the importance of a wind-
prediction-based control when the magnitude of the
wind direction fluctuations becomes large. The new
proposed heuristic greatly improves the performance
of a traditional steady-state wake steering optimization
when the variations of the wind direction are impor-
tant. Numerical simulations using synthetic wind data
are conducted in Sect. 4.

2 Problem formalization

The environment is composed of a wind farm and some ex-
ogenous variables related to the wind direction and the wind
speed. The wind farm consists of N interconnected wind
turbines. Over time, each turbine is controlled via its yaw.
An episode consists of a succession of H time steps during
which the turbines are controlled, withH the horizon length.
The transition from a time step t to a time step t + 1 corre-
sponds to a specific time window of a constant length of 1t
minutes. The environment evolves from one time step t to the
next time step t+1 in1t minutes, with t ∈ {0,1, . . .,H −1}.

2.1 Wind data

At a time step t , the exogenous variables are a global incom-
ing wind direction Kt ∈ [0,360] [°] and a global incoming
wind speed Vt ∈ [νmin,νmax] [m s−1]. The wind data can be
measured or predicted. Then, a controller does not have ac-
cess to Kt and Vt directly but to K ′t [°] and V ′t [m s−1], with
K ′t a noisy wind direction defined as K ′t =Kt + εK,t , and V ′t
is a noisy wind speed defined as V ′t = Vt + εV,t . The random
noises εK,t and εV,t can come from either measurement im-
precisions or prediction errors.

Because the turbines alter the wind flow inside the farm,
the wind in front of a turbine can be different from the global
incoming wind. Then, at a time step t , in front of a turbine
i, the local wind direction is denoted as κ it [°] and the local
wind speed is denoted as νit [m s−1]. The computation of the
local velocities is based on complex fluid mechanics and is
subject to numerous uncertainties. This work conducts nu-
merical experiments where such computations are done us-
ing a low-fidelity, steady-state simulator: FLOw Redirection
and Induction in Steady State (FLORIS) NREL (2021). The
local wind directions stay equal to the global wind direction
for any time step, i.e., κ it =Kt ∀ i ∈ {0,1, . . .,N − 1}, as is
common for low-fidelity, steady-state simulations.
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2.2 Turbines

At a time step t , a turbine i is characterized by its abso-
lute angular position βit ∈ [0,360] [°] and its relative ori-
entation or yaw (often used to compute the power output)
αit = fyaw(Kt ,βit ) ∈ [−180,180] [°] such that

fyaw(Kt ,βit )= (Kt −βit + 180) mod 360− 180. (1)

Adding and subtracting by 180 ensures that the yaw stays
in the range [−180,180]. As illustrated in Fig. 2, the yaw
corresponds to the rotational movement going from the ab-
solute angular position βit to the wind direction Kt such that
βit +α

i
t mod 360=Kt . Positive values of the yaw indicate

that the turbine is rotated anticlockwise from the wind direc-
tion, and negative values of the yaw indicate that the turbine
is rotated clockwise from the wind direction.

At a time step t , the yaw setting uit ∈ [umin,umax] [°] of a
turbine i corresponds to the rotational movement of the tur-
bine between time steps t and t + 1. Because of mechanical
constraints related to the yaw actuator of the nacelle, the yaw
setting is bounded between two consecutive time steps. As il-
lustrated in Fig. 2, the setting is used to update the orientation
of the turbine βit+1 = fcontrol(βit ,u

i
t ) such that

fcontrol(βit ,u
i
t )= (βit + u

i
t ) mod 360. (2)

2.3 Power

The power curve 8 of a turbine gives the theoretical power
output (megawatts, MW; y axis) of the machine as a function
of the wind speed ν [m s−1] (x axis), considering no yaw
misalignment, such that

8(ν)=
1
2
· ρ ·A · ν3

·CP(ν), (3)

with ρ [kg m−3] the air density, A [m2] the rotor blade area,
and CP the power coefficient of the turbine. The theoretical
power output is strictly positive if the wind speed is within
certain bounds [νcut-in,νcut-out] [m s−1].

At a time step t , the power output of a turbine i consid-
ering yaw misalignment P it = fpower(νit ,α

i
t ) [MW] is com-

puted from the power curve and the yaw angle such that

fpower(νit ,α
i
t )=8(νit ) · cosp(αit ) ·1{αcut-in6α

i
t6αcut-out}

, (4)

with p a parameter accounting for power losses due to mis-
alignment and [αcut-in,αcut-out] [°] a safety bound for the yaw
taken into account by the indicator function. Because too
much misalignment with the wind can damage the machine,
if the yaw is too great, the turbine is shut down and its power
output is null.

Figure 2. Example of a wind turbine i seen from above at a time
step t . The variables are the wind directionKt , the absolute angular
position βit of the turbine, and the yaw αit of the turbine. The wind
direction indicates where the wind is coming from; e.g., a wind di-
rection of 270° indicates a wind coming from the west. Here, the
nacelle is misaligned with the incoming wind direction: the turbine
is rotated clockwise from the wind, so αit < 0. The yaw setting uit
gives the next orientation of the turbine at time step t + 1.

2.4 Policy

A policy π is a function returning the yaw settings
(u0
t ,u

1
t , . . .,u

N−1
t ) of all the turbines at a time step t given

a state st . Each wind farm controller is associated with a spe-
cific policy. In this work, the state st may be composed of

– the current orientations of the turbines
{βit }i∈{0,1,...,N−1},

– an observation of the current wind (K ′t ,V
′
t ),

– a prediction of the wind at time step t + 1 (K ′t+1,V
′

t+1),

– a prediction of the wind at time step t + 2 (K ′t+2,V
′

t+2),
and

– until time step t +L, with L the prediction horizon.

Therefore, the general form of a state is st =

{K ′t ,V
′
t ,K

′

t+1,V
′

t+1, . . .,K
′

t+L,V
′

t+L, {β
i
t }i∈{0,1,...,N−1}}.

States can be categorized based on two distinct proper-
ties: with perfect or imperfect information and with or
without foresight knowledge. Depending on the possible
combinations, there are four classes of states, listed in
Table 1.
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Table 1. Four different classes of states based on two distinct properties, with t ∈ {0,1, . . .,H − 1} and k ∈ {0,1, . . .,L}. With perfect infor-
mation, the state comprises exact wind data (no noise). Without foresight, the state only comprises the current wind data (no predictions).

Foresight No foresight

Perfect information εK,t+k = 0 and εV,t+k = 0,L > 0 εK,t+k = 0 and εV,t+k = 0,L= 0
Imperfect information εK,t+k 6= 0 or εV,t+k 6= 0,L > 0 εK,t+k 6= 0 or εV,t+k 6= 0,L= 0

2.5 System evolution

An episode is defined by H time steps during which turbines
are controlled via their yaw. An episode is characterized by
time series for the wind directions and the wind speeds as
well as initial positions for the nacelles. During an episode, it
is assumed that all the states belong to the same class (defined
in Table 1) and the policy is presumed to be stationary (it does
not change over time).

The full evolution of an episode is described in Algo-
rithm (1). At each time step, the policy returns the yaw set-
tings based on the current state, the system is updated, and
the power output of the farm is computed. The yaw setting
of a turbine i at the end of time step t is indexed t + 1 (be-
cause it has been updated) and it is the one used for the power
computation of time step t .

At a time step t , to compute the power output of each
turbine, local wind velocities are needed. Such computa-
tions rely on complex fluid mechanics, depending on the
incoming wind and the updated yaw angles of each tur-
bine. For optimization, performing such complex computa-
tions is computationally expensive. Therefore, in this work,
these computations are carried out by a steady-state simulator
νit = f

i
simulation(Kt ,Vt , {α

j

t+1}j∈{0,1,...,N−1}), which is used as
a substitute for real-life measurements.

The simulation is said to be steady-state because it only
depends on the current global wind data and the updated yaw
angles. It does not consider previous wind data, previous yaw
angles, or time delays in the wake propagation. The evolu-
tion of an episode over time is constrained by the rotational
bounds of the turbines and the variations of the wind.

At each time step, during the “control policy” opera-
tion, a controller knows the evolution mechanisms of the
system; i.e., it can conduct any computations with the
fcontrol,fyaw,f

i
simulation, and fpower functions but based on

the wind data provided by the state. Because such data can
be noisy, all the computed values can be inexact. For exam-
ple, at a time step t , if a controller computes the yaw of a
turbine i based on its updated orientation βit+1, it would be
equal to αit+1

′
= fyaw(K ′t ,β

i
t+1). Because the observed wind

directionK ′t can be different from the true wind directionKt ,
the yaw αit+1

′ estimated by a controller can be different from
its true value αit+1.

2.6 Transition regime

At a time step t , for a turbine i, and due to the steady-state
nature of the simulation, the WFFC problem thus formal-
ized considers a single power output P it . In reality, during
a time step, the wind is time-varying and a turbine takes
time to rotate because of mechanical constraints. Therefore,
the discretization of the continuous control problem results
in the loss of some information and possibly less inaccurate
power outputs. To ensure that the discretized power outputs
are good approximations, from one time step to another, a
turbine is assumed to rotate immediately and the wind is as-
sumed to be quasi-constant.

The duration of a time step is always considered constant
during an episode. At a time step t , when a setting uit is ap-
plied to a turbine i, the rotational time Tr (minutes) for the
turbine to go from its current orientation βit to its next orien-
tation βit+1 is always considered largely inferior to the dura-
tion of the time step, i.e., Tr�1t for all uit ∈ [umin,umax].
A turbine always rapidly reaches its target position before
the end of the time step duration. But during a time step, no
other control will be applied to the turbine. For this reason,
the rotational constraints [umin,umax] need to be consistent
with the duration of a time step 1t .

The coherence time Tc (minutes) of a wind variable (either
the direction or the speed) is the maximum duration during
which the variable is quasi-constant. If the coherence time of
the wind direction is strictly smaller than the time step dura-
tion, a discretized value Kt would stretch too far away from
its corresponding continuous signal. The same goes for the
speed. Therefore, in this work, the coherence time is always
equal to the time step duration, i.e., Tc =1t , for both the
direction and the speed.

3 Controllers

At a time step t , the yaw settings (u0
t ,u

1
t , . . .,u

N−1
t ) are de-

noted as ut . A controller is defined by its policy π (st ) with
the state st described in Sect. 2.4. This work compares a
naive control where each turbine is aligned as much as possi-
ble with the wind and three optimized wake steering control
strategies. In an episode, at each time step t , during the con-
trol policy operation of Algorithm (1), each controller com-
putes the yaw settings such that ut = π (st ) by maximizing a
specific objective function fobj(st ,ut ) with regard to the tur-
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Algorithm 1 Full episode evolution over time.

Input: {Kk,Vk}k∈{0,1,...,H+L−1} true wind data time series
{βi0}i∈{0,1,...,N−1} initial orientations
π yaw control policy

for t = {0,1, . . .,H − 1} do
st = {K

′
t ,V
′
t ,K
′
t+1,V

′
t+1, . . .,K

′
t+L

,V ′
t+L

, {βit }i∈{0,1,...,N−1}} F state

(u0
t ,u

1
t , . . .,u

N−1
t )= π (st ) F control policy

βi
t+1 = fcontrol(βit ,u

i
t ), ∀ i ∈ {0, . . .,N − 1} F angular positions update

αi
t+1 = fyaw(Kt ,βit+1), ∀ i ∈ {0, . . .,N − 1} F yaw angles computation

νit = f
i
simulation(Kt ,Vt , {α

j
t+1}j∈{0,1,...,N−1}), ∀ i ∈ {0, . . .,N − 1} F local velocities computation

P it = fpower(νit ,α
i
t+1), ∀ i ∈ {0, . . .,N − 1} F power outputs computation

end for
Output:

∑H−1
t=0

∑N−1
i=0 P

i
t farm power output

bine rotational constraints, as defined below.

π (st ) ∈ argmax
ut

fobj(st ,ut ), (5)

subject to umin 6 u
i
t 6 umax,

∀ t ∈ {0,1, . . .,H − 1}, ∀ i ∈ {0,1, . . .,N − 1}. (6)

3.1 Naive controller

The naive controller always tries to keep turbines aligned
with the current wind direction as much as possible. It is
a weak baseline as it does not conduct any wake steering
optimization. It runs with no foresight (i.e., L= 0), as it is
only concerned with the current observed wind direction K ′t .
Therefore, the state st is reduced to {K ′t , {β

i
t }i∈{0,1,...,N−1}}.

It consists of a greedy control (no wake steering) where the
objective function at a time step t minimizes the amplitude
of the yaws, i.e.,

fobj(st ,ut )=−
N−1∑
i=0
|αit+1

′
|, (7)

with αit+1
′
= fyaw(K ′t ,β

i
t+1), (8)

with βit+1 = fcontrol(βit ,u
i
t ). (9)

At a time step t , the rotational movement required for a tur-
bine i to stay aligned with the observed wind direction is
equal to fyaw(K ′t ,β

i
t ). Because of the rotational constraints,

this movement is clipped such that it is always an acceptable
setting with regards to the yaw actuator, giving a closed-form
expression for the solution, defined as

πnaive = (u0
t ,u

1
t , . . .,u

N−1
t ), (10)

such that uit = clip(fyaw(K ′t ,β
i
t ),umin,umax),

∀ i ∈ {0,1, . . .,N − 1}. (11)

3.2 Wake steering

Compared to naive control, wake steering is used to optimize
the power output of the farm. In this work, two distinct wake

steering strategies are used. One is based only on the instan-
taneous wind data, and one is based on instantaneous and
predicted wind data. The instantaneous controller searches
for the yaw settings maximizing the instantaneous power out-
put of the farm. The prediction-based controller maximizes
the instantaneous and future power outputs. At each time step
t , the same Gauss–Seidel (GS) method is used for both con-
trollers, but with different objective functions. In this work,
optimization is conducted with a GS method (described in
Algorithm A1). A similar approach was first proposed by
Fleming et al. (2022) with a serial-refine algorithm.

The GS method works as follows. A first solution is ini-
tialized from the naive controller, where each initial yaw set-
ting keeps its turbine aligned as much as possible with the
wind. Then, the GS method iterates over each turbine, from
upstream to downstream ones. At each iteration, it solves the
optimization problem for the current turbine, considering the
yaw settings of all others fixed, by conducting a grid search
over a discretized solution space S = {umin+l ·

umax−umin
ny−1 } for

all l ∈ {0,1, . . .,ny−1}, with ny being a precision parameter.
Once optimized, the setting of the current turbine is updated,
and it goes to the next one.

3.2.1 Instantaneous controller

The instantaneous controller searches for the yaw settings
maximizing the immediate power output of the farm. It al-
ways runs under no foresight (i.e., L= 0), as it performs
wake steering for the current observed wind data only. There-
fore, the state st is reduced to {K ′t ,V

′
t , {β

i
t }i∈{0,1,...,N−1}}. It is

a steady-state optimization performed on one time step where
the objective function at a time step t is the immediate nor-
malized power output, i.e.,
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fobj(st ,ut )=
1
N
·

N−1∑
i=0

fpower(νit
′
,αit+1

′
), (12)

with νit
′
= f isimulation(K ′t ,V

′
t , {α

j

t+1
′

}j∈{0,1,...,N−1}), (13)

with αit+1
′
= fyaw(K ′t ,β

i
t+1), (14)

with βit+1 = fcontrol(βit ,u
i
t ). (15)

3.2.2 Prediction-based controller

A traditional prediction-based controller searches for the yaw
settings of time steps t, t + 1, . . ., t +L that maximize the
power output over that horizon. It always runs with foresight
(i.e., L > 1). The corresponding sequential decision problem
over a future time window can be stated under a form usually
exploited by the MPC community, defined as

max
ut ,ut+1,...,ut+L

1
N
·

L∑
k=0

N−1∑
i=0

fpower(νit+k
′
,αit+k+1

′
), (16)

subject to umin 6 u
i
t+k 6 umax,∀ t ∈ {0,1, . . .,H − 1},

∀ k ∈ {0,1, . . .,L}, ∀ i ∈ {0,1, . . .,N − 1}, (17)

with νit+k
′
= f isimulation

(K ′t+k,V
′

t+k, {α
j

t+k+1
′

}j∈{0,1,...,N−1}), (18)

with αit+k+1
′
= fyaw(K ′t+k,β

i
t+k+1), (19)

with βit+k+1 = fcontrol(βit+k,u
i
t+k). (20)

The optimization problem thus described multiplies the
number of decision variables by L+ 1. Also, the computa-
tion of the local velocities at a given time step depends on
all the previous yaw settings. Therefore, the prediction-based
decision problem significantly increases the complexity, and
because there is no simple solution, this work proposes a re-
formulation. The objective function given by Eq. (16) can be
split between the current time step t and the next ones, from
t + 1 to t +L, such that

1
N
·

L∑
k=0

N−1∑
i=0

fpower(νit+k
′
,αit+k+1

′
)=

1
N
· fpower(νit

′
,αit+1

′
)︸ ︷︷ ︸

first term

+
1
N
·

L∑
k=1

N−1∑
i=0

fpower(νit+k
′
,αit+k+1

′
)︸ ︷︷ ︸

second term

. (21)

The first term of Eq. (21) is the normalized power output
of the farm for the current time step. It corresponds to the
objective function of the instantaneous controller defined in
Sect. 3.2.1. It only depends on the current yaw settings ut .
Now, focusing on the second term, the closed-form expres-

sion of the fpower is written, giving

1
N
·

L∑
k=1

N−1∑
i=0

fpower(νit+k
′
,αit+k+1

′
)=

1
N
·

L∑
k=1

N−1∑
i=0

8(νit+k
′
) · cosp(αit+k+1

′
)

·1
{αcut-in6α

i
t+k+1

′
6αcut-out}

. (22)

The complexity brought by the prediction-based controller
comes from the fact that Eq. (22) depends on the local veloci-
ties νit+k

′ and the updated yaw angles αit+k+1
′ corresponding

to the optimized yaw settings of each future time step. To de-
crease the complexity, this work proposes modifying Eq. (22)
in the following way.

– Each local velocity νit+k
′ is replaced by the correspond-

ing predicted global wind speed V ′t+k . It reduces the
complexity coming from the steady-state simulation by
removing the dependence on the updated yaw angles.
While this simplification removes future local wind
data, it retains some information regarding potential
future energy production by relying on the predicted
global wind data only.

– Each updated yaw angle αit+k+1
′ depending on the op-

timized yaw setting uit+k is replaced by the expected
yaw angle α̂it+k+1

′ if a naive controller was used in-
stead. It reduces the complexity coming from the op-
timization, as there is a closed-from expression for the
naive controller, as provided by Eq. (10). Replacing
the wake steering optimization performed in the future
with a naive wind tracking solution reduces the number
of optimization variables of the original problem while
keeping good solutions. Indeed, proper yaw settings are
known to be close to the wind on average.

– The cosine function at power p of each yaw angle is
replaced with a simpler penalization for yaw misalign-
ment. The penalization chosen corresponds to 1 minus
the normalized absolute value of that yaw angle. It pro-
vides linearity and better interpretability.

– The indicator function is removed so that there is no dis-
continuity. Even if a yaw is too great, it can be of some
interest for the optimization to know about the potential
power output. The more a turbine is misaligned, the less
likely it will be to produce energy and the more it will
be penalized.

– For each time step, the overall expression is multiplied
by a discounted factor γ ∈ [0,1]. It gives more impor-
tance to immediate time steps. It is common practice for
model-predictive-based optimization.
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The only variables specific to each turbine are the yaw an-
gles updated from a naive controller, which are already nor-
malized. Therefore, it becomes unnecessary to normalize the
overall expression by N . With such modifications, Eq. (22)
becomes a new heuristic Ht defined as

Ht (st ,ut )=
L∑
k=1

γ k−1
·8(V ′t+k)

·

(
1−

1
N
·

1
180
·

N−1∑
i=0
|α̂it+k+1

′
|

)
, (23)

with α̂it+k+1
′
= fyaw(K ′t+k, β̂

i
t+k+1), (24)

with β̂it+k+1 = fcontrol(β̂it+k, û
i
t+k),

ûit+kcomputed with a naive controller
defined by Eq. (10), (25)

with β̂it+1 = fcontrol(βit ,u
i
t ), u

i
t computed from a wake

steering optimization. (26)

Because this new proposed heuristic depends on neither
the future optimized yaw settings (naive control) nor the fu-
ture local velocities (no simulation), it does not increase the
number of optimization variables. The heuristic is a scalar
acting as a penalization for the optimization. The final objec-
tive function of the prediction-based controller can finally be
written as

fobj(st ,ut )=
1
N
·

N−1∑
i=0

fpower(νit
′
,αit+1

′
)+Ht (st ,ut ), (27)

with νit
′
= f isimulation(K ′t ,V

′
t , {α

j

t+1
′

}j∈{0,1,...,N−1}), (28)

with αit+1
′
= fyaw(K ′t ,β

i
t+1), (29)

with βit+1 = fcontrol(βit ,u
i
t ), (30)

with Ht (st ,ut ) defined by Eq. (23). (31)

The heuristic is the discounted weighted sum of the future
theoretical power outputs. By choosing certain optimized
yaw settings ut for the current time step, the heuristic uses
a naive controller over a future time horizon of L time steps
to evaluate how well the turbines will manage to stay aligned
with the predicted wind directions. The higher the potential
future energy production, the more critical it becomes for the
current yaw settings not to rotate the turbines too far away
from the predicted wind direction.

For example, if the future expected power outputs are high,
the heuristic will encourage yaw settings that will put the tur-
bines in good orientations for the future. The heuristic will
penalize the objective function for yaw settings that will pre-
vent turbines from keeping track of the wind. An illustration
of the heuristic is given in Fig. 3, describing the first term
(wake steering optimization) and the second term (heuristic
based on a wind tracking control) of Eq. (27).

3.3 Upper bound

To have an upper bound in terms of performance (power out-
put) of a wake steering strategy, the rotational constraints are
relaxed. It means that in Eq. (6), the variables umin and umax
are equal to −180 and 180°, respectively. Between two con-
secutive time steps, each turbine is assumed to be capable of
reaching any orientation.

From a different point of view, the upper bound corre-
sponds to the wake steering instantaneous controller, but for
a complete steady-state version of the system evolution pre-
sented in Algorithm (1). All time steps are entirely indepen-
dent from each other, as there are no longer any rotational
constraints for the turbines.

The same objective function of the instantaneous con-
troller, presented in Sect. 3.2.1, is used. It always runs under
no foresight (i.e., L= 0), as it performs wake steering for
the current wind data only. Therefore, the state st is reduced
to {K ′t ,V

′
t , {β

i
t }i∈{0,1,...,N−1}}. The yaw settings computed by

the upper bound would not be admissible in reality if the cor-
responding targeted orientations are too far away from the
current ones.

4 Simulations

In Sect. 4.1 the process used to generate wind data is de-
scribed, and in Sect. 4.2 the experiment setting is given. Fi-
nally, the results and the empirical conclusions that can be
drawn are explained in Sect. 4.3.

4.1 Wind data scenario

The wind data time series are artificially generated
with custom Wiener processes. The wind directions
{Kt }t∈{0,1,...,H+L−1} are computed with Algorithm (2). The
wind speeds {Vt }t∈{0,1,...,H+L−1} are computed with Algo-
rithm (3). To generate the time series, an initial value is cu-
mulatively incremented at each time step by variable mt .
Each increment mt is independently sampled from a normal
distribution of mean 0 and standard deviation σt such that

σt = τ ×

√
δXt , ∀ t ∈ {0,1, . . .,H +L− 1}, (32)

with τ a normalization variable with regard to the number
and range of the generated values and δXt a variation parame-
ter for the wind variableX (either the direction or the speed).

To maintain the wind directions in the range of valid
values, i.e., [0,360] [°], the modulo operation is sufficient.
To maintain the wind speeds in the range of valid values,
i.e., [νmin,νmax] [m s−1], a mirrored function as explained
in Fig. 4 is proposed. The generated values inside the wind
speed bounds are not modified. The generated values outside
the bounds are recursively mirrored inside the bounds.

The variable δXt defines the level of variation of the wind
variable X time series (either the direction or the speed).
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Figure 3. Illustration of the heuristic for a turbine i at time step t for two different cases. The horizon is L= 2 and the wind data are the
same for cases A and B. The rotation zone represents the range of possible orientations a turbine can take at a given time step after being
controlled. First, wake steering optimization is performed to find the setting uit , which yields a power output of PA MW for case A and
PB MW for case B at time step t . By considering PA > PB, case A would be preferred. But then the heuristic computes the future expected
yaw angles if a naive wind tracking solution is used. From these expected yaw angles, the heuristic computes the expected power outputs
based on the predicted wind speeds. Here, while the yaw setting of case A gives a better immediate solution than the one given by case B, it
keeps the turbine further away (i.e., giving greater yaw angles) from the future wind. The solution of case B would then be preferable. The
heuristic encourages the choice of yaw settings that may not be the best at the current time step but that ensures future power output.

When equal to 0, the signal is constant. As δXt increases,
the absolute value of the increments increases on average. At
each time step, δXt is sampled from a uniform distribution de-
fined between δXmin and δXmax. When δXmin and δXmax are equal,
all increments {mt }t∈{0,1,...,H+L−1} are independently sam-
pled from the same distribution: the generated time series is

stationary with regard to the increments. When δXmin < δ
X
max,

increments are independently sampled from different distri-
butions: the generated time series is nonstationary with re-
gard to the increments. In Fig. 5 the impact of the δKt variable
is shown for the wind direction.
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Algorithm 2 Wind direction generator.

Input: H +L number of points
Kinit initial wind direction
δKmin,δ

K
max bounds for the variation variable

τ = 360/(H +L)
for t = {0,1, . . .,H +L− 1} do
δKt ∼ U (δKmin,δ

K
max)

σt = τ ×

√
δKt

mt ∼N (0,σt )
Kt = (Kinit+

∑t
i=0mi ) mod 360

end for
Output: {Kt }t∈{0,1,...,H+L−1} wind direction time series

Algorithm 3 Wind speed generator.

Input: H +L number of points
Vinit initial wind speed
νmin,νmax bounds for the wind speed

δVmin,δ
V
max bounds for the variation variable

τ = (νmax− νmin)/(H +L)
for t = {0,1, . . .,H +L− 1} do
δVt ∼ U (δVmin,δ

V
max)

σt = τ ×

√
δVt

mt ∼N (0,σt )
Vt =mirrored(Ninit+

∑t
i=0mi )

end for
Output: {Vt }t∈{0,1,...,H+L−1} wind speed time series

4.2 Experimental setting

The function f isimulation(Kt ,Vt , {α
j

t+1}j∈{0,1,...,N−1}) com-
putes the local wind speed in front of a turbine i at a time
step t given wind data Kt ,Vt , and the yaw of each turbine
{α
j

t+1}j∈{0,1,...,N−1}. This function, introduced in Sect. 2.5, is
ensured by the low-fidelity, steady-state simulator FLORIS
(NREL, 2021). FLORIS is used with a Gauss curl hybrid
wake model. The Gaussian velocity model is implemented
based on Bastankhah and Porté-Agel (2016) and Niayifar and
Porté-Agel (2016). To compute the deflection of the wakes
depending on the yaws, the models described by Bastankhah
and Porté-Agel (2016) and King et al. (2021) are used. The
turbulence model described by Crespo and Hernández (1996)
is used. The optional wake modeling options “secondary
steering”, “yaw added recovery”, and “transverse velocities”,
provided by FLORIS and giving additional features to the
f isimulation function, are enabled.

A wind farm of 34 International Energy Agency (IEA)
identical 15 MW (Gaertner et al., 2020) wind turbines is
used. It has cut-in and cut-out speeds of νcut-in = 3 m s−1

and νcut-out = 25 m s−1, respectively. Each wind turbine has
a rotor diameter of 242.24 m, i.e., a rotor area of 46 087 m2.
The air density is ρ = 1.225 kg m−3 and the tunable param-
eter accounting for the power losses due to misalignment is
p = 1.88. WFFC strategies are sensitive to the distances be-

Figure 4. Toy example of the mirrored function used to keep the
generated wind speeds inside specific bounds. Raw data are gen-
erated thanks to a process described by Algorithm (3). Raw data
points inside the wind speed bounds are not modified: the black and
red curves overlap. Data points outside the wind speed bounds are
recursively mirrored inside the bounds.

tween turbines. To make the numerical simulations more ro-
bust to the distances between turbines, a diamond shape is
used for the layout. With a diamond shape, there is an iden-
tical distance between each machine and its surrounding tur-
bines. Using 34 machines creates a sufficiently large wind
farm for wake steering to be impactful and is sufficiently
small for optimization to converge quickly. A FLORIS illus-
tration of the layout used is given in Fig. 6.

The limits for the wind speed are νmin = 4 m s−1 and
νmax = 10 m s−1. The interval [4,10]m s−1 approximately
corresponds to the ascending part of the power curve, where
wake steering is the most beneficial for the farm. For wind
speeds of [10,25]m s−1, the power output is constant; if the
wind speed is reduced because of wake effects, there will be
no power deficit. Because this work conducts a sensitivity
analysis of yaw control, the wind speed is kept in the range
of [4,10]m s−1.

The horizon size is H = 144 and the length of the fore-
sight for the prediction-based controller isL= 10. The initial
wind values are Kinit = 270° and Vinit = 8 m s−1. The dis-
count factor used for the heuristic Ht is γ = 0.99. The pre-
cision parameter for the GS methods is ny = 120, giving the
grid search method good precision.

More technical details regarding the simulations and nu-
merical instabilities are given in Appendix B. The time step
duration1t is intentionally undefined, as it will be explained
in Sect. 4.3.1. Depending on the time step duration value,
different interpretations of the same results will be made.
For example, if 1t corresponds to 5 min, then the horizon
L= 10 means that the prediction-based controller has access
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Figure 5. (a) Sine and cosine values for δKt = 1. (b) Sine and cosine values for δKt = 4. (c) Sine and cosine values for δKt = 9. Example of
different wind direction signals generated with different δKt values, considering that δKt = δ

K
min = δ

K
max for all t ∈ {0,1, . . .,49} and Kinit =

7°. If δKt = 0, all the generated points are equal to Kinit. The sine and cosine values are plotted for illustration convenience (it avoids the
discontinuity issue of degrees). Note that the behavior shown in this example is the same for the wind speed, but values are in the range
[νmin,νmax].

Figure 6. Layout in the form of a diamond shape. The farm com-
prises 34 identical IEA 15 MW wind turbines. There is an identical
space equivalent to the diameter of four turbines between a machine
and its adjacent turbines. A distance of four turbine diameters is suf-
ficiently small to create detrimental wake effects for the farm, and
therefore the optimization is pertinent and sufficiently large for the
design to be realistic. Here the direction is 287.4°, the wind speed
is 8.4 m s−1, and yaws are computed with the instantaneous wake
steering controller.

to a prediction of the wind of 50 min. In Table 2, a summary
of the experimental setting used in this work is given.

4.3 Results

To empirically demonstrate the importance of optimizing
yaw control over a long-term time horizon, numerical sim-
ulations are performed with perfect and imperfect (noisy)
wind predictions. In the graphs, for each curve, the center-

Table 2. Detail of the variables and their values used across the
simulations. This configuration is shared by all the numerical sim-
ulations. The foresight length is equal to 10 only for the prediction-
based controller. Otherwise, it is equal to 0. The yaw rotational con-
straints will vary across the simulations, but αcut-in and αcut-out are
always equal to umin and umax, respectively.

Name Variable Value

Number of turbines N 34
Rotor area A 46 087 m2

Low-fidelity simulator f isimulation FLORIS
Air density ρ 1.225 [kg m−3]
Cosine loss exponent yaw p 1.88
Cut-in wind speed νcut-in 3 m s−1

Cut-out wind speed νcut-out 25 m s−1

Wind speed limits [νmin,νmax] [4, 10] m s−1

Horizon H 144
Foresight length L 10
Initial global wind direction Kinit 270°
Initial global wind speed Vinit 8 m s−1

Discount factor γ 0.99
Precision parameter ny 120

line corresponds to the mean and the colored (shaded) area
corresponds to the standard deviation of the results obtained
through 11 Monte Carlo trials.

For one episode, the total farm power output of a con-
troller C given by Algorithm (1) is denoted as PC =∑H−1
t=0

∑N−1
i=0 P

i
t . The metric to benchmark a controller C is

the power gain [%] between the total farm power output of C
and the total farm power output of the naive controller. The
power gain is equal to 100 · (PC−Pnaive)

Pnaive
.

4.3.1 Perfect predictions

The first set of simulations explores the performance of each
controller over increasing variations of wind directions us-
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ing perfect predictions. Each state comprises perfect infor-
mation, i.e., εK,t = 0 and εV,t = 0 for all t ∈ {0,1, . . .,153}.
The performance of each controller presented in Sect. 3 is
tested for increasing values of δKt .

Numerical simulations are run on 21 different values of
δKt , with δKt ∈ {0,1,2, . . .,20}. The wind speed is always
generated with δVt = 1. Because this work explores the im-
pact of wind direction on wake steering, the magnitude of
the wind speed fluctuations is kept small. The wind direction
and wind speed increments are stationary: δKt = δ

K
min = δ

K
max

and δVt = δ
V
min = δ

V
max for all t ∈ {0,1, . . .,153}.

The objective here is to study the impact of the wind di-
rection variations on yaw control. The greater the δKt value,
the stronger the variations. Because the nacelles have a lim-
ited rotational speed, the study of the wind direction fluctu-
ations is crucial for yaw control. The standard deviations of
the wind direction time series are related to the δKt parameter
in Eq. (32). To better illustrate the wind direction evolution,
the time series 1K defined as

1K = {|fyaw(Kt+1,Kt )|}t∈{0,1,...,153} (33)

is used. Each value of 1K lies in the range [0,180] [°]. To
study the magnitude of the variations, the absolute values are
taken. Figure 7 illustrates the influence of some δKt time se-
ries on the magnitude of wind direction variations 1K .

In Fig. 8, the power gains of each controller compared to
a naive controller are plotted. The yaw limits umin and αcut-in
are equal to −15° (a) or −30° (b). And umax and αcut-out
are equal to 15° (a) or 30° (b). These yaw constraints of-
fer enough liberty for a wind turbine to rotate between two
consecutive time steps and are small enough to limit the in-
duced fatigue. The detailed results are given in Appendix C
in Tables C1 and C2.

As the variations of the wind direction increase, the per-
formance of each controller diverges from the others. For
small variations of the wind direction, both the instantaneous
controller and the prediction-based controller give similar
results. When the variations of the wind direction become
large, the instantaneous controller struggles to maintain good
performance. The heuristic of the prediction-based controller
manages to find better yaw control strategies. The gap be-
tween the performance of the upper bound with the other
controllers shows how strong wind direction variations, in
relation to the rotational constraints of each machine, impact
yaw control.

Based on the results given in Fig. 8, several general state-
ments can be drawn. As previously said, the time step du-
ration is intentionally imprecise. The reason is that different
values of1t will lead to different interpretations. The follow-
ing statement is true for any values of 1t , with respect to the
hypotheses of the transition regime, described in Sect. 2.6.

– For wind turbines that can rotate from −15 to 15° ev-
ery 1t minutes, if the wind direction changes by more
than 7.34° every 1t minutes, it is important to consider

future wind data in a steady-state yaw control optimiza-
tion.

– For wind turbines that can rotate from −30 to 30° ev-
ery 1t minutes, if the wind direction changes by more
than 12.23° every1t minutes, it is important to consider
future wind data in a steady-state yaw control optimiza-
tion.

4.3.2 Noisy predictions

In the second set of simulations, the robustness to noisy
predictions of each controller is tested. The yaw limits
are umin = αcut-in =−15° and umax = αcut-out = 15°. The
{Kt }t∈{0,1,...,153} time series are computed with δKmin = 0 and
δKmax = 20. The time series {Vt }t∈{0,1,...,153} are always com-
puted with δVt = δ

V
min = δ

V
max = 1. Because δKmin 6= δ

K
max, the

increments are nonstationary for the wind direction. The cor-
responding 1K time series is plotted in Fig. 9.

In Fig. 10, the noise for the wind direction is increasing,
i.e., εK,t ∼ U (−zK ,zK ) with zK ∈ {0,1, . . .,15}, for each
t ∈ {0,1, . . .,153}. The noise for the wind speed is always
sampled from the same distribution, i.e., εV,t ∼ U (−1,1).
In Fig. 10, the noise for the wind speed is increasing,
i.e., εV,t ∼ u(−zV ,zV ) with zV ∈ {0,1, . . .,7}, for each t ∈
{0,1, . . .,153}. The noise for the wind direction is always
sampled from the same distribution, i.e., εK,t ∼ U (−1,1).

Only the noise applied to the wind directions strongly im-
pacts the different policies. The prediction-based controller
results in a poorer performance than a naive controller from
a noise of 8°. The wind speed noise insignificantly affects the
performance of the algorithms. This corroborates the fact that
yaw control mainly depends on the wind directions. Because
the prediction-based controller uses more wind data points,
it is more robust than the instantaneous controller.

5 Conclusions

As WFFC is becoming more important to increase the en-
ergy production of wind farms, this work studies wake steer-
ing as a steady-state optimization problem over time. The
yaw control problem is formalized as successive multiple
steady-state optimization problems interconnected by the ro-
tational constraints of the turbines and the evolution of the
wind. Because the function computing the power outputs is
steady-state, only the dynamics of a homogeneous global
wind and the rotational constraints of the machines are cap-
tured. Low-fidelity, steady-state simulators are used because
they are not time-consuming and they are suitable for opti-
mization. But future works should perform the same stud-
ies with continuous and higher-fidelity simulators such as
HAWC2Farm (Liew et al., 2023), better capturing the dy-
namics of the wake effects from one time step to another.
This becomes especially important when the variations of the
wind direction become important.
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Figure 7. (a) The mean value (and standard deviation) of wind direction variations is given as a function of δKt . For example, for δKt = 5, the
mean absolute variation of the wind direction is around 6.11°. (b) Example of time series1K for different values of δKt ∈ {0,4,8,12,16,20}.
Again, as the δKt parameter increases, the magnitude of the variations of the wind direction increases.

Figure 8. (a) Yaw limits are umin = αcut-in =−15° and umax = αcut-out = 15°. At δKt = 6, the prediction-based controller increases the
power output of a naive approach by 6.23 %. It corresponds to absolute variations of the wind direction of 7.34° as displayed in Fig. 7.
(b) Yaw limits are umin = αcut-in =−30° and umax = αcut-out = 30°. At δKt = 10, the prediction-based controller increases the power output
of a naive approach by 8.93 %. It corresponds to absolute variations of the wind direction of 12.23° as displayed in Fig. 7. Considering future
wind data in a steady-state yaw control optimization becomes mandatory when δkt > 6 for yaw constraints [−15,15]° and δkt > 10 for yaw
constraints [−30,30]. From these points, the heuristic Ht provided by the prediction-based controller greatly improves the performance of a
classic instantaneous steady-state optimization.

Traditionally, yaw control is optimized in a steady-state
manner. Yaw settings are computed so that they maximize the
instantaneous power output of the farm. To optimize wake
steering over a long-term time horizon, an MPC method is
usually used. Such an approach increases the complexity of
the optimization problem, making it harder to solve. To over-
come such complexity, a reformulation of the steady-state
optimization problem is proposed in this work to consider
future wind data. The traditional objective function is aug-
mented by a new heuristic estimating the future expected
theoretical power outputs of the farm, weighted by how far
the turbines will be from the wind if they are controlled by
a naive approach. The new prediction-based controller pro-

posed in this paper has the same number of decision variables
as an instantaneous optimization.

Lastly, this work conducts a sensitivity analysis of yaw
control and the variations of the wind direction. It demon-
strates the importance of optimizing yaw control over future
wind data when the variations of the wind directions become
large. For strong wind variations, the new prediction-based
controller greatly improves the performance without increas-
ing complexity. This work shows, for example, that if de-
ploying wind turbines that can rotate from −15 to 15° every
1t minutes, and if the wind direction changes by more than
7.34° every 1t minutes, it is important to consider future
wind data in a steady-state yaw control optimization. Exper-
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Figure 9. Plot of the time series 1K for the 11 different seeds. Wind directions are generated with δKmin = 0 and δKmax = 20. The mean is
12.53° and the standard deviation is 1.12. Here, the increments vary from one time step to another because they are nonstationary.

Figure 10. (a) The noises for the wind directions are εK,t ∼ U (−zK ,zK ) with zK ∈ {0,1, . . .,15} for each t ∈ {0,1, . . .,153}. The noise for
the wind speeds is always sampled from a uniform distribution U (−1,1). (b) The noises for the wind speeds are εV,t ∼ U (−zV ,zV ) with
zV ∈ {0,1, . . .,7} for each t ∈ {0,1, . . .,153}. The noise for the wind directions is always sampled from a uniform distribution U (−1,1).

iments empirically show the effectiveness of the simplifica-
tions proposed in this work in a specific experimental setting,
but future research could better justify and quantify their im-
pact on the original prediction-based decision problem.

This study is conducted on synthetic wind data so future
works should explore the same question of dependence be-
tween the wind variations and yaw control over real wind
data. Because the hypotheses regarding the transition regime
may be far from reality, the proposed heuristic could be com-
bined with low-pass filters and hysteresis mechanisms for
more realistic implementations. Future works should incor-
porate the fatigue in the optimization process, as WFFC can
have a major impact on the lifetime of each turbine. For ex-
ample, the objective function of the prediction-based con-
troller could be augmented by a heuristic taking into account
the magnitude of the yaw actuations. However, the results

provided by this work also suggest that with wake steering
strategies more robust to wind direction variations, it would
be possible to reach the same level of performance with fewer
yaw actuations.

Appendix A: Gauss–Seidel method

The GS method iterates over each turbine in the di-
rection of the wind, one by one, from upstream tur-
bines to downstream ones. The turbines’ default coordinates
{cxi,cyi}i∈{0,1,...,N−1} [m] are rotated such that the wind is
coming from the west. The initial yaw settings are computed
with a naive controller. By doing so, the initial solution is al-
ready a good enough solution that keeps turbines as aligned
with the wind as possible. At each iteration, it solves the op-
timization problem by varying the yaw setting of the current
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Algorithm A1 GS method.

Input: st input state

cxit ,cy
i
t = (cxi ,cyi ) ·

(cos(270−K ′t ) −sin(270−K ′t )
sin(270−K ′t ) cos(270−K ′t )

)
F rotate turbines

R = {i0, i1, . . ., iN−1 | cx
i0
t 6 cxi1t 6 . . . 6 cx

iN−1
t } F order turbines

(ui0
t,0,u

i1
t,0, . . .,u

iN−1
t,0 )= πnaive(st ) F initialize yaw settings

for i ∈ R do
S = {umin+ l ·

umax−umin
ny−1 }, ∀ l ∈ {0,1, . . .,ny − 1} F discretized solution space

U = (ui0
t,1,u

i1
t,1, . . .,u

i , . . .,u
iN−2
t,0 ,u

iN−1
t,0 ) F fix all other settings

ui
t,1 ∈ argmax

ui∈S

fobj(st ,U ) F grid search optimization

end for
Output: (ui0

t,1,u
i1
t,1, . . .,u

iN−1
t,1 ) yaw settings

turbine, considering all the others fixed. To solve each op-
timization problem on one variable, a grid search approach
over a discretized solution space S is used. Once solved, the
setting for turbine k is fixed and optimization is conducted
again on turbine k+ 1. Such an approach gives good results
because it exploits the sequential nature of the low-fidelity
simulation.

Appendix B: Numerical instabilities

First, some modifications have been made to FLORIS in or-
der to shut down turbines misaligned too much with the wind
during a simulation. At a time step t , for a given turbine i, all
the possible yaw settings can give a similar power output. In
such cases, the best yaw setting is the one staying the closest
to the wind direction in order to prevent future misalignment.
To incorporate such behavior in the optimization process and
to make the controllers robust to numerical instabilities, the
following steps are taken.

– Round out the power output computed by the simulator.

– Take the yaw setting uit maximizing the objective func-
tion.

– Find all the yaw settings giving a performance close to
the maximum.

– Among these selected settings, keep the one closest to
the setting corresponding to the naive controller.

To compute the solutions of the upper-bound controller de-
scribed in Sect. 3.3, a trick is used. Relaxing the rotational
constraints of the turbines, i.e., making umin and umax equal
to −180 and 180°, respectively, increases the solution space.
With the same precision parameter ny , it reduces the preci-
sion of the grid search method. To keep the solution space
between umin and umax, and therefore not to alter the preci-
sion of the grid search method, the evolution of the system
described in Algorithm (1) is slightly modified. At the be-
ginning of each time step, every turbine is realigned with the

wind direction. Such a trick does not alter the solutions given
by the upper-bound controller because good yaw settings are
the ones keeping turbines close to the wind direction.
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Appendix C: Detailed results

Table C1. Detailed results of the simulations conducted on perfect predictions in Sect. 4.3.1. Yaw limits are umin = αcut-in =−15° and
umax = αcut-out = 15°. For each δKt the total power output of the farm in 104 MW is given for each controller.

δKt 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.05 2.04 2.02 1.95 1.87 1.81 1.75 1.64 1.58 1.49 1.37 1.29 1.19 1.10 1.03
instantaneous 1.49 2.12 2.20 2.20 2.21 2.18 2.17 2.14 2.10 2.00 1.89 1.85 1.78 1.67 1.60 1.49 1.40 1.32 1.25 1.16 1.08
prediction_based 1.49 2.12 2.20 2.20 2.20 2.18 2.18 2.17 2.15 2.09 2.03 1.98 1.92 1.82 1.77 1.68 1.61 1.52 1.43 1.35 1.27
upper_bound 1.50 2.13 2.22 2.23 2.24 2.23 2.24 2.24 2.24 2.23 2.22 2.23 2.24 2.23 2.25 2.23 2.23 2.25 2.24 2.25 2.23

Table C2. Detailed results of the simulations conducted on perfect predictions in Sect. 4.3.1. Yaw limits are umin = αcut-in =−30° and
umax = αcut-out = 30°. For each δKt the total power output of the farm in 104 MW is given for each controller.

δKt 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

naive 1.14 1.89 2.04 2.05 2.06 2.05 2.06 2.06 2.07 2.05 2.04 2.04 2.06 2.04 2.05 2.01 1.99 2.00 1.97 1.94 1.87
instantaneous 1.65 2.18 2.25 2.25 2.26 2.25 2.25 2.25 2.25 2.24 2.22 2.21 2.21 2.19 2.20 2.15 2.11 2.10 2.07 2.04 1.96
prediction_based 1.65 2.18 2.25 2.25 2.26 2.25 2.25 2.25 2.25 2.24 2.22 2.22 2.22 2.20 2.22 2.18 2.17 2.16 2.13 2.12 2.07
upper_bound 1.65 2.19 2.26 2.27 2.27 2.26 2.27 2.27 2.28 2.27 2.26 2.26 2.27 2.27 2.28 2.27 2.27 2.28 2.28 2.28 2.27

Appendix D: Nomenclature

N Number of wind turbines
1t Time step duration
H Horizon length
Kt Wind direction
Vt Wind speed
K ′t Observed wind direction
V ′t Observed wind speed
νit Local wind speed
βit Absolute orientation
αit Yaw angle
fyaw Yaw angle computation function
uit Yaw setting
fcontrol Absolute orientation update function
8 Theoretical power output function
fpower Power output function
st Controller state
εK,t Wind direction noise
εV,t Wind speed noise
fsimulation Local velocities computation function
P it Turbine power output
π Control policy
ut All turbine yaw settings
fobj Controller objective function

Appendix E: Acronyms

FLORIS FLOw Redirection and Induction in Steady State
GS Gauss–Seidel
IEA International Energy Agency
LESs large-eddy simulations
LUT lookup table
ML machine learning
MPC model predictive control
MW megawatts
RL reinforcement learning
WFFC wind farm flow control

Code availability. The code related to the simulation is open-
source and is publicly accessible at https://github.com/NREL/
floris.git (NREL, 2021). The code related to the controllers
is not publicly accessible as it is the property of TotalEner-
gies OneTech. For any details or questions, please write to
elie.kadoche@totalenergies.com.

Data availability. The farm and turbine data are publicly accessi-
ble at https://github.com/NREL/floris.git (NREL, 2021). The wind
data used in this paper are fully synthetic. The whole generation
process is detailed in Sect. 4.1. The parameters of the generated
wind data time series are given in Sect. 4.2 and 4.3.
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