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Abstract. To study turbulence properties, specifically vertical momentum fluxes under swell wave conditions,
I investigate the impact of waves on the power spectrum and spectral coherence of turbulent wind across var-
ious spatial and temporal scales. I propose and apply a wave–turbulence decomposition method to split high-
frequency surface wind data into distinct wind and wave components. Under the assumption of frozen turbu-
lence, this method substitutes an empirically fitted spectrum for the observed or modelled wind spectrum within
the wave-affected frequency range. I proceed to estimate time series of waves and turbulence through this de-
composition technique. Using a few days of sonic anemometer wind measurements at 15 m height from 20 to 26
June 2015, the upward momentum transfer could be observed under high–steady (∼ 7 m s−1) and decaying wind
conditions. During the high and decaying winds, the atmospheric stability changes between unstable and stable
conditions, blurring the wave signals due to the thermally and mechanically generated turbulence. The vertical
wind spectra from selected episodes within the study period, acting as benchmarks, offer detailed insights into
how waves affect energy elevation within the wave frequency band under low-wind, old-sea, and stable boundary
layer conditions. These spectra also facilitate an effective performance assessment of the proposed decomposi-
tion method. Additionally, using a theoretical model derived from sonic anemometer measurements at heights of
15 and 20 m above the mean sea level, I parameterize the wave-contaminated coherence function, allowing for
the synthetic generation of turbulent fluctuation spectra within the wave frequency band.

1 Introduction

Over the last several decades, a large number of laboratory
studies and field experiments have shown modulation of tur-
bulent momentum fluxes across a layer, the so-called wave
boundary layer (WBL), on both sides of the air–sea interface
(Chalikov, 1995; Rieder et al., 1994). The height of this sub-
layer, for example in the atmosphere, is approximately a few
metres and on the order of the significant wave height. The
atmospheric WBL is then limited from below by the air–sea
interface and at the top by the atmospheric surface layer in
which the Monin–Obukhov similarity theory (MOST) is ap-
plied. Stratification may have direct and indirect impacts on
the wind–wave interaction within the WBL (Semedo et al.,
2009). However, such effects depend on the height of the
WBL with respect to the height of the dynamic sublayer,

wave age, and the relative angle between wind and wave di-
rections. Within the WBL, particularly under the influence of
swell waves with low to moderate wind speeds, MOST or the
logarithmic law should not be applied in order to estimate the
drag coefficient or roughness length, and the wind profiles
show a jet at the top of the WBL (Chalikov and Rainchik,
2011). This is because waves excite perturbations in this
sublayer in addition to contributions from the buoyancy and
shear productions. Although studies over the last few decades
have significantly improved understanding of turbulent flows
above the surface gravity waves, detailed knowledge of the
WBL and its interaction with atmospheric turbulence under
varying forcing conditions are key in better understanding
turbulent processes and enhancing the accuracy of turbulent
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closure schemes used in oceanic, atmospheric, and climate
models.

Fast-propagating swell waves generate wave-coherent
structures in the WBL and challenge the widely accepted
Monin–Obukhov scaling (Högström et al., 2013; Smedman
et al., 2003; Semedo et al., 2009; Rieder and Smith, 1998).
Wind velocity fluctuations are influenced by both turbulence
and wave orbital motions, potentially leading to overesti-
mated turbulence parameters due to significant wave-phase-
dependent modulation of airflow. To mitigate this issue, var-
ious methods, such as phase averaging, linear transforma-
tion (Veron et al., 2008; Grare et al., 2013; Buckley and
Veron, 2017), and orthogonal projection of wind onto the
Hilbert space (Hristov et al., 2003; Wu et al., 2018), have
been proposed and used for decomposing the turbulent veloc-
ity fields from instantaneous measurements of wind within
the WBL. Many of these techniques rely on complex cross-
spectra between horizontal and vertical air velocity fluctua-
tions and on sea surface elevation to isolate the direct wave
influence (Grare et al., 2013). It is worth mentioning that
understanding the spatial coherence and the separation of
wave-coherent structures from the wind measurements is
crucial for generating turbulence data in structural load anal-
ysis models and wind turbine and farm control implementa-
tions and for simulating wind–wave interactions during swell
waves (Bakhoday-Paskyabi et al., 2022).

In this study, I utilize a set of near-surface wind and
wave measurements collected during the OBLEX-F1 cam-
paign from the FINO1 offshore meteorological mast (met
mast) in June 2015. Based on these data, I explore the tur-
bulent structures within the WBL and the interactions of
waves and wind stress under different atmospheric stabil-
ity and sea-state conditions. I further calculate the swell-
induced momentum fluxes from both available theories and
high-frequency observational data. Specifically, the approach
in this paper aims to unfold the following key aspects:

– identifying and assessing swell-related wind–wave im-
prints on atmospheric velocity and two-point coher-
ence structures under specific swell-dominated condi-
tions (proposing a theoretical model for representing
wave-induced coherence),

– removing wave-induced peak effects from wind veloc-
ity spectra using a spectral technique and reconstructing
turbulence and wave time series from the wave-affected
sonic measurements, under mostly stable atmospheric
conditions.

This paper is organized as follows. Section 2 will briefly
explain the coherence spectrum within the wave-affected fre-
quency band, the wave–turbulence decomposition, and the
estimation of wave-induced momentum fluxes. Section 3 ex-
plains measurements of wind and waves at the FINO1 off-
shore met mast, and Sect. 4 describes the verification results

of the suggested methods. Section 5 provides a brief discus-
sion and summary of the work.

2 Methods

In the presence of swell waves, the total wind u= (u,v,w)
is linearly decomposed into the mean u, the turbulent u′, and
the wave-induced perturbation ũ as

u= u+u′
+ ũ, (1)

where u and v represent the horizontal velocity components
and w represents the vertical velocity component. Based
on this decomposition in this section, the WBL is studied
through the wave–turbulence decomposition. Estimation of
wave-induced motions ũ= (ũ, ṽ, w̃) in Eq. (1) presents the-
oretical challenges, and it becomes even more intricate when
dealing with measurements of wind over an undulating air–
sea interface. To underscore the complexity in a realistic sce-
nario, waves are often modelled as a continuous spectrum
of monochromatic waves; e.g. refer to a finite expansion in
Eq. (11). Each wave component may induce airflow pertur-
bations travelling at its phase speed. This necessitates em-
ploying a space–time Fourier transform to differentiate com-
ponents moving at the flow speed from those travelling at
the wave speed (Ayet and Chapron, 2022). This multiscale
wind–wave coupling, mediated by wave-coherent motions,
is a responsible mechanism for variations in turbulent char-
acteristics over the swell waves. For instance using Eq. (1),
the total wind stress vector over the wavy surface is given as
follows:

τ = τ ′
+ τ̃ , (2)

where τ ′
=−ρa(u′w′,v′w′) is the turbulent stress and τ̃ =

−ρa(ũw̃, ṽw̃) denotes the wave-induced stress. Here, ρa in-
dicates the air density. The total wind stress in Eq. (2) can be
determined either through high-frequency measurements us-
ing the eddy covariance technique, to calculate the observed
τ ′ and τ̃ , or by employing a bulk formula such as the one
provided by COARE3.6 (Edson et al., 2013).

2.1 Wind–wave decomposition

To decompose wind and wave signals (or wave–turbulence
decomposition), the energy spectrum of each velocity com-
ponent in the inertial range at wavenumbers significantly
above and below the wave band can be fitted using follow-
ing the 1D Kaimal wavenumber spectrum:

kFββ (k)

σ 2
β

=
A(k/k0β )

1+ (k/k0β )5/3 , (3)

where k denotes wavenumber; β = u,v,w; A=

5sin(3π/5)/(6π ) is a constant; and k0β and σβ are two
adjustable parameters describing the roll-off wavenumber
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(the length scales of turbulent eddies in the energy-
containing subrange) and the standard deviation of β,
respectively (Gerbi et al., 2009; Bakhoday-Paskyabi, 2019).
Here, I perform a two-parameter least-squares fit of Eq. (3)
to the observed data. This process allows us to estimate
k0β and σβ , which characterize the variance and spatial
scale, respectively, of the energy-containing eddies. The
wavenumber spectrum is then converted to frequency scales
by invoking Taylor’s frozen turbulence hypothesis, k = ω/u,
where ω = 2πf and u is the mean (advection) wind speed:

dfEββ (f )= dkFββ (k). (4)

Here Eββ (f ) is the frequency spectrum of the wind β com-
ponent, and the derivative dk/df is estimated by the use
of the wave dispersion relation; see Appendix A. I then ap-
ply a two-parameter least-squares fitting of the model spec-
trum in Eq. (3) to the measured spectrum. For fitting (in
log–log space to ensure equal weight is given to all parts of
the model fit), the wave-affected band is first determined as
[0.6kp,kp+ 0.1] (or [0.6fp,fp+ 0.1]) at which kp (fp) de-
notes the peak wavenumber (frequency) measured from the
recorded wave peak period, Tp. This interval is determined
through a trial-and-error process using all datasets employed
in this study and provides a reliable estimate of the fre-
quency band for the entire campaign dataset too. The energy
spectrum is then divided into three bands: below-wave-band
(k < 0.6kp), wave-band, and above-wave-band (k > kp+0.1)
parts; see Fig. 1 and refer to Appendix 3 of Bakhoday-
Paskyabi (2019). After discarding the wave band, the Kaimal
spectrum of Eq. (3) is fitted over below-wave-band and
above-wave-band wavenumbers and the wave-induced bump
is replaced by the fitted curve. The wave-induced spectrum
is then estimated as follows:

Eβ̃β̃ (f )= Eββ (f )−Eβ ′β ′ (f ). (5)

To estimate time series of turbulence and wave compo-
nents in Eq. (5), I set u← u−u and transform Eq. (1) into the
Fourier space in terms of Fourier coefficients of windUj , Vj ,
and Wj and waves Ũj , Ṽj , and W̃j ; for example Euu = |Uj |
and Eũũ = |Ũj |. These Fourier coefficients are expressed in
phasor notation as follows (Bricker and Monismith, 2007):

Uj = |Uj |e
i 6 Uj , (6)

Ũj = |Ũj |e
i 6 Ũj , (7)

where 6 denotes the phase operator, i =
√
−1 is the imagi-

nary unit, and | · | represents the magnitude operator. By tak-
ing the inverse Fourier transformation of the above two-sided
equations, the time series of turbulent and wave velocities are
calculated (see Eqs. 10 and 11).

Figure 1. Comparing the coherence of the vertical velocity com-
ponent of wind turbulence using the Davenport empirical model
(Term1) to the wind–wave coherence (depicted by the black line)
as shown by combining Term1 and Term2 in Eq. (8) for all fre-
quencies f ≥ 0.6fp. Here, we exclude the undulatory tail effects for
f ≥ fp+0.1, as presented in Term3. Here u= 1 m s−1,Hs = 0.8 m,
Tp = 8 s, A1 = 0.5, C2 = 0.7, β2 = 0.09, A2 = 0.6, and A3 = 0.1
for the above-the-wave frequencies (the grey-coloured area).

2.2 Wind–wave interaction: coherence and synthetic
turbulence

The undulating surface of the ocean, as previously discussed,
produces wave-coherent perturbations in the velocity (and
pressure) fields. This has the potential to exert a dominant
influence on turbulent properties within the WBL. In the
case of low wind speeds and when vertical separation dis-
tances (for two-point turbulence problems) remain within
typical turbulence length scales, turbulence can be consid-
ered frozen, allowing the application of Taylor’s hypothesis
using representations that may however deviate significantly
from those in the existing literature. Moreover, the statistics
of spatial structures at the microscale and the similarity of
flow motions across different scales, as measured by the co-
herence between spatially separated data, may be influenced
in the presence of a wavy surface.

This study proposes a theoretical model for generating a
wave-correlated wind field (or the wave-affected turbulence)
in both time and frequency domains. The essence of the
model lies in the representation of a coherence function for
the fluctuating wind velocity by accounting for the impacts of
surface wave processes. The model helps also to effectively
isolate the wave contributions from the wind fluctuation sig-
nal, i.e. Eq. (9).

By relying on the Davenport representation of the coher-
ence (Davenport, 1961), I suggest following a general repre-
sentation for the vertical wave coherence formulation at the
separation distance of 1z:
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Figure 2. (a) Times series of wind speed at 10 m height measured by FINO1’s cup anemometer (black line) and significant wave height (red
line) measured by a floating buoy operating in the close vicinity of the FINO1 platform; (b) wind (black markers) and wave (red markers)
directions; and (c) the values of the stability parameter from which the Obukhov length, L, was calculated from sonic measurement at a
height of 15 m above the mean sea level (a.m.s.l.) collected with sampling frequency of 25 Hz between 21 and 27 June 2015. The stability
classes have been colour-coded in this figure. Vertical dashed grey lines highlight the study events of wind–wave interaction on 24 June at
13:00 UTC and 25 June at 00:00 UTC, respectively.

γ (1z,z,f )=

Term1︷ ︸︸ ︷
A1 exp

(
−C1

f1z

u

)

+

Term2︷ ︸︸ ︷
A2 exp

(
−C2λw

(f − fp)2z

β2[(Hs/Tp)2+ u2
]

)
Term3︷ ︸︸ ︷

cos
[

2πf z
β1Hs/Tp

+αφ

]
+

Term4︷︸︸︷
A3 , (8)

where C1 is a dimensionless decay parameter and C2, A1,
A2, A3, β1, and β2 are empirically determined coefficients,
through fitting with observed coherence (i.e. Eq. 12), requir-
ing a minimum of two high-frequency wind measurements
at two heights with an appropriate separation distance. The
variable z represents the average height over the sea surface
for which coherence is calculated (for the vertical attenua-
tion of wave effects). Oscillations of the wave component are
controlled by setting a small value for the random phase shift
of φ (i.e. α ∼ 0.1) in Term3. Here, f is frequency; u denotes
the mean wind speed; and λw is the wavelength determined
by utilizing the dispersion relation (Appendix A) and values
of wave peak period, Tp, and the significant wave height, Hs.

In Eq. (8), Term1 represents the original Davenport empir-
ical model of the coherence without wave disturbances for
the entire frequency range (the dashed red curve in Fig. 1).
The separation distances (heights) are chosen to be within the
maximum range where the Taylor hypothesis remains valid.
Term2 together with Term1 is used in the wave-affected fre-
quency band to represent the wind and wave coherence. The
coherence in this band decreases with height z above the
mean surface level and depends on Hs, Tp, wavelength, and
u (the yellow area in Fig. 1). To address the oscillatory be-
haviour in the tail of the coherence spectrum, observed in the
data, I incorporate the sum of Term3 and Term4. It is im-
portant to note that this representation does not account for
the effects of wind and wave misalignment and may require
further adjustments for the vertical wave attenuation effects.
Furthermore, this figure does not show the effects of Term3,
and the undulating behaviour of Term3 can be seen in the
shaded regions of Fig. 6a and b.

By estimating the squared coherence, γ 2, between vertical
wind w and wave elevation η in the frequency domain, the
spectral density of the wave-induced and turbulence fluctua-
tions at the height of z is given according to Eq. (5) of Rieder
et al. (1994):

Ew′w′ (f )= (1− γ 2)Eww and Ew̃w̃(f )= γ 2Eww. (9)
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The random realizations of the wind and wave time series for
vertical velocity are then estimated according to

w′(t)=6i
√

2Ew′w′ (f )1f [r (1)
i cos(ωt)+ r (2)

i sin(ωt)], (10)

w̃(t)=6i
√

2Ew̃w̃(f )1f [q(1)
i cos(ωt)+ q(2)

i sin(ωt)], (11)

where r (1)
i , r

(2)
i ,q

(1)
i , and q(2)

i are normal random numbers.
In the synthetic time series, we determine the bulk wave pa-
rameters for the wind-sea condition usingHs = 0.0248|U10|

2

and Tp = 0.729|U10| (Carter, 1982) for simplicity and a
clearer conceptual visualization; here U10 indicates the wind
speed at 10 m height. It is important to note that while Eq. (9)
can also be employed for wave–turbulence decomposition
using two-point coherence data (see the black curves in
Fig. 6c and d), our focus in this study will be solely on the
spectral technique presented in the next subsection because
the proposed method relies exclusively on high-frequency
sonic data at a single height.

The observed coherence of vertical velocities is deter-
mined using the following relationship:

γ (z1,z2,f )=
|Coz1z2 (f )|√

E
z1
w′w′ (f )Ez2

w′w′ (f )
, (12)

where Ez1
w′w′ (f ) and Ez2

w′w′ (f ) are the power spectral density
at heights z1 and z2, respectively. Coz1z2 (f ) denotes the two-
point cross-power spectral density at heights z1 and z2.

2.3 Air–sea momentum flux

The wave boundary layer is a region where the non-static
pressure distribution becomes apparent, with a height of im-
pact corresponding to several significant wave heights. For
medium waves (approximately from 2 to 4 m in height), the
typical WBL height is a few metres, while for larger waves
(more than approximately 4 m in height), it can extend up
to say 20 m. The WBL interacts with the wavy air–sea in-
terface below and merges with the Monin–Obukhov strati-
fied boundary layer above. Within the WBL and according to
Eq. (1), the momentum flux, to the leading order (compared
to Eq. 2), can be alternatively written as follows:

τ (z)= τ ν + τf (z), (13)

where τ ν and τf (z) are the viscous stress and form stress at
the height of z, respectively (Donelan et al., 2012). Assuming
that waves’ impacts decay exponentially in the vertical, the
wave form stress at z is defined by

τf (z)= ρw

kmax∫
kmin

π∫
−π

e−2kzβg(k,θ )ωF (k,θ )kdθdk, (14)

where F (k,θ ) is the 2D wave variance spectrum, θ denotes
the wave direction, ρw is the water density, and kmin and

kmax are the minimum and maximum wavenumbers. βg is
the wave growth rate as a function of wind speed at the height
of λ/2 (i.e. uλ/2 calculated by the logarithmic wind profile,
where λ is the wavelength):

βg(k,θ )= Aω
ρa

ρw

[uλ/2 cos(θ − θw)]|uλ/2 cos(θ − θw)|
c2 , (15)

where θw indicates the wind direction, c is the wave phase
speed, and the proportionality coefficient A is expressed by
(Donelan et al., 2012)

A=


0.11 uλ/2 cos(θ )> c (wind sea)

0.01 0< uλ/2 cos(θ )< c (fast running swell)
0.1 cos(θ )< 0 (swell opposing the wind).

The form drag is calculated using the friction velocity

(u∗ =
√
ρ−1

a |τ ′|) and the wind speed at a reference height of
z (i.e. uz) as Cdf = (u∗/uz)2. The viscous stress is expressed
by

τ ν = ρaCd′ν |uz|uz, (16)

where the adjusted viscous drag by the form drag (sheltering
effect) is given by

Cd′ν =
Cdν

3

(
1+

2Cdν
Cdν +Cdf

)
. (17)

Here Cdν is the viscous drag coefficient.

3 Data

3.1 Dataset

The FINO1 measurement mast in the North Sea is located
about 45 km north of the island of Borkum, Germany. Its ge-
ographical coordinates are 54°0′53.5′′ N, 6°35′15.5′′ E. The
water depth at FINO1 is approximately 30 m, and the mast
height is 100 m a.m.s.l. The site is exposed to an unlimited
fetch area for northwesterly and northerly winds (Bakhoday-
Paskyabi et al., 2018). The mast is equipped with different
meteorological sensors such as cup anemometers to mea-
sure the velocity at 33, 40, 50, 60, 70, 80, 90, and 100 m
and sonic anemometers with a sampling frequency of 10 Hz
at 40, 60, and 80 m (Fig. 2b). During the OBLEX-F1 cam-
paign between 2015 and 2016, two additional Gill R3-100
sonic anemometers were installed at 15 and 20 m a.m.s.l.
with a sampling frequency of 25 Hz. The orientation of sonic
anemometers was set at 135°, which means that the wind
shadow zone extended approximately above 245°. While this
paper’s approach is primarily based on sonic anemometer
wind data at 15 m height, I also make use of the 20 m sonic
wind velocity data to improve the evaluation of the proposed
theoretical coherence model in this study. This is crucial for a
better understanding of the developed model’s performance
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Figure 3. (a) Coherence functions of the wind and wave forA1/A2 = 7.5 in Eq. (8) (before normalizing the total coherence and only Term2)
with peak wave frequencies of fp = 0.14 Hz and fp = 0.06 Hz corresponding to wind speeds of 10 and 20 m s−1, respectively; (b) the energy
spectra of the vertical velocity w estimated from the Kaimal spectra (Eq. 3) for two case studies, as shown by vertical dashed lines in Fig. 2;
(c) the energy spectrum of the first case with U10 = 10 m s−1 and fp = 0.14 Hz (black line) and the corrected spectrum (blue line); and
(d) the energy spectrum of the first case with U10 = 20 m s−1 and fp = 0.06 Hz (black line) and the corrected spectrum (blue line). The
dashed red lines drawn in (c) and (d) show the spectral curves calculated from Eq. (3). Furthermore, the green-coloured areas in these panels
represent the wave-affected frequency band with lower and upper frequencies of fl = 0.6fp in hertz and fu = fp+0.1 in hertz, respectively.

and applicability. Additionally, considering the significance
of coherence function representation in relation to offshore
wind turbine blade loads, this information is quite insightful
for vertical separation distances that are not large. Further-
more, I use wave frequency spectra recorded by an AXYS
wave buoy in the close vicinity of FINO1 platform during
the study period.

3.2 Data analysis

Figure 2 shows time series of wind, waves, and the stabil-
ity parameter during the study period in June 2015. We do
not exclude the effect of flow distortions by the FINO1 mast
when the spectra show very clear wave-induced elevation
(for wind directions between 245 and 360°); see one of the
quality criteria in Appendix B. Sonic data at 15 m height

scaled to 10 m height, i.e. U10, using MOST show a range
of wind speeds from moderate to high (2≤ U10 < 11 m s−1,
Fig. 2a), and during the strong wind–wave interactions (after
24 June), the wind and wave directions are mostly misaligned
(with direction differences larger than 100°). I study a few
cases, specifically two cases representing the opposed wind
and swell conditions (vertical dashed lines). To investigate
coherence, I analyse two additional dates for which we have
concurrent measurements of high-frequency wind at heights
of 15 and 20 m, both displaying clear wave peaks in their
spectra; see Fig. 6a and b.

Figure 2c shows the atmospheric stability parameter z/L
at a height of z= 15 m, where

L=−
u3
∗θv

gκ(w′θ ′v)

Wind Energ. Sci., 9, 1631–1645, 2024 https://doi.org/10.5194/wes-9-1631-2024
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Figure 4. (a) Time series of wave age χ = cp/U10, in which U10 denotes the wind speed at 10 m height and cp is the wave phase speed.
This figure contains the wind–wave misalignment time series θ−θwnd, where θ and θwnd denote the wave and wind directions, respectively.
The dashed blue line (χ = 1.2) represents the separation limit between the wind-sea condition and swell (i.e. χ ≥ 1.2); (b) spectral energy
evolution of surface wave elevation η measured from the AXYS buoy operating in very close vicinity of the FINO1 met mast; and (c) time
evolution of energy spectra for the wind w component between 21 and 27 June 2015 calculated from the 15 m height sonic anemometer
with a sampling frequency of 25 Hz. The dotted black markers are the wave peak frequencies calculated from the buoy-measured peak wave
period Tp. Vertical dashed grey lines indicate the case studies.

denotes the Obukhov length scale (in metres) and κ and g are
the von Kármán constant and the gravitational acceleration,
respectively. w′θ ′v is the flux of virtual potential temperature,
and θv denotes the virtual potential temperature. The stability
changes from stable (L > 0) to unstable (L < 0), and both
coherence and decomposition study episodes represent, on
average, stable conditions.

4 Results

In this section, I utilize three-dimensional wind measure-
ment for calculating measured turbulence and wave-induced
stresses. For clarity and brevity, the vertical wind component
is used to study the performance of the wave–turbulence de-
composition techniques. This further provides insights into
vertical motion relevant for studying vertical momentum
transport, vertical coherence, and turbulence variation with
height. I initiate this section with idealized examples, based
on the proposed coherence model, to establish a foundational
understanding of the developed techniques under controlled
parametric conditions.

4.1 Theoretical coherence

The theoretical (normalized) coherence spectra for two dif-
ferent wind speeds are obtained using Eq. (8) in an ideal
setup. Figure 3a shows that the coherence functions have
peak values at fp with an exponential decay beyond the wave
band, where fp is the wave peak frequency in hertz. The
decay coefficients for both wind and wave components in
Eq. (8) are set to constant values for the sake of simplicity
(C1 = C2 = 1) and do not increase by increasing the wind
speed. From the procedure given in Sect. 2.2 and coherence
information drawn in Fig. 3a, I obtain realizations of tur-
bulent winds for two cases, with wind speeds of U10 = 10
and 20 m s−1, respectively. For simplicity, the wind-sea wave
bulk parameters are treated as total bulk parameters (i.e.
Hs and Tp). The spectral energy distributions of syntheti-
cally generated winds are shown in Fig. 3b, which iden-
tifies the impact of waves on the turbulence in the iner-
tial subrange, particularly across the wave frequency band
0.6fp ≤ f ≤ fp+0.1. Figure 3c and d depict the fitting of the
model spectrum derived from Eq. (3) for vertical wind. This
process is carried out to eliminate the wave peak and to syn-
thetically generate the spectra of turbulent fluctuations within
the wave frequency band (indicated by the blue curves, as
discussed in Sect. 2.1). The parameters presented in this fig-
ure are idealized to enhance conceptual clarity and technical
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Figure 5. (a, b) Scaled power spectra of vertical velocity fluctuations w′ for two events drawn as vertical dashed grey lines in Fig. 2a and
the corresponding corrected (decomposed) spectra (blue curves). The dashed red lines show the spectral curves calculated from Eq. (3). (c,
d) Energy–time spectra of decomposed vertical velocity w′ and the wave-induced vertical velocity w̃ fluctuations by the use of the suggested
decomposition algorithm. The dotted black markers in (d) are the wave peak frequencies extracted from buoy measurements.

demonstration, rather than reflecting real-world values. They
serve as a theoretical framework to facilitate detailed illustra-
tions of the underlying concept and are not representative of
practical measurements or actual conditions. It is important
to note that the actual values and more detailed information
for these parameters, obtained through fitting to the observed
coherence data, can be found in Appendix C and Table C1,
as well as Fig. 6a and b.

4.2 Measured wind–wave spectra

Figure 5a shows the time variation in the wave age, χ ,
during the study period covering both the mixed wind sea
(i.e. χ < 1.2) and the swell waves (i.e. χ ≥ 1.2). Wind and
waves are obviously aligned during the wind-sea conditions.
For the conditions where the swell waves are dominant (see
Fig. 4b), wind and waves are mainly misaligned with a dif-
ference of approximately more than 100°. This is particu-
larly the case after 25 June, when the wind–wave misalign-
ment shows an oscillation-like behaviour. The atmosphere
experiences mainly stable and also to a lesser extent unstable
conditions during this period (see Fig. 2c). The time evolu-
tion of the power spectral density of the vertical wind speed
(i.e. thew component) is presented in Fig. 4c. This figure has
been overlaid by the time series of the wave peak frequency,
fp. There is a good agreement between the buoy-measured
fp and the spectral peak of the measure vertical component

wind at the wave frequency band, consistent with an increase
in the values of wave age (i.e. values of χ greater than 1.2).
The agreement is more pronounced under stable atmospheric
conditions, with somewhat weaker agreement observed un-
der unstable conditions, especially after 25 June.

To further investigate the ability of the suggested method
in splitting the fluctuations in wave and turbulence, I use
30 min time series of sonic anemometer data at 15 m height
for two study events, depicted in Fig. 5. These events cor-
respond to strong swell–wind interaction, characterized by
low wind, large values of χ , and spectrally enhanced en-
ergy within the wave-affected frequency band (i.e. around
fp). The spectra of the corrected vertical velocity fluctua-
tions w′ and the vertical wave orbital velocity w̃ are shown
in Fig. 5c and d. It is observed how the decomposition de-
taches the wave-induced energy elevation from the inertial
subrange of w. To assess the effectiveness and performance
of the proposed decomposition technique, we compare the
power spectra of the vertical velocity for three decomposi-
tion methods that depend exclusively on the time series of
high-frequency wind at a single height. This comparison is
presented in Fig. D1 (see Appendix D).

4.3 Spectral and coherence analyses

Figure 6 displays the coherence spectra of 15 min vertical
wind data at heights of 15 and 20 m, with a separation dis-
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Figure 6. (a, b) The coherence spectra of vertical velocity time se-
ries at two heights (15 and 20 m) are marked in red. In these plots,
the thick black curves represent the empirical/theoretical coherence
function, while the thin black and blue curves represent the fitted
coherence derived from Eq. (8). The thin black curves illustrate the
impact of wave-induced oscillations in the coherence tail (shaded
regions). (c, d) Power spectra of the original vertical velocity fluc-
tuations for two distinct dates under stable atmospheric conditions,
depicted by the red curves. The black curves represent the spectra
of turbulent components obtained directly through the coherence-
based correction based on Eq. (9).

tance of 5 m. The two cases depicted in this figure were
measured under low-wind and stable atmospheric conditions.
During the first period, the significant wave height was ap-
proximately 0.8 m, and the peak wave period was around 7 s
(Fig. 6a and c). Consequently, this 15 min segment encom-
passed roughly 128 swell periods, providing a sufficiently
robust estimate of coherence. In this scenario, we can clearly
observe the presence of a wave-induced elevation. Figure 6c
shows the power spectrum of vertical velocity fluctuations.
Initially, the spectrum is primarily influenced by surface
waves at frequencies within 0.6fp−fp+0.1 Hz, correspond-
ing to a wave peak period of 7 s, with a notable peak in this
range. At higher frequencies, the spectrum closely followed
the Kolmogorov −5/3 curve up to 5 Hz (not shown). Using
the coherence-based method described in Eq. (9), it is pos-
sible to separate the total velocity fluctuations into wave and
turbulent components, as depicted by black curves. In Fig. 6a
and b, it is evident that scales at frequencies greater than
fp+ 0.1 Hz exhibit a sustained coherence value of approx-
imately 0.1. This could be attributed to data characteristics
and quality or to potential effects of residual flow distortion
during low-wind conditions.

Figure 7a displays time series of original (red curve), cor-
rected (black curve), and wave-induced (blue curve) vertical
velocity during a segment on 26 June at 04:00 UTC (refer to

Fig. 6b). The black and blue curves illustrate the corrected
and estimated wave time series, respectively, extracted di-
rectly using the decomposition method developed in this pa-
per (see Sect. 2.1). To examine the impact of corrections on
turbulence statistics, the effects of corrections on the coher-
ence spectrum and structure function are illustrated in Fig. 7b
and c, respectively. Utilizing the decomposition method at
heights of 15 and 20 m to compute the corrected coherence
results in a significant reduction in coherence within the
wave-affected frequency band, although some small wave-
correlated points still remain in this frequency range (i.e.
green area in Fig. 7b). Furthermore, we observe a more sig-
nificant decline in coherence at frequencies above the wave
band.

Starting from the time series of vertical wind velocities
w(t), I define the second-order structure function as follows:

S2(t)=
〈
|w(t + τinc)−w(t)|2

〉
, (18)

where τinc indicates a time lag (or an incremental time step)
and 〈·〉 denotes an average over all time lags. By having
knowledge of S2(t), it is possible to transform this into a
function in space S2(r) using the parameter r = τincu, where
u represents the mean wind speed averaged over the entire
time series, based on Taylor’s hypothesis. The values of r
vary between the Taylor length scale and the integral length
scale. In Fig. 7c, the non-corrected structure function exhibits
wave-induced oscillations that gradually dampen at larger
spatial scales. The shape of S2(r) indicates that wave orbital
contamination influences the slope of the second-order struc-
ture function for ranges before the onset of the oscillating
tail. The application of decomposition to generate corrected
time series in computing the structure function eliminates not
only these wave-induced oscillations but also the slope en-
hancement from the second-order structure function in this
figure.

4.4 Momentum flux estimation

Regarding the calculation of momentum flux, splitting be-
tween wave and wind fluctuations is not reasonable if there
is no obvious footprint of waves in the measured velocity
spectra at 15 m height. As a result, the decomposition algo-
rithm is applied if the ratio of the energy variances in the
wave frequencies and model spectrum, R, is larger than 1:

R =

∫ fu
fl
Eo

ww(f )df∫ fu
fl
Em

ww(f )df
> 1, (19)

where Eo
ww and Em

ww are the sonic-based energy spectrum
and the model spectrum of the vertical wind speed given
by Eq. (3), respectively. Figure 8a shows a measure to as-
sess the strength of wavy structures in the observed velocity
spectra. I apply the decomposed turbulence time series when
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Figure 7. (a) Time series of the wave-contaminated vertical velocity (red curve), the corrected w (black curve), and the wave component
w̃ (blue curve) obtained by applying the developed decomposition method. (b) The contaminated and corrected coherence for a separation
distance of 5 m using data from both 15 and 20 m sonic anemometers. The coherences are computed using Eq. (8). (c) The second-order
structure function calculated from sonic anemometer measurements at 15 m height at the same time as illustrated in Fig. 6b.

Figure 8. Time series of (a) the wave–turbulence strength ratio R; (b) momentum stresses at the surface calculated using the COARE3.6
algorithm (red line), the Donelan et al. (1999) parameterization of Eq. (13) (black line), and the wave-induced form stress estimated from
Eq. (14) at the surface; (c) the momentum fluxes at 15 m height estimated using decomposed turbulent wind data based on the eddy covariance
technique (black markers), and the estimated wave-induced form stress at measurement height z= 15 m using Eq. (14), i.e. |τf (15)| (blue

markers) – here ũ∗ =
√
ρ−1

a |τ̃ |; and (d) the ratio of the wave-induced turbulence intensity and the corrected turbulence intensity, TIw̃/TIw.
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R > R (i.e. when there exists a well-pronounced energy ele-
vation around fp). Here, R represents the average value of
R. In Fig. 8b, I compare the total wind stress at the sur-
face obtained from Eq. (13) (black curve), with the bulk es-
timation (red curve) derived from the COARE3.6 algorithm
(see Eq. 2). The two stress estimates align consistently when
R < R. Additionally, it is noteworthy that the wave-induced
form stress at the surface, shown by blue markers, under-
goes transitions from positive to negative for swells moving
opposite to the wind direction (i.e. when R > R). Figure 8c
shows that the estimated form stress at z= 15 m according
to Eq. (14) is approximately in acceptable agreement with
the measured |τ̃ | from the sonic data, using the eddy covari-
ance technique according to Eq. (2). In the estimated form
stress at 15 m height, the dimensionless function for the ver-
tical decay, i.e. Eq. (14), plays a significant role in the vertical
distribution of the wave-induced momentum flux. Moreover,
the decomposition method outlined in Sect. 2.1 has been ap-
plied to all three components of measured wind velocities to
estimate the observed wave-induced stress |τ̃ | represented in
Eq. (2). Figure 8d illustrates that the ratio of wave-induced
(turbulence) intensity (the standard deviation of w̃ over the
mean wind speed) to corrected turbulence intensity (the stan-
dard deviation of the corrected w over the mean wind speed)
is most pronounced when wave elevations are clearly visible
around the peak frequency fp (in agreement with Fig. 8a).

5 Conclusions

I have suggested a wind–wave decomposition algorithm
for the turbulent airflow over the ocean in the presence of
swell waves based on high-frequency data recorded from a
sonic anemometer at 15 m a.m.s.l. The wave–turbulence de-
composition method proposed in this study possesses some
key characteristics: (1) it relies solely on sonic wind ve-
locity data, eliminating the need for simultaneous high-
frequency wave measurements in the decomposition process.
It assumes turbulence field stability during transformation
into wavenumber space and disregards velocity fluctuations
within the wave band. (2) The method uniquely adopts a sta-
tistical approach, employing a turbulence spectral model to
effectively bridge the gap between high- and low-frequency
sections in the observed spectra. This allows for the esti-
mation of the variance attributed to turbulent velocity fluc-
tuations within the wave frequency band, relying solely on
the energy spectrum of the corresponding wind component.
(3) Notably, this method provides wind-corrected and wave
time series, crucial data for structural analysis that, to the
best of my knowledge, are not available through many known
methods.

Furthermore, I have introduced a theoretical formulation
for coherence that considers both wind fluctuations and the
influence of swell waves. This model not only has been uti-
lized to create idealized wind time series under swell condi-

tions but also can be adjusted using observational data. In this
case, I additionally used sonic data at 20 m (along with sonic
data at 15 m) to estimate observed coherence and determine
the fitting coefficients presented in Eq. (8). Furthermore, I
quantified the wave-induced stresses by assuming both a cer-
tain growth rate and a vertical decay function. A few real
cases during the opposed wind–wave conditions were se-
lected to demonstrate physical aspects of wind and waves
regimes. Under the wind-sea conditions, it was found that
the wind stresses were quite similar to those observed under
atmospheric neutral conditions. This is because the height of
the wave boundary layer was below the height of measure-
ment, and waves could contribute to a very small fraction of
the total wind stress.

Although I have introduced a theoretical coherence func-
tion with a small number of fitting parameters, there is poten-
tial for improving the model and its efficiency by reducing
the number of adjustable parameters and the model mathe-
matical representation. Further details on this, as well as the
reconstruction of the turbulence box for assessing the struc-
tural loads of offshore wind turbines over swell waves, are
discussed in a separate independent study.

Appendix A: Calculation of df/dk based on the
linear dispersion relation

The wavenumber and frequency spectra are interrelated
through the dispersion relation (I assume here the linear dis-
persion relation):

ω2
= gk tanh(kd),

where ω is the angular frequency and d denotes the water
depth. The spectral variance, whether expressed in frequency
or wavenumber spectra, can be determined accordingly:

σ 2
=

∫
F (k)dk =

∫
E(f )df,

where E(f ) and F (k) are the frequency and wavenumber
spectra, respectively. Assuming linear dispersion, we can es-
timate dk/df , essential for the transformation between these
two spectra, as

df
dk
=

g

4πω

[
tanh(kd)+ sech2(kd)kd

]
.

Appendix B: Isotropic ratio

Here, I examine one of the quality criteria, which is the pres-
ence of the isotropic portion of the spectrum in the inertial
subrange (outside the wave-contaminated frequency range).
The cross-coherences, at zero separation, are not computed
to assess isotropy, as not all of these cross-coherences may
be exactly zero. To be more specific, I define the isotropy
criteria as follows:
Eu′u′

Ew′w′
∼
Eu′u′

Ev′v′
∼

3
4
.
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Figure B1. (a) Three-dimensional velocity spectra f ·Eii (f ) for
i = u,v, and w showing the spectral regions of the wave-affected
peaks and the inertial subrange; (b) velocity spectra ratios with hor-
izontal dashed yellow and black lines indicating the value of 4/3
and 3/4, respectively.

It is worth noting that these ratios over the isotropic band-
width converge to 3/4 (Fig. B1, red-coloured areas). In
Fig. B1, the power spectra and spectral ratio of the non-
corrected time series are presented to assess the statistical
isotropy of the three velocity components. It is evident that
the non-corrected ratios in Fig. B1b approach a value of 3/4
for frequencies larger than the wave-affected band. In some
cases with wave peaks in the velocity spectrum during low-
wind conditions, I notice increased anisotropic features (not
shown), likely due to higher wave contamination beyond the
wave frequency band (Bakhoday-Paskyabi, 2019) and partial
effects of flow distortion.

Appendix C: Theoretical coherence function in
Eq. (8)

To obtain estimations for the fitting parameters in the theoret-
ical coherence model outlined in Eq. (8), I provide the results
of the fitting process in Table C1 for the scenario illustrated in
Fig. 6b. The fitting model comprises only Term1 and Term2.
To generate multiple ensembles using the derived parame-
ters, I perturbed four critical parameters, including Hs, Tp,
A1, and A2 (Fig. C1).

Table C1. Theoretical model parameters are determined by applying the least-squares estimation method to the observed coherence illus-
trated in Fig. 6b. The total wave bulk parameters used to generate this figure are Hs =H

sw
s +H

ws
s and Tp = T

sw
p + T

ws
p , where H sw

s [m]
and T sw

p are the significant wave height and peak period of swell waves and Hws
s and T ws

p are the wind-sea bulk parameters estimated using
Carter’s formula (Sect. 2.2).

A1 A2 C1 C2 β2 u [m s−1] H sw
s [m] T sw

p [s]

0.3962 0.5434 0.3 0.07985 0.07443 1.7 0.7 8

Figure C1. Theoretical coherences are generated based on the fun-
damental parameters listed in Table C1. To create 20 ensembles,
I perturb Hs within the range of [0.5,1.5], Tp within [5,12], A1
within [0.1, .5], and A2 within [0.02,0.1]. It is important to note
that in the theoretical model defined in Eq. (8), we only use Term1
and Term2 to produce this figure.
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Appendix D: Wind–wave decomposition methods

Figure D1. (a) Power spectra of the vertical velocity fluctuation w′ (illustrated in Fig. 6d) and its decomposed intrinsic mode functions
(IMFs; for n= 10); (b) comparison of different wave–turbulence decomposition methods: stop-band technique (blue curve), spectral linear
transformation (red line), the empirical mode decomposition (EMD) method after removing IMF4 (green curve), and the spectral decompo-
sition method proposed in this paper (yellow curve). The coloured areas in this figure show the selected wave frequency band.

The choice of decomposition method in this paper is based
on specific considerations related to the research objectives
and the nature of the data. The approach solely utilizes
sonic wind velocity data at a single height, omitting the
need for concurrent high-frequency wave measurements in
the decomposition process. In this appendix, I compare three
existing wave–turbulence decomposition methods that rely
only on the high-frequency measurement of wind at a sin-
gle height. These methods are the stop-band (SB) method,
spectral linear transformation, and an approach based on em-
pirical mode decomposition (EMD). The first two are estab-
lished filtering techniques, while the latter is a novel signal-
processing method.

The stop-band filter eliminates frequency bands in which
waves dominate in the sonic velocity time series (blue curve
in Fig. D1b). In this method, we employ a second-order But-
terworth filter. The stop-band frequency thresholds, which
consist of lower and upper cutoff frequencies, are specifically
designed to attenuate frequencies within the wave-affected
band. The spectrum produced by the stop-band filter method
exhibits a significant drop in energy at wave frequencies, re-
sulting in an underestimation of turbulent energy. The sec-
ond method, adapted from Rieder and Smith (1998), involves
identifying the wave frequency band in the velocity spec-
trum. Subsequently, we remove the wave-correlated portion
of the spectrum and replace the removed frequencies with
a line, as illustrated in Fig. D1b (red line). While the effec-
tiveness of these two methods relies heavily on the accurate
choice of the wave frequency band, the line-fit method suc-
cessfully eliminates orbital velocities from the analysed sig-
nal.

The third approach, known as the EMD method, decomposes
the observed signal in the time domain into multiple intrinsic
mode functions (IMFs). Each IMF, as a stationary stochas-
tic process, characterizes a narrowband frequency–amplitude
modulation typically associated with a specific physical pro-
cess. I have adapted this technique from Qiao et al. (2016),
who utilized the EMD method to extract wave signals from
field velocity observations. In this method, the vertical ve-
locity fluctuations, which include wave orbital velocities, are
decomposed into n IMFs and a residual fluctuation w′residual
as follows:

w′ = w′IMF1+w
′

IMF2+ ·· ·+w
′
IMFn+w

′

residual. (D1)

The IMFs can be categorized into two groups: wave-
correlated components and non-wave-correlated compo-
nents. In the vertical velocity time series, the peak frequen-
cies of IMF4 and IMF5 in Fig. D1a fall within the wave
frequency range. Thus, we specifically identify IMF4 as the
wave component that is excluded from the sum in Eq. (D1)
to remove significant wave contamination. IMF6–IMF10, on
the other hand, represent high-frequency signals like turbu-
lence.
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