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Abstract. Mesoscale weather systems cause spatiotemporal variability in offshore wind power, and insight into
their fluctuations can support grid operations. In this study, a 10-year model integration with the kilometre-
scale atmospheric model COnsortium for Small-scale MOdelling – CLimate Mode (COSMO-CLM) provided
a wind and potential power fluctuation analysis in the Kattegat, a midlatitude sea strait with a width of 130 km
and an irregular coastline. The model agrees well with scatterometer data away from coasts and small islands,
with a spatiotemporal root-mean square difference of 1.35 m s−1. A comparison of 10 min wind speed at about
100 m with lidar data for a 2-year period reveals very good performance, with a slight model overestimation
of 0.08 m s−1 and a high value for the Perkins skill score (0.97). From periodograms made using the Welch’s
method, it was found that the wind speed variability on a sub-hourly timescale is higher in winter compared
to summer. In contrast, the wind power varies more in summer when winds often drop below the rated power
threshold. During winter, variability is largest in the northeastern part of the Kattegat due to a spatial spin-up
of convective systems over the sea during the predominant southwesterly winds. Summer convective systems
are found to develop over land, driving spatial variability in offshore winds during this season. On average over
the 10 summers, the mesoscale wind speeds are up to 20 % larger than the synoptic background at 17:00 UTC
with a clear diurnal cycle. The winter-averaged mesoscale wind component is up to 10 % larger, with negligible
daily variation. Products with a lower resolution like ERA5 substantially underestimate this ratio between the
mesoscale and synoptic wind speed. Moreover, taking into account mesoscale spatial variability is important for
correctly representing temporal variability in power production. The root-mean square difference between two
power output time series, one ignoring and one accounting for mesoscale spatial variability, is 14 % of the total
power generation.

1 Introduction

According to the sixth iteration of the Intergovernmental
Panel on Climate Change (IPCC) assessment report, wind
energy is one of the foremost ways of reducing greenhouse
gas emissions (Shukla et al., 2022). Therefore, offshore wind
energy will be playing an increasingly important role in our
electricity grid. Compared to those onshore, offshore loca-

tions are advantageous because the offshore environment
generally features greater wind speeds (Kaldellis and Kap-
sali, 2013). Additionally, they also have higher acceptance in
society since offshore wind turbines are mostly placed out of
sight (Betakova et al., 2015).

Over the years, individual wind turbines have grown sig-
nificantly in size, and offshore wind project areas are now
much bigger than 10 years ago, thereby strongly condens-
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ing the power generating capacity (Díaz and Soares, 2020).
Hence, such condensed wind farms are having a direct im-
pact on the power grid. In addition, in the absence of large en-
ergy storage facilities, electricity production needs to always
match demand (Hossain and Pota, 2014). A condensed wind
farm with low production during the peak demand hours is
detrimental. In brief, with changing wind farm layout and
challenging energy demand, wind variations at increasingly
fine spatial and temporal scales have to be investigated. As an
example, a thunderstorm system passing a condensed wind
farm during peak energy demand hours is expected to gen-
erate large power fluctuations affecting the power grid. This
effect is amplified by the fact that the power output of a wind
turbine is related to the cube of the wind speed. Knowing
when to expect these power fluctuations is of great interest
for grid operators.

The passing of synoptic weather systems is a driver for
wind power fluctuations on a timescale of multiple days
(Kempton et al., 2010; Grams et al., 2017). For example, de-
pressions and associated fronts (Ahrens, 1994) are related to
the 4-day peak in the spectrum defined by Van der Hoven
(1957). Synoptic systems can be sufficiently resolved in rela-
tively coarse-resolution (O(10 km)) hydrostatic weather sim-
ulations. On the other hand, turbulence manifests as small-
scale chaotic motion in fluid dynamics (Batchelor, 2000). It
is also well known that turbulence generated by wind tur-
bines affects turbines downstream (Calaf et al., 2010; Meyers
and Meneveau, 2012; Stevens and Meneveau, 2017; Porté-
Agel et al., 2020; Lanzilao and Meyers, 2022). The effects of
turbulence are partly taken into account in large eddy simula-
tions (LES) or in Reynolds-averaged Navier–Stokes (RANS)
simulations (Chung, 2002). Their high computational cost
does, however, pose a constraint on domain size and the du-
ration of these simulations.

Variations in wind speed can also arise from mesoscale
weather systems. With length scales ranging up to a hun-
dred kilometres and timescales spanning from 10 min to a
few hours, mesoscale weather systems occupy an intermedi-
ary position between turbulence and synoptic weather sys-
tems. They comprise thunderstorms and organised convec-
tion but also sea breeze systems, low-level jets, and grav-
ity waves (Orlanski, 1975; Nunalee and Basu, 2014). These
phenomena cannot be represented by coarse-grid reanalyses
such as ERA5 and require a convection-permitting model
that can be run at the kilometre scale, such as the Weather Re-
search and Forecasting (WRF; Peña et al., 2018; Larsén and
Fischereit, 2021; Porchetta et al., 2021) or COnsortium for
Small-scale MOdelling – CLimate Mode (COSMO-CLM;
Helsen et al., 2020; Thiery et al., 2015; Brisson et al., 2016;
Van de Walle et al., 2020), to be resolved. Both Hahmann
et al. (2015) and Wang et al. (2019) have evaluated kilometre-
scale climate models against in situ data and have shown the
capacity of these models to reproduce mesoscale variabil-
ity. Wind atlases utilising these models at a kilometre grid
have been made available to the public, such as the Dutch

Offshore Wind Atlas (DOWA; Wijnant et al., 2019) and the
New European Wind Atlas (NEWA; Petersen et al., 2014;
Hahmann et al., 2020; Dörenkämper et al., 2020), and pro-
vide thoroughly validated information at the mesoscale level
(Kalverla et al., 2020). Previous research has already shown
that mesoscale weather systems are a driver for wind speed
variability in both onshore and offshore contexts. The off-
shore part of pure sea breezes can have an influence on the
power output of a wind farm as it, in general, opposes or re-
inforces the synoptic wind flow (Steele et al., 2015). During
the night, land breeze systems have the potential to generate
offshore mesoscale wind speed variability (Gille et al., 2005;
Short et al., 2019). Convective systems are also known to af-
fect wind speed variability, and a correlation between rainfall
and wind speed variability is apparent (Weusthoff and Hauf,
2008; Trombe et al., 2014). A class of convective systems
for which the formation, evolution, and stability conditions
are not completely understood yet are the mesoscale con-
vective systems (MCS; Houze, 2004). An overview of the
different theories explaining the mechanisms behind MCS is
summarised in, for instance, the introduction of Short et al.
(2023). The land–sea transition can lock these MCSs in place
(Xu et al., 2012), potentially affecting offshore wind farms.
In a coastal environment, variability is, in general, found to
be dependent on the flow direction: when in autumn and win-
ter the wind is coming from over the sea rather than over
the land, larger variability is found over the North Sea (Vin-
cent et al., 2011). The relatively warm seawater combined
with cold air aloft creates unstable conditions, which result in
mesoscale systems creating wind speed variations. But sys-
tems can also induce wind speed variability in stable con-
ditions, for instance, due to nocturnal jets or gravity waves
(Allaerts and Meyers, 2018).

In our paper, we use a 10-year integration of the
convection-permitting climate model COSMO-CLM with a
horizontal resolution of 1.5 km to further study the atmo-
spheric mechanics behind mesoscale variability. Augmenting
existing research, we added here the implications for power
production for a full 10-year period. Moreover, this paper
introduces a new index, which identifies spatially coherent
mesoscale systems, allowing for detection of situations with
a strong mesoscale system. We add this spatial index with
temporal analysis methods since these methods are inher-
ently complementary. Additionally, this paper uses COSMO-
CLM, which complements the frequently used model WRF,
enabling a multi-model approach to applications in the wind
energy sector in the future. Our analysis has been performed
using 10 min wind speed data, which is not available from
wind atlases in our region of interest. The goals mentioned
above can only be achieved if the model represents the real
atmospheric winds. Therefore, we have incorporated an eval-
uation of the near-surface winds using Advanced Scatterom-
eter (ASCAT) data (KNMI, 2018) and the 100 m winds us-
ing lidar data. These nicely complement each other as the
ASCAT measures multiple locations but only at 09:00 and
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Simulation domain

Figure 1. Map of the simulation domain. On every side of the do-
main, 20 points are used for relaxation and spin-up zones. These
relaxation and spin-up points are not used in the analysis. Made us-
ing Natural Earth.

21:00 UTC, while the lidar data provide measurements dur-
ing the whole day albeit at one single location. In order to
minimise cable and maintenance costs offshore, wind tur-
bines are often built in farms near the coastline (Milborrow,
2020), implying that they are subject to coastal weather ef-
fects. This is why the Kattegat area (Fig. 1) is our region
of interest as it features a very irregularly shaped coastline,
making it particularly interesting for studying mesoscale
weather systems and their impact on wind farm power pro-
duction. Moreover, it is largely surrounded by land, giving
ample opportunity to study how mesoscale weather systems
developing over land influence offshore winds. In fact, an
offshore wind farm is present in the Kattegat: the Anholt
wind farm, exploited by Ørsted. The aim of this paper is to
investigate what factors influence mesoscale wind speed vari-
ability, on what timescales this variability occurs, and how it
affects wind power output in offshore wind farms.

The remainder of this paper is structured as follows:
Sect. 2 contains the specifications of the simulation domain
and the model setup (Sect. 2.1) and validation (Sect. 2.2), as
well as the explanations of the methods used for studying the
wind speed and wind power variability (Sect. 2.3 and 2.4).
Next, the results are reported in Sect. 3, where a compar-
ison of the model output with scatterometer and lidar data
(Sect. 3.1) is followed by the results for both a temporal and
a spatial analysis (Sect. 3.2 and 3.3). The added value of a
convection-permitting simulation over ERA5 for wind and
power resources is assessed. The main findings of this paper
are summarised in the concluding section.

2 Methods

2.1 Model setup

The model we use is the COnsortium for Small-scale
MOdelling-CLimate Mode (COSMO-CLM) non-hydrostatic
limited-area atmospheric model (Rockel et al., 2008).
COSMO-CLM is a community model that is continuously
maintained and developed by its users under the coordi-
nation of the German Weather Service (DWD). The dy-
namical core of this model solves the primitive thermo-
hydrodynamical equations describing a compressible flow in
a moist atmosphere (Doms and Baldauf, 2018) with a time
step of 10 s. The COSMO model uses an Arakawa-C grid
and a staggered Lorenz vertical grid with terrain following
Gal-Chen coordinates. The horizontal grid is mapped out
in rotated coordinates with a spacing of 0.0135°. This cor-
responds to a horizontal distance of approximately 1.5km,
which allows for explicit representation of deep convec-
tion in the model. For shallow convection, the dynamical
core of the model is expanded with a shallow-convection
parametrisation of Tiedtke (1989). Sub-grid-scale turbu-
lence is parametrised by a one-dimensional diagnostic level
2.5 closure scheme based on a prognostic turbulent ki-
netic energy (TKE) equation (Raschendorfer, 2001; Schulz,
2008a, b). Further parametrisations that take sub-grid-scale
processes regarding micro-physical cloud processes and ra-
diative transfer (Ritter and Geleyn, 1992) into account are
present in the model. COSMO-CLM has proven to be an ad-
equate tool for long-term convection-permitting simulations,
allowing for a statistical analysis of mesoscale weather sys-
tems (Brisson et al., 2016; Thiery et al., 2015; Van de Walle
et al., 2020). It has also shown its value for studying wind
speed metrics (Nolan et al., 2014; Wiese et al., 2019; Akhtar
et al., 2021; Petrik et al., 2021). The model is directly driven
by the 31 km resolution ERA5 reanalysis data (Hersbach
et al., 2018). The sea surface temperature (SST) is also pro-
vided by ERA5 and updated on an hourly basis. The diurnal
cycle of the SSTs is relatively limited at 1 to 2 K, and this is
comparable to the diurnal cycle found in potential sea surface
temperature of the Baltic Sea Physics Analysis and Forecast
provided by the Copernicus Marine Environment Monitoring
Service (CMEMS; Lindenthal et al., 2023). More informa-
tion about the nesting strategy can be found in Appendix A.
Some deficiencies in ERA5, like meridional variability in
surface winds and moist convection (Belmonte Rivas and
Stoffelen, 2019), are better represented at the kilometre-scale
resolution. For practical reasons the calculation of the 10-
year simulation has been divided into smaller periods, but
using the restart files generated by COSMO, these periods
were initialised with a warm start. To account for the relax-
ation and spin-up of the forcing data, 20 grid points from
every side of the domain are excluded from the analysis do-
main. The setup for this simulation has been used before to
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investigate the effect of wind farms on the regional climate
in the German Bight (Chatterjee and van Lipzig, 2020).

2.2 Scatterometer and lidar validation data

The model was evaluated with L3 scatterometer data from
the ASCAT instrument on the Metop-A satellite available
from the Copernicus Marine Environment Monitoring Ser-
vice (CMEMS; KNMI, 2018). The Metop-A satellite has a
Sun-synchronous orbit and scans the Kattegat at approxi-
mately 09:00 and 21:00 UTC. The ASCAT instrument from
Metop-A infers the 10 m wind vector (de Kloe et al., 2017)
over sea via the backscatter of the microwave radiation it
emits in three different directions. Validation with ASCAT
data has already been used for a variety of offshore wind
datasets (Hasager et al., 2020; Duncan et al., 2019). Points
flagged by CMEMS for poor quality are removed from the
dataset. The scatterometer does not cover the Kattegat on
every overpass it makes, yet a total of 299 503 wind vector
cells (WVC), which is equivalent to≈ 20800000 aggregated
(i.e. averaged) model grid cells, is available for comparison.
As the scatterometer only works over water surfaces, it is not
available in the vicinity of coastlines (Verhoef et al., 2012). In
order to allow for a comparison, the COSMO model output
is aggregated to the 12 km grid of the scatterometer data. A
direct point-to-point comparison between ASCAT and model
output, like the root-mean square deviation (RMSD), might
underestimate the quality of the model in representing the
mesoscale variability. In the absence of strong forcing over
the sea, a model can easily reproduce a mesoscale system
albeit slightly shifted in time and/or space. The reproduced
mesoscale system then produces two errors. First, it causes
an error over the place where it should have been but is not
reproduced now, and secondly, it causes an error over the
place where it is now but should not have been, a situation
which is referred to as a double penalty (Marseille and Stof-
felen, 2017). That is why, apart from the root-mean-square
deviation (RMSD), statistical methods to assess the distribu-
tion of wind speeds like the 25th, 50th, and 75th percentile
wind speeds are also used. The comparison of these distribu-
tion parameters has an added value compared to an evalua-
tion of the mean, as an erroneous distribution can still have a
good representation of the mean due to error compensation.
Evaluating distribution parameters is therefore more rigorous
than only evaluating the mean.

Using scatterometer data, only the near-surface wind
speeds at 09:00 and 12:00 UTC of our model can be eval-
uated, which is not necessarily representative of the hub-
height wind speed. Complementary to the scatterometer, a
validation by a light detection and ranging (lidar) device lo-
cated 2 km west of the Anholt wind farm is used. This is not
an ideal location, since it might be affected by the wind farm,
which is not implemented in our model, but it is the only
measurement at hub height in the Kattegat area. Therefore,
a sub-period of the measurement campaign was used, one

in which the Anholt wind farm was still under construction,
and the normalised availability of operational wind farms in-
creased from 12 % to 36 % (see Fig. A3 for the availabil-
ity of the Anholt wind farm). Note that eventually 111 wind
turbines became operational in the Anholt wind farm. More-
over, the wind mainly blows from the west in this area (Kara-
gali et al., 2013), resulting in a lidar signal that is largely un-
waked. The lidar provides 10 min averages of the wind speed
and direction between 2013 and 2014 at different height lev-
els and is offered by Ørsted. The 10 min averages are com-
pared to the instantaneous wind speeds of the COSMO grid
cell corresponding to the location of the lidar. Note that the
COSMO wind speed values are a grid cell average. This spa-
tial averaging, similar to the temporal averaging of the lidar
data, should diminish the impact of wind gusts on the analy-
sis. The model wind speeds are interpolated to the measure-
ment height level of the lidar using the wind profile power
law given by

V (hlidar)= V (hm) ·
(
hlidar

hm

)α
, (1)

where the shear coefficient α is given by

α =
ln (V (hm+1)/V (hm))

ln (hm+1/hm)
. (2)

Here hlidar, hm, and hm+1 are measurement heights of the
lidar and the two COSMO output levels closest to the mea-
surement height of the lidar. The agreement between the li-
dar data and the model output is quantified using the Perkins
skill score (PSS; Perkins et al., 2007). The PSS quantifies the
overlap between two equally binned probability distributions
and is calculated by taking the sum of the minimum of the
two probability distributions over all the bins. Formally, this
is expressed as

PSS=
Nbins∑
i=1

min(lidari,modeli) , (3)

with lidari and modeli being the bin values of the lidar and
the model probability distributions, respectively.

2.3 Metrics for temporal variations in wind speed

The spectral density of a signal is estimated using a peri-
odogram, also referenced to as a spectrum, calculated us-
ing Welch’s method (Welch, 1967). Due to the uncertainty
in a signal, such as a time series of the wind speed, we
can only make an estimation of the underlying spectrum.
In Welch’s method, the 10-year time series of 10 min inter-
val wind speeds is cut into overlapping sections of approxi-
mately 7 days using a Hann window (1024 output intervals)
in our case, with an overlap of 50 %. This window length
allows for part of the synoptic peak in the periodogram to
be seen. Subsequently, the spectral density of every section
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is calculated using a fast Fourier transform (FFT) algorithm.
The Hann window reduces the reflections arising from per-
forming an FFT on a finite time series (Blackman and Tukey,
1958). The final mean spectrum is then calculated as the av-
erage of the spectrum of every section. This last step averages
out the fast natural variability in the spectrum and results in
an estimate for the true 10-year mean spectral density of the
signal.

The periodogram is calculated for the four meteorolog-
ical seasons, allowing for a comparison between different
seasons. The typical periodogram for a certain season (for
instance spring, comprising the months March, April, and
May) is then obtained by taking the mean of the periodogram
of that season over every year of the simulation (in this ex-
ample taking the mean over all the spring periods in the
years 2010–2019). For the winters of 2010 and 2019, the
months of December and January–February, respectively, are
not included in the spectrum. Calculating the combined pe-
riodogram of these disjunctive time periods is useful to de-
pict the seasonal effect in wind variability. Student’s t test
at the 95 % confidence level is used to quantify whether the
differences between the winter and the summer spectra are
significant over a given period.

Using the method described above, an average peri-
odogram of the 100 m wind speed is calculated for every grid
point for each season. These averaged periodograms can be
integrated over a time interval of interest, resulting in one sin-
gle value per grid point that quantifies the temporal variabil-
ity over that time interval. This makes it possible to visually
compare the different grid points for each season and allows
us to focus on specific scales, which would be challenging in
the time domain.

Periodograms can also be used to examine the fluctuations
in potential wind power. The power curve of a wind turbine
converts a wind speed time series to a wind power time se-
ries, and from the latter time series a periodogram can be cal-
culated. The power curve of the Siemens SWT-3.6-120 wind
turbine is available in table form (Bauer and Matysik, 2022),
and a cubic spline interpolation is used to obtain the power
for every possible wind speed. As the hub height for this type
of turbine is 90 m, the 80 and 100 m model wind speeds are
interpolated to 90 m via the power law given in Eq. (1).

2.4 Metrics for spatial variations in wind speed

We introduce the Mesoscale Spatial Variability In-
dex (MSVI), extracted from the horizontal wind field
at 100 m, by sliding two square windows of different sizes
grid point by grid point over the study area (Fig. 2). Within
both of these windows, the mean wind speed is calculated.
The small window aims to estimate the mesoscale wind
speed, while the large window follows more or less the
synoptic background. We define the MSVI as the deviation
of the ratio between these two wind speeds and 1,

Mesoscale wind speed component illustration

Figure 2. Wind speed and direction at 100 m. The squares illus-
trate the windows defined for the Mesoscale Spatial Variability In-
dex (MSVI) calculation. For this (and every other) hourly time step,
both windows slide over the whole simulation domain, and the max-
imum MSVI is saved.

MSVI=
〈v〉small window

〈v〉large window
− 1, (4)

which returns a dimensionless number quantifying how
much larger mesoscale wind speeds are relative to the syn-
optic background.

One limitation is that this metric is derived using a model
run with 1.5 km grid spacing, which is a slightly higher reso-
lution than most wind atlases (e.g. DOWA; Wijnant et al.,
2019, and NEWA; Petersen et al., 2014; Hahmann et al.,
2020; Dörenkämper et al., 2020), so the smallest signals that
can be captured are at the effective resolution of 10×10 grid
points (Kapper et al., 2010, ∼ 15 km). This effective resolu-
tion is chosen as the size for the small window, thereby cap-
turing most of the mesoscale variability, although the small-
est mesoscale signals are averaged out by this or any other
product based on state-of-the-art mesoscale model simula-
tions. The synoptic scale starts at ∼ 100 km (Oblack, 2020),
but when taking this size for the large window, frontal sys-
tems were averaged out. Therefore, we took approximately
half of this as dimensions for the large window to fully
capture the synoptic background velocity field including the
frontal systems. A size of 30 grid points (∼ 45 km) is cho-
sen for the large window size, which is 9 times larger in
area than the small window. Using the large window, thun-
derstorms and smaller mesoscale systems are averaged out,
whereas cloud clusters and fronts are not. With these win-
dow sizes, the MSVI was able to identify mesoscale systems
like convective systems and land–sea breezes (see Sect. 3.3).
This is also the scale of variability that can result in sudden
power ramping events for wind farms. Even though this is
not, strictly speaking, the mesoscale length scale (100 km),
we will refer to it as such throughout the rest of the paper.
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As the small window is contained within the large window,
an upper bound exists for the metric. Indeed, the small win-
dow has a mean wind speed of x m s−1 and the large window
has a wind speed of 0 m s−1 everywhere else, but in the small
window, the denominator of the MSVI will be 1

9 · xm s−1,
giving an upper bound of 8 to the MSVI.

Since the focus of this paper is on the offshore wind con-
ditions, the MSVI is calculated only if at least 75 % of the
large window is sea, while all the onshore wind speed values
are set to not a number (NaN). The maximum value per time
step is calculated, quantifying the intensity of a mesoscale
weather system in the domain during that specific time step.

A comparison between ERA5 and our simulation output
was performed using the MSVI, assessing the added value of
convection-permitting simulations for mesoscale variability.
This is done by regridding ERA5 to the grid of our COSMO
simulation output and then applying the MSVI metric to the
ERA5 data.

Given the offshore wind speed variability, wind power
fluctuations are expected. Wind speed and wind power are
related to each other via the power curve of a wind turbine,
and given this relation, an MSVI analysis of the wind power
could be made in principle. Yet the shape of this power curve
imposes restrictions on our methodology: below the cut-in
wind speed of a turbine (3 m s−1) no power is produced,
prohibiting an MSVI calculation for power fluctuations as
the denominator would become zero. Instead, we opt for an
RMSD comparison between power time series for a station-
ary 10× 10 window and a 30× 30 window (in grid points).
The stationary windows are positioned in the area of the An-
holt wind farm. The small window is in area 9 times smaller
than the large window. In order to cover the whole large win-
dow, nine small window power time series are calculated and
compared to the large window power time series. The aver-
age over these 9 RMSD values is then taken to assess the
differences in wind power.

Welch’s method and the MSVI metric complement each
other. Welch’s method produces a spectrum with informa-
tion about wind speed variations over different timescales for
every pixel. Bundling this information in a spectrum does,
however, remove the temporal resolution of that time series.
The MSVI, on the other hand, aggregates spatial informa-
tion into a metric and in doing so gives up spatial resolu-
tion. The temporal resolution in this method stays intact. As
mesoscale systems are by definition bound in both space and
time, these two methods together offer a more complete view
on offshore mesoscale wind speed variability than one metric
would yield on its own.

3 Results

3.1 Evaluation with scatterometer and lidar data

The simulation is evaluated using scatterometer data. Over
the 10-year integration, we find a spatiotemporal RMSD be-

tween the 10 m wind speeds of 1.35 m s−1 over the data
points located away from coastlines and small islands. Note
that the ASCAT wind speed error is about 0.5 m s−1 (Vo-
gelzang and Stoffelen, 2021) with no particular expected re-
gional deviation in the COSMO domain (Belmonte Rivas and
Stoffelen, 2019). Moreover, the 1.35 m s−1 RMSD may be
explained by the double penalty mentioned earlier, but there
is no straightforward way of testing this. However, tests with
spectral nudging did not substantially improve the perfor-
mance, indicating that the lateral boundaries to a large ex-
tent control the timing and location of weather systems for
this domain and model configuration. Distributions of wind
speeds are compared via the 25th, 50th, and 75th percentiles
(Fig. 3). For the 25th and to a lesser extend the 50th per-
centiles, simulation and observation disagree, especially near
the coastlines and over the islands. On the western shores,
simulation output and the scatterometer agree better than on
the eastern shore. The simulation also shows lower wind
speeds over the Anholt and Læsø islands. Recently, ASCAT
winds have been validated extensively close to the coast, and
an operational product has been introduced providing good
quality winds as close as 10 km from the coast (Vogelzang
and Stoffelen, 2022), which could in the future be used to
further evaluate the discrepancies between simulation output
and scatterometer data. Relative differences between the sim-
ulation and the scatterometer further away from the islands
and the coastline are smaller: −13 % for the 25th percentile,
+1 % for the 50th percentile, and +5 % for the 75th per-
centile.

For validation of the model output above the 10 m level, a
lidar device measuring the wind speeds at 102.6 m is used.
The 10 min model wind speeds at the 80 and 100 m level
are extrapolated to 102.6 m using the wind profile power law
(Eq. 1) and then compared to the lidar data. The nearby An-
holt wind farm was being built during the lidar measurement
campaign and was not fully operational (wind farm avail-
ability is shown in Fig. A3). In order to minimise the im-
pact of the Anholt wind farm on the validation of the model,
we have also made a comparison taking into account only
the first 100 d of the measurement campaign. Over the whole
2-year-long lidar dataset, the normalised PSS of the simula-
tion output compared to the lidar data is 0.97 (Fig. 4). Dur-
ing this period, the simulation output overestimates the lidar
data by 0.08 m s−1 on average. Taking only the first 100 d
into account results in a similar normalised PSS of 0.96, with
COSMO overestimating the lidar wind speeds by slightly
less, namely 0.02 m s−1. Even though there is some uncer-
tainty about the effect of the wind farm on the lidar data,
the small difference in performance between the two peri-
ods, together with the close correspondence between lidar
data and COSMO, gives us some confidence that the model
performance is adequate. It might, however, be possible that
COSMO underpredicts winds in the simulation without tur-
bines, which is masked by the wind farm wakes experienced
by the lidar. However, the effect is likely small due to the
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Figure 3. Comparison between the simulation and the scatterometer data. In the rightmost column, the relative differences between the
model output and the scatterometer data are plotted (model output – scatterometer data divided by the model). Note the difference in scales
between different percentiles.

wind mainly blowing from the west in this area (Karagali
et al., 2013).

3.2 Temporal variations

Using Welch’s method, the spectrum can be estimated for the
10-year 100 m wind speed time series of each pixel in our
domain. Differences between winter and summer are investi-
gated using the combined periodogram for all winter months,
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Figure 4. Distributions of both the model and the lidar wind speeds
at 10 min intervals at the position indicated in Fig. 1. In (a), the
whole 2-year measurement period is taken into account; in (b), only
the first 100 measurement days are used when the wind farm was
less than 50 % operational.

December, January, and February (DJF), and for all sum-
mer months, June, July, and August (JJA; Fig. 5). The result-
ing periodograms resemble what is found in the literature by
Larsén et al. (2016) for 100 m offshore wind speed spectra.
For the lower frequencies, the periodogram seems to level
off, which is indicative of the synoptic weather peak (Larsén
et al., 2016). Comparing the simulation output with lidar
data, it appears, however, that our simulation slightly under-
estimates the intensity at the higher frequencies (Figs. A1
and A2). These periodograms are averaged over a subdo-
main of the Kattegat, excluding coastlines and islands. On
the high-frequency end of the periodograms, a higher inten-
sity is found in DJF compared to JJA. Relatively warm SSTs
in winter result in turbulence and unstable conditions. Unsta-
ble conditions are a driver for convective cells. The systems
are not bound to a specific place and are advected with the

Figure 5. Periodogram of the 100 m wind speed estimated using
Welch’s method for both DJF and JJA.

wind. Therefore, they can move relatively fast and result in
short-timescale variability (20 min–1 h; Ahrens, 1994). For
wind speed variability on the long timescales (6–12 h), how-
ever, there is a larger intensity found for JJA. Using Student’s
t test, we find that the differences over these time slots are
significant at the 0.05 level. The difference between DJF and
JJA on the longer timescales may be due to the sun being
higher in summer and heating the land more effectively. With
the sun over land, the air above it expands and generates a
breeze over the sea during the morning or afternoon. Noc-
turnal jets may be formed during the night due to the land
cooling. Sea breezes are fed by the contrast in land surface
temperature and sea surface temperature. This keeps them
confined to the vicinity of the intersection between land and
sea, and this results in longer timescale variability (Ahrens,
1994).

Next, periodograms for each grid cell are integrated over a
chosen time slot, resulting in a map that quantifies the wind
speed variability, allowing for a spatial analysis of the tem-
poral wind speed variability. In the previous paragraph, a
stronger variability was already found in JJA than in DJF for
the long-timescale winds (Fig. 6). In contrast, for the short-
timescale winds, there is a stronger variability in DJF than
in JJA (Fig. 6), albeit an order of magnitude weaker than the
long-timescale variability. During winter, the variability in-
creases from southwest to northeast. This gradient is proba-
bly related to southwest prevailing winds and indicates that
the convective systems need some spin-up time and distance
to reach their maximal wind speed variability. Indeed, when
isolating a time series of 11 consecutive winter days with
only easterly winds (directions from 45 to 135°), a clear gra-
dient is observed from east to west (see Fig. C1), confirming
that spatial spin-up of convective systems is an underlying
cause for the large wind speed variability over the northeast-
ern part of the Kattegat. Similarly, Vincent et al. (2011) relate
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wind speed variability over the North Sea in winter on these
short timescales to unstable conditions created by the rela-
tively warm seawater and the relatively cold air above. The
higher variability found towards the centre of the North Sea
compared to the coastlines also indicates the spin-up time
needed for the atmospheric conditions to reach maximal vari-
ability.

3.2.1 Integrated periodograms for the potential wind
power

The combined periodogram for potential wind power inte-
grated over a time slot running from 6 to 12 h depicts a sim-
ilar picture as for the wind speed (Figs. 6 and 7). Also for
potential wind power, the variability is larger in JJA than in
DJF. Potential wind power variability on shorter timescales
from 20 min to 1 h, however, differs from wind speed vari-
ability: stronger variability is found in summer (compare
Figs. 6 and 7). The discrepancy between wind speed variabil-
ity and potential wind power variability is due to the particu-
lar shape of the power curve. This can be explained using the
yearly mean wind speed and the power curve of the wind tur-
bine used in this example (Fig. 8). In winter, wind speeds are
comparable to the rated wind speed of the turbine. Between
the rated wind speed and the cut-out wind speed, the power
output of the turbine stays constant, so fluctuations around
this speed do not result in fluctuations in the potential wind
power. In summer, the mean wind speed is lower and closer
to the regime where the potential wind power is proportional
to the cube of the wind speed, resulting in large fluctuations
in potential wind power. On the shorter timescales, fluctua-
tions in wind speeds thus do not necessarily translate to fluc-
tuations in potential wind power.

3.3 Spatial variations in wind speed

The MSVI metric quantifies spatial variations in wind speed,
and high MVSI values should indicate the presence of a
mesoscale weather system. Indeed, looking at the wind fields
associated with these peaks, a variety of mesoscale systems
are clear, such as convective and sea breeze systems devel-
oping over the Kattegat. Convective cells are initiated over
land and over Læsø island in the afternoon, resulting in local
showers and offshore wind speed variability (Fig. 9). Other
peaks relate to sea breeze systems also causing spatial wind
speed variability (Fig. 10). In the case study, no onshore front
is formed due to strong synoptic winds. However, this system
still has a large impact on offshore winds, with a substan-
tial drop in wind speed where the sea breeze counteracts the
synoptic flow. At sunset, the sea breeze systems detach, and
the synoptic wind over the Kattegat recovers. Convective and
sea breeze systems are quite different, yet they both create
mesoscale wind speed variations quantified by the MSVI.

Both the mean MSVI and its diurnal amplitude are higher
in summer (JJA) than in winter (DJF) (Fig. 11). In win-

ter, wind speed variability is found to be more or less con-
stant throughout the day. In summer, the MSVI clearly peaks
in the afternoon, when the surface temperature over land
reaches its maximum (Jensen, 1960), confirming an influ-
ence of the land on the mesoscale winds over the sea. Over
at least one area over the sea, the mesoscale wind speed
is on average 20 % larger than the synoptic wind speed at
17:00 UTC in summer. Moreover, when analysing individ-
ual cases in our dataset with a high mesoscale wind speed
component, it can be seen that the systems detected in sum-
mer often originate over land and then travel over sea. Mod-
els that explicitly resolve convection feature more mesoscale
spatial variability in wind speed compared to coarser model
datasets, e.g. the ERA5 reanalysis. Calculating the mean
MSVI for ERA5 over our simulation domain results in a
substantially lower MSVI and a smaller diurnal amplitude.
To confirm that this is indeed the inability of a coarser-scale
gridded model to resolve mesoscale variability, we have con-
servatively remapped the output of our convection-permitting
COSMO simulation to the ERA5 grid and then calculated
the MSVI, which also resulted in a substantially smaller
MSVI than the original simulation. The difference between
the coarser-scale COSMO MSVI and the ERA5 MSVI on the
same resolution might be due to the fact that the effective res-
olution of the model is substantially coarser than the native
resolution. By aggregating to a coarser scale, part of the ad-
vantage of a high-resolution model still remains, as demon-
strated earlier by Brisson et al. (2016) for precipitation in
convection-permitting simulations.

The power output over the 10-year simulation period is
comparable for the small and the large window time series.
The additional wind speed variations that the small windows
capture cancel out over the simulation duration. The RMSD
between the nine small windows on the one hand and the
large window on the other hand is, however, quite substan-
tial. At 286 kW, this is 14 % of the average power output.
The wind speed variability captured by the mesoscale win-
dow translates to a non-trivial portion of the wind power vari-
ability. Therefore, accurate forecasting of power fluctuations
requires accurate high-resolution wind forecasts.

4 Conclusions

We have established a convection-permitting simulation over
the Kattegat area to investigate the mesoscale variability
in offshore conditions and its influence on wind power
fluctuations. The simulation showed good agreement with
scatterometer observations away from coasts and small is-
lands, with a spatiotemporal root-mean square difference of
1.35 m s−1, which is comparable to, for instance, Wang et al.
(2019). As scatterometer products become more and more
accurate near coastlines (Vogelzang and Stoffelen, 2022), fu-
ture research will be able to study the nature of the discrepan-
cies between simulation output and scatterometer data. Also,
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Figure 6. Integrated periodograms for both winter (DJF) and summer (JJA). (a, b) On the long timescales, there is a higher intensity in
JJA than in DJF. (c, d) On the short timescales, a higher intensity is found in DJF. This elevated intensity is probably related to convection
triggered by the unstable conditions in DJF.

at the 100 m level, the 10 min wind speed over the 2 years
of available lidar data was represented well by the COSMO
simulation. The bias is 0.08 m s−1 and the PSS, which is the
overlap between the lidar and COSMO wind speed probabil-
ity distributions, is 0.97.

The temporal variability was quantified over different
timescales by integrating the Welch’s method spectrum. Our
results show that more variability in wind speed is expected
in winter due to unstable conditions over the sea. These un-
stable offshore conditions result in increased turbulence and
induce convective systems, which generate wind speed vari-
ability on short timescales (20 min to 1 h). The maximum
variability is found in the northeastern part of the Kattegat,
since southwesterly winds are prevailing. The variability on
long timescales (6 to 12 h) is found to be more pronounced
in summer than in winter, probably due to the development
of sea breeze systems.

The power curve of an offshore wind turbine converts the
wind speed data to power output data, which, opposite to
wind speed fluctuations, show that the energy production is
more subject to fluctuations in summer than in winter. In
summer, the mean wind speed is situated in a regime where
power output is very sensitive to wind speed fluctuation. In
winter, the mean wind speed is closer to the rated wind speed
of a turbine, where the mean power output is less sensitive to
wind speed fluctuations.

The offshore mesoscale spatial variability was studied us-
ing the MSVI defined in Sect. 2. The MSVI is the deviation
of the ratio between the mean wind speed in a small window
and a large window from 1, calculated for every offshore
position in the domain. The maximum MSVI in the Katte-
gat per time step is used to study the mesoscale wind speed
variability. On average over a 10-year period, the mesoscale
wind speed in the Kattegat is up to 20 % larger than the syn-
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Figure 7. Integrated periodograms of wind power time series for both winter (DJF) and summer (JJA). (a, b) As in Fig. 6a and b, the highest
intensity on the long timescales is found in JJA. (c, d) Contrary to Fig. 6c and d, the larger variations in potential wind power are found here
in JJA, while the larger fluctuations in wind speed on these timescales are found in DJF.

optic wind speed at 17:00 UTC during summer, exhibiting a
clear diurnal cycle of systems forming over and land trans-
ported over the sea. Coarser-grid models, such as ERA5,
do not capture this variability and subsequently underesti-
mate the MSVI. Spatial scales of modern large wind farms
and mesoscale weather systems are similar; therefore, the
whole power grid becomes subject to the power production
fluctuations from a single farm. Although mesoscale climate
modelling at the kilometre scale does not improve the mean
power production estimation for the Kattegat, it is essential
to correctly represent substantial power production fluctua-
tions. The same argument is valid for resource assessment
and climate change projections. Although mean power pro-
duction might be represented well at the 30 km scale, models
at the kilometre scale still are needed to gain insight into the
variability on hourly timescales.

The methods used in this paper can be applied to other
regions. Research by Grams et al. (2017) has shown the im-
portance of diversifying the deployment regions for wind en-
ergy in order to provide a stable electricity supply. Regions
such as, for example, the Baltic and the Mediterranean seas
will become important to fill the gaps in the wind energy
supply. Since most of the Mediterranean is not suited for
fixed-foundation wind turbines, this area has hardly been ex-
ploited for offshore wind energy. Further developments in
floating wind turbines, which can operate at larger depths,
could open up many opportunities in the Mediterranean and
in other deep seas surrounded by complex coastlines.

https://doi.org/10.5194/wes-9-1695-2024 Wind Energ. Sci., 9, 1695–1711, 2024



1706 J. Neirynck et al.: Mesoscale weather systems and wind power variations

Figure 8. (a) Yearly mean 90 m wind speed over the Kattegat and (b) the power curve of the Anholt wind farm turbines. The power curve of
a wind turbine relates wind speed to power output for that wind turbine.

Figure 9. The 100 m wind speed of a convective system travelling over the Kattegat on 25 June 2014. The system is accompanied by local
showers. A movie of this system is provided in Supplement 1.

Figure 10. The 100 m wind speed of a sea breeze system over the Kattegat on 28 August 2013. While there is no onshore front, the system
still affects the wind speeds over the Kattegat. A movie of this system is provided in Supplement 2.
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Diurnal distribution of the mesoscale wind speed component

Figure 11. Hourly distribution of the MSVI for both winter (DJF)
and summer (JJA). (a) MSVI of the high-resolution COSMO simu-
lation output. (b) MSVI of the ERA5 reanalysis data. (c) MSVI of
the COSMO simulation output regridded to the ERA5 grid.

Figure A1. Spectra for the lidar and simulation 100 m wind speeds.

Figure A2. Spectra for the lidar and simulation 100 m wind speeds
for the first 100 measurement days, when the Anholt wind farm was
less than 50 % operational.

Appendix A: Nesting strategy

Nesting strategies for regional climate modelling at the kilo-
metre scale can vary greatly from model to model (Prein
et al., 2015). Many studies use a 1 : 10 resolution jump, but
a 1 : 20 resolution jump has been done before. In previous
work that we did with COSMO-CLM, a clear benefit to the
representation of mesoscale weather systems was found by
directly nesting a 2.8 km grid within a 25 km grid spacing
host domain instead of using nesting steps in between (Bris-
son et al., 2015).

Different simulation setups have been tested for 3-month
integrations. These tests included a larger domain (340×
360 grid points compared to 180× 184 grid points), adding
intermediate nesting at ≈ 12 km resolution, and applying
spectral nudging. We found no added value in using a larger
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Figure A3. Normalised availability for the Anholt wind farm.

domain, in adding an in-between nesting step, and in apply-
ing spectral nudging compared to the wind data from the
scatterometer. This result is in line with the findings of Ban
et al. (2021), where different nesting strategies of COSMO-
CLM in ERA-Interim do not show any substantial differ-
ences. For the temporal mesoscale variance metric as defined
by Vincent and Hahmann (2015), we found that the larger
domain appears to have slightly higher variance, but the dif-
ference between both simulations is rather small.

For the assessment of the mesoscale variance in our sim-
ulation, we analysed the spectra of the lidar and the simula-
tion 100 m wind speeds (Fig. A1). The dashed lines represent
the timescales used to define the mesoscale variance in Vin-
cent and Hahmann (2015). Over these timescales, simulation
and results appear to agree quite well, even though near the
higher frequencies the spectra start to diverge. For the first
100 measurement days (Fig. A2) the agreement seems to be
better, but due to natural variability not being averaged out in
this relatively small dataset, uncertainties become larger.

Appendix B: Sea surface temperature

We used some test runs to obtain to an optimal simulation
setup, and in one of these test runs the sea surface temper-
ature (SST) was kept constant at the initial (January) level.
When comparing the spectra for both runs, we find no dif-
ference in the intensity on longer timescales. On the shorter
timescales there is, however, a higher intensity for the simu-
lation with changing SST. As the SST does not change sig-
nificantly over the daily timescales, this higher intensity on
short timescales might be because the average SST in winter
is higher than the SST from the first of January, thereby in-
ducing more convective situations. In summer, we find higher
intensity for the longer timescales for the simulation with a
constant January SST. An enhanced contrast between land
and sea surface temperature might thus result in more wind

speed variability related to the land–sea breeze system on
long timescales.

Appendix C: The 11 d easterly winds

Figure C1. Integrated periodogram for an 11 d period with easterly
winds over the Kattegat area.

Code and data availability. The code and data used
to generate Figs. 2–11 can be retrieved as a dataset at
https://doi.org/10.5281/zenodo.10889808 (Neirynck, 2024).
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