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Abstract. This article presents a validation study of the popular aeroservoelastic code suite OpenFAST leverag-
ing weeks of measurements obtained during normal operation of a 2.8 MW land-based wind turbine. Measured
wind conditions were used to generate one-to-one turbulent flow fields (i.e., comparing simulation to measure-
ment in 10 min increments, or bins) through unconstrained and constrained assimilation methods using the kine-
matic turbulence generators TurbSim and PyConTurb. A total of 253 bins of 10 min of normal turbine operation
were selected for analysis, and a statistical comparison in terms of performance and loads is presented. We show
that successful validation of the model was not strongly dependent on the type of inflow assimilation method
used for mean quantities of interest, which had median modeling errors per wind-speed interval generally within
5 %–10 % of the measurement. The type of inflow assimilation method did have a larger effect on the fatigue
predictions for blade-root flapwise and tower-base fore–aft quantities, which surprisingly saw larger errors from
the assumed higher-fidelity assimilation methods. Avenues for further work are discussed and include possible
improvements to the aerodynamic, structural, and controller modeling that may offer insight on the origin of the
up to ∼ 40 % median overprediction of fatigue for these quantities.

Copyright statement. Sandia National Laboratories is a multi-
mission laboratory managed and operated by the National Technol-
ogy & Engineering Solutions of Sandia, LLC (NTESS), a wholly
owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
(DOE/NNSA) under contract DE-NA0003525. This written work
is authored by an employee of NTESS. The employee, not NTESS,
owns the right, title, and interest in and to the written work and is
responsible for its contents. Any subjective views or opinions that
might be expressed in the written work do not necessarily represent
the views of the U.S. Government. The publisher acknowledges that
the U.S. Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of
this written work or allow others to do so, for U.S. Government
purposes. The DOE will provide public access to results of feder-

ally sponsored research in accordance with the DOE Public Access
Plan.

This work was authored in part by the National Renewable En-
ergy Laboratory, operated by Alliance for Sustainable Energy, LLC,
for the U.S. Department of Energy (DOE) under contract no. DE-
AC36-08GO28308.

1 Introduction

Aeroservoelastic turbine models based on blade element mo-
mentum theory (BEMT) and equivalent beam models remain
at the center of design and certification processes for wind
turbines thanks to the balance they strike between accuracy
and computational efficiency (Van Kuik et al., 2016). The
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multiphysics tool, OpenFAST (Jonkman and Sprague, 2021),
which is actively developed at the National Renewable En-
ergy Laboratory, is one of these models. Over the years,
OpenFAST has been subject to several rounds of verification
against other aeroservoelastic solvers (Rinker et al., 2020)
and validation against measurement (Guntur et al., 2017;
Schepers et al., 2021; Asmuth et al., 2022; Boorsma et al.,
2023), but changes in modern wind turbines, namely, the in-
creased rotor size and concomitant changes in blade flexi-
bility, blade aerodynamics, and atmospheric forcing, suggest
an ongoing need to validate OpenFAST at scales relevant
to industry. Importantly, this validation should be accom-
plished with suitable assimilation of measured inflow into
the simulation environment to obtain a synthetic wind field
that matches as closely as possible the inflow experienced by
the turbine.

So far, validation of OpenFAST relative to full-scale mea-
surements has adopted either (1) non-turbulent and uni-
form inflow (Schepers et al., 2021; Boorsma et al., 2023);
(2) purely stochastic turbulent inflow (i.e., based on the
spectral magnitudes of a reference flow but with random
phases) that matches time-averaged statistics of hub-height
wind speed, hub-height turbulence intensity, and shear pro-
file (Schepers et al., 2021); (3) time-resolved inflow at a sin-
gle point in the domain (i.e., with more distant points revert-
ing to random phases) that matches time-averaged statistics
of hub-height wind speed, hub-height turbulence intensity,
and shear profile (Guntur et al., 2017); or (4) time-resolved
inflow at multiple points in the domain (Asmuth et al., 2022).
The strategy of combining one or more time series with a
stochastic turbulence generation method as in (3) and (4) rep-
resents a compromise between the simpler approach of (2)
that constrains the generated inflow only in terms of time-
averaged statistics and emerging higher-fidelity approaches
that combine large-eddy simulations with machine learning
(Rybchuk et al., 2023). This paper adopts the second through
fourth approaches, allowing comparison of the code predic-
tions across different levels of inflow assimilation methods.

Recent efforts on other code suites have also compared
across different levels of inflow assimilation methods. The
data assimilation techniques considered by Pedersen et al.
(2019) leveraged data from an upstream meteorological
tower and included both unconstrained and constrained
turbulence assimilation approaches. Surprisingly, the con-
strained turbulence approach increased the mean simulation
errors by several percentage points for all damage equivalent
loads (DELs) considered, and they attributed this to possi-
bly unmet assumptions about frozen turbulence and about
the measured flow field passing completely through the ro-
tor disk. However, the constrained approach did outperform
the unconstrained approach when considering inflow data
measured from a Pitot probe mounted on one of the blades.
Nybø et al. (2021) used data from a meteorological tower as
the input to a simulation study on the differences of tower-
bottom fore–aft and blade-root flapwise DELs between un-

constrained and constrained approaches. They found that the
unconstrained approach produced 27 % and 12 % underpre-
diction of the tower-bottom fore–aft and blade-root flapwise
DELs, respectively, compared to the constrained approach.
Rather than using a meteorological tower or an on-blade sen-
sor, Rinker (2022) constrained the turbulence fields to data
generated from a turbine-mounted virtual lidar that sampled
a simulated flow field. The constraining process produced a
clear improvement of mean absolute errors for several quan-
tities of interest (QoIs) versus unconstrained results. DEL
predictions for the tower-base fore–aft bending moment im-
proved when the constraint points from the lidar extended to
at least 40 % of the rotor span from the axis of rotation.

Similar to the above three studies but considering instead
the OpenFAST code suite, the objective of this current effort
is to assess the value of existing inflow assimilation tools of
different levels of fidelity (i.e., including both unconstrained
and constrained turbulence assimilation methods) for vali-
dation of simulations of megawatt-scale wind turbine per-
formance and loads. In addition to performing such a com-
parison across three levels of fidelity for the first time with
OpenFAST, we here consider other validation quantities (i.e.,
damage equivalent loads) not included in the previous, re-
cent studies involving OpenFAST that employed one of the
four inflow assimilation approaches listed previously (Gun-
tur et al., 2017; Schepers et al., 2021; Asmuth et al., 2022;
Boorsma et al., 2023). In our work, quantitative comparison
between measured and simulated turbine signals is calculated
for 10 min statistics of these QoIs:

– rotor speed;

– blade pitch;

– electrical power;

– flapwise and edgewise blade-root bending moments;

– fore–aft tower-base bending moment.

The approach is an end-to-end validation, meaning that the
accuracy of the inflow modeling, turbine aeroelastic model-
ing, and controller modeling is collectively evaluated accord-
ing to the final turbine QoIs above. For the inflow modeling,
we evaluate the relative merits of the several inflow assim-
ilation methods with varying levels of simplifying assump-
tions as described above. For the turbine aeroelastic and con-
troller modeling, a significant amount of attention was de-
voted to matching the behavior of the field turbine by incor-
porating proprietary information about the characteristics of
the turbine and controller as closely as possible into the sub-
modules of OpenFAST.

The study is part of the Rotor Aerodynamics, Aeroelas-
tics, and Wake (RAAW) experiment, which is a collaboration
between the National Renewable Energy Laboratory, San-
dia National Laboratories, and the wind turbine manufac-
turer GE Vernova. This experimental campaign leveraged a
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Figure 1. Illustration of the prototype wind turbine and surrounding instrumentation during the RAAW project.

suite of measurements on a test turbine and its environment
as shown in Fig. 1. The validation of the OpenFAST model
presented here is based on measurements collected prior to
the RAAW field campaign and is intended to benchmark
the model performance. The inflow and wind turbine mea-
surements are therefore limited to instrumentation already
present at the site before RAAW as indicated in the figure.

The rest of the paper is organized as follows: the devel-
opment of the turbine aeroservoelastic model is described
in Sect. 2. Section 3 gives an overview of the methods for
assimilation and modeling of the measured inflow data. Sec-
tion 4 shows the results and is followed by suggestions for fu-
ture experiments in Sect. 5. Conclusions are drawn in Sect. 6.

2 Turbine model development

The wind turbine used within the RAAW experiment is a
highly instrumented 2.8 MW prototype wind turbine that
mounts a rotor of 127 m diameter at a hub height of 120 m.
The turbine is located in Lubbock, Texas, in a region char-
acterized by flat terrain. More details on the instrumentation
and sampling in and around the wind turbine are given in
Sect. 3. The first step of this study consisted of building the
OpenFAST model of the turbine. This step was performed
by combining different data sets shared by GE describing the
aerodynamic and elastic properties of the rotor, the elastic
properties of the rest of the turbine system, and high-level
information about the controller. Additionally, the GE team
shared experimental results from the structural testing of the
blade and numerical results from its in-house solvers. All
this information was used to develop an accurate OpenFAST
model. GE’s proprietary controller was replaced by the pub-
licly available Reference OpenSource Controller (ROSCO)

(Abbas et al., 2022), which was tuned to the reference infor-
mation and turbine sensor data. The next sections elaborate
on the process used to develop this model and on the verifi-
cation and validation steps that were performed.

2.1 Aerodynamics

OpenFAST can simulate rotor aerodynamics at different lev-
els of fidelity with models implemented in the module Aero-
Dyn15. This study models rotor aerodynamics using BEMT.
The blade aerodynamic shape was discretized into 78 sec-
tions equally spaced along the blade span. A set of two-
dimensional (2D) airfoil data blending clean and rough po-
lars from wind tunnel measurements with a weighted aver-
age was shared by GE. The 2D polars were first interpolated
adopting a piecewise cubic hermite interpolating polyno-
mial scheme to match the spanwise distribution of thickness-
to-chord ratio. Next, the polars of airfoils with thickness-
to-chord ratios smaller than 0.7 were corrected to account
for rotational effects adopting the Du–Selig model (Du and
Selig, 1998). Note that the Du–Selig model relies on the
successful identification of a linear regime of the lift curve,
which is not obvious for airfoils located close to the blade
root. This led to some arbitrary decisions about the range of
angles of attack over which to apply the correction and to
the decision of limiting the corrections to airfoils up to 0.7
of thickness-to-chord ratio. The airfoil unsteady behavior
was modeled using an extension of the Beddoes–Leishman
model developed by Minnema/Pierce (Damiani and Hayman,
2019). The parameters required by the unsteady airfoil aero-
dynamic model at each blade spanwise station were provided
to OpenFAST as precomputed inputs.

A dynamic BEMT model that implements a continuous-
time state-space form of Oye’s dynamic model was used
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(Branlard et al., 2022). Also, the Glauert skewed wake cor-
rection model was used with a flow expansion function of
15/32π (Pitt and Peters, 1980). Other corrections to the
BEMT model included the Prandtl hub- and tip-loss models,
wake swirl (tangential induction), and the influence of drag
on the induction factors. The effect of the tower on the in-
coming wind was accounted for using OpenFAST’s baseline
potential flow model for two of the three inflow assimilation
methods as discussed further below, and tower aerodynamic
loading was calculated for these two methods as well. The
downstream tower shadow was not included in the model-
ing. The environmental conditions (i.e., inflow density and
velocity) were set on a bin-by-bin basis using the data from
the met tower (see Sect. 3).

2.2 Structural dynamics

The elastic response of the turbine was modeled by combin-
ing the reduced-order ElastoDyn beam model for the tower
and the higher-fidelity BeamDyn model, which implements
the geometrically exact beam theory (Jelenić and Crisfield,
1999; Wang et al., 2017) for the blades. The elastic proper-
ties for all turbine components were precomputed and shared
by GE. The next subsections elaborate on the verification and
validation steps that were performed to ensure the accuracy
of the elastic model.

2.2.1 Elastic response of the blades

GE shared detailed elastic properties of the blades. An initial
verification step was then performed to confirm that the data
were converted to the BeamDyn coordinate system correctly.
Figure 2 shows the static deflections and rotations for a sin-
gle blade clamped at the root and subjected to gravitational
loads in flapwise and edgewise directions. This verification
step returned maximum differences of 0.02 m in deflections
and 0.5° in rotations and was considered satisfactory.

Next, a verification and validation step was performed by
comparing numerical and experimental values of natural fre-
quencies and values of structural damping for a single blade.
The experimental values were generated during testing of the
blade in a structural laboratory. Table 1 presents the percent-
age error of the blade natural frequencies and damping be-
tween the laboratory test and the numerical predictions gen-
erated at GE and in OpenFAST. The match was again satis-
factory, although some important discrepancies emerged, as
described next.

The verification comparing the natural frequencies pre-
dicted by the two numerical models shows that the frequen-
cies up to the fourth flap, second edge, and first torsional
modes match within 3 %, with negligible differences for the
first flap, edge, and torsional modes. The validation step also
shows a good match between the experimental results and
the predictions of OpenFAST, with the exception of the first
flap mode. Here, both models underpredict the natural fre-

Table 1. Comparison of blade natural frequencies and structural
damping ratios between OpenFAST and reference data including
experimental and numerical values shared by GE. The values pro-
vided are in terms of percent difference relative to the experimental
(“Exp”) and numerical (“Num”) reference. Positive values repre-
sent higher frequencies and damping in OpenFAST relative to the
values shared by GE.

Natural frequency Damping ratio

Exp (%) Num (%) Exp (%) Num (%)

First flap −5.1 0.0 −5.9 −5.3
First edge −1.1 −0.1 1.3 16.2
Second flap 0.1 0.5 416.4 0.3
Second edge −1.2 3.0 192.7 29.0
Third flap 2.3 2.7
Fourth flap 2.3 −57.1
Third edge 11.3 341.6
Fifth flap 12.7 −7.9
First torsion 2.5 −0.6 −69.1

quency by 5.1 %. The research team could not explain the
offset, which could have various origins, such as the impact
of clamping of the blade root during laboratory testing.

The comparisons of structural damping show larger rela-
tive errors. Damping is an input to aeroelastic solvers, and
it is modeled differently across frameworks. BeamDyn mod-
els damping as a set of six stiffness-proportional values ac-
counting for three rotations and three translations. This al-
lows the user to set the desired damping for a mode of inter-
est, usually the first or the second. In this study, three values
of flapwise, edgewise, and torsional damping were initially
set based on the experimental data from GE to match the
first modes. These values achieved differences of −5.9 % for
the first flap mode and 1.3 % for the first edge mode. Be-
cause of the stiffness-proportional formulation, damping in
the second modes was greatly overpredicted by OpenFAST
compared to the results obtained in the laboratory. Despite
this overprediction, the turbine in OpenFAST suffered from
edgewise instabilities, which were resolved by artificially in-
creasing the values of edgewise damping by almost an order
of magnitude. The higher damping value is believed to com-
pensate for some discrepancies in the unsteady aerodynamic
solvers, which will be investigated in future work. Note that
recent work has verified OpenFAST against other aeroelastic
solvers, where there was no need to increase the edgewise
term of structural damping (Collier et al., forthcoming).

2.2.2 Elastic response of tower and drivetrain

While the elastic response of blades was modeled at rela-
tively high fidelity, the tower of the turbine was modeled in
ElastoDyn, which implements a reduced-order beam model
using the first two tower fore–aft and side–side modes. The
fore–aft and side–side stiffness distributions and unit mass
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Figure 2. Deflection (a, b) and rotation (c, d) profiles of the blade loaded under gravity in the flapwise (a, c) and edgewise (b, d) directions.
The dashed lines were generated by GE, and the solid lines were generated with BeamDyn, the beam model of OpenFAST implementing
the geometrically exact beam theory. Results are expressed in the BeamDyn coordinate system, and rotations are expressed in terms of
Wiener–Milenkovic parameters relative to the undeflected beam orientation.

Table 2. Comparison of tower natural frequencies with and with-
out rotor nacelle assembly (RNA) between OpenFAST and the nu-
merical values shared by GE. The values provided are in terms of
percent difference for the first four modes, namely the first and sec-
ond side–side and fore–aft tower modes. Positive values represent
higher frequencies in OpenFAST relative to the numerical values
shared by GE.

Tower mode No RNA (%) RNA (%)

First side–side −1.0 +0.2
First fore–aft −1.0 −1.1
Second side–side −4.0 +1.0
Second fore–aft −4.0 +2.5

distribution were specified according to values provided by
GE. Note that ElastoDyn models the tower as torsionally
stiff. Work is planned in OpenFAST to include tower tor-
sion within its elastic model ElastoDyn. A workaround con-
sisted of modeling the tower in the module SubDyn, but this
was not pursued in this work. The verification step consisted
of verifying numerically the tower mass, which matched ex-
actly, and then the natural frequencies with and without the
rotor nacelle assembly. The results for the first four tower
modes, namely the first and second side–side and fore–aft
modes, are reported in Table 2.

The comparison returned small discrepancies between nat-
ural frequencies by OpenFAST and natural frequencies by
the numerical solver at GE. The discrepancies were attributed

to the different model fidelity and to different discretization
of the tower properties along its height. In terms of damp-
ing, the values for the tower structure were assigned to the
individual modes.

OpenFAST currently models the drivetrain as an assem-
bly of lumped masses. The only exception is the torsional
stiffness and damping of the drivetrain system, which were
populated thanks to data shared by GE. Sensitivity studies
were conducted including the nodding and yawing flexibil-
ity of the nacelle in OpenFAST. Results were impacted to a
negligible amount.

2.3 Aeroelastic response of the turbine system

Next, the aeroelastic modeling of the full turbine was verified
and validated during turbine operation.

2.3.1 Experimental modal analysis

The experimental natural frequencies were obtained by cal-
culating the power spectral density (PSD) for signals from
strain gauges installed at the blade root and tower base. In
signal processing, there are several ways of converting a sig-
nal from the time domain to the frequency domain. Choosing
the correct method depends on the data or signals in question.
In this scenario, Welch’s averaged, modified periodogram
method with a Hanning window was used to convert time-
series data to the frequency domain. This method was pre-
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ferred, as its approach to periodogram estimations helps re-
duce noise in the power spectra.

The analysis of the experimental data used for modal anal-
ysis was split into two sections: emergency stop and normal
operation. Data from emergency stops were helpful for find-
ing component natural frequencies by minimizing the im-
pact of rotor aerodynamics. The normal operation data were
binned by rotor speed between cut-in and rated. The anal-
ysis was limited to this range of wind speeds to conduct the
comparison between experimental and numerical natural fre-
quencies as a function of rotor speed, which only varies up
to rated.

Conducting the experimental modal analysis with the ex-
isting set of installed sensors came with several challenges.
A critical limitation was that the only measurement location
along the blade span was the strain gauges close to the root.
Therefore, it was not possible to extract any information re-
garding modal shapes. Fundamentally, the gauge measure-
ments only allowed us to derive the PSDs of the blade-root
strain.

When analyzing the PSD, it was found to be difficult to
isolate and find the component frequencies. Consequently,
the peaks were saturated and extremely challenging to iden-
tify experimentally, especially when we chose to run a blind
comparison to the numerical model. It was particularly dif-
ficult to find the first and second blade-root flap frequencies
during normal operation. We were only able to extract the
first flap frequency from emergency stop data. This is not
abnormal as the flap modes are typically strongly damped
by the aerodynamics, which then leads to the difficulty of
peak finding in the PSDs. Additionally, there was high un-
certainty related to the second blade-root edge frequency be-
cause the peaks varied between data files, and there were in-
stances where there was no energy in the expected region.
We tried to apply a method known as time-synchronous av-
eraging, which can help remove the rotor passing frequen-
cies; however, this would have required a much higher data
sampling frequency to be successful.

2.3.2 Validation of modal analysis

The relative difference between experimental frequencies ex-
tracted using the strain gauge data and the numerical frequen-
cies estimated using OpenFAST is shown in Fig. 3 across a
range of rotor speeds. For the first flapwise modes, we ob-
serve a good agreement at lower rotor speeds and growing
discrepancies at higher speeds. Note that this trend is oppo-
site to the one reported in Table 1, where OpenFAST un-
derpredicts the natural frequency of the first flapwise struc-
tural mode. The different trend is attributed to limitations
of the linearized unsteady aerodynamic model (see Sect. 2.1
and Branlard et al., 2022) and to the uncertainty in the high
aerodynamic damping, which makes both numerical and ex-
perimental frequencies hard to identify. The numerical and
experimental first and second edgewise modes match bet-

ter, with differences within 10 %. The better match is ex-
plained by the small impact that rotor aerodynamics have on
edgewise modes and by a more precise determination of the
experimental frequencies of the system. Note that edgewise
modes are more important than flapwise modes because they
are usually affected by low damping and are prone to aeroe-
lastic instabilities (Volk et al., 2020). Lastly, tower modes
match within 10 % at low rotor speeds, growing to ± 15 %
toward rated rotor speed. Again, the impact of aerodynamics
is thought to be responsible for the growing offset.

2.4 Controls

While the ideal validation process would incorporate the ac-
tual turbine controller in the turbine model, such as in Zierath
et al. (2016), this was not possible due to concerns around in-
tellectual property. The solution to this problem was to adopt
the ROSCO controller (Abbas et al., 2022), which was cou-
pled to OpenFAST to match the steady-state and transient
behavior of the field controller observed through historical
SCADA data. The ROSCO generator speed set points were
used to match those of the field controller. The peak-shaving,
or thrust-limiting, parameter of ROSCO was used to repro-
duce the mean and peak blade and tower loading near rated
power; this also resulted in similar near-rated power produc-
tion. Step wind simulations were used to tune the transient
response of the torque and pitch controller bandwidths to
match the GE controller’s response to the same wind input.
For simplicity, we omitted pitch actuator dynamics and tuned
the pitch response only using the controller gains of ROSCO.
Modeling actuator dynamics would have added a tuning pa-
rameter and could have led to a better match, but the overall
goal of tuning the pitch response of ROSCO to match the
SCADA data would have remained the same.

Because of the long run times for OpenFAST simulations
with BeamDyn, we ran 72 step wind simulations in parallel
with uniformly distributed ROSCO tuning inputs (pitch and
torque control bandwidths). We then evaluated the difference
in generator speed and rotor thrust response between the GE
reference and our controlled OpenFAST model. The simula-
tion parameters with the lowest error were used to prescribe
the parameters for another set of 72 simulations in a smaller
design space. From these simulations, the best combination
of low generator speed and rotor thrust error was used to se-
lect the set of ROSCO tuning parameters. Since both the gen-
erator speed and the rotor thrust error could not be simulta-
neously optimized, some judgment was used to give slightly
more weight to the generator speed response error as it is a
more direct measure of the controller’s desired behavior.

Although available in ROSCO, individual pitch control
(IPC) and tower damping control features were not enabled
because the controller logic used to activate these features
in the proprietary field controller was unknown. Even so, a
generally good agreement between the field controller and
ROSCO was realized, as is demonstrated in Sect. 4.1. Differ-
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Figure 3. Relative differences between numerical (OpenFAST) and experimental (from strain gauges) natural frequencies for first tower
modes (a), first rotor flap modes (b), first rotor edge modes (c), and second rotor edge modes (d). For the tower, fore–aft (FA) and side–side
(SS) modes are reported. For the rotor, backward whirling (BW), collective (C), and forward whirling (FW) modes are reported. Positive
values represent higher frequencies in OpenFAST relative to experimental values.

ences in the specifics of the implementation of the GE versus
ROSCO controller, which cannot be disclosed, will lead to
changes in transient behavior and could lead to small dis-
crepancies in fatigue load results.

3 Inflow assimilation methods

This section describes how field data were used to generate
one-to-one inflow bins for the numerical simulations.

3.1 Experimental campaign

The validation of the OpenFAST model presented here is
based on measurements collected prior to the RAAW field
campaign. The inflow and turbine measurements are there-
fore limited to instrumentation already present at the site be-
fore RAAW.

In terms of inflow measurements, we focused on assimi-
lating data from the meteorological tower, which is shown in
planform view in Fig. 4 along with the turbine. The meteo-
rological tower was instrumented with various wind sensors,
including three RM Young 81000 ultrasonic anemometers,
five Thies Clima First Class cup anemometers, three MetOne
020WD wind vanes, and a ground-sitting WindCube lidar,
the latter of which provided only 10 min statistics during the
period considered here. In this study we preferred to use data
from the ultrasonic anemometers rather than data from the
cup anemometers with co-elevated wind vanes because of
the inclusion of the w component of velocity in the ultra-

sonic measurement and because of a malfunction in the top-
tip wind vane during the campaign. The 10 min WindCube
data were used to remove static wind-direction offsets in the
ultrasonic data that ranged between −9 and 14° between the
various anemometers, likely due to misalignment during in-
stallation of the ultrasonics with the cardinal directions. The
three ultrasonic anemometers spanned nearly the full height
of the rotor and were mounted onto booms at 52.6, 110.5,
and 179.5 m. The historical data analyzed herein were output
at a frequency of 1 Hz (note that this value was later raised to
20 Hz for the continuation of the data collection happening
within the RAAW experiment).

Related to measurements on the turbine, the layout of in-
struments on the turbine are shown in Fig. 5. In line with the
objectives presented in Sect. 1, the wind turbine channels of
interest for this study included the rotor speed, blade pitch,
electrical power, and blade-root and tower-base bending mo-
ments, the latter two of which were sensed with strain gauges
located near the blade roots and tower base, respectively. Re-
calibrations of the strain gauges were performed such that the
calibrations were never out of date by more than 90 d. Even
so, we estimate an uncertainty of up to 150 kNm in these
measurements based on changes in some of the calibrations
over such intervals.

The validation data in this article were collected between
22 September 2021 and 14 May 2022, and data are orga-
nized into 10 min bins during this period. For each bin, sev-
eral preprocessing steps were applied to the ultrasonic data
to render the data appropriate for model validation. First, fol-
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Figure 4. Planform view of the test site, including inset showing the cup and sonic anemometers in relation to the wake of the tower lattice
for the wind sector retained in this study.

Figure 5. Illustration of instrumentation on the prototype wind tur-
bine. The channels discussed in this article are outlined in blue.

lowing Kelley and Ennis (2016), who processed 2.5 years of
meteorological tower ultrasonic data from the nearby 200 m
tower run by Texas Tech University, several quality control
filters were applied to the u, v, and w signals:

– remove all values above an absolute magnitude of
30 ms−1;

– remove all values that are identically zero;

– remove all remaining values that are deemed spikes or
statistical outliers in the time-series data, as identified
using a median absolute deviation filter with a time win-
dow of 300 s and a threshold of 5× 1.4826= 7.4130.

An additional filter used in Kelley and Ennis (2016) to re-
move values based on a hold detection criterion was omitted
from the current work since this filter appeared to be elimi-
nating valid data in some cases.

Next, bins that had less than 95 % remaining data avail-
ability or had time spans of removed data longer than 5 s
were also rejected. For the accepted bins, any instances of
scattered data removal were filled in with a cubic hermite
interpolation. Summary statistics were then calculated over
10 min bins. Finally, the horizontal components of the veloc-
ity series at each ultrasonic height were rotated into the ref-
erence frame of the 10 min mean reading of the hub-height
wind vane, which was the appropriate form for input into the
inflow assimilation methods.

In addition to the preprocessing steps above, the wind and
turbine data of each 10 min bin also underwent several filter-
ing processes to be deemed valid and useful for the valida-
tion analyses. These filters included bounds to eliminate bins
that included malfunctioning sensors, bins with an idling tur-
bine, bins including turbine start-up/shutdown events, bins
with absolute mean yaw misalignment greater than 10°, bins
with yaw standard deviation greater than 4°, bins with abso-
lute mean shear exponent greater than 1, bins with absolute
mean veer (as linearly fit from measurements taken from 52.6
to 179.5 m above ground level) greater than 50°, and lastly
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bins where the wind direction deviated more than 15° from
the 185° heading of the meteorological tower relative to the
turbine. This last condition not only prevented the ultrasonic
sensors from ever being waked by the mounting boom arms,
the meteorological tower structure, or the wind turbine, but it
also meant that specific turbulence structures passing through
the rotor disk were more likely to be the same as those sensed
by the meteorological tower, assuming a frozen turbulence
hypothesis.

The above filtering reduced the data set to 253 bins of
10 min, or 1.8 d, for validation analysis. Figure 6 displays
10 min inflow statistics from these bins, which demonstrate
a diversity of inflow conditions and thus imply a relatively
broad range of turbine operating conditions. The lack of
cases with turbulence intensity above 0.15 in Fig. 6a is a
consequence of the filtering on yaw standard deviation as de-
scribed above, which was required because of limitations in
the modeling setup. It is also noted that the existence of some
relatively high shear exponents in Fig. 6b is a known charac-
teristic of the site, and cases with these conditions were re-
tained in the data set, though some validation error should be
expected for such cases since IPC was not included in our
turbine model while it was active in the field turbine in these
cases. We elected not to filter such cases from the data set be-
cause many 10 min bins had some IPC activity but few bins
had persistent IPC activity (some justification for this choice
is provided in Sect. 4.3). Data for rotor-height veer from the
wind vanes is omitted from Fig. 6c because of non-physical
wind-direction shifts that were observed in the readings of
the wind vane near the top-tip position. However, the wind
vane near hub height, which was used to rotate the ultrasonic
data into the appropriate reference frame as described previ-
ously, was reliable.

3.2 Computational environment

The inflow simulations were performed in three different
ways by using two different sets of inputs to TurbSim
(Jonkman, 2014) as well as an implementation of PyCon-
Turb (Rinker, 2018). These kinematic turbulence generators
begin with information on the spectra and spatial coherence
of velocity components, which are then translated to the time
domain via an inverse Fourier transform. Each generator can
produce Gaussian turbulence fields according to a spectral
model, which is herein taken as the Kaimal spectrum with
exponential coherence as defined in the International Elec-
trotechnical Commission’s (2005) 61400-1 standard.

The differences among the three approaches, which are de-
scribed in Table 3, center around how the measured data are
assimilated. The turbulent fluctuations in the baseline Turb-
Sim approach, termed here TurbSim simple, are stochastic
and based on the turbulence intensity measured by the ul-
trasonic anemometer at the near-hub-height location. The
Fourier magnitudes are determined from the spectral model,
which is scaled so that the turbulence intensity matches

that which was specified. Random phases are applied to the
Fourier terms, and the phases of the streamwise component
of velocity are correlated based on the spatial coherence
model. The two higher-fidelity approaches of generating in-
flow are TurbSim with the TIMESR option and PyConTurb.
These two approaches constrain the turbulent time series to
match time-resolved measurements by linearly interpolating
Fourier magnitudes from the measured time series to the
computational grid and constraining the Fourier phases to
match the wind series provided at one or more measurement
locations. In TurbSim TIMESR, only one point in the domain
can be constrained. PyConTurb, in contrast, is able to apply
the same constraints to an arbitrary number of points. For
the simulations performed here, TurbSim TIMESR is con-
strained based on the near-hub-height ultrasonic anemometer
measurements. In PyConTurb, all three ultrasonic anemome-
ter measurement locations are used. For each turbulence as-
similation method and each 10 min bin, six turbulence seeds
were generated to improve statistical convergence over the
non-constrained data of the turbulence grids. As a result,
4554 turbulent inflows were produced (253 bins of 10 min,
six random seeds, and three different approaches).

Other differences between the three methods are related to
how the mean wind speed and direction are assimilated from
the measurement. As shown in Table 3, TurbSim simple has
the most restrictive assumptions in this regard, as it only gen-
erates power-law wind profiles without veer. The two other
methods are more flexible, though the linear interpolation of
wind data for these methods is likely to result in wind-speed
and wind-direction profiles that do not exactly match the ob-
served conditions, especially in stably stratified conditions.

For all three methods, the turbulence plane was a lateral–
vertical grid of 33 by 33 points that was 10 % wider than the
rotor diameter both laterally and vertically (see Fig. 7). The
TurbSim methods include tower nodes to simulate wind load-
ing on the entire tower including the region below the turbu-
lence plane (Jonkman, 2014), whereas PyConTurb does not
have this feature. Tower aerodynamics were therefore dis-
abled for the PyConTurb cases.

Figures 8, 9, and 10 show an example of the simulated
inflow versus the measurement for an example 10 min bin
captured on 16 March 2022. The data here illustrate that
TurbSim simple generally matches only the 10 min statis-
tics, while the constrained turbulence assimilation methods
(i.e., TurbSim TIMESR and PyConTurb) additionally match
the time-varying values at one or more measured heights.
The small differences in the data of TurbSim TIMESR and
PyConTurb compared to the measurement at the constraint
points are due to non-alignment of the simulation grid with
the measurement location, and PyConTurb notably has two
more constraint points than TurbSim TIMESR, as illustrated
by matching of the measurement data by PyConTurb at the
near-top-tip and near-bottom-tip positions as well as the near-
hub-height position. Note that the detrending process for
TurbSim simple described in the footnotes of Table 3 results
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Figure 6. Mean inflow conditions for the 253 bins of 10 min selected for model validation: (a) horizontal turbulence intensity near hub
height, (b) shear exponent calculated from a power-law fit over the rotor span, and (c) veer calculated from a linear fit over the rotor span.
The data are plotted versus horizontal wind speed as measured by the ultrasonic anemometer near hub height (at 110.5 m).

Table 3. Comparison of inflow assimilation methods. Single-point constraints are enforced from the ultrasonic anemometer near hub height
(i.e., z= 110.5 m), and three-point constraints are enforced from all three ultrasonic anemometers.

TurbSim simple TurbSim TIMESR PyConTurb

Turbulence method Unconstrained Kaimal
(TurbModel= IECKAI)

Constrained Kaimal at single
point with exponential coherence
(TurbModel=TIMESR)

Constrained Kaimal at three
points with exponential coherence

Turbulence magnitudes Uniform (derived from single
pointa)

Linear interpolation from
three-point input

Linear interpolation from
three-point input

Spatial coherence IEC in u component, none
currently enforced in v and w

GENERALb in u component,
none currently enforced in v
and w

IEC in u component, none
currently enforced in v and w

Wind-speed profile Power-law interpolation from
three-point input

Linear interpolation from
three-point input

Linear interpolation from
three-point input

Wind-direction profile None enforced Linear interpolation from
three-point input

Linear interpolation from
three-point input

a The near-hub-height velocity time series is linearly detrended before calculating turbulence intensity as per Larsen and Hansen (2014), and the input field ScaleIEC is set to
1 to enforce the exact value specified near hub height given the desired sample rate. b See Jonkman (2014) for a description of the coherence model.

Figure 7. Image of the 2.8 MW GE wind turbine in Lubbock,
Texas, USA, with turbulence grid overlaid.

in significantly lower turbulence levels for TurbSim simple
in this (and some other) bins because of the time gradient
in wind speed during this interval. The corresponding dif-
ference in turbulent energy does not manifest in the spectral
plots of Fig. 9 because the data have been binned on 60 s
intervals, thus eliminating the long-pass timescale that is af-
fected by the detrending process.

For reference, the 10 min statistics of another example bin
are given in Fig. 11. This bin demonstrates a non-monotonic
shear profile (i.e., jet) that is sometimes observed at the
site. TurbSim simple is not able to capture the shape of the
shear profile, whereas the two higher-fidelity approaches can
roughly capture the shape within the limitations of linear in-
terpolation.

A note is appropriate about the frequency of the wind field
input to OpenFAST, which is unaltered from the 1 Hz sam-
pling frequency of the meteorological tower described previ-
ously. For calculations involving DEL, neglecting frequency
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Figure 8. Comparison of time series of simulated inflow to measured inflow for an example 10 min bin for the sonic anemometers near (a) top
tip, (b) hub height, and (c) bottom tip. The simulated data have been interpolated from the computational grid to the exact measurement
locations, which were 179.5, 110.5, and 52.6 m, respectively. Only one of six turbulence seeds is shown.

Figure 9. Comparison of turbulence spectra of simulated inflow to measured inflow for an example 10 min bin for the sonic anemometers
near (a) top tip, (b) hub height, and (c) bottom tip. Before calculating the spectra, the simulated data have been interpolated from the
computational grid to the exact measurement locations, which are 179.5, 110.5, and 52.6 m, respectively. Spectra are calculated with the
one-sided welch method using 60 s bins and a Hanning window. Only one of six turbulence seeds is shown.

content in the wind higher than 1 Hz will lead to slight un-
derprediction of DELs. For a turbine of similar size and rated
rpm, Sim et al. (2012) demonstrate an underprediction of
5 % and 2 % for the blade-root flapwise DEL and tower-
base fore–aft DEL, respectively, by using a 1 Hz inflow and

a coarse turbulence grid compared to an inflow with higher
temporal and spatial resolution. In this study, we make no at-
tempt to populate the higher-frequency content of the mea-
sured inflow but note that the measured 1 Hz corresponds
to more than 4 times the rotor revolution frequency (> 4P)
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Figure 10. Comparison of vertical profiles of simulated inflow to measured inflow for an example 10 min bin for (a) horizontal wind speed
and (b) direction, as well as (c) the three components of turbulence intensity, which are calculated as the standard deviation of the given
component divided by the mean of the u component. Only one of six turbulence seeds is shown.

Figure 11. Analog to Fig. 10 except for an example 10 min bin that includes a non-monotonic shear profile.

at rated rpm, which allows excitation of the 3P frequency.
Frequencies of 6P and 9P, which might especially affect the
tower, are not present in the simulation at rated rotor speed.

3.3 Postprocessing

Outputs from the field turbine and simulated turbine were
processed similarly. The first minute of each 10 min bin was
discarded to remove transients in the simulated results. A
temporal offset was then applied to the simulation time se-
ries to account for the advection time of the flow between the
meteorological tower and the rotor by leveraging knowledge
of the location of the meteorological tower relative to the
turbine and by assuming the flow advected with the 10 min
mean wind direction and speed as measured from the near-
hub-height sonic anemometer on the meteorological tower.
Both the experimental and simulation results were therefore
shortened by 20–100 s depending on the wind speed so that
only the overlapping segments of time between the simulated
and measured channels were retained. After the temporal
alignment process, bending moment data from the simula-
tions were interpolated to the position of the strain gauges at
the blade roots and tower base. Lastly, statistics including av-
erages and DELs were calculated for each bin, and the latter
was calculated as in the OpenFAST Python toolbox (Bran-
lard et al., 2023) at a frequency of 50 Hz, which was the rate
of the measurement and simulation output.

4 Results

This section describes the results of the one-to-one validation
beginning with analysis of the basic operability (i.e., mean

Figure 12. Histogram of the number of 10 min bins within each of
the wind-speed intervals used throughout Sect. 4

rotor speed and blade pitch) and proceeding to power, blade
loading, and tower loading.

In the following subsections, the individual 10 min bins
have been sorted into wind-speed intervals of 1.5 ms−1

based on the mean horizontal wind speed of the ultrasonic
anemometer near hub height. A histogram of the counts at
each wind speed is shown in Fig. 12. As the rated wind speed
is ∼ 11 ms−1, there are roughly an even number of counts
corresponding to above-rated wind speeds (i.e., Region III)
as there are corresponding to below-rated conditions (i.e.,
Region II).

4.1 Basic operability

First we considered the basic operability of the turbine mod-
els in terms of the controller set points for rotor speed and
blade pitch. Figure 13 shows statistics of the model errors
over the 253 bins of 10 min compared to the measurements
for rotor speed and blade pitch. For the rotor speed, the me-
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Figure 13. Comparison of (a) mean rotor speed and (b) mean blade pitch between models and measurement. The plots consist of statistics
calculated within each wind-speed interval including the median (solid lines) and interquartile range (shaded areas). The median value
reported in the legend is the overall median error calculated across all 10 min bins.

dian errors within each wind-speed interval are less than
0.5 rpm, or within 4 %. This error is not very sensitive to the
inflow assimilation method, though the spread of error (i.e.,
the interquartile range) is smaller for the higher-fidelity as-
similation methods. For the blade pitch, all the inflow assim-
ilation methods underpredict pitch above rated wind speed.
The cause for the underpredicted pitch by all three models in
Region III could be related to aerodynamic modeling errors
that produce an underestimation of the aerodynamic torque.

Figure 14 is analogous to Fig. 13 except it shows errors in
the standard deviation rather than the mean. The median error
in the standard deviation of rotor speed is less than 0.3 rpm,
or 2 % of the nominal rotor speed at rated. The maximum er-
ror in the standard deviation of blade pitch is around 0.5°.
Note that the underprediction of the standard deviation of
blade pitch at wind speeds ≥ 14 ms−1 appears to be a result
of the omission of an IPC model in the controller, but the rel-
atively small overall magnitude of the errors in this quantity
corroborates the previous statement that few of the 10 min
bins had persistent IPC activity in this data set.

4.2 Power

Figure 15 shows the comparison of simulated-to-measured
power. The scatterplot in Fig. 15a indicates generally good
performance of the models with increased scatter apparent
below 10 ms−1 that could be related to, for instance, span-
wise inhomogeneity in the inflow that cannot be captured
by the vertically aligned met tower sensors. In addition to
the scatter, Fig. 15b reveals a negative bias in the median
modeling error in Region II that is up to 8 % for the higher-
fidelity inflow assimilation methods and 10 % for the simpler
method. The source of the bias is not presently known but
could plausibly be related to errors in modeling of the con-
troller, blade twist, airfoil performance, or rotor aerodynam-
ics. We note also that the underprediction of the models at
the knee of the power curve may be a result of exaggerated
modeling of the peak-shaving strategy of the proprietary field
controller.

4.3 Blade loading

Figure 16a shows the near-root flapwise moment mean at
blade 1. The comparison shows that median modeling errors
in each wind-speed interval are within 10 %. The mean near-
root edgewise moment is close to zero and is not reported.

The comparisons of the near-root DELs are shown in
Fig. 16b and c. The edgewise comparisons in Fig. 16c show
little sensitivity to the inflow assimilation method, which is
congruous with Rezaeiha et al. (2017), whose study demon-
strated that aerodynamics (i.e., turbulence, wind shear, and
yaw) account for < 20 % of lifetime equivalent fatigue loads
in the edgewise direction. Rather, it is rotor imbalances and
gravity that dominate the edgewise fatigue budget. Thus,
the < 5 % simulation error for edgewise DEL suggests that
the blade model development in Sect. 2.2 was successful
in terms of edgewise characteristics, granted the need to
artificially increase the value of structural damping in the
edgewise direction compared to the value assumed by GE
Vernova, and this difference should be investigated further.
Unlike the edgewise case, the flapwise fatigue comparison
shown in Fig. 16b shows significant errors on the order of
8 %–18 % for the overall medians.

Given the magnitude of the model errors for the flapwise
DELs, a closer investigation is warranted. The results from
Rezaeiha et al. (2017) for a turbulence intensity similar to the
mean of our study (i.e., ∼ 8 %) show that around half of the
contribution to flapwise lifetime equivalent fatigue loads was
from turbulence, and more than 8 % was from wind shear.
Figure 17 replots the modeling error for flapwise DEL ob-
served in Fig. 16b but this time as a function of inflow turbu-
lence intensity and wind shear exponent. The flapwise DEL
error has little correlation with turbulence intensity as shown
in Fig. 17a. However, the flapwise DEL error shows a pos-
itive correlation with wind shear exponent, at least until the
very highest shear exponents where the sample size is small.
Several possible explanations for this trend are proposed.

The omission of modeling of the field turbine’s IPC ac-
tions could produce this trend since IPC has been shown in
some cases to reduce flapwise DELs on the order 10 %–20 %
(Bossanyi, 2003; Van Engelen and Van Der Hooft, 2005).
Indeed, the flapwise DEL errors fall closest to zero for all
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Figure 14. Comparison of (a) standard deviation of rotor speed and (b) standard deviation of blade pitch between models and measurement.
See Fig. 13 for explanation of the lines, shading, and legend.

Figure 15. Comparison of (a) mean electrical power and (b) mean
electrical power error between models and measurement. Each dot
in panel (a) represents a 10 min time series. See Fig. 13 for expla-
nation of the lines, shading, and legend in panel (b).

three inflow assimilation methods as the inflow shear expo-
nent (and thus the likelihood of IPC activity) tends to zero.
More specific insight on the effect of IPC on the flapwise
errors in this data set can be gained by an additional filter-
ing step as described next. One indicator of the strength of
IPC activity is the standard deviation of the difference of two
blades’ pitch signals. Filtering out the half of the 10 min bins
with the larger standard deviations and recomputing the er-
ror metrics only reduced the range of overall median flapwise
errors reported in Fig. 17a from 8.57 %–17.46 % to 7.78 %–
14.43 %. This result suggests that the omission of IPC in the
models may not sufficiently explain the errors in the flapwise
DEL predictions.

Another possible explanation is that overprediction of flap-
wise DELs stems from the computation of induction in
OpenFAST. The last 10 years have seen awareness of over-
prediction of some unsteady QoIs from BEMT models versus
higher-fidelity approaches, especially in sheared conditions
(Madsen et al., 2012; Boorsma et al., 2016; Perez-Becker
et al., 2020; Madsen et al., 2020). Although this overpredic-
tion seems to be improved by computing induction locally

around the azimuth rather than using an annulus-averaged
approach (Madsen et al., 2012, 2020), Perez-Becker et al.
(2020) suggest that such locally computed induction fields
as found in OpenFAST, which include induced velocities
from bound and wake vorticity, are still not accurate. They
observed the 1P fluctuations of the local angle of attack in
OpenFAST to be overpredicted and found OpenFAST to con-
sequently predict 9 % higher lifetime DELs for the out-of-
plane blade-root and the tower-base fore–aft bending mo-
ments compared to a lifting-line free-vortex method. It might
be argued that such an induction-related rationale is weak-
ened in our case because the errors in flapwise DEL persist
and even increase at higher wind speed where induction be-
gins to decrease, but it is noted that the data in Fig. 6b show
a correlation between the inflow wind speed and shear expo-
nent.

In addition to the uncertainty surrounding the cause of
the error in the flapwise DEL predictions, there also ex-
ists significant sensitivity of the error to the inflow assimi-
lation method, which is not surprising given the aforemen-
tioned sensitivity of flapwise DELs to turbulence and wind
shear and the fact that turbulence and wind shear are handled
uniquely in each method. Considering the error as the wind
shear goes to zero may give an indication of the performance
of the models apart from the possible modeling errors re-
lated to IPC and induction noted above. Extrapolating the re-
sults in Fig. 17b to the point of zero wind shear suggests that
the simplest inflow assimilation method (i.e., TurbSim sim-
ple) validates better than the higher-fidelity methods in terms
of flapwise DELs. The apparent reason for the lower flap-
wise DEL predictions of TurbSim simple is the notably lower
turbulence intensity of this approach stemming from the de-
trending process (see Figs. 10c and 11c and the first footnote
of Table 3), which is believed to be good practice. Peder-
sen et al. (2019) found a similarly surprisingly result when
comparing unsteady QoIs between simulations with uncon-
strained and constrained turbulence from a meteorological
tower, and they concluded that measurements taken at large
distances from the turbine should not be used to constrain
turbulence because of possibly invalid assumptions related
to frozen turbulence between the inflow measurement and
turbine and those related to the measured flow field passing

Wind Energ. Sci., 9, 1791–1810, 2024 https://doi.org/10.5194/wes-9-1791-2024



K. Brown et al.: One-to-one aeroservoelastic validation of a 2.8 MW wind turbine model in OpenFAST 1805

Figure 16. Comparison of (a, b) flapwise and (c) edgewise bending moment QoIs for blade 1 at 1.25 m from the root. See Fig. 13 for
explanation of the lines, shading, and legend.

Figure 17. Comparison of the flapwise bending moment DEL from Fig. 16b except plotted versus (a) near-hub-height turbulence intensity
and (b) rotor-height wind shear exponent. See Fig. 13 for explanation of the lines and shading.

completely through the rotor disk. In our data set, the results
from Region II in Fig. 14a and Region III in Fig. 14b (be-
fore 14 ms−1 when IPC actions in the field turbine increase)
indicate an overprediction of unsteadiness in the turbine set
points. A hypothesis is that this added unsteadiness as well as
a portion of the flapwise DEL overprediction could therefore
be related to the BEMT formulation, which, in contrast to
how the formulation modifies the mean velocity with a rotor
induction model, does not account for changes to the relative
magnitude of the fluctuating component of the velocity (i.e.,
distortion of turbulence structures) due to the induction field
of the rotor. Branlard et al. (2016) and Mann et al. (2018)
consider this question, and their conclusions about the de-
gree of amplification or attenuation of the turbulence spec-
trum due to the presence of the rotor vary depending on the
turbulent length scale and the region of rotor operation (i.e.,
the slope of the thrust coefficient curve versus wind speed).
Further insight on this possible modeling discrepancy might
be afforded by a higher-fidelity modeling technique such as
a free-vortex wake method.

The combination of potential modeling errors discussed in
the above paragraphs could be responsible for the observed
error in the flapwise DELs, and the possible presence of com-
pensating errors in the TurbSim simple method should be ac-
knowledged, considering the lower overall errors for this in-
flow assimilation method compared to the supposedly higher
fidelity constrained methods. Such errors could be related,
for instance, to TurbSim simple using a uniform profile of
turbulence magnitude drawn from the near-hub-height mea-
surement, which would artificially lower the rotor-averaged
turbulence intensity compared to a turbulence profile with
higher curvature near the bottom tip than the top tip. Also,
the use of a pre-defined spectral model in TurbSim simple
leaves open the possibility that the energy content at the
lowest frequencies of the turbulence spectra is on average
too low compared to a spectra derived from time-resolved
measurements. TurbSim simple also does not include effects
of non-monotonic shear profiles (see Fig. 11a) or veer (see
Fig. 11b) that would affect unsteady flapwise loading.
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Figure 18. Comparison of time series of blade-root flapwise mo-
ment between measurement and simulation for blade 1. Each color
of simulation data has six lines corresponding to the six turbulence
seeds.

Another perspective on the flapwise DELs is offered by
comparison of time series of flapwise loading for three time
segments in Fig. 18. The effect of the time-offsetting process
described in Sect. 3.3 is evident for the two constrained tur-
bulence assimilation methods, which are able to more faith-
fully reconstruct the variations in blade loads on the longer
timescales. The generally larger amplitude of the oscillations
in the modeled results than the measured ones is consistent
with the overprediction of flapwise DEL discussed above.

4.4 Tower loading

Figure 19 shows the comparison of tower-base bending mo-
ments. The median errors of the model in Fig. 19a are gener-
ally less than ± 10 % and indicate that the steady loading on
the rotor and tower are well modeled, granted the underpre-
diction of steady tower loading in Region II that is related to
the underprediction of mean flapwise loading in this region
as noted above. Note that the more negative mean error for
the PyConTurb cases compared to the TurbSim ones is a re-
sult of the absence of tower nodes and tower aerodynamics
in PyConTurb as described previously, and this effect grows
with wind speed. The DEL errors of the model in Fig. 19b
have a significant positive bias similar to that of the flapwise
DEL errors. As before, the two higher-fidelity models show
higher bias than TurbSim simple.

Similar hypotheses can be made for the overprediction
of tower fore–aft DEL as for the overprediction of flapwise
DELs in Sect. 4.3. The median errors for the fore–aft DELs
in some wind-speed intervals are even larger than those for

the flapwise DEL and could be related again to omission in
the simulations of certain control features on the turbine, in-
cluding collective-pitch tower damping, which could explain
the local peak in DEL error near rated power. Another culprit
for the large fore–aft DEL overprediction could be omission
of the modification of the inflow turbulence by the BEMT
model as suggested previously since the tower-base fore–aft
DELs are known to be highly sensitive to the accuracy of the
wind spectrum (Nybø et al., 2021).

5 Suggestions for a future validation campaign

Below are recorded lessons from the preceding analysis that
may aid the design of future validation studies.

5.1 Inflow measurements

This study leveraged meteorological tower data to define tur-
bulence grids. Shortcomings of this approach include low
spatial resolution and negligence of the effects of the rotor
induction on the characteristics of the inflow fluctuations.
An improved experiment might include on-blade pressure
probes as in Pedersen et al. (2019) to validate the induction
physics predicted by the model. Taking a series of measure-
ments as the flow moves toward the rotor, such as with a
nacelle- or hub-mounted lidar, could additionally allow for
step-by-step tracking of the inflow spectrum, shear, and veer,
as well as comparison thereof with the same quantities pre-
dicted by BEMT models.

5.2 On-blade measurements

Further, on-blade surface pressure measurements would be
useful to quantify errors related to airfoil polars and three-
dimensional effects. Tracking of the level of soiling on the
turbine blades during the measurement period might also
lead to more informed selection of the roughness condition of
airfoil polars to be used in models. Better information about
the local blade aerodynamic behavior will lead to improved
estimates of aerodynamic frequencies and damping.

5.3 Experimental modal analysis

From the initial modal analysis discussed in Sect. 2.3.1, ar-
eas for improvement were identified. As mentioned, time-
synchronous averaging was unsuccessfully used to isolate
the blade-damped natural frequencies from the rotational dy-
namics, which tend to dominate the spectral content. In the
future, this method can be improved by increasing the data
acquisition sampling rate for intervals of interest. Using an
increased sampling rate will also allow for other time-domain
methods to be leveraged. Another method for future use is the
order-domain analysis, where the resulting time-series data
can be analyzed on a per-revolution basis, which is directly
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Figure 19. Comparison of fore–aft bending moment QoIs for the tower at 8.6 m from the base. See Fig. 13 for explanation of the lines,
shading, and legend.

related to the rotational speed of the rotor, allowing for sepa-
ration of rotor speed harmonics from rotor structural frequen-
cies. A final method for future consideration is operational
modal analysis. This method can be used not only to under-
stand the spectral content for structural frequencies but also
to estimate the forced input into the rotor. A more detailed
understanding of the modes can be gleaned where frequency,
damping, and mode shape (where spatial resolution is ade-
quate) are estimated.

To develop a full-turbine modal estimate, the instrumen-
tation effort should be focused on utilizing accelerometers.
Postprocessing data from accelerometers installed along the
blade span can be challenging, but their addition will allow
for a modal map of acceptable spatial resolution to resolve
mode shapes. Adding accelerometers to the hub, bed plate,
and tower top will also provide insight into the stiffness and
damping of the coupled components. Accelerometers should
also be installed before and after the bearings, such as yaw
and pitch, to quantify the impact of those degrees of freedom.

The installation of accelerometers is also not trivial. The
blade, for example, provides limited entry, which makes it
difficult to install sensors beyond 18 m for the turbine in con-
sideration. Exterior installation allows for instrumenting the
full span of the rotor but comes with installation, mainte-
nance, and safety challenges for an operating turbine.

An improved method to understanding the full-turbine
system and component-damped natural frequencies is
through an in situ modal test. This test would be designed
to excite the entire turbine with a known input force. Testing
of this type creates a true frequency response function of the
system where damping can more easily be approximated us-
ing common modal parameter estimation techniques. Also,
modal shapes can be extracted, and modal scaling can be
more accurately approximated.

Lastly, to achieve a full-turbine excitation, a snap-back test
method can be used where a reaction mass applies tension to
the turbine bed plate with a load cell in line with the tension.
A quick-release device is used to release the mass and excite
the turbine. In this way, an impulsive excitation of known
force is applied to the turbine, and frequency response func-
tions can be determined.

5.4 Controller modeling

The model controller used above was an open-source con-
troller that was tuned to match the proprietary field controller.
The complexity of the proprietary controller is significant
and resulted in simplifications and omissions in the model
controller. Future work might benefit from using the DLL
controller file from the field turbine, if permitted.

6 Conclusions

This study was designed to answer two questions: what is the
value of one-to-one time-series-matched inflow for aeroser-
voelastic simulation and what are the residual errors in tur-
bine QoIs when modeling a 2.8 MW land-based wind tur-
bine in OpenFAST. The work included ingestion of 253 bins
of 10 min of operational data from a prototype wind turbine
manufactured and operated by GE Vernova, as well as de-
velopment of corresponding full-field turbulence grids from
three levels of fidelity of inflow assimilation techniques. The
flow fields were input to an OpenFAST model that was devel-
oped to mimic as closely as possible the behavior of the field
turbine. Subsequent bin-by-bin validation revealed that the
median errors of steady QoIs for power, blade loading, and
tower loading within each wind-speed interval were gener-
ally within 5 %–10 %. The unsteady loading QoIs showed
mixed results. Simulated edgewise blade-root DELs were
consistently predicted with less than 5 % error. However, the
simulated flapwise blade-root DELs and tower-base fore–
aft DELs showed significant median biases of up to ∼ 40 %
overprediction, which the authors speculate could be a re-
sult of inaccurate aerodynamic modeling in sheared condi-
tions (note this shortcoming is being addressed currently by
NREL in the ongoing development of OpenFAST) and omis-
sion of certain control features of the proprietary field con-
troller, combined with possible errors in the simulated inflow
wind fluctuations, and other unidentified errors. Interestingly,
the lower-fidelity inflow assimilation technique produced the
lowest errors for the above two unsteady QoIs, which is sim-
ilar to Pedersen et al. (2019). Since the higher-fidelity ap-
proaches intuitively allow for more faithful representation of
inflow featuring prominent coherent structures and/or non-
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stationarity, the possibility of the existence of compensating
errors in the lower-fidelity approach should be considered.
New approaches are under development to further investi-
gate the origin of the errors in the unsteady loading QoIs
and to determine the level of fidelity required by inflow mod-
els to accurately predict specific QoIs. Towards this end, tar-
geted measurements of inflow and blade quantities during the
RAAW campaign have been designed to narrow these mod-
eling gaps, and the results of ongoing work in this area may
produce a more physical approach to the aeroelastic simu-
lations that are at the center of design and certification pro-
cesses for wind turbines.

Code and data availability. The simulation codes used
in this work are open-source and can be found at
https://github.com/OpenFAST/openfast (last access: 14 Au-
gust 2024) (https://doi.org/10.5281/zenodo.7632926, Jonkman
et al., 2023) and https://github.com/NREL/ROSCO (last access:
14 August 2024) (https://doi.org/10.5281/zenodo.7629837, Abbas
et al., 2023). OpenFAST v3.4.1 and ROSCO v2.7.0 were used in
this study. The specific turbine model used is proprietary. The data
generated in the field are also not publicly available.
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