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Abstract. Leading-edge erosion (LEE) can significantly impact the aerodynamic performance of wind turbines
and thereby the overall efficiency of a wind farm. Typically, erosion is modeled for individual turbines where
aerodynamic effects only impact the energy production through degraded power curves. For wind farms, aerody-
namic deficiency has the potential to also alter wake dynamics, which will affect the overall energy production.
The objective of this study is to demonstrate this combined effect by coupling LEE damage prediction and aero-
dynamic loss modeling with steady-state wind farm flow modeling. The modeling workflow is used to simulate
the effect of LEE on the Horns Rev 1 wind farm. Based on a 10-year simulation, the aerodynamic effect of LEE
was found to be insignificant for the first few years of operation but rapidly increases and reaches a maximum
annual energy production (AEP) loss of 2.9 % in the last year for a single turbine. When including the impact of
LEE to the wakes behind eroded turbines, the AEP loss is seen to reduce to 2.7 % at the wind farm level, i.e.,
corresponding to an overestimation of the AEP loss of up to 7 % when only considering a single wind turbine.
In addition, it was demonstrated that the modeling framework can be used to prioritize turbines for an optimal
repairing strategy.

1 Introduction

Erosion is often observed on wind turbine blades where the
material of the leading edge has gradually been worn away
over time. Leading-edge erosion (LEE) may be caused by
impacts of airborne particles such as rain droplets, sand, and
hail or by other factors such as UV radiation, strain from
blade bending, or rapid temperature changes (Keegan et al.,
2013). The impact of these factors on erosion varies from one
location to another, but the most common damaging force is
heavy rain occurring simultaneously with high wind speeds.
In Denmark and the UK, rain-induced LEE is a critical prob-
lem for many offshore wind farm operators, where in some
instances blades have been repaired or changed after only
a few years of operation (offshoreWIND, 2018). Compared
with onshore turbines, offshore wind turbines operate more
frequently at maximum tip speed due to higher average wind
speeds. Further, offshore wind turbines are not affected by

noise regulations that limit the maximum tip speed, allowing
them to operate at greater tip speed (Herring et al., 2019),
which benefits power production.

LEE has significantly impacted the wind energy industry
in terms of repair costs. The erosion damages often require
special kinds of repair solutions, such as the installation of
protective shields or tapes, filling and injection coating, and
resin injection for small surface cracks (Mishnaevsky, 2019).
The cost of surface erosion repairs can vary depending on
the extent of the damage, the location, and the size of the
turbine. In a recent study, it was demonstrated that surface
erosion is the largest contributor to unplanned repair costs
(Mishnaevsky and Thomsen, 2020).

Damage prediction models, also referred to as lifetime pre-
diction models, are used to estimate the damage state of the
leading edge based on weather inputs such as wind speed and
rain. They can be particularly useful for adequate planning
and scheduling of maintenance actions. These models often
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rely on known or assumed materialistic fatigue strength prop-
erties obtained from rain erosion tests (RETs), which are use-
ful for predicting the erosion incubation period. Several stud-
ies have proposed damage models for predicting site-specific
erosion damages (Visbech et al., 2023; Verma et al., 2021;
Prieto and Karlsson, 2021; Castorrini et al., 2021). However,
the focus of these studies has solely been on structural de-
fects.

Another important but less documented cost related to
LEE is the loss of aerodynamic efficiency. LEE on wind
turbine blades roughens the surface, thereby causing aero-
dynamic performance deterioration. Airfoils used in shap-
ing wind turbine blades are carefully designed to satisfy
specific design requirements related to aerodynamic perfor-
mance, geometric and structural reliability, etc. (Bak, 2022b).
Even small perturbations to the surface geometry can signif-
icantly impact the desired airfoil properties. The two main
aerodynamic properties of an airfoil are its lift and drag co-
efficient. These normalized quantities describe the airfoil’s
ability to generate lift and drag and vary with angle of at-
tack and Reynolds number. The lift-to-drag ratio is typically
used as a proxy for aerodynamic efficiency, as it indicates
how much undesired drag is required to generate a certain
desired amount of lift. When an airfoil is exposed to LEE, the
flow characteristics around it change. Several studies have in-
vestigated the effects based on high-fidelity methods such as
computational fluid dynamics (CFD) (Li et al., 2010; Castor-
rini et al., 2020; Wang et al., 2022; Meyer Forsting et al.,
2022a), wind tunnel experiments (Bak et al., 2000; Kruse
et al., 2021), or a combination of both (Maniaci et al., 2016;
Kruse et al., 2018; Meyer Forsting et al., 2022b, 2023). Gen-
erally, LEE was found to cause a sharp and pronounced in-
crease in drag. Additionally, a reduction in the pressure dif-
ferential (between the pressure and suction side) leads to a
reduction in lift.

Two-dimensional airfoil properties can be used together
with blade-element momentum (BEM) theory to couple clas-
sical momentum theory with the local forces acting on the
blade sections (Glauert, 1935; Hansen, 2015). This allows
for estimating the full rotor aerodynamics and thus blade
forces, which, at the rotor level, are summarized by the power
and thrust coefficients. Several studies have adopted this ap-
proach to quantify the effect of LEE on power production and
annual energy production (AEP) (Cappugi et al., 2021; Ma-
niaci et al., 2020; Bech et al., 2018; Bak, 2022a) by replacing
the baseline two-dimensional airfoil performance with the
one incorporating LEE. However, it is still not fully recog-
nized by wind farm operators that LEE notably affects en-
ergy production since it is extremely difficult to validate from
operational wind turbine data. This is due to the stochas-
tic nature of turbulent wind and the large year-to-year vari-
ability in the wind resources (Lee et al., 2020). However, a
recent study by Panthi and Iungo (2023) investigated oper-
ational data from 53 GE 1.5 MW turbines from the Cedar
Creek wind farm (CO, US) with the objective of quantify-

ing AEP losses from LEE. Losses in the range of 3 %–8 %
were observed from supervisory control and data acquisition
(SCADA) data, with the largest loss contributions coming
from the low-wind-speed operational regime.

As mentioned above, the main focus of former studies has
been on the direct effect of LEE on energy production. A
general reduction in aerodynamic efficiency will decrease
a turbine’s ability to convert kinetic energy into torque but
will thus also leave more energy for downstream rotors, as
its wake deficit is diminished. For this reason, LEE effec-
tively works as unintentional axial induction control, which
is a well-known wake mitigation strategy. This added effect
is only relevant in wind farms where wake effects play an
important role and could explain why it is commonly over-
looked.

Power and thrust coefficients are typically used in wind
farm simulation tools such as PyWake (Pedersen et al., 2023)
or FLORIS (NREL, 2021) and allow for estimating wind
farm energy production. These wind farm simulation tools
rely on engineering wake models (Bastankhah and Porté-
Agel, 2014; Jensen, 1983; Frandsen et al., 2006; Ott et al.,
2011; Larsen et al., 2007) for estimating steady wind farm
flow fields, which offer a balanced trade-off between predic-
tion accuracy and computational costs.

In the present paper, we test the hypothesis that LEE di-
rectly affects wind farm energy production through degraded
power and thrust curves, hence including its effect on wake
losses. This is accomplished by modeling the temporospatial
progression of erosion independently for each turbine within
a wind farm and evaluating its effect on key aerodynamic
properties influencing the power and thrust coefficients. This
is achieved by coupling a damage prediction model with a
fast aerodynamic LEE loss prediction tool and a steady wind
farm flow model. We use this modeling framework to demon-
strate how LEE-induced power losses differ between an indi-
vidual turbine and an entire wind farm through a case study.
Finally, we use the probabilistic capabilities of the dam-
age prediction model to propose a prioritized repair strategy
based on Monte Carlo simulations.

The paper is structured as follows: Sect. 2 describes the
overall modeling framework including a thorough descrip-
tion of the modules used for modeling wind farm aerodynam-
ics under the influence of LEE. In Sects. 4 and 5, the results
obtained throughout the study are presented and discussed,
respectively. Finally, the main conclusions are summarized
in Sect. 6.

2 Methodology

2.1 Modeling overview

The current section describes the methodology used for mod-
eling the combined aerodynamic effects of LEE in wind
farms. The overall workflow of the modeling framework is
visualized in Fig. 1. The framework revolves around a cen-
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tral wind farm simulation tool that runs with an engineer-
ing wake model and is coupled to a LEE module. The LEE
module consists of two sub-modules; first, a damage pre-
diction model is used to provide probabilistic damage esti-
mates based on the site-specific time series of weather inputs
and turbine operational data. The damage estimate is then
passed on to an aerodynamic predictor which determines the
blade-sectional aerodynamic losses. These sectional losses
are combined to provide the final output in the form of eroded
power and thrust curves. These properties are finally fed back
to the central wind farm model and used in the computation
of the wake deficits to update the wind farm flow field and
turbine power production. The wind farm can be simulated
over a time series of wind speed, wind direction, and rain to
simulate the gradual development of erosion on each individ-
ual turbine in a wind farm. The damage state can be updated
at each time step or after a block of time steps to speed up
the simulation time. It should also be mentioned that since
the modeling framework is modularized, it is very flexible
and not limited to the setup used within this paper. The in-
dividual models can easily be substituted with other models,
provided they take the same inputs and outputs.

2.2 Damage prediction model

The damage prediction model used in this study was origi-
nally proposed by Visbech et al. (2023), and the following
description will only cover the model in relation to the scope
of the present study. For detailed information, the reader is
referred to the original paper.

The model is based on an ensemble of 816 small feed-
forward neural networks. The networks were trained with
mesoscale weather data and blade inspections from seven
wind farms located on- and offshore in northern Europe. The
mesoscale weather data were provided as hourly time series
of wind and precipitation, and the blade inspections were
obtained from a combination of manual, ground-based, and
drone-based images. The purpose of the damage prediction
model is to provide estimates of the erosion damage along the
blade, based on time series of turbine local wind speed and
rain. Together with turbine-specific operational characteris-
tics, these are used to calculate rain impingement following
industry recommendations (DNV, 2020), which is the main
predictor variable used by the model. The output from the
damage prediction model is an encoded damage value rang-
ing between 0 and 1. The encoded damage from the model is
directly related to a specific defect type and severity. The cat-
egorization is based on the structural integrity of the blades
and therefore represents the urgency of repair actions. More-
over, the encoding scheme allows for continuous and real-
istic damage progression, similar to that observed from ac-
tual blade inspections. Although the categorization scheme
is unique to the blade inspections used for training the dam-
age prediction model, it is similar to others proposed in the
literature (e.g., Sareen et al., 2014; Gaudern, 2014).

Figure 2 demonstrates the output of the damage predic-
tion model based on a 10-year time series using wind speed
and rain as input. The solid line represents the average en-
coded damage of a wind turbine. Since the model consists
of an ensemble of several hundred neural networks, it allows
for making probabilistic damage estimates by incorporating
uncertainty observed from the blade inspections used during
training. This is also visualized in Fig. 2 by the 95 % ensem-
ble confidence interval (CI) predicted by the damage model.
Here, we observe the heteroscedastic uncertainty captured by
the model, which can be used to introduce realistic damage
variability, similar to that observed in the field.

2.3 Aerodynamic loss categories

While the damage prediction model provides estimates of the
structural erosion damage, it does not consider the associated
aerodynamic losses. Doing this requires information on the
sectional degradation of the lift-to-drag ratio and maximum
lift coefficient due to damages along each blade. It is com-
mon to categorize blade inspection data into severity classes
by judging the risk of damage progression and potential re-
pair costs, as done for the data underlying the damage predic-
tion model. Yet, severe structural damages, e.g., deep isolated
cracks, do not lead to severe aerodynamic losses, whereas
structurally insignificant findings, like top coat erosion, do.
Therefore an aerodynamic categorization of leading damages
needs to be performed independently of the structural assess-
ment.

A standardized aerodynamic loss categorization scheme
is yet to be established, as there is insufficient knowledge
about the detailed geometric realization of the damages en-
countered in the field and their corresponding frequency
of appearance. For aerodynamic loss assessment, the exact
three-dimensional damage topography needs to be known,
as even features down to 50 µm can be aerodynamically ac-
tive. However, with the more frequent appearance of severe
damages, a growing number of wind tunnel and numerical
investigations have been performed to quantify their aerody-
namic impact (Sareen et al., 2014; Gaudern, 2014; Ehrmann
et al., 2017; Meyer Forsting et al., 2022a, b, 2023). Applying
similar damage topographies resulted in comparable relative
changes in the lift-to-drag ratio, despite the use of different
airfoils. It is likely that this is also related to having inves-
tigated similar Reynolds numbers (≤ 6× 106) and thin air-
foils (≤ 21 %) that are usually used in the outer blade region.
Aerodynamically, this is rooted in the impact of surface per-
turbations, also those caused by LEE, being related to the
ratio of surface feature height to boundary layer thickness. In
turn, this is a function of the Reynolds number, while the air-
foil thickness is a proxy for the surface pressure gradient,
which again influences the boundary layer. Generally, the
biggest drop in performance arises from roughness inducing
premature boundary layer transition right at the leading edge,
with the aforementioned studies reporting losses between
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Figure 1. Overview of the modeling workflow.

Figure 2. Example of the output of the damage prediction model
based on 10 years of weather data as input. The graphs show the
progression of the encoded damage level from a time series of half-
hourly wind speed and rain data. The solid line represents the en-
semble median, and the shaded area indicates the 95 % ensemble
confidence interval (CI).

35 %–50 % with respect to the clean baseline with free tran-
sition. With erosion-type damages losses increase by another
10 %–15 %, thus maximally reaching 65 %. As all available
loss data were compiled for Reynolds numbers below 6×106,
it is difficult to transfer these loss factors directly to modern
wind turbines, as their blades can easily operate at 15× 106.
As the boundary layer transition naturally moves towards the
leading edge with increasing Reynolds number, roughness-
induced transition has less of an impact at elevated Reynolds
numbers. In fact, avoiding premature transition at 15× 106

requires a blade surface finish that is hard to achieve in a cost-
effective manner even in a factory. To assess the aerodynamic
losses at higher Reynolds numbers, two-dimensional CFD
computations were performed with EllipSys2D (Sørensen,
1995) for four airfoils with relative thickness below 21 %

(NACA 63-418, FFA-W3-211, DU96-W-180, Risø-B1-18,
Risø-C2-18) at Reynolds numbers of 5× 106, 10× 106, and
15× 106 and with five levels of leading-edge damage: clean
with free transition, clean and fully turbulent, moderate grid-
resolved erosion, severe grid-resolved erosion, and severe
grid-resolved erosion with a forward-facing step on the suc-
tion side (height of 1.5×10−3c located at 0.024c chordwise,
with chord length c). The grid-resolved erosion is generated
by superimposing multi-directional waves sampled from a
spectrum as detailed in Meyer Forsting et al. (2022a). The
numerical setup is also identical to the one in Meyer Forsting
et al. (2022a) using a structured O mesh with a radius of
45c, first cell height of 1× 10−7c, and for the clean leading-
edge cases 512 cells in the chordwise direction and 256
cells in the wall normal direction. To adequately resolve the
erosion, another 256 chordwise cells are added. The k−ω
shear stress transport (SST) turbulence closure by Menter
(1993) is used, coupled to the eN stability model (Drela
and Giles, 1987), and implemented by Michelsen (2002)
for the clean transitional case. The freestream turbulence
intensity at the airfoil is 0.1 %. The entire workflow from
surface grid generation to post-processing was automatized
within the Python tool (https://alrf.pages.windenergy.dtu.dk/
pye2dpolar/, last access: 29 July 2024), for which details are
given in Meyer Forsting et al. (2022a, 2023).

The aerodynamic degradation from leading-edge damage
is then computed for each of the five simulated airfoils by
determining the drop in the lift-to-drag ratio around the de-
sign angle of attack (±2° to account for natural variation)
with respect to the clean airfoil performance. The latter is as-
sumed to be represented by a 40 : 60 blend of the fully turbu-
lent and free transition performance1 (Bak, 2013), as blades
are usually designed with a certain safety margin. Similar to
the studies mentioned above, the relative drop in the lift-to-

1The blended polar coefficients are thus given by Cblend(α)=
0.4Cturb.(α)+ 0.6Ctrans.(α).
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drag ratio, as it is defined here, is nearly airfoil independent.
In line with structural damage categorization and with the
aim to create distinct aerodynamic loss categories, the losses
were divided into five categories and labeled with letters to
clearly distinguish them from structural classifications. The
categories and the associated percentage losses in the lift-
to-drag ratio are presented in Fig. 3b for Reynolds numbers
of 5× 106 and 15× 106 (losses for intermediate Reynolds
numbers can be linearly interpolated) – covering the operat-
ing range of most wind turbines – and approximately capture
the behavior found for the different airfoils that were simu-
lated herein and those presented in the literature. This par-
ticular categorization is thus only a rough attempt at clas-
sifying leading-edge damages aerodynamically and might
require future revisions. The first category (a) represents a
clean blade, i.e., without any aerodynamic loss. The next two
categories (b and c) capture the losses associated with an in-
creasing proportion of pits and gouges covering the leading
edge of the blade section in question, which cause early tran-
sition. The coverage is about one-third at b and two-thirds at
c. Full coverage comes with full erosion of the top coat and
corresponds to category d. The final two categories (e and f)
are associated with progressive growth in damage depth from
the onset of exposure to complete exposure of the laminate.
The aerodynamic losses do not grow any further for the types
of damages usually observed in the field.

2.4 Coupling aerodynamic and structural categories

The original modeling objective of the damage prediction
model was to support site-specific repair and maintenance
planning. This was done through an encoded damage score
representing the damage state of a wind farm in relation to
the urgency of repair. As previously mentioned, the purpose
of this study is to investigate the aerodynamic effect of LEE
for wind farm flow modeling, and for this reason, a rela-
tion between structural and aerodynamic defect categoriza-
tion has to be established.

As mentioned in the previous section, it is difficult to re-
late aerodynamic categories to structural categories; however
here this was attempted by matching the observable dam-
age features. Figure 3a shows the categorization of structural
defects (defect type on the vertical axis and defect severity
on the horizontal axis) used by the damage prediction model
and the corresponding encoded damage value (Visbech et al.,
2023). Figure 3b shows the categorization of the aerody-
namic losses (Reynolds number on the vertical axis and cat-
egories on the horizontal axis), obtained from the CFD sim-
ulations and literature review. Figure 3c shows how the two
individual schemes are combined to relate the encoded dam-
age and the percentage lift-to-drag ratio. As mentioned be-
fore, this was done by matching the observable damage fea-
tures used for the individual categorizing. It is assumed that
aerodynamic losses will grow quickly with the onset of struc-
tural damage accumulation as it causes the transition point

to rapidly move towards the leading edge. From then on
the aerodynamic losses increase more slowly, reaching their
maximum once the leading edge is fully eroded.

2.5 Aerodynamic loss model

The main purpose of the aerodynamic loss model is to ob-
tain the loss in annual energy production of a turbine due
to leading-edge erosion and to obtain the power and thrust
curves of turbines subjected to LEE that can be used by the
wind farm simulation tool. In this paper, we use an adaptation
of the aerodynamic loss model introduced by Bak (2022a).
The tool is a simplified blade-element momentum (BEM)
theory model where the blade is divided into annular ele-
ments, and the local losses are calculated at each annular ele-
ment. The model is very light in its implementation as it is in-
dependent of the inflow angle, which significantly speeds up
the computation. In addition, it includes a simplified tip cor-
rection model that only depends on the tip speed ratio (TSR),
the blade radius, and the number of blades. The aerodynamic
loss model was validated by Bak (2022a) in comparison to
a classic BEM model, and it was found that the local power
and thrust coefficients along the rotor radius compare well.

The main input parameter to the aerodynamic loss model
is the sectional loss in the lift-to-drag ratio, which is pro-
vided by the damage prediction model using the structural-
to-aerodynamic coupling previously described. Figure 4 il-
lustrates an example of the loss distribution along the blade,
where the highest lift-to-drag loss is reached towards the tip,
and the erosion severity decreases towards the root. For this
representation of the erosion distribution on the blade, it is
assumed that the predicted damage occurs at the tip of the
blade and that it decreases towards the root, following a cu-
bic relationship. Due to the fact that the most severe damage
typically occurs towards the tip of the blade and that the outer
part of the blade plays a greater role in aerodynamics, a log-
arithmic discretization was chosen to divide the blade into
sections. Figure 4 provides a visualization of this non-linear
discretization.

In addition to the loss in the lift-to-drag ratio, there are
more inputs that are not always available for a given turbine,
such as the design lift coefficient and sectional lift-to-drag
coefficient ratios for the clean blade. For those parameters,
default values that are obtained from a test turbine are used.

An empirical relation for the thrust coefficient that de-
pends on the tip speed ratio and design lift coefficient is used.
The tip loss and lift coefficient ratio of an eroded and clean
reference case is included to find the thrust coefficient for the
eroded case.

In the aerodynamic loss model, there are no specified con-
trol properties. It is assumed that the wind turbine is variable-
speed pitch regulated (VSPR) and operates at maximum
power coefficient below rated wind speed. If the wind tur-
bine is subject to a constraint on tip speed, which is violated
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Figure 3. Mapping between the damage prediction model and the aerodynamic loss model. Panel (a) shows the structural categories and as-
sociated encoded damage level, panel (b) shows the aerodynamic categories and associated percentage lift-to-drag losses, and panel (c) shows
final functional coupling between the encoded damage level and aerodynamic loss. Values between the two Reynolds numbers can be inter-
polated.

Figure 4. Example of a typical distribution of aerodynamic losses
along the wind turbine blade. The blade sections are discretized in a
non-linear manner, and each section is assigned an erosion severity
in terms of lift-to-drag losses (“f” is the most severe erosion, and
“a” is the clean case with no loss).

before rated wind speed, a sub-region might occur, where the
tip speed ratio is kept suboptimal.

Similarly, it is assumed that the wind turbine is capable of
adequately shifting the pitch and rotational speed to adjust
for the aerodynamic degradation of the lift and drag coeffi-
cients when exposed to erosion. LEE reduces the efficiency
of the blade, which effectively shifts the rated wind speed to
a higher value. As previously mentioned, these control prop-

erties are not specifically defined but are assumed to be in-
herent to the wind turbine operation.

2.6 Wind farm flow modeling

In order to incorporate the long-term progression of LEE
damage into wind farm response modeling, it is important
to include the steady-state behavior of wake effects in the
simulations. Steady-state engineering wake models offer a
significant advantage by enabling the computationally low-
cost prediction of wind farm flow fields, including turbine
wakes, to assess power capture and ultimately AEP. Com-
pared to more detailed, often dynamic high-fidelity numeri-
cal tools such as CFD with much higher computational cost,
engineering wake models have been shown to provide com-
parable accuracy, requiring much lower complexity in their
inputs in terms of flow properties and turbine characteris-
tics (e.g., blade geometry, detailed representation of the con-
troller) (Göcmen et al., 2016).

In this study, the steady-state flow within the wind farm
is represented using the open-source wind farm simulation
tool PyWake (version 2.5) (Pedersen et al., 2023). PyWake
provides engineering models for estimating wind farm flow
fields, including the Gaussian wake deficit formulation pro-
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posed by Bastankhah and Porté-Agel (2014) and presented in
Eq. (1) below. PyWake assumes that the wake spreads radi-
ally outwards, that the wake deficit follows a Gaussian shape,
and that the wake centerline is aligned with the turbine rotor
plane. It has shown very good agreement with field obser-
vations in several campaigns and wake model benchmarks
(e.g., Doubrawa et al., 2020), especially in the far-wake re-
gion, and it is utilized in this analysis to estimate the flow
characteristics of eroded turbine(s).
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is the wake deficit normalized by the freestream
velocity; x, y, and z are the streamwise, spanwise, and verti-
cal spatial coordinates; zh is the hub height; D is the turbine
diameter; CT is the thrust coefficient of the turbine; and k∗

is the wake expansion parameter defined by the local turbu-
lence intensity (streamwise) at hub height TIh as (Niayifar
and Porté-Agel, 2015)

k∗ = 0.4TIh+ 0.004 for 0.065≤ TIh ≤ 0.15
k∗ = 0.03 for TIh < 0.065 or TIh > 0.15.

Additionally, ε is proposed as a function of CT
(Bastankhah and Porté-Agel, 2014), described by ε =

0.2
√

1
2

1+
√

1−CT√
1−CT

. Therefore, with the expected reduction in

CT due to progression of LEE over time, the wake deficit
described in Eq. (1) is also anticipated to decrease.

Detailed specifications of the PyWake simulation setup
can be found in Appendix A.

3 Case study: Horns Rev 1

The modeling framework described in the previous section is
demonstrated through a case study for the Horns Rev 1 off-
shore wind farm, which is located in the North Sea along the
west coast of Denmark. The wind farm was commissioned
in 2009 and consists of 80 Vestas V80 2 MW wind turbines,
yielding an installed capacity of 160 MW. The layout and
geographical location of Horns Rev 1 are shown in Fig. 6,
where the minimum spacing between the turbines is 7 rotor
diameters (560 m).

Weather data used in the study are obtained from the
mesoscale Weather Research and Forecasting (WRF) model
used in the New European Wind Atlas (NEWA) (Witha et al.,
2019). The data contain wind speed, wind direction, tur-
bulent kinetic energy, and precipitation. The data are pro-
vided as time series with a 30 min time resolution and a 3 km
grid spacing. Precipitation data are provided at surface level,

whereas wind data are provided at 75 m height and extrapo-
lated to hub height using the power law with shear exponent
α = 0.1.

The wind climate at Horns Rev 1 is governed by west-
erlies coming from the sea, thereby providing a very good
wind resource. The mean wind speed at hub height (70 m) is
9.3 m s−1, and the mean wind direction is 252°. The average
turbulence intensity (TI) is 6.7 %. Figure 5 illustrates the sta-
tistical weather conditions at the site shown by a wind rose
on the left and the exceedance probability of rain on the right.
The annual rainfall was found to be 1053 mm yr−1, with
a large proportion falling in autumn. The rain exceedance
probability also shows that rain occurs around 6 % of the
time. A lower-bound threshold of 0.5 mm h−1 is applied to
the rain to account for the mesoscale model uncertainty,
which is also observed from the sharp edge on the graph at
this value.

4 Results and analysis

4.1 Deterministic simulations

The first step in the analysis is to compare the effect of eroded
blades when modeling a single turbine with a full wind farm.
To do this, we run two simulations, one using a single Vestas
V80 turbine and one using the full Horns Rev 1 wind farm.
For both simulations, 10 years of weather data and wind tur-
bine specifications from Horns Rev 1 are used for simulating
the operation of the wind turbines and their gradual aero-
dynamic degradation caused by LEE. A constant Reynolds
number of 5× 106 was used for the entire blade, which is
based on the limited airfoil information on the Vestas V80
2 MW wind turbine and the typical distribution of Reynolds
numbers for wind turbines of a similar size (Ge et al., 2016).
For these simulations, only the ensemble mean from the dam-
age prediction model is used as an output for updating the
damage state of all the turbines, thereby providing a deter-
ministic damage estimate only. In this case, the only damage
variability comes from the local wind speed observed by each
turbine. To account for randomness in the weather data, the
10-year simulations are run for 10 random seeds.

Figure 7 shows the estimated AEP loss of the eroded tur-
bine and wind farm relative to its identical but non-eroded
counterpart. This allows for a fair comparison of the AEP
loss even though there is a difference in the absolute per-
turbine AEP between the single turbine and the wind farm
due to wake losses. The blue bars indicate the relative AEP
loss for the single turbine, and the red bars show the rela-
tive AEP loss for the full wind farm. For both cases, the
mean AEP loss over the full simulation is listed in the leg-
end. Based on 10 years of operation, we observe a difference
in AEP loss between simulating a single wind turbine com-
pared to an entire wind farm. Generally, the trends from the
single turbine and the wind farm are very similar. The AEP
loss is observed to be relatively small for the first 3–4 years
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Figure 5. Weather conditions at Horns Rev 1 given by (a) a wind rose with a mean speed of 9.3 m s−1 and a mean wind direction of 252°
and (b) the cumulative density function of rain with a mean annual rainfall of 1053 mm yr−1. A lower-bound threshold of 0.5 mm h−1 is
applied to the rain data.

Figure 6. Layout and geographical location of the Horns Rev 1
wind farm. The minimum spacing between the turbines is 7 rotor
diameters.

but quickly increases after this point. We also observe that
the first 5 years of operation account for less than 15 % of
the total loss for both cases. As shown, the main difference
between the two cases is the magnitude of the power loss.
For both cases, the highest AEP loss is observed to occur in
the last 2 years of the simulation with a maximum AEP loss
of 2.9 % for the single turbine and 2.7 % for the wind farm.
This corresponds to a 7 % reduction with respect to simulat-
ing the single wind turbines versus the full wind farm. The
average AEP loss for the entire simulation period was 1.5 %
for the single turbine and 1.4 % for the wind farm.

Since the simulations are run for a period of 10 years, it
is possible to assess the aerodynamic condition of the blade
at certain points throughout the simulation. Figure 8 shows
snapshots of the average wind farm lift-over-drag loss along
the normalized blade after year 1, 3, 5, and 10. In all cases,
the maximum loss is assumed to occur at the tip of the blade
from where it decreases towards the root. It is also observed
that the aerodynamic loss only affects the blade to a certain
extent. We observe that the distribution of aerodynamic loss

does not change linearly along the blade and also not linearly
over time.

After year 1, the erosion damage is very small and barely
causes any aerodynamic losses. After year 3, the maximum
loss at the tip is around 3 % and decreases smoothly inwards.
This appearance resembles a slightly roughened surface on
the outer 20 % of the blade, which causes insignificant AEP
losses. After year 5, we observe a significant increase in max-
imum aerodynamic loss. At the tip, the loss is on average
around 15 % but decreases rapidly towards the root. This ap-
pearance resembles the initiation of more severe erosion lo-
cally at the tip. Here, the aerodynamic loss is observed to de-
crease much faster when moving towards the root. After year
10, the maximum loss reaches around 45 %, which is close
to the obtainable maximum. We also observe that a larger
extent of the outer blade is expected to experience signifi-
cant aerodynamic loss. This represents the start of stagnation
of the erosion at the tip in terms of aerodynamic loss. The
aerodynamic loss is not expected to increase much anymore,
but the damage progression will occur in the form of a much
larger damage extent. We also observe that a larger extent of
the blade is affected by a roughened surface.

It should be mentioned that the damage prediction model
is limited by the range of the outputted encoded damage
(ranges between 0 and 1). This also limits the aerodynamic
loss since the two models are directly coupled. In real-life
conditions, it is expected that damages beyond this range
could occur if the blade is left fully untreated. However, it
is also expected that blades are typically inspected annually
and repaired accordingly, i.e., before extreme damage occurs.
Thus, as mentioned previously, the damage encoding scheme
used by the damage prediction model is based on the range
of allowable defects observed from real blade inspections.

As stated earlier, the aerodynamic properties governing
the wind farm simulation are the power and thrust curves.
The thrust coefficient governs the wake behavior in the engi-
neering wake model, and the power curve directly affects the
energy production. Since we make an explicit distinction be-
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Figure 7. Comparison of relative AEP change for a single turbine vs. the full wind farm. In both cases, the AEP is calculated relative to
the non-eroded counterpart. The graphs show the simulation over a period of 10 years using 10 seeds to compute the mean and standard
deviations.

Figure 8. Snapshots of the average wind farm lift-over-drag losses
along the blade after 1 year, 3 years, 5 years, and 10 years of oper-
ation.

tween these two properties, we are able to directly separate
the contributions from each of them. This is done by run-
ning two parallel simulations where the power and thrust co-
efficient curves are degraded independently; i.e., the power
curve is eroded, and the thrust coefficient is assumed to be
clean and vice versa. This allows us to exactly quantify which
contribution comes from which of the two properties.

Figure 9 visualizes the relative AEP loss from the isolated
aerodynamic performance properties over the full simulation
period of 10 years. As expected, the isolated effect on the
power curve is observed to cause a negative effect on the
overall AEP. It is also observed that the isolated contribu-
tion from the eroded power curve corresponds very closely
to the relative AEP loss observed for the single-turbine case
in Fig. 7. This indicates that erosion-induced power curve
degradation does not vary significantly, and the main vari-

Figure 9. Relative AEP changes from isolated aerodynamic rotor
properties. The red bars indicate the isolated contribution coming
from the power coefficient, and the blue bars indicate the isolated
contribution coming from the thrust coefficient.

ation comes from the reduced local wind speed caused by
wakes. Oppositely, the isolated effect from the eroded thrust
coefficient is observed to positively contribute towards AEP.
At first, it might seem counterintuitive that erosion can actu-
ally contribute to a power gain. However, we assume that ero-
sion reduces the aerodynamic efficiency, which also reduces
the thrust force that the rotor exerts on the wind, thereby
diminishing the wake deficit and leaving more energy for
downstream turbines. The contribution is solely relevant for
wind farms where wake losses are present. Combining the in-
dividual contributions from the power and thrust coefficients,
we end up with an overall loss, corresponding exactly to the
relative power change observed in Fig. 7.

Until now, we have focused on AEP, which provides key
information in a simple manner. Since the simulations are
based on half-hourly data, we can also analyze the results
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Figure 10. Correlation plot showing the relation between the power loss and freestream wind speed, wind direction, and reference wake
loss.

directly at this temporal frequency. Figure 10 shows the pair-
wise relationships between half-hourly variables from the
full wind farm simulation. The row of sub-figures shows
the relative power loss plotted against three other variables,
namely the wind speed (left), wind direction (middle), and
wake loss (right). The plots are based on data only from the
last year (year 10), where the effects from LEE are most ap-
parent. Firstly, we identify that the majority of the simulated
hours results in power losses of up to 7 % and that these oc-
cur mostly in the operational region below rated. For wind
speeds below 10 m s−1, the relative power loss is centered
around −5 %, though with a lot of scatter. The loss dimin-
ishes for wind speeds above rated where the effect of LEE is
also expected to be absent. Several observations have a high
erosion-induced power gain of up to 25 %. However, looking
at the relation between relative power and wind speed, we
note that these instances only occur at low wind speeds (be-
low 5 m s−1), thereby having a limited impact on the overall
power loss. During these unique hours, the effects from re-
duced wake deficits overtake the effects from the degraded
power curve, leading to an overall power gain. Wake losses
are heavily dependent on wind direction, and it is expected
that erosion-induced wake loss mitigation is also wind di-
rection dependent. This is apparent when looking at the re-
lation between power loss and wind direction. Certain peri-
odic wind directions cause a consistently smaller or higher
relative power loss than others. These wind directions cor-
respond exactly with the physical alignment of the turbine
rows, i.e., along the rows of the wind farm layout. The re-
lation between power loss and wake loss supports the fact
that the highest relative power loss occurs for highly waked
instances. Finally, it should be mentioned that we only con-
sidered the relative power loss. It was found that 95 % of the
absolute power loss occurred in the wind speed region be-
tween 8–14 m s−1.

4.2 Probabilistic simulations

Previous simulations have been performed using the ensem-
ble mean as the sole deterministic output from the damage
prediction model. In this case, the only damage variation

across the wind farm comes from the wake-induced changes
in effective wind speed observed by each wind turbine. This
variation effectively changes the operational rotor speed of
the individual turbines, but the maximum percentage differ-
ence for the aerodynamic losses across the wind farm was
found to be less than 1 %.

The ensemble capabilities of the damage prediction
model also allow for making probabilistic damage estimates,
thereby introducing the uncertainty captured by the damage
model. Initially, we use the ensemble inverse cumulative den-
sity function (CDF) to provide a probabilistic damage output.
Figure 11 shows the probabilistic simulation results for the
full wind farm using the same 10 years of weather data as in-
puts. The figure on the left shows the 95 % confidence inter-
val of the relative AEP loss with the 50th percentile (median)
indicated by the solid line. The figure on the right shows the
CDF of the encoded damage at years 1, 3, 5, and 10.

From the relative AEP loss, we observe the uncertainty
being propagated from the damage prediction model. The
model uncertainty is very low for the first years but rapidly
increases after year 2. At the 10th year, we expect the relative
AEP loss to range between 1.4 %–3.2 % based on the 95 %
CI. We observe a slightly asymmetric model uncertainty with
higher-confidence weight towards the upper quantiles, indi-
cated by the CI bands being slightly more narrow. It is es-
pecially visible for the last couple of years where the upper
quantiles reach the upper limit of the encoded damage, i.e.,
a value of 1. This is also more clearly visible from the cu-
mulative density function, which shows a large proportion of
probability being constrained at year 10. Finally, we observe
the feature of the incubation period, which is also captured by
the damage prediction model. This is observed as the very-
limited erosion impact during the first few years of operation.

In addition to directly outputting a specific damage per-
centile for all wind turbines, the damage across the wind
farm can be randomly sampled using the inverse cumula-
tive density function, i.e., using Monte Carlo (MC) sampling.
This would better represent the stochastic damage distribu-
tion observed from field inspections. Based on 250 random
MC simulations, the AEP variability was found to increase
over time, but the maximum percentage difference (between
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Figure 11. (a) Confidence intervals of the relative wind farm AEP loss with the median indicated by the black line and (b) the cumulative
density functions of the encoded damage after years 1, 3, 5, and 10.

the most/least productive) after 10 years was found to be less
than 0.2 %. Of course, this should be seen in light of the to-
tal energy production of the entire wind farm, and the corre-
sponding revenue might end up being considerable. Because
we simulated the full wind farm for each random instance,
the aggregated energy production of the 80 wind turbines en-
sures convergence of the summary statistics, which is why
the variability is so low. If the same experiment was per-
formed for individual wind turbines or a much smaller wind
farm, the variability would be expected to be correspondingly
larger.

Finally, the random sampling provides an indication of the
modeling sensitivity, which could potentially be used to bet-
ter prioritize repairs. For each MC simulation, we assume
that one turbine is fully repaired after year 9; i.e., its aerody-
namic properties are reset to a clean state. We iterate through
every turbine in the wind farm and evaluate the relative im-
pact on the AEP for the remaining year, i.e. year 10. This
procedure is performed for all MC simulations and allows
for prioritizing the order in which each turbine should be re-
paired to obtain the largest gain in AEP. For each MC sim-
ulation we get 80 samples, one for each wind turbine repair,
which can be used to assess the effect from that individual
turbine. Due to computational costs, a simpler wake model
was used where only the steady wake deficits are consid-
ered; i.e., no turbulence model is included. The results are
analyzed quantitatively by ranking them according to their
individual AEP gain. The results are summarized in Fig. 12,
which shows, on the left side, the direct relation between the
AEP gain and the damage level of the repaired turbine. Each
point represents a repaired turbine, and the total number of
points is thereforeNMC·Nwts = 250·80= 20000. In addition
to showing the relation between AEP gain and damage level,
the points are also colored according to their reference AEP
contribution, which is shown in the plot on the right (normal-
ized between 0 and 1). Here, we show the mean AEP contri-
bution from each of the turbines in the wind farm based on
the 250 MC simulations. Unsurprisingly, the inner turbines
are expected to contribute less since they will be operating
more frequently in the wake deficit of the outer turbines. The

biggest contributor is the turbine located in the southwestern
corner, which contributes almost 9 % more than the smallest
contributor.

It can be seen that there is a very strong correlation be-
tween the encoded erosion damage and the added energy pro-
duction. This verifies that, generally, the overall biggest gain
in energy production is obtained by repairing the most dam-
aged turbine. This also corresponds with previous findings
showing that the largest contribution to the power loss comes
from the eroded power curve. Secondly, we also observe a
correlation between the reference AEP contribution and the
added energy production. This indicates that in a case with
two equally damaged wind turbines, the turbine providing
the highest contribution relative to the overall energy pro-
duction should be prioritized over smaller contributors. This
favors the turbines positioned in the outer rows of the wind
farm and especially on the side of the prevailing wind di-
rection. We even observe several instances where it is more
favorable to repair less damaged turbines, since their rela-
tive AEP contribution is larger. Potentially, a third priority
could be repairing the turbines that cause the biggest reduc-
tion in wake loss. As previously shown, LEE reduces wake
deficits, which in turn contributes positively to the overall en-
ergy production. A very weak correlation was found between
wake reduction and added energy production. This indicates
that an energy production gain can be achieved by prioritiz-
ing turbines that contribute the least to wake reduction. It is
difficult to conclude if the correlation implies a causal re-
lationship, and the prioritization would only be relevant in
extremely rare instances.

5 Discussion

The simulation of LEE is challenging considering its multi-
disciplinary nature, which involves several fields of science
and engineering, such as aerodynamics, materials science,
mechanical engineering, meteorology, etc. In the present
study, we coupled a damage prediction model with an aero-
dynamic loss model to simulate the progression and aero-
dynamic effect of LEE in wind farms. Many underlying as-

https://doi.org/10.5194/wes-9-1811-2024 Wind Energ. Sci., 9, 1811–1826, 2024



1822 J. Visbech et al.: Aerodynamic effects of leading-edge erosion in wind farm flow modeling

Figure 12. AEP gain plotted against the damage level of the repaired turbine. The colors indicate the reference AEP contribution, which is
also shown in the figure on the right. Both the AEP gain and the reference AEP have been linearly normalized.

sumptions affect the results of the present study, and we try
to justify, evaluate, and discuss these in the following section.

Wind farm flow modeling on its own is a very complex
discipline. We typically distinguish between steady-state and
dynamic modeling, and in the present study, we employed
a steady-state Gaussian wake deficit model for estimating
wake losses across the wind farm. The main assumption is
the constant wind flow across the wind farm where the steady
flow is assumed to be valid for the entire time bin. Since it as-
sumes a constant wind flow, steady-state flow modeling can-
not capture the effects of turbulence and other dynamic flow
phenomena that occur in the atmosphere. For example, it can-
not account for any transient effects, such as sudden changes
in wind speed or direction, changes in atmospheric stability,
and other meteorological phenomena.

On the other hand, dynamic wind farm flow modeling is a
more advanced technique that takes the dynamic nature of the
wind flow into account. It considers changes in wind speed,
wind direction, and turbulence at a much higher temporal res-
olution. The simulation includes detailed information about
wind turbine interactions and the surrounding atmosphere.
Dynamic modeling is more complex and computationally ex-
pensive compared to steady-state modeling, but it does pro-
vide more accurate and detailed information about wind farm
performance. In addition, dynamic wind farm flow modeling
requires a much more detailed and accurate representation of
wind turbines and the surrounding environment, which can
be challenging to obtain.

The scope of the present study was to demonstrate the
aerodynamic effects of LEE in wind farms through a com-
bination of erosion, aerodynamic, and wake modeling. Since
the requirements for dynamically modeling all of these prop-
erties over long time periods were unfeasible, the simulations
were performed using steady-state wind farm flow modeling.
This type of modeling fidelity is commonly used for a long-
term simulation of wind farms where the low-order statistical
moments are of interest. However, a future study investigat-
ing high-fidelity flow modeling of eroded wind turbines is
required to accurately assess the dynamics as well. Such an
analysis could be carried out for specific atmospheric and
meteorological conditions at well-predefined erosion levels

to limit the computational requirements. It could similarly be
used with higher-fidelity wind turbine.

One of the main uncertainties related to erosion modeling
is the assumed relationship between the output of the damage
prediction model, which is used as input for the aerodynamic
loss model. As previously described, it is very difficult to
convert between structural and aerodynamic defects as they
are not weighted equally. Current repair recommendations
are primarily based on structural integrity, but there might be
a potential financial benefit from also considering the aero-
dynamic impact. The conversion table from Fig. 3 provides
the relationship used for the study and is based on results
from a collection of literature and CFD simulations. How-
ever, it could be of interest to propose an additional uncer-
tainty parameter to this currently deterministic relationship.
This would allow for mimicking the uncertainty-related de-
fect categorization from blade inspections.

In the present study, the output from the damage predic-
tion model was always assumed to be located at the tip and
to decrease with a cubic relation towards the root. It was
shown by Visbech et al. (2023) that the average distribution
of defects from more than 550 blade inspections followed a
similar profile. For this reason, we argue that the statistical
distribution is more realistically represented by a continuous
function rather than by a step function as is usually suggested
in the literature (Gaudern, 2014; Sareen et al., 2014; Maniaci
et al., 2020). However, blade inspections and laboratory test-
ing of newer coating materials show that erosion defects tend
to be more randomly distributed along the blade and do not
always initiate at the tip. Therefore, it could be of interest
to implement a stochastic defect distribution, which would
better resemble this behavior.

One of the key challenges related to modeling aerody-
namic loss from LEE is validating the results. Several as-
sumptions were made for the aerodynamic loss model used
in the present study in order to make the modeling process
more tractable. These assumptions can introduce uncertain-
ties, particularly if the assumptions are not well validated
or do not accurately reflect real-world conditions. Validating
the aerodynamic degradation of power curves is incredibly
difficult using operational data such as those obtained from
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the SCADA system. For this reason, the main type of vali-
dation will still have to come from high-fidelity aeroelastic
simulation tools. The aerodynamic effect of LEE has only
recently been quantified using operational field data (Panthi
and Iungo, 2023).

LEE is expected to have an even larger impact on wind tur-
bines in the future (Pryor et al., 2021; Shields et al., 2021).
Generally, we observe new turbines to have longer blades
and operate at higher tip speeds, which effectively increases
the rate at which erosion initiates and develops. At the same
time, new leading-edge protection (LEP) systems are being
developed to better withstand more severe operational condi-
tions. These effects contravene and complicate the generaliz-
ability of LEE modeling in the future.

We also expect wind farms to become larger in size, which
would change the wind farm flow field. In the present study,
the effect on the power curve would not be expected to
change considerably since the damage prediction model is
not very sensitive to changes in tip speed (which is why we
also see very little inter-turbine damage variability for the
wind farm). However, the effects from an eroded thrust co-
efficient would scale non-linearly with wake loss. Therefore,
the potential wake reduction is dependent on the layout.

Site-specific weather conditions might also influence the
results presented in this study. Less windy sites would re-
sult in a longer incubation period, but since LEE only affects
the aerodynamic properties below rated, it would lead to a
relatively larger power loss. Other sites might have a strong
correlation between rain and wind direction (e.g., close to a
mountain ridge), which would lead to more damage variation
across the wind farm. Adding uncertainty properties to the
weather inputs (wind speed, wind direction, and rain) could
allow for better addressing the sensitivity to these parame-
ters.

LEE has started to be regarded as a potential operation
and maintenance improvement in wind farm control (Meyers
et al., 2022), e.g., through erosion-safe operation as demon-
strated by Bech et al. (2018). With this mitigating strategy,
the rain impinging on the blade is reduced through rotor
speed reductions during episodes of heavy rain. The damage
is thereby reduced at the cost of energy production. However,
erosion-safe operation has not been demonstrated in real life,
nor has it been implemented within wind farm flow control.
Implementing erosion-safe operation in farm control strate-
gies would require the modeling of wake impacts between
the turbines and estimating the AEP loss due to eroded blades
in the wind farm. To work towards a wind farm flow control
algorithm that includes erosion-safe operation, we first need
a modeling framework that can predict damage progression
and AEP loss within a wind farm.

Finally, it can be mentioned that the modeling framework
presented in this paper could potentially be coupled with real
blade inspections following a Bayesian updating scheme ap-
proach (Asgarpour and Sørensen, 2018). The blade inspec-
tions would provide true damage distributions for all blades,

thereby diminishing the model uncertainty at the time of in-
spection. The damage prediction model could be calibrated
to match the observed damage distribution, and the associ-
ated past AEP loss would then be obtained through propa-
gating back in time. Having calibrated the damage predic-
tion model, it could be used to estimate expected AEP loss
for a given period assuming no repair, which would allow for
much more informed decision-making.

6 Conclusions

LEE affects the aerodynamic properties of a wind turbine and
thereby reduces rotor performance. This directly decreases
the energy production, but it potentially also reduces the
overall wake losses, which is not considered when modeling
LEE on individual turbines.

In this study, we used a modeling framework that com-
bines damage prediction and aerodynamic loss modeling
with steady-state wind farm flow modeling. The framework
can be used to efficiently simulate the long-term aerody-
namic effects of LEE using site-specific mesoscale weather
data and basic wind farm specifications.

The modeling framework was used to simulate the devel-
opment of LEE on an offshore wind farm over a simulation
period of 10 years. Comparing the wind farm simulation to
that of a single wind turbine, it was found that AEP losses
were overestimated with up to 7 % when neglecting the ef-
fect on wake reduction. The average AEP loss for the wind
farm was found to be 1.4 %, with a maximum AEP loss of
2.7 % occurring in the last year.

A Monte Carlo-based sensitivity analysis was carried out
to establish a probabilistic priority list of turbines which
should be repaired first to maximize energy production. It
was found that the level of erosion damage was generally
the governing factor, but specific turbines which contribute
relatively more to the overall energy production should be
prioritized in certain cases to maximize energy production.

The main limitations of the study are related to the cou-
pling between structural and aerodynamic damages and ver-
ification of the aerodynamic losses through simulations with
higher fidelity. Future work should emphasize uncertainty
quantification through probabilistic modeling, which could
be coupled to real inspection data through a Bayesian updat-
ing scheme.
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Appendix A: PyWake setup specifications

Table A1. List of the engineering models used in the PyWake sim-
ulation setup.

Model Name Superposition

Wake deficit model NiayifarGaussianDeficit Linear sum
Turbulence model CrespoHernandez Max sum
Blockage model None –
Rotor average model RotorCenter –
Ground model None –
Deflection model None –
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