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Abstract. Aeroelastic simulations are employed to assess wind turbines in accordance with IEC standards in
the time domain. These analyses enable the evaluation of fatigue and extreme loads experienced by wind tur-
bine components. Such simulations are essential for several reasons, including but not limited to reducing safety
margins in wind turbine component design by accounting for a wide range of uncertainties in wind and wave
conditions and fulfilling the requirements of the digital twin, which necessitates a comprehensive set of simula-
tions for calibration. Thus, it is essential to develop computationally efficient yet accurate models that can replace
costly aeroelastic simulations and data processing. To address this challenge, we propose a data-driven approach
to construct surrogate models for the damage equivalent load (DEL) based on aeroelastic simulation outputs. Our
method provides a quick and efficient way to calculate DEL using wind input signals without the need for time-
consuming aeroelastic simulations. Our study focuses on utilizing a sequential machine learning (ML) method
to map wind speed time series to DEL. Additionally, we demonstrate the versatility of the developed and trained
surrogate models by testing them on a wind turbine in the wake and applying transfer learning to enhance their
predictive accuracy.

1 Introduction

For design, optimization and maintenance purposes of a wind
turbine, wind turbine researchers and engineers need to sim-
ulate a wind turbine’s dynamic behaviour. This analysis fol-
lows the IEC standards (International Electrotechnical Com-
mission, 2019) using time-marching aeroelastic codes such
as FAST (Jonkman and Buhl, 2005), HAWC (Larsen and
Hansen, 2007) or Bladed (Bossanyi, 2003). We utilize these
time-marching simulations to calculate extreme and fatigue
loads on wind turbine components caused by wind and waves
as the inputs. The time-marching simulations are necessary
for our work and research as they enable us to consider
the inherent and necessary non-linearity (aerodynamic, struc-
tural, material, etc.) in the wind turbine models (Jonkman
and Buhl, 2005; Marten, 2020). As both wind and waves are
stochastic processes, a large set of simulations is preferred to
understand the turbine behaviour fully and consider the un-
certainty the stochasticity introduces. However, this increase

in simulations raises the computational costs. One solution is
to develop a computationally efficient surrogate model (SM),
which is cheaper to run yet accurate for our purposes.

The concept of the SM originates from the field of un-
certainty quantification (UQ) analysis, as outlined by Sudret
(2007). SMs, emulators or response surfaces are simple rep-
resentations of a complex model, which can map the input
to the output. At the same time, they can encapsulate the
complexity of the original model (Williams and Cremaschi,
2019). Asher et al. (2015) provide an overview of the differ-
ent categories of SMs. There are different methods to de-
velop an SM, such as polynomial chaos expansion (PCE)
(Xiu and Karniadakis, 2002; Crestaux et al., 2009) or Gaus-
sian process regression (GPR) (O’Hagan, 1978; Rasmussen
and Williams, 2006). Recently, the application of f artifi-
cial neural network (ANN) and machine learning (ML) has
become increasingly prevalent among researchers and engi-
neers developing SMs (Wang et al., 2022; Kudela and Ma-
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tousek, 2022; Dadras Eslamlou and Huang, 2022; Sun and
Wang, 2019). This trend can be attributed to the widespread
recognition of ANNs as a way to approximate any complex
function with a few layers with high accuracy (Leshno et al.,
1993) and the increase in data accessibility and availability.

Researchers and engineers have been using SMs for in-
creasingly diverse applications in the wind energy domain. In
the load emulation domain, Dimitrov et al. (2018), Schröder
et al. (2018) and Dimitrov (2019) utilized PCE, Kriging and
ANN SMs to approximate wind turbine loads by consider-
ing stochastic variables such as turbulence intensity, mean
wind and wind direction. Avendaño-Valencia et al. (2021)
employed a GPR-based SM to predict the fatigue load on a
wind turbine affected by the wake on an onshore wind farm.
Similarly, Shaler et al. (2022) used multiple SMs, such as
GPR and ANN, to map inflow parameters in an array of
wind turbines to the fatigue loads of the wind turbines in
that array. In a related study, Duthé et al. (2023) built an SM
based on simulation data generated by PyWake (Pedersen
et al., 2023) using graph neural network (GNN) (Scarselli
et al., 2009) architecture to map a wind farm inflow condi-
tion to the individual wind turbine fatigue loads. Movses-
sian et al. (2021) employed feature selection to extract rel-
evant information from supervisory control and data acqui-
sition (SCADA) then mapped those features to a tower base
damage equivalent load (DEL). de N Santos et al. (2023) de-
veloped a data-driven model based on physics-informed neu-
ral network (PINN) (Raissi et al., 2019) architecture to map
the different timescale SCADA data to the DEL at the inter-
face of an offshore wind turbine. Nispel et al. (2019) used a
GPR-based SM for UQ of an offshore wind turbine’s fatigue
based on a wide range of environmental and structural vari-
ables. Polynomial interpolation was employed by van den
Bos et al. (2018) as an SM for estimating ultimate loads
on a wind turbine, while Nielsen and Rohde (2022) used a
random-forest-based SM for ultimate load emulation. Singh
et al. (2022) implemented a probabilistic SM for offshore
wind turbine loads using chained GPR. Ransley et al. (2023)
utilized an SM as an aerodynamic emulator for real-time test-
ing of floating wind turbines. In a different approach, Fluck
and Crawford (2018) used intrusive PCE to build a surrogate
model for lifting line and blade element momentum (BEM)
models (Fluck, 2017). Similarly, Haghi and Crawford (2022)
built SMs on a BEM model of the National Renewable En-
ergy Laboratory (NREL) 5 MW turbine simulation output
time steps using non-intrusive PCE. In their work, the SMs
mapped the random phases in the unsteady wind generation
(Fluck and Crawford, 2018; Veers, 1988) to the output loads
of the simulations at each time step.

As wind and waves are both uncertain, the high com-
putational cost associated with the simulator in a digital
twin (DT) may make it impractical to propagate uncertainty.
Hence, employing an SM within the DT framework becomes
beneficial when simulations are computationally expensive
(Wright and Davidson, 2020). Moreover, using a surrogate

model in a DT system creates the potential for the surro-
gate model to operate in real time (Errandonea et al., 2020).
In recent years, DT systems for wind turbines have gained
popularity among researchers and engineers. DTs have been
used at different levels in the energy system and wind tur-
bine industries. Z. Song et al. (2023) provided an overview
of DT applications and challenges for energy systems in
the future. De Kooning et al. (2021) laid out an overview
of DT applications in wind energy conversion. Fahim et al.
(2022) provided a method to develop a DT for wind turbines
in a wind-farm-level system using machine learning meth-
ods. More specifically, with regard to DT applications for
loads, M. Song et al. (2023) used measurements from the
Block Island offshore wind farm to develop a DT for the tur-
bines in the field. In other work, Branlard et al. (2020) built
a DT based on a linearized model of a wind turbine. Fol-
lowing this, Branlard et al. (2024) successfully developed a
DT based on the TetraSpar floating platform full-scale pro-
totype. With numerous instances of successful applications
of DTs in the wind energy sector and the potential enhance-
ments that an SM could bring to the DT framework, it is cru-
cial to conduct further research on developing accurate and
efficient SMs for wind energy systems. One definition of a
DT is that it is a real-time virtual representation of a physi-
cal system, continuously updated with real-time data for de-
tailed monitoring and predictive maintenance. SMs are sim-
plified approximations of complex systems used to reduce
computational costs. They are often integrated within DTs to
enhance their efficiency. SMs offer quick and efficient em-
ulations, while some DTs provide comprehensive, real-time
system mirroring (Bárkányi et al., 2021; Liu et al., 2023).

Recently, there has been a surge in using ML and
ANN techniques to create wind system SMs. This sub-
ject has garnered considerable attention and interest among
professionals in the field. A recent study conducted by
Schröder et al. (2022) utilized transfer learning (TL) and
physics-informed ML to enhance wind farm monitoring from
SCADA data. The study aimed to improve the efficiency and
effectiveness of wind farm monitoring using TL. The results
showed that integrating TL and physics-informed ML can
enhance the accuracy and reliability of wind farm monitoring
systems (Schröder et al., 2022). Schröder et al. (2020) also
used an ANN to build an SM that examined how changes in
loads within a wind farm affect the reliability of wind turbine
components. Their study aimed to evaluate the impact of load
changes on wind turbine components’ overall performance
and reliability. The results showed that ANN-based SMs can
provide valuable insights into the behaviour of wind turbine
components under different load conditions (Schröder et al.,
2020). Additionally, Mylonas et al. (2021) used a conditional
variational autoencoder to create a probabilistic model of
fatigue using SCADA data. Their goal was to predict the
probability of fatigue load in wind turbine components us-
ing SCADA data. The results showed that ML-based meth-
ods predict fatigue accurately (Mylonas et al., 2021). Lastly,
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Dimitrov and Göçmen (2022) used a time-based long short-
term memory (LSTM) ML model to develop a virtual sensor
that can predict and forecast the high-resolution load time
series of wind turbine components based on a series of en-
vironmental and turbine behaviour variable inputs. The re-
sults showed that ML-based time series models are accurate
in their prediction and forecasting; however, a less complex
ANN can still effectively predict outcomes (Dimitrov and
Göçmen, 2022).

1.1 Objective

The available literature and research indicate a limited explo-
ration and demonstration of a flexible SM capable of map-
ping high-resolution environmental time series, specifically
wind and/or waves for both on- and offshore wind turbines,
to the fatigue and extreme loads on wind turbine compo-
nents as stated in the Introduction section. The development
of such an SM could potentially enable the prediction of the
DEL of the wind turbine components using just a few input
time series, thereby enhancing the efficiency of wind turbine
control systems and increasing the overall lifespan of the tur-
bine. Moreover, the use of this system in a DT framework
would further enhance efficiency and facilitate real-time ap-
plication.

Our ultimate goal is to develop a fully generalized SM that
can predict wind turbine fatigue and extreme loads in any
condition without the need for extra customization or tweak-
ing based on wind, wake and wave time history. This paper
specifically begins to explore the approach by using sequen-
tial ML methods to build such an SM, which will map syn-
thetic wind and wake time series to DELs. The objectives of
the present paper are as follows:

– building extensive wind time history and wind turbine
load databases based on a quasi-Monte Carlo (QMC)
sampling of the synthetic wind generation input vari-
ables;

– developing simple fully connected neural net-
work (FCNN)-based SMs (Goodfellow et al., 2016)
that map synthetic wind generation inputs to DELs
(Dimitrov, 2019), serving as a literature benchmark for
performance and accuracy;

– developing a sequential ML-based SM using a tempo-
ral convolutional network (TCN) (Bai et al., 2018) to
project synthetic unsteady wind time series onto wind
turbine component DELs (utilizing a TCN for this pur-
pose is the main novelty of this research);

– showing the capability of the trained sequential ML
SMs by developing a TL framework to predict DEL
while dealing with wake-induced synthetic wind time
series.

In wind engineering practice, we generally utilize the mo-
ment/force time series solely for extracting ultimate and fa-
tigue loads. Following this extraction, these series are typi-
cally limited in further use. Hence, if it is feasible to skip a
step, it would expedite the entire process. Therefore, in this
paper, we focus on building an SM for DELs only.

1.2 Paper outline

This paper is organized as follows. Section 2 provides an
overview of the methodology used in this study. The basics
behind the data-driven models are then described in Sect. 2.1
and 2.2. Section 2.3 and 2.4 explain the process of build-
ing the databases in detail. In Sect. 4, we delve into the es-
sential prerequisites for constructing the databases, impart-
ing knowledge to the SMs, and leveraging their predictive
prowess for both the freestream and downstream wake. In the
same section, we also compare the accuracy of different SM
architectures developed in this study and discuss the amount
of data required for training, as well as the limitations of the
developed SMs. The paper concludes in Sect. 5, where we
summarize the main findings of this work and suggest future
research in the area of wind turbine surrogates using sequen-
tial ML models.

2 Methodology

The presentation of the Methodology section in this paper
has been adapted from the approach outlined in Schröder
et al. (2020) due to its clarity and relevance to the current
topic. The chosen framework is deemed to be an appropriate
and effective means of conveying the necessary information
in a concise and organized manner. The methodology used in
this paper to map synthetic wind high-resolution time series
to DELs is shown in Fig. 1. It involves developing a sequen-
tial ML model combined with FCNN architecture as the main
SMs and utilizing a simpler FCNN for comparison purposes.

The configuration presented in Fig. 1 has three blocks.
The bottom block is for data generation, which shows the
procedure for building a database for the DEL from the in-
put variables. The top two blocks are two methods used to
build an SM from the generated data and input variables.
The middle block presents the approach to building an SM
that maps high-resolution wind time series to DELs based
on TCN–FCNN architecture. The top block exhibits the pro-
cess of creating an FCNN that projects the input variables
onto the DEL (Dimitrov, 2019; Schröder et al., 2018). The
larger frameworks and three blocks can be segmented into
12 smaller stages. Each step is summarized below. Through-
out this paper, when we mention wind, we are specifically
referring to unsteady wind.

1. Specify the input variable space, their distributions and
boundaries, and afterwards, generate n samples X from
the predefined variables. To enable tracking, every sam-
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Figure 1. The data generation and SM training and testing methodology.
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ple has been indexed. The database is split into two for
training and testing:

1a. Training input variables. These include 90 % of the
samples randomly selected. Therefore, the size of
this database is 0.9 n. The indices of the randomly
selected samples idxinput have been stored.

1b. Testing input variables. These include the remain-
ing 10 % of the samples. As a result, the size of this
database is 0.1 n.

2. The n generated samples are the inputs to a wind gen-
erator. Each sample from the input variable space gen-
erates one synthetic wind time series with the length of
t time steps.

3. The n synthetic wind time series are stored in the wind
database. The database size is n× t , where t is the num-
ber of time steps in the time series. For training/testing
purposes, this database is split into two parts:

3a. Training wind database. This includes 90 % of the
main synthetic wind time series database randomly
selected. Consequently, the size of this database is
0.9n× t . The indices of the randomly selected sam-
ples idxwind have been stored.

3b. Testing wind database. This includes the remain-
ing 10 % of the main synthetic wind time series
database. The size of this database is 0.1n× t .

4. The wind turbine model is an input to the aero-servo-
elastic simulator. The model comprises three modules:
aerodynamic, controller and aeroelastic.

5. The aero-servo-elastic simulator is a time-marching
solver that takes synthetic wind time series and the wind
turbine model as the inputs and delivers force, moment
and load time series at l wind turbine components as the
outputs.

6. All the n outputs of the previous step’s simulations are
stored in a database. In the simulation database, each
simulation includes the l wind turbine component load
time series for t time steps for one sample from the input
variable space. Therefore, the database size is n×m× t .

7. The time series output is analyzed to determine the DEL
of the loads on the l wind turbine components.

8. For every wind turbine component in the DEL database,
each simulation output yields a single DEL data point.
Therefore, the database size is n× l. Every row in the
DEL database has an index that corresponds to the index
of its input variable sample. As we train two SMs with
the database, we split the database into training and test-
ing databases twice. Thus, there appears to be an overlap
between the testing and training databases. However, as

we have utilized them to train and test two distinct SMs,
we do not anticipate any issues arising from this situa-
tion.

8a. Training DEL database members are selected based
on the idxinput indices. Therefore, this database in-
cludes 90 % of the DEL, and the size is 0.9n× l.

8b. The testing DEL database includes the remaining
10 % of the members of the DEL databases. Hence,
this database size is 0.1n× l.

8c. Training DEL database members are selected based
on the idxwind indices. Therefore, this database in-
cludes 90 % of the DEL, and the size is 0.9n× l. As
mentioned before, there is an overlap between this
database and the database in 8a.

8d. The testing DEL database includes the remaining
10 % of the members of the DEL databases. Corre-
spondingly, this database size is 0.1n× l.

9. The SM with FCNN composition trains and validates
using the database in 3a as the input and the one in 8c
as the output.

9a. For testing, the trained FCNN SM takes the
database in 3b as the input and provides FCNN pre-
diction DEL as the output.

10 The SM with TCN–FCNN architecture trains and vali-
dates using the database in 3a as the input and the one
in 8c as the output.

10a. For testing, the trained TCN–FCNN SM takes the
database in 3b as the input and provides TCN pre-
diction DEL as the output.

11. By comparing 9a with 8b, one can determine the accu-
racy of the trained FCNN SM.

12. By comparing 10a with 8d, one can determine the accu-
racy of the trained TCN–FCNN SM.

The aim of building and training a simple FCNN SM is
to compare its accuracy and performance with those of the
TCN–FCNN SM. The FCNN SM is not the ground truth
in this work; however, it has proven to provide acceptable
accuracy for a similar input variable space (Dimitrov, 2019;
Schröder et al., 2018).

After building and training the TCN–FCNN, we show its
versatility by examining the SMs with a synthetic wind in-
cluding wake time series input. In other words, we test the
SMs for a turbine in the downstream wake of another turbine.
We developed smaller synthetic wind time series databases
with wake effects, simulation outputs and their DELs. More-
over, we use TL to improve the SMs’ performance over the
wake. The architecture details for FCNN and TCN–FCNN
provided in Tables 1 and 2 are experimentally obtained.
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Table 1. FCNN architecture details.

Property Value

Number of hidden layers 3
Number of nodes per layer 8, 16, 8
Number of trainable parameters 321
Activation function ReLu
Learning rate 0.001
Cost function MSE
Training optimizer Adam

2.1 Fully connected neural network surrogate model

After preparing the DEL database, we can begin training
the SMs. The primary objective for the SMs is to map the
input space to the output. Various mapping and regression
methods are available for this task, but we suggest utilizing
data-driven ML methods due to their ease of use and versa-
tility. We developed two SM architectures: an FCNN and a
TCN–FCNN. Here, the FCNN is a simple three-layer feed-
forward ANN. The feed-forward ANNs are well studied and
explained in the literature. For further explanation, we rec-
ommend referring to Goodfellow et al. (2016).

In order to train the FCNN, the input variable sample
database is randomly divided into two parts: a training set
comprising 90 % of the samples and a testing set comprising
10 % of the samples. These samples are uniquely indexed,
and the training and testing set indices are stored and tracked.
The DEL database is similarly divided into training and test-
ing sets, using the same indices as the input samples. To pre-
vent data leakage, we ensure that there is no overlap between
the training and testing databases. Once the training and test-
ing databases are prepared, the FCNN is trained using the
input variable space samples as input and the DEL as out-
put. The trained network is then tested using the testing input
variable database to generate the prediction DEL. Finally, we
compare the prediction DEL with the testing DEL to mea-
sure accuracy. By following this process, we can ensure that
the FCNN is accurately trained and tested, producing reli-
able results. Figure 2 shows the implemented network archi-
tecture. The input layer receives three input variables in the
FCNN, while the output layer is responsible for the DEL. The
weights on each neuron are determined through the training
process using the weight optimizer. After the training, the
FCNN is ready to predict the output based on the unseen
(testing) data. Table 1 presents the FCNN model details.

2.2 Temporal convolutional network–fully connected
neural network surrogate model

In this section, we explain the TCN–FCNN architecture that
we used to build an SM. Firstly, we provide an overview of
the key components that make up a TCN. We demonstrate
how it can be effectively combined with an FCNN.

Figure 2. Architecture of the FCNN with three hidden layers. The
number of nodes represents the implemented architecture.

The TCN is a novel approach that utilizes the benefits of
a one-dimensional convolutional neural network to perform
sequential modelling (Bai et al., 2018). Sequential modelling
can be defined as a tool to map a sequential input x0, x1,
x2, . . . ,xn to a sequential output y0, y1, y2, . . . ,yn as shown
in Eq. (1).

ŷ0, . . ., ŷn = f (x0, . . ., x̂n) (1)

The TCN is a member of the convolutional neural net-
work (CNN) family. CNNs have been used and are well
known for classification purposes (Long et al., 2015). CNNs’
basics are well studied in the literature, and the interested
reader is referred to Goodfellow et al. (2016) and Long et al.
(2015). Research has shown that the TCN is better than the
recurrent neural network (RNN) and LSTM in terms of per-
formance, implementation, flexibility and versatility (Fawaz
et al., 2019; Bai et al., 2018). In this work, we only employ
the TCN for regression purposes. The TCN is based on three
main concepts: (a) the length of the output and input is the
same, and (b) data should not leak from the past to the fu-
ture. In other words, the value of each data sequence in the
output only depends on the past data sequences in the input,
and (c) it needs to be applicable to a long data sequence. To
tackle these, one can use the following techniques (Bai et al.,
2018):

a. The TCN employs a one-dimensional CNN architec-
ture, wherein each hidden layer is of the same length
as the input layer. To ensure consistent length, zero
padding is incorporated in successive layers.

b. In order to avoid data leakage, TCN utilizes causal
convolution architecture. In causal convolutions, the se-
quence n of the output solely relies on the sequences
proceeding sequence n in the prior layer.

c. For the simple causal convolutions, the length of the
sequences that it can capture is a multiplication of the
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Table 2. TCN–FCNN architecture properties and details for both the main approach and the TL approach. The TL approach is introduced in
Sect. 2.6. TL FCNN learning rates are for the initial training and subsequent fine-tuning.

Property Residual block FCNN TL FCNN

No. of Conv1D filters 6, 6, 6 – –
Kernel size 20, 13, 8 – –
Dilation factor 1, 2, 4 – –
Dropout rate 0.05 – –
Average pooling size 100 – –
Activation function Leaky ReLU Linear Leaky ReLU
Trainable parameters 1950 1681 500
Number of hidden layers – 3 3
Number of nodes per layer – 16, 32, 16 8, 11, 8
Feature vector length – 36 36

Learning rate 0.001 0.001, 0.00001
Cost function MSE MSE
Training optimizer Adam Adam

network depth. It makes the model deep and computa-
tionally demanding for long sequential data with van-
ishing gradients. The solution to this challenge is to uti-
lize dilated convolution. By using dilated convolution,
the network is able to increase its receptive field signifi-
cantly in an exponential manner. For a one-dimensional
sequential input x, a filter f and the element s of the
sequence, one can define the operation F as

F (s)= (x∗df ) (s)=
k−1∑
i=0

f (i) · xs−d·i, (2)

where ∗ is the convolution operator, d is the dilation
factor, k is the kernel size and s−d · i points out the di-
rection of the past. In dilated convolution, the dilation
factor increases exponentially with the level of the net-
work depth. Figure 3a shows an illustration of a dilated
convolution. The history of the sequences that a layer
can take into account is (k− 1)d.

As the TCN needs to take into account larger sequential
data, it needs many layers and, as a result, gets deep quickly.
This causes the network’s problem of performance degra-
dation, which needs to be stabilized. Therefore, we utilize a
residual block as a replacement for a convolutional layer (Bai
et al., 2018; He et al., 2015). The residual block methodol-
ogy incorporates a branching mechanism where the input is
injected into the output, passing through a CNN. The residual
block used in this study is shown in Fig. 3b.

For this study, we utilized the aforementioned TCN to ex-
tract features from the input time series. Feature learning or
feature extraction is the process by which the machine learn-
ing model converts the raw data into an “internal represen-
tation”, feature vector or latent space (LeCun et al., 2015).
Then this feature vector is employed to detect the output pat-
tern through a secondary machine learning subsystem. In this

study, we took advantage of the TCN’s ability to extract fea-
tures in the sequential data. Thereafter, we used the features
as the input to an FCNN. The integration of the TCN and
FCNN enabled us to map the wind time series into DEL.
Westermann et al. (2020) used a similar approach but for a
different application. The explained technique is illustrated
in Fig. 4. The residual block in Fig. 4 is made up of the com-
ponents depicted in Fig. 3b. The definition of each block is
beyond the scope of this work. For a comprehensive under-
standing, readers are encouraged to refer to Goodfellow et al.
(2016).

With all the requisite SM components in place, we can
proceed with the training and testing phases. As mentioned
before, we indexed the samples, and TurbSim generated
wind time series outputs. In the same manner as explained
in Sect. 2.1, the synthetic wind time series database is di-
vided into training and testing databases, where 90 % of the
database is selected for the training, and the remaining 10 %
goes for testing. This means 90 % of the full 600 s wind
time series is selected for training, and 10 % of the full 600 s
wind time series is used for testing. We maintain the same
training–testing division of the datasets as in Sect. 2.1 to
simplify the comparison of testing results between FCNN
and TCN–FCNN. As the indices for the training and test-
ing databases are known, they are used to divide the DEL
database into training and testing databases. With the train-
ing and testing databases ready, the TCN–FCNN is trained on
the training data. Afterwards, we utilized the trained model
to forecast DEL using the synthetic wind time series that was
not included in the training database. The predicted DEL is
then compared with the testing DEL to measure the accuracy
of the mapping. The specifications of the TCN–FCNN SM
employed are detailed in Table 2.
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Figure 3. (a) Illustration of a dilated causal convolution example, with kernel size k = 3 and dilation factors d = 1,2,4. The receptive field
has the ability to encompass all values present within the input sequence. The white circles show the zero padding in the layers. (b) Dilated
causal CNN and the residual block for the TCN.

Figure 4. The TCN–FCNN architecture. The tower top side–side acceleration is an optional input that we discuss further in Sect. 4.1.

2.3 Variable input space boundaries, distributions and
sampling

For the data generation, selecting the appropriate input vari-
able space, the boundaries for each variable and their distri-
butions is crucial. Depending on the problem at hand, differ-
ent input variables might be needed. As we only considered
one onshore wind turbine in this study, only the input vari-
ables that affect the wind generation are considered. These

three variables are mean wind speed ū, turbulence inten-
sity TI and wind shear α. Therefore, the input space 2 can
be defined as

2= (u,TI,α). (3)

The boundaries and distributions of our input variables help
define the conditions for which our models are designed. It is
important to note that wind speed is considered an indepen-
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dent variable, while the other two variables’ boundaries and
distributions depend on the wind speed. We have selected
the variables, their boundaries and their distributions to build
the database based on research presented in Dimitrov (2019).
Our use of the QMC Sobol sampling method (Sobol’, 1967)
allows for accurate sampling of the predefined joint distribu-
tions in a deterministic non-repetitive manner. In this study,
the Sobol sampling method is preferred as it is consistent and
computationally efficient (Kucherenko et al., 2015). More-
over, this sampling method is reproducible and provides bet-
ter uniformity properties of the samples over the distributions
(Renardy et al., 2021). In the following, when we refer to the
sample, it means a vector of three elements, namely mean
wind speed, turbulence intensity and wind shear.

2.4 Simulation and damage equivalent load database
creation

The samples from the input variable space are the inputs to
the synthetic wind generator. Each sample from the space
provides one input to the generator. The output of the gen-
erator is a “full-field” synthetic wind time series (Jonkman,
2009). The synthetic wind generation basics are explained in
length in Veers (1988). In this study, we employed TurbSim
to generate the synthetic wind fields (Jonkman, 2009). From
each sample, the three input variables (u, TI, α) are directly
taken into the TurbSim input file and generate one synthetic
wind time series using TurbSim. To guarantee that every time
series created is distinct, a unique seed number is assigned to
each sample. The output of the wind generator can be defined
as a function of the sample:

U (t,y,z)= f (2). (4)

The output has spatial and temporal components U (t,y,z).
The spatial component of the full-field synthetic wind comes
from the grid points, which are defined over the wind turbine
rotor plane. The output of TurbSim provides one time series
of synthetic wind at each grid point in x, y and z directions,
namely u, v and w. These time series are correlated to each
other, depending on the mean wind speed and their distance
from each other (Veers, 1988; Jonkman, 2009).

The full-field synthetic wind is the input to the aero-servo-
elastic simulations. To run these simulations next to the
synthetic wind time series, the aerodynamic model, aeroe-
lastic model and controller model are required too. This
study used an onshore model of the NREL 5 MW refer-
ence wind turbine (Jonkman et al., 2009). The wind turbine
model includes aerodynamic, aeroelastic and controller sub-
modules. To run the simulations, we used OpenFAST, the
time-marching aero-servo-elastic solver developed by NREL
(Jonkman et al., 2022). OpenFAST’s output includes both
temporal and spatial dimensions, with loads provided from
various wind turbine components located at different posi-
tions, such as blades, towers and gearboxes. This spatial as-
pect is integral to understanding the full scope of the data.

The simulations in this study follow the IEC standards for
power production design load case (DLC) 1.2, as stated in
IEC standards (International Electrotechnical Commission,
2019).

Thus far, we have established a database that compre-
hensively incorporates all the simulation output time series
data. Once we have that, the data are processed to obtain
the simulation time length statistics and DEL for evaluat-
ing the loads and fatigue. DEL calculation is based on the
Palmgren–Miner linear damage rule as explained well in
Thomsen (1998) and Stiesdal (1992). DEL can be formulated
as

DEL=
(
6niR

m
i

neq

)1/m

. (5)

In the given context, m represents the Wöhler exponent,
while Ri and ni correspond to load ranges and the respec-
tive number of cycles. The output is obtained through rain
flow counting of the load time series (Thomsen, 1998). Here,
neq is the equivalent number of load cycles. For our scenario,
the simulation duration is 600 s with a frequency of 1 Hz,
resulting in neq = 600. This means the DELs are based on
600 s time series. The DEL database includes all the calcu-
lated DELs from every simulation at its outputs.

2.5 Simplified wake model

Once the SMs are built and trained, we assess their versatility
by testing them with a turbine in the wake. To proceed, we
must create a new database that includes the synthetic wind
and DEL with consideration given to wake effects.

The wake caused by a wind turbine has been studied exten-
sively and is out of this paper’s scope. Different methods and
models exist to implement wakes in the aerodynamic simula-
tion of a wind turbine (Sanderse et al., 2011; Göçmen et al.,
2016). For the sake of simplicity and ease of implementa-
tion, we limit the study to a simplified wake definition, with
the study turbine in the wake of one turbine only. The sim-
plified wake includes a non-uniform wind speed deficit and
an increase in turbulence intensity across the rotor. To imple-
ment wakes in the synthetic wind time series, we used the
method explained in William et al. (2022).

For the velocity deficit caused by the wake over the ro-
tor plane, we utilized the super-Gaussian deficit (Blondel
and Cathelain, 2020). We used the formulation developed by
Ishihara and Qian (2018) for the added turbulence intensity
model. Moreover, similar to Bastankhah and Porté (2014)
and Ishihara and Qian (2018), we assume the linear expan-
sion of the wake that occurs downstream of a turbine. The
following are the steps we took to implement the downstream
simplified wake model:

1. Using the Sobol sampling method, take 2n samples from
the input variables (u, TI, α), as explained in Sect. 2.3.
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2. Knowing the turbine thrust coefficient Ct at each wind
speed, the ambient turbulence of the freestream and the
distance between the turbines, one can calculate the
downstream wake width based on the formulation in
Ishihara and Qian (2018).

3. With wake width calculated in the previous step, one
can calculate the velocity deficit (William et al., 2022;
Blondel and Cathelain, 2020) and added turbulence in-
tensity (Ishihara and Qian, 2018).

4. Both calculated velocity deficit and added turbulence
intensity have spatial distribution over the rotor plane.
We considered this distribution by modifying the mean
wind speed and turbulence intensity of the samples for
the first step. For the added turbulence intensity, the av-
erage over the rotor disk is added to the TI value of
the sample. For the deficit wind velocity, the harmonic
mean over the rotor disk is deducted from the sample
mean wind speed u (William et al., 2022).

5. With the modified Sobol samples in our possession, we
used TurbSim to generate synthetic wind time series
from each modified sample. Remember that these syn-
thetic wind time series have modified turbulence inten-
sity and reduced mean wind speed, but the Gaussian
deficit has not yet been included.

6. For the generated synthetic wind by TurbSim, for the
mean wind speed of ū, the wind speed in time t at each
(y, z) point can be defined as

U (t,y,z)= u(y,z)+ ũ(t,y,z), (6)

where ũ(t,y,z) is the 0 mean turbulence, and u(y,z) is
the constant mean wind speed over the rotor plane. The
inclusion of the velocity deficit caused by the wake in
the generated synthetic wind can be expressed as

U∗(t,y,z)= φ(y,z)+ ũ(t,y,z), (7)

where U∗(t,y,z) is the modified wind field, and
φ(y,z) is the velocity deficit distribution over the rotor
y–z plane, which we calculated in Eq. 3.

We use synthetic wind with a velocity deficit and added
turbulence intensity to run OpenFast simulations contain-
ing the simplified wake model and calculate the DEL as de-
scribed in Sect. 2.4.

2.6 Transfer learning

According to Goodfellow et al. (2016), transfer learning aims
to utilize what has been learned in one context to improve the
“generalization” in another context. For this study, we use TL
for the cases with a wake to improve their prediction.

After following the steps outlined at the beginning of this
section, we obtain trained SMs that are able to accurately pre-
dict the DEL of wind turbine components under freestream

synthetic wind conditions. We then use these models to pre-
dict DEL in the wake of a turbine. We implement TL to en-
hance our predictions by loading the trained SMs and freez-
ing their weights, making them untrainable. Then, we remove
the FCNN part of the TCN–FCNN and replace it with a train-
able FCNN. The new FCNN system we are using now has a
simpler architecture compared to the one we previously used
for training and testing on the freestream data. Essentially,
we now have a frozen-weight (untrainable) TCN along with
a trainable FCNN. As with the previous training process, we
utilize 90 % of the wake databases for training and 10 % for
testing. The training has two steps: the first step is to train
the aforementioned combination of the untrainable TCN and
trainable FCNN to the desired accuracy, and then fine-tune
the TL model by unfreezing the TCN part weights and train-
ing them on the same data again but this time with a smaller
learning rate. The properties and details of the TL FCNN are
shown in Table 2. Figure 5 illustrates the architecture used
for the TL.

2.7 Training–testing

Now that we have constructed all the necessary databases, we
can begin the training process. We must first normalize the
data before training the SMs. In this study, we employ min–
max scaling for both input and output values, scaling them
to a range of 0 to 1. The input variables are scaled individu-
ally, while all the synthetic wind time series, regardless of the
mean wind speed, are included in a single scaling procedure.
During the training process of the TCN–FCNN and FCNN
models, we implemented a separate scaling of the DEL of
each output channel. This approach was necessary to ensure
the scaling was tailored to the specific needs of each channel.
A total of 12 SMs were trained, with 6 models being trained
for each respective network architecture type.

The total number of samples in the dataset is 32 768. As
mentioned in Sect. 2.2, this dataset is randomly split into two
parts for different purposes by choosing the indices of the
samples through a non-repetitive random number generator.
The training set contains 90 % of the samples, and the testing
set contains 10 % of the samples. When randomly selecting
data for testing and training, it is essential to be mindful of
potential data leakage, particularly when working with mea-
surement time series data. In our specific scenario, data leak-
age is not a concern as the simulated data samples are statis-
tically independent and turbulence seeds are unique. Instead
of training the SMs on the entire training data at once, the
training dataset is divided into batches of 256 samples and
then trained on those batches. The SMs are trained on each
batch, and after going through all the batches of the train-
ing dataset, one “epoch” is completed. The main optimizer
employed in the SM training in this work is Adam (Kingma
and Ba, 2017). Taking all the training datasets for the train-
ing while employing Adam requires a large amount of mem-
ory, and the optimizer may lead you to a “saddle point” (Ge
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Figure 5. The frozen TCN with a trainable simple FCNN for the first step of TL, the fine-tuning step.

Table 3. Training settings for the SMs.

Parameter TCN–FCNN FCNN TL TCN–FCNN

Batch size 256 256 64
Trainable parameters 3631 321 500
Maximum number of epochs 3000 3000 3000
Validation split 5 % 5 % 5 %
Early stopping – monitoring validation loss validation loss validation loss
Early stopping – patience epochs 300 300 3000
Early stopping – best weight restoration true true true
Input shape batch size: 600, 9 batch size: 3 batch size: 600, 9

et al., 2015). One can tackle both of these issues in train-
ing by dividing the training data into batches, as explained
before. One disadvantage of this method is that it requires
more epochs for the model weights to be fully trained and
converged.

In this study, we used Python package tensorflow
for the ML model development, training and testing (Abadi
et al., 2024). An outline of the settings and details for training
in tensorflow can be found in Table 3.

We employed early stopping for the training as it reduces
the required training time. Once the training phase is com-
plete, the remaining 10 % of the data that were not used
during training are utilized for testing purposes. The output
of the testing procedure provides the accuracy of the fitted
models. For this study, we use the coefficient of determina-
tion, R2, and NRMSE as the measures for the fitted models’
accuracy.

3 Data generation

This section presents the procedure, conditions and assump-
tions for data generation and management.

3.1 Input variable boundaries, distributions and
sampling

To generate the synthetic wind time series and DEL, we used
the input variable space, as explained in Sect. 2.3. The mean
wind speed is sampled from a uniform distribution, where

the boundaries are decided based on the NREL 5 MW wind
turbine characteristics between the cut-in and cut-out wind
speed (Jonkman et al., 2009). For every wind speed sample,
we took a sample from the TI and α too. The other two input
variables are also defined as a uniform distribution, whose
boundaries are a wind speed function. For the TI, the bound-
aries are based on the IEC class 1A values (International
Electrotechnical Commission, 2019). We choose the same
boundaries for wind shear α as Dimitrov (2019). The input
variables and their boundaries can be found in Table 4.

Once we have established the joint distributions and
boundaries, we can generate sample points for the input vari-
able space. As described in Sect. 2.3, we used the Sobol sam-
pling method for this study. The Sobol samples need to be of
the order of 2n, otherwise they lose their balance properties
(Owen, 2021). Therefore, we took n= 215 samples from the
predefined distributions. We decided to have a conservative
number of samples, as the Sobol sampling method enables
us to reduce the number of samples without losing the bene-
fits of the method or resampling the domains. To generate an
example of the variable space, we took 210

= 1024 samples
from the predefined distribution in Table 4. The samples and
the input variable boundaries are displayed in Fig. 6.

3.2 TurbSim and OpenFAST output

As mentioned before, we use each sample from the input
variables to generate a unique synthetic wind time series us-
ing TurbSim. Every TurbSim output generated from each
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Table 4. The input variable boundaries.

Input variable Lower boundary Upper boundary

Mean wind speed u u≥ 3 m s−1 u≤ 25 m s−1

Turbulence intensity TI TI≥ 0.04 TI≤ Iref(0.75+ 5.6/u)

Wind shear α α ≥ αref,LB− 0.23
(
umax
u

)(
1−

(
0.4log Rz

)2
)

α ≤ αref,UB+ 0.4
(
R
z

)(
umax
u

)
Here, (1) is from IEC class 1A, Iref = 18 %; (b) αref,LB = 0.15 and αref,UB = 0.22 are reference wind shear at 15 m s−1; (c) umax = 25 m s−1 is
the upper bound of the wind speed; and (d) R is the rotor radius, and z is the hub height.

Figure 6. A total of 1024 Sobol samples from the predefined distributions for u, TI and α with the boundaries of the variables.

sample is assigned a unique seed number to ensure no re-
peating seeds. The TurbSim output format is well described
in Jonkman (2009). We acknowledge that the seed number
influences the DEL values as indicated by Liew and Larsen
(2022). Nevertheless, utilizing Sobol sampling allows the
TI values to emulate the variability in wind time series result-
ing from different seed numbers. Furthermore, the training of
the TCN–FCNN using actual input realizations, as opposed
to solely relying on TI, is expected to mitigate the aforemen-
tioned issue significantly for the proposed method. In fact, if
more seeds are required, the trained model could be utilized
to make predictions on a broader spectrum of random seeds.
For this study, we used a 15 by 15 grid over the rotor’s plane
to build the database. However, for training and testing, only
9 out of 225 points on the rotor plane, as depicted in Fig. 7a,
were considered. For these nine points on the rotor plane
we only take into account the wind in the x direction. Our
tests show including the wind in the y and z directions would
not improve the training or testing results; therefore, they are
omitted. These nine synthetic wind time series are approxi-
mately located at the middle of the rotor and hub height. The
number of points on the rotor plane was determined experi-
mentally. This decision was guided by the minimum requisite
wind time series data from the rotor plane, which facilitated
the training of an accurate model. In general, adding more in-
put features to the SMs increases the number of training pa-

rameters and training complexity without yielding additional
benefits. This would increase the training dataset requirement
to mitigate issues such as overfitting and non-convergence. In
terms of real-world application, with nine points, it could be
considered for use in scenarios such as field light detection
and ranging (lidar) measurements. Our tests show other con-
figurations of the points (e.g. circular layout of points) have
little impact on the results. The grid points are selected to
be roughly located at the blades’ mid-span. This selection
is illustrated in Fig. 7a. Regarding the time component, the
synthetic wind time series has a frequency of 20 Hz, with a
duration of 720 s. After running the simulation and later in
the training/testing step, we upsample the synthetic wind to
1 Hz due to the hardware constraint.

As mentioned, we run aeroelastic simulations on an on-
shore NREL 5 MW model using OpenFAST. OpenFAST can
provide an extensive set of outputs, namely channels, at dif-
ferent components of the turbine. The channels and their de-
scriptions can be found in Jonkman and Buhl (2005). For this
study, we took into account six-moment output channels and
the average generated power for the training/testing objec-
tives. These six moments are blade root edgewise and flap-
wise moments, tower top fore–aft and side–side moments,
and tower bottom fore–aft and side–side moments. Figure 7b
and c illustrate a schematic drawing of the wind turbine with
the load channel locations that we used for training/testing in
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Figure 7. (a) Illustration of selected TurbSim output grid point locations as the input to the SM for training and testing. Panels (b) and
(c) show a schematic drawing of a turbine, with the output load channels.

Table 5. Channel label, naming and units.

OpenFAST Naming Post-processing Unit
channel
label

GenPwr Generated power 10 min average [kW]
RootMxb1 Blade edgewise moment DEL [kNm]
RootMyb1 Blade flapwise moment DEL [kNm]
YawBrMxp Tower top side–side DEL [kNm]
YawBrMyp Tower top fore–aft DEL [kNm]
TwrBsMxt Tower bottom side–side DEL [kNm]
TwrBsMyt Tower bottom fore–aft DEL [kNm]

this study. The OpenFAST output channel label and its cor-
responding naming for this study are provided in Table 5.

We run n= 215
= 32768 aeroelastic simulations using

OpenFAST for this study. We run the simulations in
2048 batches of 16 simulations in parallel using Digital Re-
search Alliance of Canada resources. Each simulation ran for
720 s, but the first 120 s of the simulation output was dis-
carded to avoid any initialization effect. The time step for
the aeroelastic simulation was set to 0.00625 s, while the
output resolution is 20 Hz. After running all the simulations
and building the simulation output database, we calculate the
DEL for each simulation, for the interested output channels
for Wöhler exponentm= 4 and neq = 600 in Eq. (5), as men-
tioned in Sect. 2.4. Moreover, we considered the 10 min av-
erage of the generated power. To read the OpenFAST output
files and calculate the DEL, we used the Python pyfast
library (Branlard, 2023).

3.3 Turbine in wake output

Our aim is to test the effectiveness of the trained TCN–FCNN
SMs by using wake input and specifically to determine if the
model, which is trained on a turbine in the freestream, can ac-
curately predict the DEL of a turbine in a wake as well. The

test scenario involves one turbine in the freestream, which the
SMs are trained on, and one turbine in the downstream wake.
The distance between the two turbines is 7D, where D rep-
resents the rotor diameter. In our specific case, we consider
the rotor diameter of 126 m for NREL 5 MW, which results
in a distance of 882 m between the two turbines.

We followed the same process described in Sect. 3.1 by
taking 2048 samples from the distributions outlined in Ta-
ble 4. To calculate the wind velocity deficit and add turbu-
lence, we used the Gaussian model (Blondel and Cathelain,
2020; Ishihara and Qian, 2018), as explained in Sect. 2.5. We
then adjusted the u and TI of each sample based on the har-
monic mean of the wind velocity deficit and the arithmetic
mean of the added turbulence intensity over the rotor. Using
the modified samples, we generated 2048 TurbSim full-field
outputs, following the process explained in Sect. 3.2. With
the TurbSim output now available with modified u and TI, we
utilized a Python script to offset the generated synthetic wind
with the Gaussian velocity deficit profile (William et al.,
2022).

In Sect. 2.5, it is explained that the wind velocity deficit
has a distribution across the y–z plane. This distribution can
shift across the rotor plane depending on the location of the
wake centre. We established three wake cases with wake cen-
tres located at −30 and 90 m, 0 and 90 m, and 30 and 90 m
on the y–z rotor plane. The wake centre is assumed not to
move vertically since both turbines have the same hub height
of 90 m. Figure 8 illustrates an example of the velocity deficit
effect on the TurbSim output. In Fig. 8, the first column
shows the TurbSim output with the added turbulence inten-
sity, the middle column is the Gaussian velocity deficit for
the aforementioned wake centres and the last column is the
first column with the velocity deficit offset. They are all a
snapshot of the TurbSim output at 320 s, and the input sam-
ples are u= 13.42 m s−1, TI= 11 % and α = 0.107. The red
circle is the rotor disk.
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Figure 8. The velocity deficit implementation on a TurbSim output with the added turbulence intensity.

As all the 2048 TurbSim outputs are at hand, one can
run OpenFast simulations and calculate DEL as explained in
Sect. 3.2.

To better understand the changes in DEL when the tur-
bine is in wake conditions versus freestream, we present the
raw DEL for both scenarios in Fig. 9. This plot compares all
2048 samples when the wake centre is at 0 and 90 m with
the corresponding Sobol samples from the freestream for all
six channels in the scatter plots and their corresponding his-
tograms. The figure illustrates a shift in the DEL values and
their distribution when the turbine operates in the wake of
another turbine.

4 Results and discussion

To this point, we explain the background methods used in
this work. This section delivers and discusses the results.

4.1 TCN–FCNN results

This section provides the output of the testing process, as ex-
plained before, for the TCN–FCNN SMs. Figure 10 shows
the results of the testing on the trained SMs for each output-
channel-scaled DEL. Each plot in the figure delivers one
channel, and data connect to the mean wind speed of the
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Figure 9. Raw DEL from both freestream and wake databases for 2048 samples. The colour map represents a range of changes in the mean
wind speed of the samples.

samples using a colour map. Upon reviewing the outcomes,
it is evident that the SMs offer precise prediction based on
synthetic wind time series data that it has not previously en-
countered. Based on the colour maps, it is inconclusive to
determine the correlation between the input variables of the
sample and the accuracy of the fit.

Although all channels have high R2 values, the values de-
crease as we move from the blade root moments downwards.
This decrease can be explained by the physical problem we
are dealing with. The SMs have only one input, and they
map wind input time series in the x direction to DEL out-
puts. The loads closer to the rotor are more affected by the
wind input, while the structural dynamics of the wind tur-
bine influence the further loads. Both fore–aft and side–side
moments exhibit similar behaviour, but fore–aft moments are
predicted more accurately. Therefore, it is reasonable to as-
sert that the fore–aft moments are predominantly attributable
to the wind, whereas the structural dynamics more signifi-
cantly influence the side-to-side moments. To test this hy-
pothesis, we infused the input of the TCN–FCNN with the
tower top side–side time series acceleration aTTy . In other
words, the TCN–FCNN maps the combination of synthetic
wind time series and tower top side–side acceleration time
series to DEL. Figure 4 visually represents this network with
tower top side–side acceleration as an optional input.

The modified SMs used for this are identical to those
shown in Tables 2 and 3. The only difference is that the third

dimension of the input shape in Table 3 has changed to 10
due to the concatenated time series. We followed the same
process for training and testing these acceleration-enhanced
SMs as we did for the original ones. In Fig. 11, the data indi-
cate that incorporating the tower top acceleration time series
into the input led to a better fit for the side–side moments,
particularly for the tower bottom side–side moment. This
confirms our hypothesis that these SMs can accurately cap-
ture the physics of the model at hand. One question that arises
is why there is no improvement in the tower top side–side
bending moment channel. The tower top side–side bending
moment is primarily influenced by rotor torque rather than
side–side acceleration. In contrast, the tower bottom side–
side bending moment is caused by the side–side forces at
the tower top, which are represented by the side–side accel-
eration. As a result, we do not see any improvement in the
tower top side–side moment. One may argue that including
the wind time series in the y direction in the input would
improve the tower bottom side–side moment R2 value. We
tested this hypothesis, but it did not improve the accuracy of
the TCN–FCNN model. For the sake of space, we do not in-
clude the results of this analysis here. However, the trained
model and databases for this test are provided for the inter-
ested reader. Given that tower top acceleration cannot be ob-
tained without direct measurement or conducting aeroelastic
simulations, this SM is particularly suitable for virtual sens-
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Figure 10. Testing results for TCN–FCNN trained SMs. The colour map represents a range of changes in the mean wind speed of the
samples.

ing (Moynihan et al., 2024) or DT applications, as mentioned
in Sect. 1.

4.2 FCNN results

As mentioned in Sect. 2.7, we trained and tested the FCNN
SM on the three input variable samples, namely wind speed,
wind shear and turbulence intensity. The FCNN aims to map
the three input variables to DEL. This is very similar to the
approach that was employed in Schröder et al. (2020). The
results are presented in Fig. 12. Similar to the TCN–FCNN
results, the R2 values decrease from the top to the bottom
of the turbine. Considering the simplicity of the FCNN SMs,
they perform very well in the testing phase.

4.3 Result comparison

Up to this point, we trained three different types of SMs on
our dataset. These SMs showed a good ability to predict the
DEL from a limited amount of sequential data or input vari-
able data. Each SM architecture has its own advantages and
disadvantages. For TCN–FCNN architecture, the SMs can
digest the complexities of wind time series. Nevertheless, the
model is complex and loses accuracy for the channels that are
not close to the rotor. On the other hand, FCNN architecture
is simple and cheap to train, while it has higher R2 values
for the channels below the rotor. However, this model suffers

from the same challenge in terms of R2 value decline, and
it is not prepared to take time series and needs input vari-
ables that may not be available all the time. For example, in
reality, looking at what SCADA collects, the TI and wind
shear are not necessarily available for all turbine types. To
make the comparison more straightforward, the R2 value for
power and output channels and the required GPU time for the
training are provided in Table 6.

The data presented in Table 6 reveal that all three SMs
have consistently produced high R2 values and a low
NRMSE. Notably, the utilization of tower top acceleration
as the added input to wind has significantly enhanced the
accuracy of prediction for the tower bottom side–side mo-
ment. This improvement is a testament to the TCN–FCNN
SMs’ ability to comprehend the mechanics behind the input–
output correlation. Regarding the computational cost, FCNN
SMs are more efficient for all the outputs.

When examining Table 6, one might question the purpose
of developing the TCN–FCNN SMs as they are more com-
plex and computationally expensive. The TCN–FCNN ap-
proach offers a significant benefit by examining the wind’s
time series rather than solely its statistical properties. The
DEL results from wind and/or wave time series oscillations.
If we were to reduce these oscillations solely to wind or wave
input statistics, this would undermine the precision, insight
and perception of the DEL prediction. However, the TCN–
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Figure 11. Testing results for TCN–FCNN trained SMs. The input for these SMs is infused with the tower top acceleration time series. The
colour map represents a range of changes in the mean wind speed of the samples.

Figure 12. Testing results of the FCNN on the trained SMs.

https://doi.org/10.5194/wes-9-2039-2024 Wind Energ. Sci., 9, 2039–2062, 2024



2056 R. Haghi and C. Crawford: Data-driven surrogate model for wind turbine damage equivalent load

Table 6. The accuracy of the fit and computational time for the SM training. NRMSE is in percentage.

TCN–FCNN TCN–FCNN accl. infused FCNN

Channel R2 NRMSE GPU R2 NRMSE GPU R2 NRMSE GPU
time time time
[s] [s] [s]

GenPwr 1.000 0.006 442 1.000 0.005 337 0.999 0.010 271
RootMxb1 0.995 0.018 578 0.996 0.016 594 0.990 0.031 379
RootMyb1 0.998 0.009 805 0.998 0.010 689 0.998 0.013 397
YawBrMxp 0.968 0.140 800 0.972 0.126 1042 0.987 0.190 110
YawBrMyp 0.987 0.039 807 0.986 0.040 781 0.996 0.064 397
TwrBsMxt 0.936 0.153 363 0.994 0.013 274 0.944 0.156 106
TwrBsMyt 0.971 0.094 613 0.977 0.099 756 0.977 0.119 163

FCNN can incorporate these oscillations and map them to
the DEL. Similar approaches have led to similar outcomes,
as shown in de N Santos et al. (2023), where the accuracy of
the SM improved by incorporating the high-resolution time
series as input.

Here, we calculate the DELs based on simulations lasting
600 s. However, in real-world scenarios, the data availability
might be longer or shorter than 600 s. Therefore, one chal-
lenge here is to free the input from the time series’ length,
which is not within the scope of this study. We will explore
the effect further in our future studies. We briefly discuss the
shortening of the simulation length effect in Sect. 4.6.

We underline that the TCN–FCNN model can effectively
decompose the wind field into its constituent features, which
include the input variables. This capability was tested by ex-
panding the feature vector in Fig. 4 with the three input vari-
ables. Even with this augmentation, the R2 values remained
consistent, reaffirming the robustness of the TCN–FCNN in
characterizing the wind field. Essentially, a latent space has
been identified by the TCN that is suitable for accurate DEL
prediction by the FCNN stage.

We tested the TCN–FCNN architecture to assess its abil-
ity to handle ultimate loads. During our analysis, we found
that the SMs could accurately predict ultimate loads with a
comparable level of precision as DEL prediction. We do not
include the results here for space efficiency, but the trained
models and datasets are available for the interested reader.

4.4 TCN–FCNN SMs in wake with TL

Considering the methodology employed for incorporating
wake effects into our simulations, the use of an FCNN proves
ineffective in this context. The FCNN relies on input param-
eters such as mean wind speed u, turbulence intensity TI and
wind shear α, which cannot adequately capture the complex-
ities of wake interactions, as they cannot be condensed into a
single scalar value. In a study by Dimitrov (2019), an FCNN-
based surrogate model was utilized to model wake effects. It
was noted that their model required additional inputs depend-

ing on the wind farm layout. In contrast, the TCN–FCNN
approach, which relies solely on flow information at the tur-
bine location, effectively addresses wake challenges without
requiring additional inputs, assuming well-defined flow char-
acteristics over the turbine. It is crucial to acknowledge the
complexity of wake phenomena. Our claim is specifically
about the SM’s ability to accurately map a wake-distorted
flow to DEL values, not to underestimate the intricacy of
wake dynamics.

After training the TCN–FCNN and FCNN SMs, we tested
the SMs on the input with the wake. The initial results with-
out any TL did not provide an accurate prediction. Therefore,
we used the TL as explained in Sects. 2.5 and 3.3. Table 3
details the training setting for the TL models. The training is
done on 90 % of the turbine in wake databases, and testing
is based on the remaining 10 %. We used both normal TCN–
FCNN and acceleration-infused TCN–FCNN in the TL for
the turbine in the wake. The results for three wake centres
are presented in Table 7.

The results predicted in Table 7 follow a similar trend
to those obtained from the freestream turbine for all three
wake centres. However, the SMs infused with acceleration
provide higher R2 values for almost all cases compared to
the freestream, where the effect was mainly limited to tower
bottom channels. Since the turbine’s behaviour is more com-
plex in the wake, knowledge of its structural dynamics can be
more influential in prediction. Therefore, including a chan-
nel from the turbine structure can aid the SMs in training a
more accurate model and providing better predictions. It is
worth noting that this training is conducted on only 1844 out
of 2048 data points in the wake database, which is relatively
small. Despite this, the model’s ability to have a low NRMSE
and high R2 values demonstrates its strength.

4.5 How much data are enough data?

One question that needs to be answered is how much data
are enough to train these SMs accurately. In other words, we
need to determine if reducing the number of sample points
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Table 7. The results for the turbine in wake SMs in predictions after going through two stages of TL. The TL is done on both TCN–FCNN
and the acceleration-infused TCN–FCNN. For the sake of space, acceleration-infused TCN–FCNN is indicated as TCN–FCNN A.I. NRMSE
is in percentage.

Wake centre −30, 90 m 0, 90 m 30, 90 m

TCN–FCNN TCN–FCNN A.I. TCN–FCNN TCN–FCNN A.I. TCN–FCNN TCN–FCNN A.I.

Channel R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

GenPwr 0.999 0.998 0.999 1.214 0.998 1.949 0.999 1.002 0.999 1.275 0.999 0.996
RootMxb1 0.970 3.546 0.972 3.654 0.961 4.381 0.918 5.281 0.969 3.689 0.971 3.642
RootMyb1 0.979 3.335 0.972 3.580 0.975 3.793 0.962 4.844 0.968 4.234 0.976 4.636
YawBrMxp 0.952 4.787 0.953 4.617 0.960 3.808 0.938 5.756 0.960 4.560 0.955 4.690
YawBrMyp 0.925 6.783 0.960 5.104 0.923 7.593 0.962 4.899 0.909 7.957 0.950 5.540
TwrBsMxt 0.804 10.750 0.994 1.488 0.814 10.466 0.992 1.982 0.804 10.871 0.992 1.573
TwrBsMyt 0.858 7.837 0.944 4.312 0.911 5.643 0.944 5.310 0.939 5.343 0.955 4.927

will affect the accuracy of the predictions made by the SMs.
As we used the QMC method for sampling in this study, we
can easily decrease the number of samples without having
to redo the simulations. However, as our samples are based
on Sobol samples, we need to stick to the 2n rule. To de-
termine the amount of data needed, we trained the SMs on
a smaller number of samples ranging from 26 to 214. Then,
we randomly selected 1000 samples from the remaining in-
put samples for prediction. For example, in the case of 210,
we trained the SMs on 1024 Sobol sample data points and
randomly selected 1000 samples from the remaining 215–
210 samples for prediction. This enabled us to ensure fair-
ness in comparing the R2 values without any data leakage.
The sensitivity analysis results in Fig. 13 indicate that the
R2 value remains relatively high across all channels until the
number of samples is reduced to 28.

This shows that the SMs are versatile and do not require
many sample points to make accurate predictions. The versa-
tility of the SMs can be attributed to the simplicity and power
of the models for providing accurate predictions and the ef-
fectiveness of Sobol sampling in covering the input variable
domains even with a low number of data points. This cov-
erage helps the SMs to interpolate well between the data
they are not trained on. The displayed data in Fig. 13 indi-
cate that FCNN SMs exhibit less sensitivity to the number
of samples. This observation aligns with the expectation that
FCNN SMs possess a simpler architecture and fewer param-
eters to be trained. Therefore, the trained model improve-
ment is minimal after passing the threshold of the number
of samples. In the TCN–FCNN SMs, the improvement of
the R2 value varies depending on the channel. The tower
channels exhibit a greater rate of R2 improvement as com-
pared to the rotor channels, with the side–side moment chan-
nels of the tower being the most prominent example. Addi-
tionally, acceleration-infused TCN–FCNN shows higher im-
provement rates for tower top side–side and tower bottom
fore–aft channels.

4.6 Time series length and data augmentation

In this study, we used a 10 min time series for both input
and output of the OpenFAST simulation. This is a com-
mon practice in the wind turbine engineering field as recom-
mended by standards (International Electrotechnical Com-
mission, 2019). Yet, from the perspective of lidar and a wind
turbine controller, a 10 min time series may be relatively
long. Therefore, we aimed to include the ability to handle
shorter synthetic wind time series and map them to DEL,
which would be more attractive. Besides, in the field of ma-
chine learning, having enough training data is a challenge,
and data augmentation is a solution (Mikołajczyk and Gro-
chowski, 2018). To satisfy these two purposes, we attempted
to augment data by dividing the 600 s synthetic wind and load
time series into shorter segments and calculating DEL from
those segments. If possible, the goal was to use even less
than the minimum required number of simulations. How-
ever, our investigations have revealed that subsampling the
600 s load time series into segments shorter than 300 s ad-
versely affects the accuracy of the DEL calculation. This is
due to missed cycle counting of the shorter data length ob-
tained from OpenFAST output. Hence, this approach was not
included in this paper.

5 Conclusion

This study explores the potential of employing a sequential
ML model to develop an SM that correlates high-resolution
wind time series with the DEL of wind turbine components.
The methodology utilized in this paper involves creating
TCN–FCNN architecture for mapping synthetic wind time
series to DEL, alongside a simpler FCNN for comparative
purposes. We divided our methodology into 12 stages, in-
cluding specifying the input variable space, generating syn-
thetic wind time series, conducting aero-servo-elastic simu-
lations, calculating DEL, splitting the data into training and
testing databases, and building SMs. Additionally, we build
a database of synthetic wind time series and DEL for a tur-
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Figure 13. Sensitivity of R2 to the number of training samples. The y axis is on a logarithmic scale with a base of 10, while the x axis is on
a logarithmic scale with a base of 2.

bine in a wake to test the versatility of the TCN–FCNN SMs
using TL.

Our work begins with defining the input variable space
and determining their boundaries, distributions and sampling
methods. We use a QMC Sobol sampling technique to gen-
erate non-repetitive samples, guaranteeing uniformity, trace-
ability and reproducibility. Next, we continue with the gener-
ation of synthetic wind time series using TurbSim, based on
the input variable samples. These time series are stored in the
wind database, forming the basis for subsequent simulations.
The aero-servo-elastic simulations are performed using the
NREL 5 MW reference wind turbine model and OpenFAST,
following IEC standards for power production DLC 1.2 (In-
ternational Electrotechnical Commission, 2019). The simu-
lation output is stored in the simulation database, providing
load time series data for various wind turbine components.
With the load time series data at hand, we calculate the DEL
for each wind turbine component, adhering to the Palmgren–
Miner linear damage rule. To train and test the SMs, we split
the DEL database into training and testing sets while ensur-
ing no overlap between them. Two SM architectures were de-
veloped: a simple FCNN and a more complex TCN–FCNN.
Both models are trained and tested to predict DEL based on
unseen input variables or synthetic wind time series data. The
FCNN SM serves as a benchmark for comparison with the
more advanced TCN–FCNN SM. By comparing the accu-
racy and performance of these models, we gain insights into
the effectiveness of our approach. Moreover, we introduced
the concept of testing our SMs in the context of a wake sce-
nario. We created a new dataset that considers the wake effect
on a wind turbine by implementing simplified wake models,
thus expanding the versatility of our SMs.

In the “Results and discussion” section, three different SM
architectures were investigated: TCN–FCNN, FCNN and an
enhanced version of TCN–FCNN infused with tower top ac-
celeration time series. The TCN–FCNN architecture was de-
signed to take advantage of the wind time series data, making

it capable of capturing the complex temporal dependencies in
the wind field. Yet, its performance varied for different out-
put channels, with higher R2 values obtained for loads closer
to the rotor and decreasing accuracy for loads influenced by
structural dynamics. The addition of tower top acceleration
time series as an input feature improved the accuracy of pre-
dicting the tower bottom side–side moment, demonstrating
the SM’s ability to discern relevant physics. In contrast, the
FCNN architecture, which solely relies on input variables,
offered a simpler and more efficient model with competitive
predictive accuracy. The FCNN SMs performed well for all
output channels, with R2 values having an inverse relation-
ship with the distance from the rotor. We further analyzed the
trained TCN–FCNN models to determine how well they can
predict DEL for a turbine situated in the downstream wake,
a use case the FCNN SM could not tackle and illustrative of
the TCN–FCNN architecture motivation. Our findings indi-
cate that by using TL on a limited dataset, we can accurately
forecast the DEL of a turbine in a wake. A sensitivity analysis
was conducted to determine the minimum required sample
size for training the SMs. It was found that both the TCN–
FCNN SM and the FCNN SM remained accurate with a rel-
atively small number of samples, making them versatile and
efficient for practical applications such as wind farm layout
optimization. The choice between TCN–FCNN and FCNN
SMs depends on the specific application requirements. TCN–
FCNN is suitable when capturing fine-grained temporal de-
pendencies in the wind field is crucial, while FCNN offers a
simpler and more computationally efficient alternative with
competitive performance. These SMs provide valuable tools
for predicting DEL and enhancing wind turbine reliability,
reducing the need for extensive and expensive sets of simu-
lations.

TCN–FCNN can effectively capture temporal dependen-
cies within the data, making it particularly suitable for time
series analysis. This capability enables better handling of dy-
namic conditions and transient states, such as rotor stops,
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which involve rapid changes in load and flow conditions. If
that is the goal for the SMs, then DLCs should be included
in the training database. The choice of the SM type (sequen-
tial or FCNN) and/or the additionally required data should be
adapted based on the specific application. Additionally, data
availability and the type of available data play a crucial role
in this selection.

One of the drawbacks of this work is the input time sig-
nal length. One needs to investigate the possibility of liber-
ating the SM from this time constraint, as it would make the
model more versatile and more applicable to any length wind
speed time series. Moreover, in this paper, we trained a model
to map a 10 min wind time series to DEL. Each of these
10 min wind time series has a specific mean wind speed,
shear and TI. However, in reality, these variables change in
a 10 min time period. Therefore, in the future, it is important
to improve the model to be able to map the changing wind
time series to DEL. One major challenge in wind turbine re-
search, when employing numerical simulations, is accurately
capturing the behaviour of the controller. In this study, the
controller has been treated as a black box, which presents a
limitation in our work.

5.1 Future work

This study is the initial phase of building ready-to-use and
generalizable SMs for wind turbines. In this paper, we ex-
plore the ML-based SM for this purpose, specifically focus-
ing on TCN application in wind turbine engineering, while
acknowledging the extensive scope for further investigation.
In future studies, we will implement TCN–FCNN method-
ology on an offshore wind turbine, introducing complicated
wave loading magnitude and directional spectra. Addition-
ally, we will investigate the possibility of extending TL in a
wind farm to train the SMs on one turbine and use transfer
learning to build SMs for others in different wake conditions
quickly. In this study, we took nine wind time series from
the synthetic wind field as the input; therefore, reducing the
number of wind time series is another interesting investiga-
tion alongside optimization of the placement of the points as
a hyperparameter.

Unfortunately, we were unable to access high-resolution
wind turbine measurement data for our study. However, we
recognize that incorporating this type of data into our meth-
ods could greatly enhance our research and should be a focus
of future work. Additionally, we acknowledge that the syn-
thetic data and mathematical models used in our SMs may
not be as accurate as reality. As the saying goes, “All mod-
els are wrong, but some are useful”. While the models that
we use to build the databases and train the SMs may not
be perfect, they still hold value. Therefore, one idea for fu-
ture work is that the trained SMs can be applied effectively
on high-resolution measurement data by utilizing TL and in-
serting them between two trainable layers at the input and
output stages. This approach can prove to be especially help-

ful when faced with limited measurement data. Building on
this concept, we are keen to evaluate the performance of the
SM using inputs from lidar or SCADA measurements for
wind and tower top acceleration data from SCADA. Such
a test could potentially validate the DT application of this
study.

In this study, we utilized a stationary wake model to ex-
amine the impact of a wake on the SM. It is crucial to rec-
ognize the limitations of this model and their influence on
SM predictions. Therefore, future research should involve
testing SMs with higher-fidelity wake models, such as dy-
namic wake meandering or large-eddy simulations, where in-
flow dynamics are more accurately represented.
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