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Abstract. This paper investigates fault detection in offshore wind permanent-magnet synchronous generators
(PMSGs) for demagnetization and eccentricity faults (both static and dynamic) at various severity levels. The
study utilizes a high-speed PMSG model on the National Renewable Energy Laboratory (NREL) 5 MW refer-
ence offshore wind turbine at the rated wind speed to simulate healthy and faulty conditions. An unsupervised
convolutional autoencoder (CAE) model, trained on simulated signals from the generator in its healthy state,
serves for anomaly detection. The main aim of the paper is to evaluate the possibility of fault detection by means
of high-resolution electrical and electromagnetic signals, given that the typically low-resolution standard mea-
surements used in supervisory control and data acquisition (SCADA) systems of wind turbines often impede the
early detection of incipient failures. Signals analyzed include three-phase currents, induced shaft voltage, electro-
magnetic torque, and magnetic flux (air gap and stray) from different directions and positions. The performance
of CAE models is compared across time and frequency domains. Results show that in the time domain, stator
three-phase currents effectively detect faults. In the frequency domain, stray flux measurements, positioned at the
top, bottom, and sides of the outside of the stator housing, demonstrate superior performance in fault detection
and sensitivity to fault severity levels. In particular, radial components of stray flux can successfully distinguish
between eccentricity and demagnetization.

1 Introduction

Permanent-magnet synchronous generators (PMSGs) have
become popular recently in offshore wind applications driven
by advancements in permanent-magnet materials and high-
efficiency power electronics. Figure 1, sourced from the
Global Offshore Wind Report 2022 (GWEC, 2022), illus-
trates the evolution of drivetrain technologies in offshore
wind turbines within the European and Chinese markets from
2016 to 2021. The data indicate that in 2016 the market share
of PMSGs was approximately 60 % in Europe and 10 % in
China. By 2021, these shares had risen significantly, with
PMSGs accounting for 100 % of the market share in Europe
and 80 % in China.

Distinct from traditional doubly fed induction generators
(DFIGs), PMSGs leverage permanent magnets to generate
the magnetic field, thereby eliminating the need for a separate
excitation system. This design eliminates components like
slip rings and brushes, leading to higher reliability and reduc-
ing maintenance requirements. Available in both medium-
speed and direct-drive configurations, these generators of-
fer higher power density and efficiency, with added bene-
fits such as improved grid stability because of a faster re-
sponse to wind speed changes (Moghadam and Nejad, 2020;
Freire and Cardoso, 2021; Carroll et al., 2015). However, de-
spite their increased reliability, PMSGs are not completely
immune to faults and have their own challenges, particularly
in harsh offshore environments. Consequently, reliable con-
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Figure 1. Trend of offshore wind turbine drivetrain technol-
ogy between 2016 and 2021 (GWEC, 2022). HS: high speed;
SCIG: squirrel-cage induction generator.

dition monitoring and early fault detection are essential to
minimize production loss and prevent unexpected downtime
in these machines (Nejad et al., 2022; Huang et al., 2023;
Yang, 2009; Mahmoud et al., 2024).

PM machines, in general, are susceptible to several types
of faults that can impact their functionality (Choi et al., 2018;
Kudelina et al., 2021). Stator failures are common, which can
include insulation faults and issues with the connections in
the stator windings (Wang et al., 2014; Nyanteh et al., 2013;
Hoang Nguyen et al., 2023; Ortiz-Medina et al., 2023). Air
gap eccentricity can cause operational disturbances such as
vibrations and noise and may lead to mechanical stress and
uneven wear (Valavi et al., 2013; Ebrahimi et al., 2009, 2014;
Tong et al., 2020). Demagnetization of the permanent mag-
nets is also a critical fault, often triggered by excessive heat,
leading to a permanent reduction in the generator’s efficiency
and power output (Faiz and Mazaheri-Tehrani, 2017; Huang
et al., 2023; Ebrahimi et al., 2022; Wang et al., 2016). Addi-
tionally, failures in the cooling and control systems can sig-
nificantly impact the PMSG’s performance (Borchersen and
Kinnaert, 2016). The cooling system is crucial for maintain-
ing an optimal operational temperature and preventing over-
heating, while the control system manages the generator’s
operational parameters (Freire and Cardoso, 2021).

This study examines the problems of demagnetization and
eccentricity failures which are commonly encountered in
PMSGs. Currently, there is a lack of established techniques
to effectively address these issues and meet the requirements
of the wind sector. The demagnetization issue is exacerbated
in offshore environments where thermal management is more
difficult due to excessive humidity, maintenance, and acces-
sibility concerns (Gyftakis et al., 2023). Demagnetization in

PMSGs can be either local or distributed, each showing dis-
tinct fault signatures. Local demagnetization refers to the loss
of magnetic properties in specific areas of the magnetic poles,
often due to localized overheating or physical damage. Dis-
tributed demagnetization, on the other hand, involves a uni-
form reduction in magnetic strength across the entire magnet,
typically resulting from prolonged exposure to high temper-
atures or electrical faults (Choi et al., 2018; Choi, 2021). Ec-
centricity is also characterized as static and dynamic. Static
eccentricity is characterized by a constant offset between the
rotor and stator, leading to an uneven magnetic field and po-
tentially causing vibrations and wear. Dynamic eccentric-
ity involves a varying distance between the rotor and sta-
tor during rotation, which can result in fluctuating magnetic
forces, additional stress on bearings, and operational insta-
bility (Freire and Cardoso, 2021; Kudelina et al., 2021).

Various monitoring techniques are employed for the pur-
pose of condition monitoring and fault detection of electri-
cal machines, including PMSGs, depending on the specific
type of failure. Vibration analysis, which commonly utilizes
high-resolution accelerometer data (Dibaj et al., 2022, 2023),
is performed to identify defects such as mechanical un-
balance and bearing damage (Ágoston, 2015; Ali et al.,
2019; Ding et al., 2022), eccentricity (Ogidi et al., 2015;
Su and Chong, 2007), and electrical faults (Singh and Sa’ad
Ahmed, 2004; Su et al., 2011). However, early-stage elec-
trical and electromagnetic faults do not often produce sig-
nificant mechanical vibrations and, therefore, are not eas-
ily detectable from vibration signatures. Temperature mon-
itoring techniques such as supervisory control and data ac-
quisition (SCADA) systems (Zhao et al., 2017; Qiu et al.,
2016) or infrared thermography (Stipetic et al., 2012; Lopez-
Perez and Antonino-Daviu, 2017) can detect problems re-
lated to bearings (Choudhary et al., 2021), short circuits in
stator coils (Khanjani and Ezoji, 2021), and cooling systems
(Borchersen and Kinnaert, 2016). However, temperature-
based methods face challenges, including difficulty in plac-
ing a sensor to accurately identify specific faults; the sen-
sor’s general sensitivity that might only offer a broad tem-
perature overview rather than detailed hotspots; and the po-
tential influence of environmental conditions on temperature
readings, which may affect the precise identification of prob-
lems. Furthermore, temperature measurements, as a part of
SCADA systems, are unable to capture fast dynamics and
provide fault discrimination at the required level because of
low-resolution data.

In this work, electrical and electromagnetic signals,
including stator phase currents, induced shaft voltage,
electromagnetic torque, and magnetic flux density inside
and outside the air gap, are analyzed and compared for
fault detection in PMSGs. Harmonic analysis of elec-
trical and electromagnetic signals is a common tech-
nique for identifying faults in PM machines across var-
ious industries and applications, as supported by var-
ious studies (Valavi et al., 2018, 2013; Bernier et al., 2023;
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Da et al., 2013; Zhang et al., 2021). Furthermore, advanced
signal processing methods such as wavelet transform (Ehya
et al., 2022a) and Hilbert–Huang transform (Zhang et al.,
2021) are also used to extract harmonic characteristics
from these signals. Despite these approaches, the effective-
ness of these measurements, particularly the electromagnetic
ones, in providing early failure warnings in large MW-scale
(megawatt-scale) offshore PMSGs has yet to be established.
Additionally, it is important to note that certain measure-
ments examined in this work, such as phase currents, might
also be integrated into the SCADA systems of wind turbines.
However, the raw data of these measurements are typically
downsampled in SCADA systems to a 10 min resolution. The
main drawback of the downsampled data of SCADA systems
is that they cannot pinpoint incipient failures in PMSGs as
early as possible, highlighting an essential area for research
on the capabilities of these measurements.

Recent advancements in computational power and cloud
computing have significantly shifted industrial asset man-
agement towards machine learning and artificial intelligence
techniques (Peres et al., 2020; Lei et al., 2020). This shift
aims to address the inefficiencies of traditional data man-
agement methods in handling the vast amounts of data in-
volved in large-scale applications like offshore wind farms.
Moreover, machine learning models are known for their scal-
ability and flexibility (Lu et al., 2024). They do not have
the limitation of traditional methods in maintaining accuracy
as the scale of data and model complexity increases. Hoang
Nguyen et al. (2023) implemented a gradient-boosting ma-
chine for detecting inter-turn short-circuit faults and local
demagnetization using current and stray flux measurements.
Cai et al. (2021) utilized vibration and acoustic emission data
with a combined complementary ensemble empirical mode
decomposition and Bayesian network model for fault detec-
tion in rolling element bearings. Huang et al. (2023) devel-
oped a semi-supervised rule-based classifier for demagneti-
zation fault diagnosis, while Tan et al. (2020) explored the
use of current measurements combined with an artificial neu-
ral network (ANN) for detecting faults in converter systems
of PMSGs. Penrose (2022) investigated the application of
the k-nearest neighbor (KNN) model for fault classification
and linear regression models for estimating remaining use-
ful life (RUL), providing a 30 d advance notification of fail-
ures in small electric machines using basic data inputs. Ehya
et al. (2022b) examined different machine learning and signal
processing techniques for diagnosing inter-turn short-circuit
faults in salient-pole synchronous generators. Despite these
advances, the application of machine learning for fault de-
tection in MW-scale wind PMSGs is still largely unexplored
(Freire and Cardoso, 2021).

Therefore, this study adopts a machine learning model for
unsupervised anomaly detection, trained on collected simu-
lated measurements in the healthy state. Unlike supervised
learning, which requires a significant amount of labeled data
with predefined class labels for training, unsupervised learn-

ing does not rely on labeled data. This characteristic is partic-
ularly beneficial in offshore wind applications, where acquir-
ing extensive labeled fault-related data is challenging. More-
over, supervised learning methods often struggle to general-
ize to unseen fault scenarios. Consequently, a convolutional
autoencoder (CAE) model is utilized, known for its capabil-
ity to process complex and high-dimensional data efficiently.

In summary, this study aims to conduct a comparative
analysis of different measurements – three-phase currents,
induced shaft voltage, electromagnetic torque, and air gap
and stray magnetic flux density – for the purpose of wind
turbine PMSG anomaly detection using a CAE model. As
mentioned earlier, despite the potential availability of a few
of these measurements in SCADA systems, they are often
recorded at a low resolution, typically every 10 min. The pri-
mary focus of this work is to explore the effectiveness of
high-resolution measurements for the early detection of po-
tential failures. The sensitivity of these measurements against
the studied fault cases, including demagnetization and static
and dynamic eccentricity at various levels of fault severity,
will be analyzed. Simulated measurements will be collected
from a simulation high-speed PMSG, designed and modeled
based on the specifications of the National Renewable En-
ergy Laboratory (NREL) 5 MW reference offshore wind tur-
bine (Jonkman et al., 2009), tailored for offshore wind appli-
cations.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the generator model, measurements, and
studied fault cases. Section 3 discusses the anomaly detec-
tion methodology employed in this study, including the CAE
model, threshold determination, and performance metrics.
Section 4 contains the results and discussion. Finally, the
conclusion is outlined in Sect. 5.

2 Generator model

A wind generator was designed according to the specifica-
tions and requirements detailed in “Definition of a 5-MW
Reference Wind Turbine for Offshore System Development,”
a technical report published by the National Renewable En-
ergy Laboratory (NREL) (Jonkman et al., 2009). Table 1
presents the drivetrain specifications as outlined in the report.

Following these specifications, a high-speed PMSG was
developed and optimized. Figure 2 illustrates the two-
dimensional cross-section of the designed PMSG along with
its magnetic-field distribution. The analysis of the genera-
tor’s performance was conducted using Ansys Motor-CAD,
a specialized piece of software for electrical machine design.
The generator features a surface-mounted permanent-magnet
configuration with 6 poles and 54 slots. To minimize eddy
current losses, the permanent-magnet blocks are segmented
both radially and axially, which enhances efficiency and re-
duces the risk of demagnetization.

https://doi.org/10.5194/wes-9-2063-2024 Wind Energ. Sci., 9, 2063–2086, 2024



2066 A. Dibaj et al.: Unsupervised anomaly detection of permanent-magnet offshore wind generators

Table 1. Drivetrain specification (Jonkman et al., 2009).

Parameter Value

Rated rotor speed (rpm) 12.1
Rated generator speed (rpm) 1173.7
Gearbox ratio 1 : 97
Electrical generator efficiency (%) 94.4
Generator inertia about high-speed shaft (kgm2) 534.116
Equivalent driveshaft torsional-spring constant (kNmrad−1) 867 637
Equivalent driveshaft torsional-damping constant (kN m s rad−1) 6215
Fully deployed high-speed shaft brake torque (Nm) 28116.2
High-speed shaft brake time constant (s) 0.6

Figure 2. Radial cross-section and magnetic-field distribution of the generator.

The wind generator is capable of producing 5.177 MW of
electromagnetic power at the rated speed, achieving an effi-
ciency of 98.74 %. The line current and voltage are measured
at 1092 Arms (root mean square current) and 3184 Vrms
(root mean square voltage), respectively. A performance
analysis confirms that the generator meets the target power
output with exceptional efficiency.

2.1 Measurements

In this study, a collection of simulated measurements from
the PMSG model, as detailed in Table 2, are used in the
anomaly detection task aimed at identifying fault cases out-
lined in Sect. 2.2. This set of collected data includes high-
resolution induced shaft voltage; electromagnetic torque; sta-
tor phase currents; and air gap and stray magnetic flux, in-
cluding both radial and tangential components at various po-
sitions. Variations observed in these measurements can in-
dicate different types of faults depending on the symptoms
manifested in the signal. For instance, flux sensors provide
insights into the behavior of the magnetic field. Faults that in-
troduce imbalances or irregularities to the rotating magnetic
field can be identified using these sensors. Flux monitoring

has become popular recently thanks to advancements in sen-
sor technology and low-cost and compact flux sensors such
as search coils and Hall effect sensors (Mazaheri-Tehrani
and Faiz, 2022). Figure 3 indicates the position of flux sen-
sors implemented in the simulation model in this study. Also,
Fig. 4 shows some examples of the time-domain waveform of
simulated signals. As explained earlier, the motivation of this
study extends to comparing the performance of the anomaly
detection model trained with these simulated high-resolution
signals to examine the diagnostic capabilities of each mea-
surement type.

2.2 Fault cases

Two main categories of faults in the PMSG model are con-
sidered: partial demagnetization and eccentricity, which in-
cludes both static and dynamic forms. The investigation is
of a series of fault cases within these categories. The aim is
to evaluate the performance of anomaly detection method in
varying degrees of fault severity using different measurement
variables.

Partial demagnetization faults, outlined in Table 3, are ex-
plored through six distinct scenarios, each simulating varying
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Table 2. Simulated electrical and electromagnetic measurements.

Measurement

Vsh Induced shaft voltage

Te Electromagnetic torque

Is Stator three-phase currents (three signals)

SFr5 Stray flux sensor – radial component, outside stator housing with a distance of 5 mm (top, bottom, and side locations –
four signals)

SFt5 Stray flux sensor – tangential component, outside stator housing with a distance of 5 mm (top, bottom, and side loca-
tions – four signals)

SFr10 Stray flux sensor – radial component, outside stator housing with a distance of 10 mm (top, bottom, and side locations –
four signals)

SFt10 Stray flux sensor – tangential component, outside stator housing with a distance of 10 mm (top, bottom, and side
locations – four signals)

AFrt Air gap flux sensor – radial component at tooth position (top, bottom, and side locations – four signals)

AFtt Air gap flux sensor – tangential component at tooth position (top, bottom, and side locations – four signals)

AFrs Air gap flux sensor – radial component at slot position (top, bottom, and side locations – four signals)

AFts Air gap flux sensor – tangential component at slot position (top, bottom, and side locations – four signals)

Figure 3. Position of the flux sensors in the simulation wind PM generator model.

Table 3. Partial demagnetization with six cases.

Fault description

Fault case 1 (FC1) All segments of one pole (10 %)
Fault case 2 (FC2) All segments of one pole (20 %)
Fault case 3 (FC3) Two segments of one pole (40 % and 20 %)
Fault case 4 (FC4) Two segments of one pole (80 % and 40 %)
Fault case 5 (FC5) Two segments of all poles (20 % and 10 %)
Fault case 6 (FC6) Two segments of all poles (40 % and 20 %)

levels of magnetic flux density reduction across the genera-
tor’s permanent magnets. The first and second cases, FC1 and
FC2, model a mild uniform 10 % and 20 % demagnetization
affecting all segments of a single pole. FC3 and FC4 model
more localized demagnetization, where only two segments of
a single pole are demagnetized at different severities, 40 %
and 20 % for FC3 and 80 % and 40 % for FC4, respectively.
FC5 and FC6 extend this localized demagnetization to multi-
ple poles, with two segments of all poles undergoing demag-
netization at 20 % and 10 % for FC5 and 40 % and 20 % for
FC6, respectively.
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Figure 4. Time-domain waveform of the simulated data: (a) radial components of air gap flux (top, bottom, and side locations), (b) induced
shaft voltage, (c) electromagnetic torque, and (d) stator three-phase currents. T: tesla; µV: microvolt.

Table 4. Static (SE) and dynamic (DE) eccentricity with six differ-
ent degrees.

Fault description

Fault case 1 (FC1) Dynamic (5 %)
Fault case 2 (FC2) Dynamic (15 %)
Fault case 3 (FC3) Dynamic (25 %)
Fault case 4 (FC4) Static (5 %)
Fault case 5 (FC5) Static (15 %)
Fault case 6 (FC6) Static (25 %)

Eccentricity, characterized by the misalignment of the ro-
tor relative to the stator in the two-dimensional (x–y) plane,
is assessed through static and dynamic conditions across six
cases as shown in Table 4. Dynamic eccentricity, from FC1
to FC3, addresses a variable misalignment where the rotor’s
axis orbits around the stator’s axis at severities of 5 %, 15 %,
and 25 %, respectively. Conversely, static eccentricity cases,
FC4 to FC6, examine the impact of a fixed rotor offset from
the stator axis, also at severities of 5 %, 15 %, and 25 %, re-
spectively. The degree of eccentricity is quantified by the off-
set value of the shifted axis relative to the air gap length in
the healthy condition.

3 Methodology

3.1 Convolutional autoencoders

Autoencoders (AEs), developed originally as neural net-
work models for copying input to output, have significantly
evolved to play a crucial role in unsupervised learning,
dimensionality reduction, and data denoising (Goodfellow
et al., 2016). In anomaly detection, AEs are particularly ef-
fective; they are trained on normal data to learn its repre-
sentation, and anomalies are identified based on the higher
reconstruction error when the model encounters data that
deviate from this learned normal behavior. This higher re-
construction error is because the AE, trained on normal or
healthy data, finds it challenging to reconstruct these new or
deviant patterns. As mentioned previously, the unsupervised
approach is advantageous in anomaly detection in wind tur-
bine applications where anomalies are rare and often not la-
beled.

A typical AE consists of two main parts: the encoder and
the decoder. The encoder compresses the input data as a se-
quence of data points x = [x1,x2,x3, . . .,xn] into a lower-
dimensional representation known as feature space h=

[h1,h2,h3, . . .,hd ] (d < n), and the decoder reconstructs the
data back to its original form x̂ = [x̂1, x̂2, x̂3, . . ., x̂n] from
this compressed representation as shown in Fig. 5. The for-
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Figure 5. Typical autoencoder architecture.

mulation for a single-layer encoder and a single-layer de-
coder is described as follows:

h= f (x)= s(W1x+ b1), (1)

x̂ = f (h)= s(W2h+ b2), (2)

where W1 and W2 are weight matrices; b1 and b2 are bias
vectors; and s(.) is the activation function, which is com-
monly a Sigmoid function σ (t)= 1/(1+ e−t ) or a rectified
linear unit function ReLU(t)=max(0, t) for the encoder and
decoder parts. For the output layer, this function can be a Sig-
moid or a linear function, depending on the type of input data
(Wu et al., 2021). The architecture of AE is adaptable, allow-
ing for the modification of the number and size of its hid-
den layers to suit the complexity of the input data (Li et al.,
2021). Given a set of training data {x(i)

}
N
i=1, the AE model

is typically trained by minimizing the cost function J , often
measured by mean squared error (MSE), through the back-
propagation algorithm (Rumelhart et al., 1986), expressed as

JMSE(W,b)=
1
N

N∑
i=1

∥∥xi − x̂i
∥∥2
. (3)

This study employs multi-variable measurements like
magnetic flux density measured at different angles. For such
data, a standard one-dimensional AE will not work. In addi-
tion, the typical feed-forward AE does not take into account
the spatial structure of data, therefore reducing the accuracy
of the reconstruction process. To solve this, the convolutional
autoencoder (CAE) model is used in this study. The CAE
uses convolutional and deconvolutional layers instead of the
fully connected layers found in the regular feed-forward au-
toencoder, as shown in Fig. 6.

The first part of the CAE works by compressing the data
using a series of steps that involve convolution and pooling.
The convolution layers perform operations that apply a fil-
ter to the input, which helps to capture important parts of
the data depending on the filter used. After each convolu-
tion layer, a pooling step follows. This step usually uses a
max-pooling layer, which reduces the size of the output from
the convolution by picking the highest value from each seg-
ment of the input data covered by the filter. The second part
of the CAE is about decoding the features that the first part
extracted. This is done with deconvolutional layers. These
layers increase the size of the input through a special convo-
lution process to rebuild the input data in the output, making
sure it is the same size as it was originally.

Figure 7a–d provide examples of this reconstruction pro-
cess using induced shaft voltage measurements in both time-
domain and frequency-domain representations. Notably, as
illustrated in Fig. 7b and d, the CAE model struggles to re-
construct instances of faulty data accurately. This discrep-
ancy results in a noticeable error between the original and
reconstructed data, highlighting this approach’s capability to
identify anomalies.

3.2 Threshold determination

For anomaly detection using the reconstruction error ob-
tained by the CAE model, there should be a fault threshold to
differentiate between healthy and faulty (anomaly) cases. In
this study, the fault threshold is established based on the max-
imum reconstruction error observed in the training dataset.
Existing works on data-driven anomaly detection across var-
ious applications have established similar fault thresholds
based on the reconstruction error for healthy training data
(Chen et al., 2021; Xiang et al., 2022; Campoverde-Vilela
et al., 2023; Givnan et al., 2022). The training data com-
prise instances representing the healthy state of the PMSG.
As mentioned, each training sample x(i) is passed through
the CAE model to obtain a reconstructed output x̂(i). The dis-
crepancy between the original and reconstructed data points,
quantified using the MSE cost function, serves as the recon-
struction error e(i)

=MSE(x(i), x̂(i)). The fault threshold α
is then determined as the maximum reconstruction error ob-
served in the training data as follows:

α =
N

max
i=1

e(i), (4)

where N is the size of the training dataset. As an exam-
ple, Fig. 8a and b show the histogram of reconstruction er-
rors or anomaly scores for training (healthy) data and the
fault threshold determination for two distinct measurements.
These figures clearly demonstrate that the thresholds are
data-driven, varying in accordance with the input measure-
ments of the CAE model. Any test sample with a reconstruc-
tion error exceeding the threshold would be considered an
anomaly.
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Figure 6. Convolutional autoencoder architecture.

Figure 7. Comparison between the original input and reconstructed output of the CAE model for the induced shaft voltage signal: (a) time
domain – healthy, (b) time domain – demagnetization FC6, (c) frequency domain – healthy, and (d) frequency domain – demagnetization FC6.
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Figure 8. Histogram of anomaly scores for training data and threshold determination for two different signals: (a) SFt5 and (b) AFtt.

3.3 Overall procedure of the anomaly detection method

The steps taken in the anomaly detection of the PMSG model
are briefly described in this section and outlined in Fig. 9.
The methodology includes several stages as follows.

1. Data collection. The initial step involves the compre-
hensive gathering of target measurements, introduced in
Table 2, from the PMSG model.

2. Data preprocessing. Once collected, the measurements
are preprocessed. As the first step, the signals are seg-
mented into shorter-length signals to prepare training,
validation, and test datasets for the CAE model. Seg-
mented signals are then normalized to aid in efficient
training, prevent numerical issues, and ultimately lead
to better model performance and generalization. Both
time-domain and frequency-domain measurements are
fed into the model to compare the model performance
in both cases for different measurements.

3. Model training. With the data prepared, the next phase
is the training of the CAE model. It should be noted that
distinct CAE models are trained for different measure-
ments, depending on the type of input data, either the
time domain or frequency domain. The model learns to
identify patterns and features of the input data repre-
sentative of the normal operational state of the PMSG
model.

4. Threshold determination. As discussed in Sect. 3.2, a
key aspect of the methodology is establishing a reliable
fault threshold. The optimal choice of this threshold is
crucial for effectively differentiating between normal

Figure 9. Overall procedure of the anomaly detection method.

and faulty states and ensuring a precise alarm trigger-
ing. This study utilizes the maximum reconstruction er-
ror value from the training dataset as the fault threshold.

5. Anomaly detection. The final step involves the actual
detection of anomalies. The trained CAE model is em-
ployed to analyze new data, identifying deviations from
the norm. Any reconstruction error exceeding the es-
tablished fault threshold is considered indicative of an
anomaly in the PMSG model.

3.4 Performance metrics

In this study, two performance metrics are used to evaluate
the performance of the CAE model for anomaly detection.

– F1 score. This metric combines precision and recall to
provide a single score for the model’s overall accuracy
in anomaly detection (Miele et al., 2022; Wang et al.,
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2019). Precision indicates what proportion of identified
anomalies are true anomalies, and its equation is as fol-
lows:

precision=
TP

TP+FP
, (5)

where TP is the number of correctly identified anoma-
lies (true positive) and FP is the number of normal sam-
ples misclassified as anomalies (false positive). Recall
also specifies what proportion of true anomalies are
identified and is determined as follows:

recall=
TP

TP+FN
, (6)

where FN is the number of anomaly samples misclas-
sified as normal (false negative). The F1 score ranges
from 0 to 1, where 1 represents perfect precision and
recall, and is defined as follows:

F1 score= 2×
precision× recall
precision+ recall

. (7)

– Silhouette coefficient. This metric assesses the quality
of clustering in unsupervised machine learning tasks,
with scores ranging from −1 to 1 (Rousseeuw, 1987).
In this study, the silhouette score is used to calculate
the average distance between the cluster of identified
anomalies and the cluster of healthy data. A higher sil-
houette coefficient indicates better separation between
normal and anomaly clusters. The silhouette coefficient
for each sample i is calculated as follows:

SC(i)
=

b(i)
− a(i)

max[a(i),b(i)]
, (8)

where a(i) is the average distance between sample i and
all other samples in the same cluster and b(i) is the min-
imum distance between sample i and all samples in an-
other cluster not containing sample i.

Both metrics provide comprehensive insights into the per-
formance and reliability of the CAE model in detecting
anomalies using different measurement variables.

4 Results and discussion

4.1 Data preparation

The procedure for anomaly detection begins with collect-
ing simulated measurements from the PMSG model under
both healthy and various faulty conditions. These measure-
ments are then divided into shorter-length signals to ensure
an adequate amount of training and test data for the CAE
model. To compare the performance of different measure-
ments, both time-domain data (raw segmented signals) and
frequency-domain data (spectrum of segmented signals) are

inputted into the CAE model. Following the standard ap-
proach for anomaly detection, the training dataset consists
only of measurements from the healthy state, while the test
dataset encompasses all states, including healthy and differ-
ent faulty conditions. The original signals are sampled at
a rate of Fs= 21.132 kHz. The fundamental frequency of
the generator model under study is calculated as f = (Ns×

P )/120= 58.69 Hz, where Ns represents the synchronous
speed of the generator at its rated speed of 1173.7 rpm and
P denotes the number of poles (six in this case).

For time-domain data inputted into the CAE model, the
length of segmented signals is set to twice the period of
the fundamental frequency, resulting in 720 sample points
per segment. Additionally, the segmentation process includes
overlap between consecutive segments equivalent to one pe-
riod of the fundamental frequency, which is 360 sample
points. It is important to highlight that for frequency-domain
data, where a higher resolution in obtaining the frequency
spectrum is required, the segmented signals have a longer du-
ration of 30 times the period of the fundamental frequency or
10 800 sample points. This longer duration leads to smaller
training and test datasets for the frequency-domain cases
compared to the time-domain cases. It should be noted that
only the first 720 sample points of the frequency spectrum are
fed into the model in order to have the same CAE model ar-
chitecture for time-domain and frequency-domain cases. The
segmentation and feeding procedure into the CAE model for
both time-domain and frequency-domain cases is illustrated
in Fig. 10.

4.2 Anomaly detection results: time-domain inputs

The CAE model’s reconstruction errors or anomaly scores
trained with time-domain data for demagnetization and ec-
centricity faults are illustrated in Figs. 11 and 12, respec-
tively. These figures highlight the reconstruction error values
within a yellow region for the set of healthy training sam-
ples, where the highest error value defines the fault thresh-
old, marked by a horizontal dotted red line. Similarly, the
green region represents the reconstruction errors for healthy
test samples. The outcomes of performance metrics are de-
tailed in Table 5. According to the F1 score results, nearly
all signals can train a CAE model that effectively detects de-
magnetization fault cases. In contrast, for eccentricity fault
cases, only specific signals – induced shaft voltage (Vsh),
electromagnetic torque (Te), stator phase currents (Is), and
the tangential component of air gap flux at tooth positions
(AFtt) – achieve full accuracy in fault detection. The silhou-
ette coefficient, which measures the degree of separation be-
tween anomaly clusters and the healthy cluster, shows that
Vsh, Te, Is, and AFtt signals provide superior separation for
both demagnetization and eccentricity faults.

The sensitivity of the CAE model to fault severity is also
evaluated using the trend of anomaly score values for fault
scenarios. It is expected that cases with higher fault sever-
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Figure 10. Signal segmentation process.

ity should correspond to higher anomaly scores. Among the
models trained with the signals featured, the model trained
with three-phase Is signals demonstrates sensitivity to the
severity across all types of demagnetization faults, as illus-
trated in Fig. 11d. However, the Vsh-based trained model
does not adequately reflect the severity for FC3 and FC4
cases, which are localized demagnetization in one pole, with
the anomaly scores for FC4 unexpectedly lower. Other mod-
els, including those trained with Te, stray, and air gap flux
signals, fail to differentiate between the severities of FC5 and
FC6 cases, both involving localized demagnetization across
all poles.

For eccentricity faults, both dynamic (FC1–FC3) and
static (FC4–FC6), as presented in Fig. 12, the Is and Vsh sig-

nals are effective in distinguishing between different degrees
of eccentricity for both cases, with anomaly scores increas-
ing as the degree of eccentricity raises. However, outputs of
the CAE model trained with the Te signal do not display a
consistent trend with respect to the eccentricity degree. The
results for FC2 test samples, which exhibit a 15 % dynamic
eccentricity, are also poor when the model is trained with
AFtt signals.

In summary, the CAE model, trained with time-domain
data from three-phase stator currents, reliably provides
anomaly detection for both demagnetization and eccentric-
ity fault cases. The efficacy of this model with frequency-
domain data will be further assessed in subsequent analyses.
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Figure 11. Anomaly detection results of time-domain measurements for demagnetization fault cases: (a) Vsh, (b) Te, (c) Is (single phase),
(d) Is (three phases), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts.
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Figure 12. Anomaly detection results of time-domain measurements for static and dynamic eccentricity fault cases: (a) Vsh, (b) Te, (c) Is
(single phase), (d) Is (three phases), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts.
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Table 5. Performance metric results of anomaly detection models
trained with time-domain data.

Demagnetization Eccentricity

Input variable F1 Silhouette F1 Silhouette

Vsh 1.0000 0.9863 1.0000 0.9890
Te 1.0000 0.9996 1.0000 0.9998
Is (single phase) 0.9993 0.9999 0.9993 0.9998
Is (three phases) 1.0000 0.9999 1.0000 0.9999
SFr5 0.9980 0.8592 0.0650 0.1690
SFr10 1.0000 0.8600 0.0690 0.0840
SFt5 1.0000 0.8990 0.3000 0.2400
SFt10 1.0000 0.9100 0.3400 0.3500
AFrt 1.0000 0.9500 0.8700 0.7800
AFrs 1.0000 0.9400 0.5100 0.4900
AFtt 1.0000 0.9721 1.0000 0.9835
AFts 0.9300 0.8600 0.8000 0.6600

4.3 Anomaly detection results: frequency-domain inputs

In this section, segmented signals are transformed into the
frequency domain. This transformation allows for the fre-
quency information of simulated data to be utilized by the
CAE model, thereby enhancing its predictive accuracy. The
use of frequency-domain information has been found to im-
prove prediction outcomes for certain signals. To illustrate
this, the power spectral density (PSD) spectra for a vari-
ety of signals are shown in Fig. 13. These include healthy
data, demagnetization in FC5 and FC6 (two segments of all
poles), and static eccentricity (FC4–FC6). Upon examination
of these figures, it is observed that fluctuations in the fre-
quency content associated with faults, as well as the appear-
ance of characteristic fault frequencies, are more prominently
visible in specific signals, notably those from flux sensors
and electromagnetic torque.

Similar to the anomaly detection results in the time do-
main, the anomaly scores for frequency-domain training
and test samples, utilizing various models, are depicted in
Figs. 14 and 15 for demagnetization and eccentricity faults,
respectively. Additionally, the performance of these mod-
els is evaluated and presented in terms of F1 and silhouette
scores, as shown in Table 6.

The CAE model, when trained with the Vsh signal,
demonstrates reliable anomaly detection results in demag-
netization cases, as depicted in Fig. 14a, highlighting both
the detection accuracy and sensitivity to fault severity. How-
ever, in the context of eccentricity faults, this model exhibits
somewhat poorer performance in detecting FC3 (25 % dy-
namic eccentricity) and in being sensitive to different levels
of fault severity, as illustrated in Fig. 15a.

While the Te signal achieves full detection accuracy for
both types of faults according to Table 6, similar to the results
in the time domain, the anomaly scores do not align with the
actual severity levels of the fault cases. This discrepancy is
evident in the results depicted in Figs. 14b and 15b.

Table 6. Performance metric results of anomaly detection models
trained with frequency-domain data.

Demagnetization Eccentricity

Input variable F1 Silhouette F1 Silhouette

Vsh 1.00 0.9912 0.9733 0.9321
Te 1.00 0.9999 1.0000 0.9922
Is (single phase) – – 0.8623 0.7760
Is (three phases) – – 0.8230 0.6561
SFr5 1.00 0.9220 0.9692 0.7914
SFr10 1.00 0.9190 0.7300 0.8580
SFt5 1.00 0.9320 1.0000 0.6943
SFt10 1.00 0.9500 1.0000 0.700
AFrt 0.91 0.9620 1.0000 0.9400
AFrs 0.91 0.9670 0.6900 0.9400
AFtt 0.91 0.9845 1.0000 0.9899
AFts 0.91 0.9950 0.7000 0.9400

Stator current signals (Is) yield anomaly scores that are
entirely below the fault threshold line for demagnetization
cases and partially below it for eccentricity cases, as illus-
trated in Figs. 14 and 15c and d. This outcome aligns with ex-
pectations, as the comparison of the frequency spectra of the
Is signal between healthy and faulty states, shown in Fig. 13e
and f, reveals only minor shifts attributable to the faults. Fur-
thermore, it is noteworthy that, according to Figs. 14 and 15c
and d, the CAE model tends to assign lower anomaly scores
to faulty samples than to healthy ones. This issue is attributed
to the subtle feature shifts caused by faults and the CAE
model’s complexity, which enables it to capture a broad spec-
trum of features, including those not directly indicative of
anomalies. The model’s high complexity, advantageous for
identifying complex patterns in normal data, might also un-
expectedly improve its ability to reconstruct faulty samples.
This is because the model, with its extensive layers and mul-
titude of parameters, can generalize well to data variations
that resemble the healthy samples it was trained on, even
if they are not identical. Consequently, subtle feature shifts
due to faults are not adequately penalized, resulting in lower
anomaly scores for faulty samples. This phenomenon is not
unique to stator current signals; it has also been observed in
other scenarios, such as the FC5 demagnetization case with
air gap flux sensors, as depicted in Fig. 14i–l. Addressing this
issue requires a comprehensive understanding of model com-
plexity and its effects on anomaly detection, which is beyond
the scope of this study.

Stray flux sensors, both radial and tangential components,
demonstrate strong performance by achieving full accuracy
and sensitivity in demagnetization cases, as evidenced in
Fig. 14e–k. In the context of eccentricity faults, the radial
components (SFr5 and SFr10) exhibit effective detection
of dynamic eccentricity (FC1–FC3) test samples, with the
severity levels being distinctly identifiable. However, these
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Figure 13. Power spectral density plots of simulated signals under healthy and faulty states.

signals, particularly SFr10, fail to detect some test samples
associated with static eccentricity (FC4–FC6), as reflected
by the F1 scores (96.92 % for SFr5 and 73 % for SFr10) in
Table 6 and Fig. 15e and f. On the other hand, tangential
component signals (SFt5 and SFt10) achieve full F1 scores,
and the models trained on these signals are sensitive to vary-
ing severity levels of both dynamic and static eccentricities,
as shown in Fig. 15g and h. Nevertheless, based on silhouette
scores, it is observed that radial components offer a superior

separation between healthy and faulty clusters in cases of ec-
centricity faults.

Regarding air gap flux sensors, the anomaly scores related
to demagnetization, as presented in Fig. 14i–l, reveal an in-
ability to detect test samples for FC5, which represents a low-
severity, localized demagnetization affecting all poles. Fur-
thermore, both the radial and tangential components of the air
gap flux sensors positioned at the slot (AFrs and AFts) fail to
detect static eccentricity cases, as indicated in Fig. 15j and l.
However, the tooth sensor, especially its tangential compo-

https://doi.org/10.5194/wes-9-2063-2024 Wind Energ. Sci., 9, 2063–2086, 2024



2078 A. Dibaj et al.: Unsupervised anomaly detection of permanent-magnet offshore wind generators

Figure 14. Anomaly detection results of frequency-domain measurements for demagnetization fault cases: (a) Vsh, (b) Te, (c) Is (single
phase), (d) Is (three phases), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts.
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Figure 15. Anomaly detection results of frequency-domain measurements for static and dynamic eccentricity fault cases: (a) Vsh, (b) Te,
(c) Is (single phase), (d) Is (three phases), (e) SFr5, (f) SFr10, (g) SFt5, (h) SFt10, (i) AFrt, (j) AFrs, (k) AFtt, and (l) AFts.
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nent (AFtt), gives precise results for eccentricity cases that
accurately reflect the severity levels of the faults, as demon-
strated in Fig. 15k.

In summary, CAE models trained on the frequency content
from stray flux sensors at all four top, bottom, and side posi-
tions – tangential components at both 5 mm and 10 mm dis-
tance and radial components at 5 mm distance outside the sta-
tor housing – demonstrate full accuracy and sensitivity in de-
tecting anomalies associated with both demagnetization and
eccentricity faults. Moreover, the radial and tangential com-
ponents of air gap flux sensors located at the tooth are fully
capable of identifying all types of eccentricity anomalies, ac-
curately reflecting their severity levels. These findings high-
light the potential of adopting flux monitoring techniques –
well-established in other industries for their cost-efficient
and easy-to-install sensors – in the fault detection of large
MW offshore wind generators. The utilization of such sen-
sors, especially stray flux sensors enhanced with frequency
information, presents a promising strategy for the condition
monitoring of these systems.

To conclude the discussion section, Table 7 provides a
comprehensive and detailed summary of all anomaly detec-
tion outcomes derived from the previously analyzed signals.
This table outlines the detection accuracy for each fault case,
alongside the sensitivity to fault severity, across both time
and frequency domains. The table is organized such that the
first row associated with each domain presents the detection
accuracy results, while the second row specifies whether the
signal in question is capable of monitoring changes in fault
severity levels. It should be noted that for the purposes of this
table, detection accuracies exceeding 95 % are considered to
constitute acceptable accuracy. This structured presentation
ensures a clear and concise overview of the study’s findings.

4.4 Fault discrimination capability of selected
measurements

This section evaluates the performance of the CAE anomaly
detection model, focusing on its fault discrimination capabil-
ity. The analysis covers models trained on selected signals
from both the time and frequency domains, as discussed in
earlier sections and presented in Table 7. The CAE model,
trained with time-domain signals of three-phase current Is,
achieved perfect accuracy in detecting anomalies and showed
sensitivity to variations in fault severities, as depicted in
Figs. 11d and 12d. In the frequency domain, models trained
with stray flux signals – tangential components both at 5 mm
(SFt5) and 10 mm (SFt10) distance and radial components at
5 mm distance (SFr5) – proved to be more effective in detect-
ing anomalies than others.

The ability of these models to distinguish between two
specific types of faults is assessed by analyzing the recon-
struction errors. This analysis is presented in Fig. 16a–d for
Is, SFt5, SFt10, and SFr5 signals, respectively. While Is sig-
nals allow for perfect differentiation between different fault

cases, there is a noticeable overlap in anomaly score ranges
between eccentricity and demagnetization faults, as shown in
Fig. 16a. This overlap makes establishing a clear separation
boundary challenging between eccentricity and demagneti-
zation, as anomaly scores for FC1 and FC3 demagnetization
faults are lower than those for eccentricity faults. A simi-
lar issue is observed with the tangential stray flux (SFt5 and
SFt10) measurements, as indicated in Fig. 16b and c. How-
ever, the CAE model trained with radial stray flux (SFr5)
measurements demonstrates a clear ability to differentiate
between the two fault types based on their anomaly scores,
as shown in Fig. 16c.

These findings indicate that radial stray flux measure-
ments, taken from 5 mm outside the stator housing, not only
accurately detect anomalies and assess fault severity but also
effectively distinguish between eccentricity and demagneti-
zation faults in PMSG. Further exploration of fault classifi-
cation and diagnosis will be the focus of future work.

4.5 Comparison with other machine learning models

As a comparison study and to prove the robustness of the
CAE anomaly detection model, this section includes a com-
parison of three distinct models for unsupervised anomaly
detection: one-class support vector machine (SVM), k-
nearest neighbor (KNN) model, and k-means model. All
models are trained on a dataset of 400 normal samples us-
ing time-domain data of three-phase current measurements
(Is) and tested using 100 untrained normal samples and 100
samples under demagnetization and eccentricity fault condi-
tions. The one-class SVM, employing a radial basis function
(RBF) kernel, focuses on defining a decision function that
envelops the region of normal data, treating all other areas
as anomalies. The k-means model, configured with a single
cluster, detects anomalies based on the distance from data
points to the centroid of normal data, with a threshold set at
the 99th percentile of these distances. The KNN model, us-
ing 10 neighbors, identifies anomalies based on the average
distance to the nearest neighbors, applying a threshold at the
99th percentile to define outliers. Each model’s performance
was evaluated based on its F1 score and accuracy, with re-
sults summarized in Table 8 and illustrated through confu-
sion matrices in Fig. 17. The CAE model achieved the high-
est accuracy at 100 %, while the compared traditional models
recorded accuracies between 85 %–90 %. It should be noted
that the performance of these traditional models may dimin-
ish as data complexity increases, highlighting challenges in
scaling these models to more complex or larger datasets. On
the other hand, it should also be noted that the CAE deep
learning model requires extensive fine tuning of numerous
hyperparameters and significantly longer training times.
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Table 7. Summary of anomaly detection results.

Signal Domain Studied fault

Demagnetization Eccentricity

FC1 FC2 FC3 FC4 FC5 FC6 FC1 FC2 FC3 FC4 FC5 FC6

Vsh Time X X X X X X X X X X X X
X x X X X

Freq. X X X X X X X X X X X X
X X X x x

Te Time X X X X X X X X X X X X
X X x x x

Freq. X X X X X X X X X X X X
x x X x x

Is – one phase Time X X X X X X X X X X X X
x x X X X

Freq. x x x x x x X X x X X x
x x x x x

Is – three phases Time X X X X X X X X X X X X
X X X X X

Freq. x x x x x x X x x X X x
x x x x x

SFr5 Time X X X X X X x x x x x x
X X x x x

Freq. X X X X X X X X X X X X
X X X X X

SFt5 Time X X X X X X x x x x x x
X X x x x

Freq. X X X X X X X X X X X X
X X X X X

SFr10 Time X X X X X X x x x x x x
X X x x x

Freq. X X X X X X X X X x x x
X X X X x

SFt10 Time X X X X X X x x x x x x
X X x x x

Freq. X X X X X X X X X X X X
X X X X X

AFrt Time X X X X X X x X X x X X
X X x X X

Freq. X X X X x X X X X X X X
X X X X X

AFtt Time X X X X X X X X X X X X
X X x x X

Freq. X X X X x X X X X X X X
X X X X X

AFrs Time X X X X X X x x X x x X
X X x X X

Freq. X X X X x X X X X x x x
X X X X x

AFts Time X X X X x X x X X x X X
X X X X X

Freq. X X X X x X X X X x x x
X X X X x

Abbreviations: Vsh, induced shaft voltage; Te, electromagnetic torque; Is, stator phase current; SFr5, stray flux sensor – radial component, outside stator
housing with a distance of 5 mm (four signals); SFt5, stray flux sensor – tangential component, outside stator housing with a distance of 5 mm (four signals);
SFr10, stray flux sensor – radial component, outside stator housing with a distance of 10 mm (four signals); SFt10, stray flux sensor – tangential component,
outside stator housing with a distance of 10 mm (four signals); AFrt, air gap flux sensor – radial component at tooth position (four signals); AFtt, air gap flux
sensor – tangential component at tooth position (four signals); AFrs, air gap flux sensor – radial component at slot position (four signals); AFts, air gap flux
sensor – tangential component at slot position (four signals). Demagnetization: FC1, all segments of one pole (10 %); FC2, all segments of one pole (20 %);
FC3, two segments of one pole (40 % and 20 %); FC4, two segments of one pole (80 % and 40 %); FC5, two segments of all poles (20 % and 10 %); FC6, two
segments of all poles (40 % and 20 %). Eccentricity: FC1–FC3, dynamic (5 %–25 %); FC4–FC6, static (5 %–25 %). X: fault condition detectable; x: fault
condition not detectable.
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Figure 16. Anomaly detection results for both eccentricity and demagnetization: (a) time domain Is (three phases), (b) frequency domain
SFt5, (c) frequency domain SFt10, and (d) frequency domain SFr5.

Table 8. Comparison of performance metrics for anomaly detection models.

Metric k-means model KNN One-class SVM CAE (proposed)

F1 score 0.8361 0.8672 0.8878 1.0000
Accuracy (%) 85.5 85.0 88.0 100.0

5 Conclusions

This study has successfully demonstrated the application of
convolutional autoencoder (CAE) models for anomaly detec-
tion in offshore wind permanent-magnet synchronous gener-
ators (PMSGs), addressing demagnetization and eccentric-
ity faults of varying severity. Utilizing a simulation high-

speed PMSG model design based on the specifications of the
NREL 5 MW reference offshore wind turbine, this research
employed unsupervised CAE models trained on healthy-
state simulation data to analyze a range of signals, includ-
ing three-phase currents, induced shaft voltage, electromag-
netic torque, and air gap and stray magnetic flux. While
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Figure 17. Confusion matrices for performance evaluation across different anomaly detection models trained with time-domain data of
three-phase stator current measurements.

some of these measurements, such as phase currents, are typ-
ically included in the supervisory control and data acquisi-
tion (SCADA) systems of wind turbines, they are often at a
low resolution. A key limitation of these downsampled data
is their inability to detect emerging failures in PMSGs as
promptly as necessary. Hence, this study aimed to evaluate
the potential of high-resolution measurements for the early
detection of possible failures in PMSGs. The findings indi-
cate that three-phase currents in the time domain, along with
a combination of top, bottom, and side positions of stray flux
sensors – both tangential and radial components in the fre-
quency domain – significantly enhance anomaly detection
accuracy and fault severity sensitivity. Notably, the radial
components of stray flux sensors proved capable of differ-
entiating between types of eccentricity and demagnetization
faults. The findings suggest that using flux monitoring tech-
niques, with cost-efficient and easily installed stray flux sen-

sors with frequency information, could be an effective strat-
egy for early fault detection in large MW offshore wind gen-
erators. Future work will focus on further validating these
results with experimental data and exploring the impact of
varying measurement resolutions to determine the minimum
resolution necessary for early fault detection, thereby con-
firming the models’ effectiveness in practical scenarios.
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