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Abstract. Wake steering represents a viable solution to mitigate the wake effect within a wind farm. New
research that considers the effect of the control strategy within the layout optimization is emerging, adopting a
co-design approach. This study estimates the potential of this technique within the layout optimization for a wide
range of realistic conditions. To capture the benefits of such methods, a genetic algorithm tailored to the layout
optimization problem has been developed in this work; hence this is referred to as a layout optimization genetic
algorithm (LO-GA). The crossover phase is designed to recognize and exploit the differences and the similarities
between parent layouts, whereas the randomness of the mutation is limited to improve the exploration of the
design space. New relations have been introduced to calculate the geometric yaw angles based on the reciprocal
positions between the turbines. For a base case of 16 turbines located at the Hollandse Kust Noord site, a gain
in the annual energy production (AEP) between 0.3% and 0.4% is obtained when the co-design approach is
adopted. This increases up to 0.6% for larger farms, saturating after 25 turbines. However, the benefit of the
co-design decreases in the case of low power densities or if the wind resource is highly unidirectional. On the
other hand, in the case that wake steering is not applied during the operation of the farm, a decrease in the
AEP up to 0.6% is registered for a layout optimized with the co-design method. To prevent the risk related to
future decisions on the control strategy, a multi-objective co-design approach is proposed. This is based on the
simultaneous optimization of the layout for a scenario in which wake steering is applied versus a case where
wake steering is not adopted during the operation of the farm. We have concluded that the solutions obtained
with this method ensure an AEP gain higher than 0.3% for a 16-turbine farm while limiting the loss to below
0.1% in the case that wake steering is not applied. However, these AEP gains are affected by the size of the
wind direction bins adopted in the simulations, enhancing the necessity of taking into account the wind direction
errors and the yaw actuation constraints for a realistic evaluation of the co-design approach.

1 Introduction

The mitigation of the wake interaction between wind turbines
represents one of the major challenges for the design and the
operation of wind farms (Meyers et al., 2022). Higher power
generation and load reduction can be achieved by minimiz-
ing the wake effect, increasing the revenues associated with
the electricity production while extending the lifetime of the

farm (Cassamo, 2022). The rapid development of offshore
wind energy has demonstrated the necessity of constraining
a high number of turbines in limited areas, increasing the im-
pact of these effects (Pettersen et al., 2023). Therefore, inno-
vative solutions are required to address the wake interactions
in order to extract the topmost value from a wind farm.

The minimization of the wake losses is generally ad-
dressed by appropriately selecting the positions of the tur-
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bines within the available surface (Mosetti et al., 1994). This
design phase is usually referred to as the wind farm lay-
out optimization problem (WFLOP) and aims to maximize
one or multiple objectives while satisfying various types of
constraints, e.g., geographical restrictions or minimum spac-
ing (Feng and Shen, 2015). Different implementations of the
WFLOP can be distinguished depending on how the posi-
tions of the turbines are related to the optimization variables.
Specifically, they can be parameterized through a limited
number of variables by introducing regular layouts, where
periodic patterns are repeated throughout the farm. Other-
wise, the positions of the turbines can be identified by dis-
crete or continuous coordinates, depending on the require-
ments of the resolution of the design space. Therefore, the
WFLOP can assume different qualities, with the choice of-
ten depending on the trade-off between the required accuracy
and the computational cost, usually determined by the size of
the farm and the level of fidelity of the models adopted to cal-
culate the wake interactions. Depending on the purpose of the
study, different objectives can be considered for the WFLOP.
However, current methods mainly focus on the maximization
of the annual energy production (AEP) or the minimization
of the levelized cost of energy (LCOE) (Tao et al., 2020).

Wind farm control represents another viable solution for
mitigating the wake effects during the operation of the plant,
based on the performance optimization of the entire farm
considered one entity instead of a summation of individu-
ally optimized turbines (van Wingerden et al., 2020). Relying
on various concepts, different wind farm control techniques
have been developed in the recent years (Meyers et al., 2022).
Among these approaches, wake steering has been demon-
strated to significantly improve the power production of a
wind farm, deviating the wakes from the downstream tur-
bines by actuating yaw control (Doekemeijer et al., 2021).

The design phase of a wind farm is often not influenced
by the wind farm control technique, which is only consid-
ered during the operation of the plant (Stanley et al., 2023).
However, different studies have proved that taking into ac-
count the wind farm control strategy already during the de-
sign stage could lead to significant improvements in the per-
formance, especially within the WFLOP. This is usually re-
ferred to as the co-design approach, in contrast to the tra-
ditional sequential method in which design and operation
phases constitute two separate blocks that are optimized in-
dividually (Fleming et al., 2016).

The co-design approach is included in the WFLOP by
adapting the control variables during the computation of the
objective function, e.g., the axial induction factor for static
induction control or yaw angles for wake steering (Stanley
et al., 2023). Aiming to optimize the wind farm layout con-
sidering its entire lifetime, the optimal control variables have
to be determined for each possible case experienced by the
farm, i.e., different combinations of wind speeds and direc-
tions. However, this leads to an optimization problem charac-
terized by an extremely high number of variables, requiring

expensive computational resources in terms of core numbers
and/or simulation time (Fleming et al., 2016).

Various solutions have been introduced to tackle the “curse
of dimensionality” while capturing the benefits of the co-
design approach. Fleming et al. (2016) and Yin et al. (2023a)
have decoupled the optimization problem; i.e., the control
variables are optimized for an initial layout, and then these
values are assumed within the WFLOP. A nested approach
has been proposed by Pedersen and Larsen (2020), who have
iterated for each step the calculation of the optimal coordi-
nates followed by the optimization of the control variables.
Another nested method has been adopted by Chen et al.
(2022), decomposing the WFLOP for different wind scenar-
ios and constraining the same turbines’ positions through a
coordination problem. Another possible strategy consists in
the use of regular layouts to reduce the number of variables
related to the WFLOP without affecting those related to the
control optimization (Hou et al., 2017). This approach can be
followed by a position refinement, as implemented by Tang
et al. (2022). Alternatively, the number of variables can be
diminished by limiting the simulations to one representative
wind speed value for each wind direction (Gebraad et al.,
2017; Song et al., 2023). Machine learning surrogate models
are also implemented to fasten the computation of the objec-
tive function or to improve the exploration of the highly di-
mensional design space (Song et al., 2023; Yin et al., 2023b).

Recently, a novel approach has been introduced by Stan-
ley et al. (2023), where analytical relations are used to ob-
tain the optimal control variables within the AEP calculation,
avoiding an expensive nested optimization. Specifically, this
study focuses on the wake steering technique, and the yaw
angle of each turbine is determined for each flow case based
on the position of the downstream turbines; hence this ap-
proach is referred to as geometric yaw. This approximation
of the optimal yaw angles has also been implemented in the
open-source software FLORIS (National Renewable Energy
Laboratory, 2024). In the study of Stanley et al. (2023), this
method enables the integration of the wake steering within
the WFLOP, increasing the AEP up to 0.8% with respect
to the traditional sequential approach. However, this value
refers to a rather specific farm consisting of 16 wind tur-
bines simulated in a site characterized by a Gaussian hill
spatially varying inflow. Moreover, high power density and
low minimum-distance spacing between turbines have been
adopted. As mentioned by Stanley et al. (2023), these con-
ditions boost the benefits of the co-design approach, com-
ing close to the maximum improvement achievable with the
proposed method. On the other hand, the geometric yaw re-
lation introduced by Stanley et al. (2023) is based on a lim-
ited number of variables, enabling a straightforward interpre-
tation and implementation. Therefore, there is a significant
margin for improvement that could enhance the advantage
of the co-design approach for wake steering. These consid-
erations demonstrate the necessity to understand the real po-
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tential of the geometric yaw method within the WFLOP for
more realistic conditions.

A crucial aspect of the WFLOP is the choice of the opti-
mization algorithm to extract the optimal positions of the tur-
bines. The literature lacks full agreement on the most appro-
priate optimization algorithm, and both gradient-based (GB)
and gradient-free (GF) techniques are adopted to solve the
WFLOP (Thomas et al., 2023). The non-convexity of the
WFLOP challenges conventional GB methods in reaching
the global optimum, requiring multiple runs from a variety
of starting conditions (Guirguis et al., 2016). An attempt to
reduce the multi-modality of the problem has been made by
Thomas et al. (2022), who introduced a technique named
wake expansion continuation, based on the gradual reduc-
tion in the wake diameter during each iteration. Moreover,
GB methods cannot guarantee high performance with black-
box objective functions, which would require the compu-
tationally expensive finite differences for the calculation of
the gradient (Martins and Ning, 2022). On the other hand,
GF approaches such as a genetic algorithm (GA) and parti-
cle swarm optimization (PSO) are usually favorable in the
case of a design space characterized by many local optima.
However, these methods could lead to a higher number of
function calls than GB and tend not to scale effectively with
a high number of variables (Rios and Sahinidis, 2013). The
sparse nonlinear optimizer (SNOPT) (Gill et al., 2005) is of-
ten adopted for the WFLOP, and it has been used by Stan-
ley et al. (2023) to test the co-design approach using the
geometric yaw relation. However, the study from Thomas
et al. (2023) compared eight promising optimization algo-
rithms, including SNOPT, and concluded that the best perfor-
mance is achieved by a discrete exploration-based optimiza-
tion (DEBO) method, which combines a greedy initialization
and discrete refinement of the solution, developed specifi-
cally for the WFLOP.

The popularity of a GA to solve the WFLOP is due to its
ability to explore the design space with a high degree of the
solutions’ variety. However, as the number of turbines in-
creases, the capability of convergence is seriously affected.
This is demonstrated in Fig. 1, which shows the results of
a basic implementation of the GA using the open-source
Python library PyGad (Gad, 2023). In this figure, the case
where a regular layout is used to create an initial population
is compared to a random initialization of the optimization
variables. It can be observed that in the former case the GA
is not able to further improve the initial layout, whereas in
the latter the GA cannot converge to a solution better than
a regular layout. This behavior is related to the excessive
randomness that characterizes the exploration of the design
space. Therefore, this study aims to exploit the ability of the
GA to explore a non-convex design space while improving
its convergence ability by capturing the physical meaning of
the optimization variables. This is achieved by developing a
novel method named the layout optimization genetic algo-

Figure 1. WFLOP using PyGad GA: comparison between the use
of a random initial population and a population generated from a
regular layout. The solid lines represent the median AEP increase
with respect to the regular layout, whereas the area refers to the
range between the 25th and 75th percentiles, with that being the
results of multiple simulations of the same case.

rithm (LO-GA), where the selection, crossover and mutation
phases are designed specifically for the WFLOP.

The contribution of this work is fourfold:

– New geometric yaw relations are formulated to improve
the capability of approximating the optimal yaw angles.

– The effectiveness of the co-design approach is tested for
different power densities, farm sizes and site types to
understand the potential of this method in realistic con-
ditions.

– The impact of not applying wake steering for a layout
optimized using the co-design method is quantified, and
a multi-objective co-design approach is investigated.

– A tailored genetic algorithm for the WFLOP is devel-
oped, referred to as the LO-GA.

The remainder of the paper is structured as follows. In
Sects. 2–5 the methodology adopted in this work is ex-
plained, describing the LO-GA and the geometric yaw rela-
tions developed in this study, as well as introducing the case
studies that have been selected. Then, Sect. 6 includes the
results that quantify the potential of the co-design approach.
These results are then discussed in Sect. 7, whereas Sect. 8
draws the conclusions and includes the recommendations for
future work.

2 Co-design within wind farm layout optimization

This section explains how the wind farm layout optimization
can be solved by adopting a co-design approach. First, the
WFLOP is defined by specifying objectives and constraints
considered in this study. Second, the methodology adopted to
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apply and evaluate the co-design concept within the WFLOP
is described.

2.1 Wind farm layout optimization problem

The WFLOP consists in optimizing the position of the tur-
bines within a pre-defined area. In this study, the objective
of the WFLOP is the maximization of the AEP, calculated
as shown in Eq. (1) by summing the power (Pθ,u) generated
by the farm for every wind direction (θ ) and speed (u) multi-
plied by the correspondent probability of occurrence (ρθ,u).
This is referred as the objective or fitness function. The opti-
mization variables are identified by the Cartesian coordinates
of the turbines (x,y); hence the total number of variables is
equal to 2nwt, with nwt indicating the total number of tur-
bines. The turbines’ positions are restricted to a rectangu-
lar area, as expressed in Eq. (2). Moreover, a spacing con-
straint is considered to guarantee a minimum distance (dmin)
between the turbines, formulated in Eq. (3).

max
x,y

AEP(x,y)=max
x,y

8760hyr−1
·

Nθ∑
θ=0

Nu∑
u=0

ρθ,u ·Pθ,u(x,y) (1)

xi ∈ [xmin,xmax] , yi ∈
[
ymin,ymax

]
∀i,j ∈ nwt (2)√(

xi − xj
)2
+
(
yi − yj

)2
≥ dmin ∀i,j ∈ nwt s.t. i 6= j (3)

The AEP of the wind farm is computed using PyWake
(Pedersen et al., 2023), an open-source tool developed by the
Technical University of Denmark (DTU) which simulates the
wake interaction between the turbines of a wind farm. The
Bastankhah Gaussian deficit (Bastankhah and Porté-Agel,
2014) model is selected in this study to calculate the wake
deficit, whereas the wake deflection is calculated according
to Jiménez et al. (2010).

2.2 Co-design approach

Within the WFLOP, the co-design approach consists in con-
sidering the control strategy of the wind farm while comput-
ing the objective function. In this case, the wind farm con-
trol strategy is limited to wake steering, whereas the objec-
tive consists in the AEP calculation. Yaw angles are therefore
specified for each wind speed and direction bin while com-
puting the AEP through the PyWake function.

In this study, the improvement obtained through the co-
design approach is determined as follows. First, the wind
farm layout optimization is performed for both cases, namely
neglecting and considering wake steering through the geo-
metric yaw relations, obtaining two different layouts. The
same starting layout is adopted to avoid the influence of
different initial conditions. Second, an accurate yaw opti-
mization is computed for both layouts, determining the op-
timal angles for each wind speed and direction. Specifically,
the serial-refine yaw optimization method is adopted in this
study for this phase (Fleming et al., 2022). Then, the AEP is

Table 1. Hyperparameters of the LO-GA.

Hyperparameter name Symbol

Number of generations ngen
Size of the population npop
Number of parent solutions to keep nkeep
Percentage of selection ps
Percentage of mutation pm
Step of mutation sm
Distance limit dlim

calculated for both layouts considering the optimal yaw an-
gles obtained in this last step. These AEP values are finally
compared, expecting the wind farm layout obtained through
the co-design approach to outperform the layout that resulted
from the traditional method.

3 Layout optimization genetic algorithm (LO-GA)

A genetic algorithm named the LO-GA tailored to the
WFLOP is developed in this work, where new methods are
introduced specifically for this optimization problem. These
are explained in the next sections following the main blocks
that constitute the classic implementation of a GA, namely
initialization of the population, selection, crossover and mu-
tation. Table 1 includes all the hyperparameters required by
the algorithm, which will be described in the next sections
in detail along with their tuning phase. Specifically, some of
these hyperparameters allow for different values depending
on the generation number, enabling dynamic selection and
dynamic mutation (Hassanat et al., 2019). An overview of the
LO-GA is included in Fig. 2, where the main blocks, i.e., se-
lection, crossover and mutation, are highlighted.

3.1 Initial population

The starting point of a GA consists in providing an initial
population of solutions that enables the algorithm to con-
verge towards an optimal solution. Therefore, the initial pop-
ulation has to be sufficiently close to the optimal solution
while preserving the randomness required to further improve
such a starting solution. Specifically, an initial population
with a low degree of randomness would achieve only lim-
ited improvements, whereas an excessive degree of random-
ness would require an unfeasible number of the generations
for the algorithm to converge. In this study, a regular lay-
out (xreg,yreg) is generated based on the number of turbines
(nwt), where these occupy the positions of a squared grid.
Such a layout is duplicated nwt times in order to form the
population matrices (Xreg,Yreg). These matrices will be the
base unit for the LO-GA iterations, where different solutions
are contained along the first dimension (axis 0), whereas the
coordinates of each solution are present in the second dimen-
sion (axis 1). To include the randomness within the initial
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Figure 2. Layout optimization genetic algorithm (LO-GA).

population a mutation step is applied, obtaining the parent
population matrices (Xpar,Ypar). The mutation phase is de-
scribed in detail in Sect. 3.4, where it is mentioned that it
requires the fitness value of the solutions, i.e., the AEP in
this study. Specifically, the fitness value of each individual
turbine is needed. Such a calculation is enabled by the Py-
Wake method for AEP calculation, and it is performed for
Xreg,Yreg. These values are stored in the fitness matrix (Freg),
which has the same structure of Xreg,Yreg. Lastly, the fit-
ness values are computed for the parent population matrices

(Xpar,Ypar) and stored in the parent fitness matrix (Fpar). In
conclusion, Xpar,Ypar and Fpar represent the starting point
for the LO-GA iterations described in the following sections.

3.2 Selection

The selection phase developed in the LO-GA is divided into
two different steps. First, a pre-selection is applied, where
the (1−ps) · npop solutions characterized by the lowest fit-
ness are discarded. The fitness of the solutions is expressed
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through the fitness parent vector (f par), obtained by the sum
of the AEP of all the turbines for each layout in the popula-
tion. After this pre-selection phase, the tournament technique
is adopted to extract the best solutions while ensuring a suf-
ficient degree of randomness (Miller and Goldberg, 1995).
Therefore, the outputs of this phase are new parent popula-
tion matrices (Xpar,Ypar) with the selected solution, along
with their corresponding fitness parent matrix (Fpar).

3.3 Crossover

The purpose of the crossover phase is to generate children
solutions from the parent population, aiming to capture and
combine the optimal characteristics of each parent. This rep-
resents the main difference with respect to the traditional ge-
netic algorithms, where the crossover is determined by the
random combination of the parent solutions. On the other
hand, the crossover phase integrated in the LO-GA relies on
the fitness value of every individual turbine to prevent ex-
cessive randomness during the design space exploration. The
first step consists in dividing the parent population into two
different parent matrices, i.e., obtaining Xpar,1,Ypar,1 and
Xpar,2,Ypar,2, starting from Xpar,Ypar. Meanwhile, the val-
ues of the parent fitness matrices Fpar,1,Fpar,2 are inherited
from Fpar since the parent solutions have not been modified
yet. Then, each solution contained in Xpar,1,Ypar,1 is cou-
pled with a solution of Xpar,2,Ypar,2 and the actual crossover
phase starts. This is applied to each couple of solutions and is
divided into two different steps, namely the turbine associa-
tion and the linear/random crossover, where for every couple
of parent solutions two different children solutions are gen-
erated. First, the turbine association aims to understand the
similarities of the two coupled layouts, labeling each turbine
as paired or outliers. In the case that a turbine from the first
layout is positioned within a distance lower than dlim from a
turbine of the second layout, these two turbines are labeled
as paired. The condition that a turbine of the first layout can
be paired with a maximum of one turbine of the second lay-
out and vice versa is enforced. Otherwise, the turbines are
labeled as outliers. An example of this process of turbine as-
sociation is depicted in Fig. 3.

The second step consists in applying two novel techniques
developed specifically for this optimization problem: “linear
crossover” between paired turbines and “random crossover”
between the outliers. The former technique aims to com-
bine the positions of the two paired turbines, identified by
(xp,1,yp,1) and (xp,2,yp,2), in order to generate two differ-
ent children turbines, identified by (xc,1,yc,1) and (xc,2,yc,2),
contained in the first and in the second children layouts and
positioned along the line that connects the parent turbines.
Specifically, (xc,1,yc,1) is placed within the parent turbines,
whereas (xc,2,yc,2) is on the side of the parent turbine charac-
terized by the highest fitness value. Indicating with f1 and f2
the fitness values of the two paired parent turbines extracted
from Fpar,1,Fpar,2, the coordinates of the children turbines

are calculated as shown in Eqs. (4)–(6). Therefore, the chil-
dren turbines move closer to the parent turbine characterized
by the higher fitness. This process is shown through an ex-
ample in Fig. 3. Lastly, to complete the children population,
a random crossover is applied between the outlier turbines.
This means that the remaining turbines for each children lay-
outs are selected randomly among the outlier turbines of the
parent coupled layouts.{
xc,1 =

f1
f1+f2

· xp,1+
f2

f1+f2
· xp,2

yc,1 =
f1

f1+f2
· yp,1+

f2
f1+f2

· yp,2
(4){

xc,2 = xp,1+ (xp,1− xp,2) · f1
f1+f2

yc,2 = yp,1+ (yp,1− yp,2) · f1
f1+f2

if f1 ≥ f2 (5){
xc,2 = xp,2+ (xp,2− xp,1) · f2

f1+f2

yc,2 = yp,2+ (yp,2− yp,1) · f2
f1+f2

if f2 > f1 (6)

3.4 Mutation

After the crossover phase the children solutions are com-
pacted into the children population matrices Xchild,Ychild,
which will be mutated to foster the diversity and the ran-
domness of the solutions. Specifically, adaptive mutation is
applied in this study while keeping the physical meaning of
the design variables, i.e., spatial coordinates (Marsili Libelli
and Alba, 2000). However, to apply an adaptive mutation the
fitness values of the children solutions have to be calculated;
hence the fitness children matrix (Fchild) is computed. Specif-
ically, the concept of adaptive mutation is applied within each
individual turbine of the children layouts through assigning
a different probability of mutation to every turbine. There-
fore, for every solution, the turbines are sorted based on their
fitness, and a value increasing linearly from 0 (best turbine)
to max

[
nwt ·pm,1

]
(worst turbine) is assigned to every tur-

bine. Based on this probability of mutation, a Boolean ma-
trix (Mx,y) is created to determine which of the turbines of
Xchild,Ychild will mutate. Simultaneously, the matrices con-
taining the step of mutation (Sm) and direction of mutation
(2m) are created by generating random values within [0, sm]
and [0,360°], respectively. These values differ for each tur-
bine in the children population matrices. Then, Eq. (7) is ap-
plied to perform the mutation of the children population. The
presence of Mx,y ensures that only a limited number of tur-
bines will mutate irrespective of the values of Sm and 2m.
This type of mutation limits the degree of randomness but
ensures that the new mutated solutions will not differ signifi-
cantly from the optimal layout, obtaining faster convergence.
An example of this mutation process is depicted in Fig. 4.{

Xchild = Xchild+Mx,y ·Sm · cos(2m)
Ychild = Ychild+Mx,y ·Sm · sin(2m) (7)

The last step of the LO-GA is to compute the fitness cal-
culation of the children population after mutation, obtaining
a new fitness matrix (Fchild), which will be the input for the
next generation along with Xchild,Ychild.
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Figure 3. (a) Example of the turbine association phase. (b) Linear-crossover technique for a limited number of turbines, highlighted by the
yellow area. This example does not represent the optimized layout used in this study, and its only purpose is to clarify the process adopted to
apply these techniques.

Figure 4. Example of mutation. This example does not represent
the optimized layout used in this study, and its only purpose is to
clarify the process adopted to apply this technique.

3.5 Hyperparameter tuning

To ensure an effective usage of the GA described in the pre-
vious paragraphs, the hyperparameters mentioned in Table 1
have to be properly tuned. The tuning phase presented in
this study focuses only on the values of ps, pm, sm and dlim,
whereas nkeep is assumed equal to 3 for each simulation. On
the other hand, ngen and npop are chosen depending on the
specific analysis since a saturation behavior is expected in-
stead of finding optimal values.

The concepts of dynamic mutation and selection are
tested, which consist in changing the hyperparameters de-
pending on the generation number (Hassanat et al., 2019). In
this case, the purpose is to foster the mutation in the earliest
generations to maximize the randomness and adopt less ag-
gressive mutation in the last generations, where only a few
refinements are intended. Specifically, the maximum and the
minimum values are specified for each parameter to tune,
and a linear increase/decrease is adopted to obtain the val-
ues for each generation. Therefore, different combinations of
hyperparameters are tested in order to find the optimal values

Table 2. Optimal values for the hyperparameters of the GA. Two
numbers are specified, referring to the first and the last generation,
respectively. These values are adopted in the simulations performed
in this study.

Hyperparameter Optimal values

ps 0.7→ 0.7
pm 0.4→ 0.05
sm 3D→ 0.2D
dlim 2D

for this analysis. The WFLOP described in the base case in
Sect. 5.2 is adopted at this stage.

The results of this tuning phase are depicted in Fig. 5,
where the violin plots of different cases specified on the
x axis are shown. To limit the computational resources of
this phase, when a hyperparameter is tested, the others are
kept constant and equal to a pre-defined value. The reason
why violin plots are included instead of individual values is
related to the random nature of the LO-GA, which requires a
statistical interpretation of the results. The values present in
the violin plot refer to the percentage difference in the AEP
with respect to the average value of all the simulations per-
formed in this hyperparameter-tuning analysis. The optimal
values are summarized in Table 2 and are adopted in the other
simulations performed in this study. It can be observed that
the dynamic mutation is favorable for the performance of the
LO-GA, whereas a constant value of a percentage of a selec-
tion for all the generations is more effective.

3.6 Multi-objective LO-GA

A multi-objective version of the LO-GA described in the pre-
vious sections has been developed in this work to enable
a wider evaluation of the co-design approach. Such an im-
plementation requires some modifications to be applied to
a multi-objective optimization problem, and it is based on
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Figure 5. Violin plots of the hyperparameter tuning. A total of 10 simulations of the same case are performed to create each plot. Unless
explicitly mentioned in the x axis of each plot, the following hyperparameters are adopted: ps = 0.3→ 0.9, pm = 0.3→ 0.1, sm = 2D→
0.5D and dlim = 2D. The remaining hyperparameters are set as follows: npop = 100, ngen = 100 and nkeep = 3.

the concepts of non-domination rank and crowding distance
(Deb et al., 2002). As described in the previous sections, the
fitness evaluation of every individual turbine is required for
the crossover and the mutation phases. Specifically, these val-
ues are used to apply the linear-crossover technique to deter-
mine the probability of mutation, requiring the turbines to be
ranked based on their fitness value. However, in the case of a
multi-objective optimization problem, the ranking of the tur-
bines is not unambiguous. Therefore, to avoid the ambiguity
introduced by the multiple objectives, the fitness of the tur-
bines is determined by the 1− norm between the normalized
fitness values of the different objectives. This allows for pre-
serving the structure of the crossover and mutation phases
described in Sect. 3.3 and 3.4.

4 Geometric yaw relations

This section describes the novel geometric yaw relations de-
veloped in this study and adopted for the co-design simu-
lations. First, the dependence on the main variables is dis-
cussed and new relations are introduced, comparing these
approaches to the work of Stanley et al. (2023). Second, vari-
ous effects that impact the optimal yaw angle of a turbine are
examined and approximated through a new expression that
ensures a higher accuracy in optimal yaw predictions.

4.1 Dependence on geometric variables

Stanley et al. (2023) have introduced a geometric yaw rela-
tion to approximate the optimal yaw angle of a turbine based
on the streamwise (dx) and the cross-stream (dy) distance to
its nearest downstream waked turbine. This relation is linear
with respect to dx, whereas the influence of dy is only limited

to the sign of the geometric yaw value, as shown in Eq. (8)
(Stanley et al., 2023).

γgeom = sign(dy) · 30° ·
[

1−
1

25
dx
D

]
(8)

However, it can be detected from the study of Stanley et al.
(2023) that a decreasing trend is present between the abso-
lute value of dy and the optimal yaw angles. Therefore, two
novel relations are introduced to capture this behavior, in-
cluded in Eqs. (9) and (10), respectively. The first relation
extends the linear behavior of dx present in Eq. (8) to dy
and is characterized by three coefficients (γmax,mx,my) that
have to be properly tuned. This relation is considered the lin-
ear approach in this study. On the other hand, Eq. (10) is
based on exponential relations in order to guarantee higher
flexibility in the shape of the curves, ensured by two more
coefficients to tune. Therefore, this novel expression is re-
ferred as the exponential approach and is characterized by
five coefficients (γmax,px,py,qx,qy).

γgeom = sign(dy) ·max
[
γmax−mx

dx
D
−my

|dy|
D
,0
]

(9)

γgeom = sign(dy) · γmax ·
px + 1

px + exp
(

1
qx

dx
D

)
·

py + 1

py + exp
(

1
qy

|dy|
D

) (10)

These approaches described in Eq. (9) and (10) focus only
on the position of the nearest downstream waked turbine for
the calculation of the geometric yaw, whose identification
is performed as described by Stanley et al. (2023). How-
ever, it is preceded by a filtering phase based on the effective
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wind speed value assuming that wake steering is not applied.
Specifically, the effective wind speed (wseff) is computed for
each wind turbine of the farm using the appropriate PyWake
function. Then, the turbines characterized by wseff > wsrated
are filtered out from the identification of the nearest waked
turbine. This stage is introduced to avoid a loss in power
in the upstream turbine when an increase in the wind speed
experienced by the downstream turbine does not affect its
power generation; i.e., it is operating in the above-rated re-
gion. This step is referred as the wind speed filtering phase
and slightly increases the computational time of the process.
However, a gain in the accuracy of the geometric yaw ap-
proximation is expected.

4.2 Implementing corrections to the geometric yaw

The purpose of this section is to apply different corrections to
the geometric yaw relation, aiming to improve the approxi-
mation of the optimal yaw angle. The novelty of this method
is based on considering multiple waked turbines instead of
limiting the relation to the nearest turbine. This new approach
is referred as an exponential corrected relation since it is
based on the Eq. (10). The following corrective/filtering steps
applied in this approach are summarized in the following list
and explained in detail in the next paragraphs:

1. wind speed filtering

2. initial optimal yaw approximation

3. optimal yaw correction

4. effective wind speed correction.

The wind-speed-filtering phase consists in the calculation
of the effective wind speed assuming no wind farm control
strategy. However, in this case filtered out from the iden-
tification of the waked turbines are not only the turbines
characterized by wseff > wsrated but also those presenting
wseff < wscut-in− δcut-in. In this study, δcut-in = 2ms−1 is as-
sumed. The reasoning behind this additional correction is to
avoid the penalization of the upstream turbine caused by the
yaw misalignment if the gain in wind speed for the down-
stream turbine is not sufficient to achieve a value higher than
wscut-in.

After the wind speed filtering, an initial approximation
of the optimal yaw angle (γinitial) is calculated based on
Eq. (10). Unlike the previous approaches focused only on the
nearest waked turbine, the geometric yaw is calculated con-
sidering every downstream waked turbine individually, iden-
tified through the variables dx and dy. Among these multiple
geometric yaw values, γinitial is given by the highest of these
values. Even though in many cases this value is determined
by the nearest downstream waked turbine, there are some
situations when such a turbine does not coincide with the
one that influences the optimal yaw of the upstream turbine
the most. This is explained through an example depicted in

Figure 6. Example introduced to explain the reasoning behind the
initial optimal yaw approximation. The influence on the optimal
yaw angle of the upstream turbine is studied depending on the po-
sitions of two downstream turbines. The optimal yaw angle of tur-
bine 1 is studied in relation to the position of turbine 3. (a) Different
positions considered in this example. (b) Optimal yaw angle of tur-
bine 1 for two cases: neglecting the presence of turbine 3 (dashed
line) and considering different positions (identified by dy) of tur-
bine 3 (solid line).

Fig. 6. In this illustration, three turbines are considered, and
the optimal yaw angle of the first turbine is studied in relation
to the position of the third turbine. These optimal yaw angles
depicted in the figure on the right are calculated through the
serial-refine method; hence they represent the target for the
geometric yaw relation. The dashed line represents the op-
timal yaw angle of the first turbine in the case that only the
second turbine is present, i.e., the nearest turbine. It can be
observed that for high values of dy, the third turbine does
not influence the optimal yaw angle of the first turbine. How-
ever, in the case of a better alignment with the first turbine,
i.e., dy ≈ 0, the third turbine has an impact on the value even
though it is not the nearest turbine. In summary, this initial
yaw approximation identifies the downstream waked turbine
that has the highest impact on the optimal yaw angle and cal-
culates the geometric yaw based on the dx and dy of this
turbine.

The initial yaw approximation is then corrected consider-
ing the influence of the other downstream waked turbines.
The aim of this correction is to avoid the wake of the up-
stream turbine being steered towards other downstream tur-
bines after the initial yaw approximation. Suppose that the
most impactful downstream turbine on the optimal yaw angle
of the upstream turbine is characterized by sign(dy)> 0. The
initial yaw approximation causes a steering of the wake to-
wards the region such that sign(dy)< 0. Therefore, only the
turbines characterized by a sign(dy) opposite to the sign(dy)
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Figure 7. Example introduced to explain the reasoning behind the
optimal yaw correction. The influence on the optimal yaw angle
of the upstream turbine is studied depending on the positions of
two downstream turbines. The optimal yaw angle of turbine 1 is
studied in relation to the position of turbine 3. (a) Different positions
considered in this example. (b) Optimal yaw angle of turbine 1 for
two cases: neglecting the presence of turbine 3 (dashed line) and
considering different positions (identified by dy) of turbine 3 (solid
line).

of the turbine that has determined the initial yaw approxima-
tion are relevant for this correction. Similarly to the previous
case, an example is introduced to clarify the need for this
correction, illustrated in Fig. 7. It can be observed that the
third turbine has no influence on the optimal yaw angle of
the first turbine in the case of dy� 0. However, as the dy of
the third turbine increases, the optimal yaw angle decreases
to avoid the wake being steered toward this turbine. How-
ever, if dy ≈ 0, it becomes more convenient to increase the
magnitude of the yaw of the first turbine in order to steer the
wake away from both turbines.

This situation is tackled as follows. First, the wake de-
flection caused by γinitial is calculated using the approach of
Jiménez et al. (2010). Therefore, the local change in wind
direction experienced by the downstream waked turbine is
calculated through Eq. (11) (Jiménez et al., 2010). CT and k
refer to the thrust coefficient and the wake expansion coeffi-
cient, respectively. The former is extracted from the turbine
data, depending on the free-stream wind speed, whereas the
latter is assumed equal to 0.1.

δwd =−
CT

2
sin(γinitial) · cos2(γinitial)

1+ k · dx
D

(11)

The values of dx and dy of the turbine of interest, i.e., such
that sign(dy) is opposite to the value from which γinitial is cal-
culated, are then modified through a rotation of δwd. There-

fore, the new values of dxδwd and dyδwd are obtained, describ-
ing the position of the relevant downstream waked turbines
based on the direction of the deflected wake. Subsequently,
the method used to calculate γinitial is repeated using dxδwd

and dyδwd as input for the exponential relation of Eq. (10).
Therefore, a new geometric yaw value for the upstream tur-
bine is obtained, considered the geometric yaw correction
(γcorr) and used to improve the initial approximation as de-
scribed in Eq. (12). The coefficient αcorr is properly tuned to
weight this yaw correction accordingly.

γgeom = γinitial+αcorr · γcorr (12)

Lastly, a wind speed correction factor (fws) is multiplied
with the geometric yaw to penalize high values of γgeom in
the case that the deviation of the effective wind speed from
the free-stream value is limited. The motivation to include
such a correction in the geometric yaw is related to cubic de-
pendence of the generated power with respect to the incident
wind speed. fws is calculated as described in Eq. (13), where
the coefficient αws is part of the tuning process.

fws = 1−αws · exp(wseff−ws) (13)

Table 3 summarizes the geometric yaw relations analyzed
in this study along with their coefficients, which are properly
tuned as described in the next section.

4.3 Tuning of the coefficients

The tuning of the coefficients of the relations introduced in
the previous paragraphs aims to guarantee a precise approx-
imation of the optimal yaw angles. The method adopted for
this tuning phase assumes that the optimal values of the co-
efficients are those that lead to the maximization of the AEP
when the geometric yaw relations are applied. Specifically,
the tuning of the coefficients can be divided into two differ-
ent steps. First, different wind farm layouts are generated to
evaluate the geometric yaw relations. Second, an optimiza-
tion problem is solved to extract the values of the coefficients
that maximize the AEP for the given layouts.

Since in the second step the AEP is calculated for all the
layouts for each evaluation of the objective function, the to-
tal number of layouts has to be limited to avoid excessive
computational requirements. On the other hand, these layouts
have to be chosen in order to prevent the geometric yaw rela-
tions becoming effective only for few specific cases. There-
fore, 20 different layouts are generated through few gener-
ations of the LO-GA. Specifically, the population size and
number of generations are set equal to 100 and 10, respec-
tively, whereas the number of turbines and the power den-
sity are selected randomly in the ranges of 16–72 and 10–
20 W m−2.

After the generation of these layouts, the optimization
problem of tuning the coefficients of geometric yaw rela-
tions is structured as follows. The objective function con-
sists in the average percentage increase in the AEP among
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Table 3. Geometric yaw relations analyzed in this study.

Name Relation Coefficients

Stanley relation γgeom = sign(dy) · 30° ·
[
1− 1

25
dx
D

]
–

Linear relation γgeom = sign(dy) ·max
[
γmax−mx

dx
D
−my

|dy|
D
,0°
]

γmax, mx , my

Exponential relation γgeom = sign(dy) · γmax ·
px+1

px+exp
(

1
qx

dx
D

) · py+1

py+exp
(

1
qy

|dy|
D

) γmax, px , py , qx , qy

Exponential corrected relation γgeom = fws · (γinitial+αcorr · γcorr) γmax, px , py , qx , qy , αcorr, αws

the 20 different layouts when applying the geometric yaw
relation with respect to the case without wake steering. The
optimization variables are the coefficients of the geometric
yaw relations, which are bounded in ranges determined by
the experience based on preliminary simulations. This opti-
mization problem is solved using a basic GA implementation
in PyGad (npop = 50, ngen = 30). The results of this tuning
phase, i.e., the optimal coefficients, are included in Table 4
and adopted during the simulations performed in this study.

Among the various coefficients present in the geometric
yaw relations and included in Table 4, γmax has a clear phys-
ical interpretation since it represents the maximum absolute
value for the yaw angles of the turbines. In this study, γmax
has been tuned targeting the maximization of the AEP with-
out applying any restriction. However, the tuning of γmax
could be constrained to take into account actuation limits
or requirements on the structural loading, since it has been
demonstrated that wake steering can have a negative impact
on some load channels (Shaler et al., 2022).

5 Case study

This section defines the case study adopted in this work to
evaluate the co-design approach for the WFLOP. First, the
wind scenario and the turbines adopted in the simulations are
defined. Second, the base case selected to evaluate the differ-
ent geometric yaw relations is introduced. Lastly, the modi-
fications introduced to the base case to perform a sensitivity
analysis are explained.

5.1 Site and turbines

The wind conditions adopted for the simulations in this study
refer to the Hollandse Kust Noord (HKN) site in the Nether-
lands (Netherlands Enterprise Agency, 2019). The wind rose
is computed assuming a uniform Weibull distribution from
the scale and shape factor of 12 sectors, as shown in Fig. 8.
The turbine type chosen for the simulation is the reference
DTU 10 MW, available in PyWake.

5.2 Base case

The aim of this base case is to evaluate the potential of the
co-design approach in comparison with the study of Stanley

Figure 8. Wind rose of the Hollandse Kust Noord site.

et al. (2023), assuming HKN site conditions. Therefore, a
16-turbine wind farm is adopted, characterized by a power
density of 20 W m−2 and a squared available area. A total
of 36 and 23 bins are used during the simulations for the
wind direction and the wind speed, respectively. Lastly, the
minimum-distance constraint (dmin) is set equal to 2D. This
information is summarized in Table 5.

5.3 Sensitivity analysis

Due to the limited size and the large power density of the
farm studied in the base case, a sensitivity analysis is per-
formed to understand the potential of the co-design approach
for a wider range of conditions. Specifically, different power
density values are tested to match conditions similar to cur-
rent wind farm development projects. This is achieved by
keeping the same number of turbines included in the base
case while extending the available area. On the other hand,
a larger size of wind farms is simulated to investigate the
benefits of this method for future large plants. Therefore,
new simulations are performed, increasing both the number
of turbines and the available area while keeping the power
density equal to 20 W m−2. Lastly, the impact of the site is
analyzed in terms of the distribution of the wind probability
among the different wind sectors. For this purpose, the av-
erage scale and shape factors of the HKN site are assumed,
while the probability of occurrence of each wind direction is
modified. Specifically, this is modeled as a Gaussian distribu-
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Table 4. Tuned coefficients of the geometric yaw relations.

Stanley relation Linear relation Exponential relation Exponential corrected relation

– – γmax 19.788° γmax 20.928° γmax 20.771°
mx 0.424° px 8.146 py 5.069
my 12.019° py 6.320 py 7.474

qx 5.381 qx 6.519
qy 0.346 qy 0.393

αcorr 0.473
αws 0.091

Table 5. Base case.

Wind rose HKN
Turbine DTU 10 MW
Wind speed bins 23
Wind direction bins 36
Minimum-distance constraint 2D
Power density 20 W m−2

Figure 9. Probability of occurrence of different wind directions for
the cases studied in the sensitivity analysis, indicated by different
lines and identified through their standard deviation (SD). HKN val-
ues are included and indicated with the dashed line.

tion, and different values for the standard deviation are used.
Adopting this method, various conditions are obtained, rang-
ing from unidirectional wind roses to omnidirectional cases.
These are depicted in Fig. 9, where the HKN site is included
as well. In general, the same conditions of the base case are
adopted in the sensitivity analysis, unless explicitly specified.

6 Results

This section illustrates the results of the simulations per-
formed in this analysis to evaluate the potential of the co-
design approach for the WFLOP. First, the LO-GA is evalu-
ated in comparison to a general GA implementation. Second,
the geometric yaw relations introduced in this work are as-

Figure 10. Comparison between the LO-GA and PyGad GA to
solve the WFLOP. The solid lines represent the median AEP in-
crease with respect to the regular layout, whereas the area refers to
the range between the 25th and 75th percentiles, with that being the
results of multiple simulations of the same case.

sessed through a preliminary test, and the results obtained in
the base-case simulations are shown. Then, the influence of
the power density, the number of turbines and the site type is
studied through a sensitivity analysis. Lastly, the results con-
cerning a multi-objective implementation of the co-design
approach are shown, and the impact of the wind direction
discretization is investigated.

6.1 Evaluation of the genetic algorithm

The LO-GA is compared to the basic implementation of the
GA in PyGad, introduced in Fig. 1. The results are depicted
in Fig. 10, where it can be observed that the LO-GA out-
performs the PyGad implementation, with it being able to
improve the regular layout from which the population is ini-
tialized.

6.2 Preliminary test on geometric yaw relations

To evaluate the effectiveness of the geometric yaw relations
summarized in Table 3, a preliminary analysis is performed
and the results are depicted in Fig. 11. Specifically, for dif-
ferent farm sizes, the percentage difference in the AEP is cal-
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Figure 11. Preliminary test to evaluate the geometric yaw relations.
The solid lines represent the median values, whereas the area refers
to the range between the 25th and 75th percentiles, with that being
the results of multiple simulations of the same case.

culated between the case when the geometric yaw angles are
applied and the case when wake steering is not considered.
This is also compared with the AEP value obtained from
the yaw angles computed through the serial-refine method
(Fleming et al., 2022), considered the optimal yaw angles
in this study. For each size of the farm, this calculation is
performed on 10 different layouts optimized using the LO-
GA (npop = 100, ngen = 200), assuming a power density of
20 W m−2. It can be observed that the linear and the expo-
nential relation guarantee approximately the same increase
in the AEP, whereas higher values are obtained for the expo-
nential corrected relation. This indicates that the corrections
included in this approach improve the optimal yaw estima-
tion. The results concerning the Stanley relation are not in-
cluded in the figure since significantly lower values of AEP
increase are produced.

6.3 Base case

The results obtained for the base case are included in Fig. 12,
where the procedure explained in Sect. 2.2 is followed,
namely comparing optimized layouts resulting from includ-
ing or neglecting the geometric yaw angles within the ob-
jective function of the WFLOP. In both cases, the optimal
yaw angles are then applied to calculate the actual AEP as-
sociated with the layout. Due to the random nature of the
LO-GA, 100 iterations of each case are performed, obtaining
the distributions shown in the plots. In this case, the hyperpa-
rameters adopted for the layout optimizations are npop = 100
and ngen = 400. It is evident that the relations introduced in
this paper, i.e., linear, exponential and exponential corrected,
outperform the Stanley relation. However, no significant dif-

Figure 12. AEP improvement obtained with the co-design ap-
proach for the WFLOP using different geometric yaw relations. The
distributions of multiple iterations for each case are included, high-
lighting the median value.

ference can be detected among the three new approaches.
Specifically, the higher gains of the exponential corrected
relation observed in Fig. 11 do not guarantee significantly
better performance for the co-design method. Overall, con-
sidering median values, an AEP increase between 0.3% and
0.4% is obtained for this base case.

The improvements in the AEP obtained with the co-design
approach for the WFLOP can be achieved only if wake steer-
ing is applied during the operation of the farm. Therefore, in
the case that wake steering is not adopted, a drop in perfor-
mance is experienced for the layouts optimized using the co-
design method. Assuming no wake steering during the opera-
tion, Fig. 13 illustrates the reduction in the AEP with respect
to layouts optimized with the traditional approach. These re-
sults are generated using the same method and parameters of
Fig. 12. From this analysis it can be concluded that the drop
in performance has the same magnitude and follows the same
trend of the gains shown in Fig. 12.

6.4 Sensitivity analysis

This section presents the results concerning the sensitivity
analysis of the co-design approach in relation to three differ-
ent aspects: power density, farm size and site type.

6.4.1 Power density

The AEP increase obtained through the co-design approach
is dependent on the power density of the wind farm, as high-
lighted by the solid lines in Fig. 14. Specifically, it can be
observed that the benefits of this method diminish for values
below 15 W m−2, representing a threshold after which the
gain stabilizes. These results demonstrate the effectiveness
of the co-design method only for wind farms constrained in
a limited area, i.e., characterized by a higher power density.
For this analysis the optimization hyperparameters are set to
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Figure 13. AEP reduction obtained with the co-design approach for
the WFLOP using different geometric yaw relations in the case that
wake steering is not applied during the operation. The distributions
of multiple iterations for each case are included, highlighting the
median value.

npop = 100 and ngen = 400, and the randomness associated
with the results is handled by computing each case 25 times.
Similarly to the base case, the drop in performance in the
case that wake steering is not applied during the operation is
investigated for different power densities. These results are
included in Fig. 14 using dashed lines, exhibiting an opposite
trend with respect to the case when wake steering is applied,
as observed for the base case. However, the saturation behav-
ior observed for values higher than 15 W m−2 is not present,
since the performance worsens for larger values.

Further analysis is performed to investigate whether the
saturation limit of 15 W m−2 is dependent on the squared
shape of the domain or if it remains valid for other geome-
tries. For this purpose, the simulations are repeated for two
different rectangular areas, characterized by a ratio between
the sides equal to 1.5 and 2.0, respectively. The results are
limited to the exponential corrected relation and are included
in Fig. 15. It can be observed that the magnitude of the AEP
gains decreases and the saturation behavior identified in the
previous case is not evident anymore, concluding that such
results are dependent on the shape of the area where the tur-
bines can be positioned. However, the decreasing trend for
the AEP gains in the case of lower power density values re-
mains valid; hence it can be considered a general conclusion
for this sensitivity analysis.

6.4.2 Number of turbines

The co-design approach is tested for different farm sizes to
explain its potential if the number of turbines increases. The
results are included in Fig. 16, where each case is simulated
20 times, adopting npop = 100 and ngen = 600 as optimiza-
tion hyperparameters. The choice of a higher number of gen-
erations is needed to ensure the convergence when the num-
ber of optimization variables increases. In this case, it can

Figure 14. AEP gain obtained with the co-design method for dif-
ferent power densities, showing the cases when wake steering is
applied (solid lines) and not applied (dashed lines) during the op-
eration of the farm. The area surrounding the lines (median values)
refers to the range between the 25th and 75th percentiles, with that
being the results of multiple simulations of the same case.

Figure 15. AEP gain obtained with the co-design method (expo-
nential corrected relation) for different power densities, showing the
trend for different shapes of the available surface, identified through
the ratio between the sides of a rectangle. The area surrounding the
lines (median values) refers to the range between the 25th and 75th
percentiles, with that being the results of multiple simulations of the
same case.
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Figure 16. AEP gain obtained with the co-design method for farm
sizes, showing the cases when wake steering is applied (solid lines)
and not applied (dashed lines) during the operation of the farm. The
area surrounding the lines (median values) refers to the range be-
tween the 25th and 75th percentiles, with that being the results of
multiple simulations of the same case.

be observed that the AEP improvement increases up to 0.6%
and a saturation behavior can be detected when nwt > 25.
However, as nwt increases, the trend becomes less evident
due to the higher oscillations between different runs, caused
by the limited hyperparameters values in proportion to the
number of optimization variables. This also occurs in the
case that the robustness of the method is tested when wake
steering is not applied for a co-design optimized layout, as
observed from the dashed lines in Fig. 16.

6.4.3 Wind direction variability

Various site types are investigated to determine the effective-
ness of the co-design method in different wind conditions.
As mentioned in Sect. 5.3, this study focuses on the shape of
the wind rose in terms of the probability of occurrence for
the wind directions. Figure 17 shows that the co-design ap-
proach becomes less convenient for sites characterized by an
evident dominant wind direction, i.e., low standard deviation
of the probability of occurrence along 360°. This can be ob-
served not only by a drop in the increase in AEP when wake
steering is applied during the operation but also by a signifi-
cant reduction in the case that wake steering is not adopted.
On the other hand, the increase in the AEP does not vary for
values of standard deviations higher than 0.4. Similarly to
the power density, these results have been obtained from 25
iterations, adopting npop = 100 and ngen = 400.

6.5 Multi-objective co-design approach

The previous results have highlighted the negative impact
in terms of AEP losses in the case that wake steering is
not applied during the operation phase in a layout optimized
through the co-design approach. This is tackled by perform-
ing a multi-objective optimization that maximizes the AEP
for the cases when wake steering is applied and when this
does not occur during operation. This analysis is limited to
the base case and to the exponential corrected geometric yaw
relation, and it is performed using the multi-objective version
of the LO-GA introduced in Sect. 3.6. The results are out-
lined in Fig. 18, where the Pareto front is visible on the top
right, resulting from a max–max optimization. These have
been obtained after 50 iterations of each case, for which the
hyperparameters adopted for the base case are used. As high-
lighted by the cross in Fig. 18, a layout that limits the AEP
losses to 0.1% in the case that wake steering is not applied
can be extracted from the Pareto front while ensuring a gain
higher than 0.3% if wake steering takes place.

6.6 Effect of wind direction discretization

The AEP calculation within this study is based on the tra-
ditional procedure of discretizing the wind direction, select-
ing appropriate bins at which the power production of the
farm is computed. The resolution of this discretization can
have a significant impact on the WFLOP since a sufficiently
high resolution is required to consider all the wake interac-
tions between the turbines. On the other hand, using a fine
resolution for the wind directions can significantly increase
the computational cost of the optimization. As mentioned in
Sect. 5.2, 36 wind direction bins are adopted in our simula-
tions, namely the wind direction is discretized using bins of
10°. The purpose of this section is to investigate the influence
of this parameter on the co-design approach described in this
study.

The simulations of the base case are repeated, modifying
the size of the bins adopted for the wind direction, hence al-
tering the objective function used to calculate the AEP. Since
such a function is also used during the tuning phase of the
LO-GA hyperparameters, their values are recalculated ac-
cordingly. Specifically, a higher randomization of the initial
population has been shown to be beneficial for both the se-
quential and the co-design approach, obtaining higher AEP
values. This is applied for all the wind direction resolutions
tested in this section to provide consistency between the re-
sults. Moreover, for each case the same resolution is applied
for the layout optimization and the subsequent yaw optimiza-
tion performed with the serial-refine method.

The results are presented in Fig. 19, which shows a sig-
nificant drop in the AEP improvement obtained through the
co-design approach as the wind direction resolution is in-
creased; i.e., the size of the bins becomes smaller. Moreover,
the AEP values corresponding to the sequential and the co-
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Figure 17. AEP gain obtained with the co-design method for site
types, showing the cases when wake steering is applied (solid lines)
and not applied (dashed lines) during the operation of the farm. The
x axis refers to the standard deviation of the probability of occur-
rence of each wind direction, i.e., from unidirectional (low values)
to omnidirectional (high values) wind roses. The area surrounding
the lines (median values) refers to the range between the 25th and
75th percentiles, with that being the results of multiple simulations
of the same case.

Figure 18. Multi-objective co-design approach based on the multi-
objective optimization. Each data point indicates an optimized lay-
out. Multiple data points are included also for the sequential and
the co-design approach, resulting from different simulations and
providing a probabilistic interpretation of the results in accordance
with the other graphs. The axis of the plot refers to the AEP in-
crease with respect to the average AEP value obtained through the
traditional sequential approach. The Pareto front is present on the
top right of the plot, resulting from a max–max problem. A cross is
included to identify a possible robust solution.

Figure 19. Effect of wind direction resolution on the co-design ap-
proach, in terms of (a) AEP for the sequential and the co-design
layouts and (b) AEP improvement. The area surrounding the lines
(median values) refers to the range between the 25th and 75th per-
centiles, with that being the results of multiple simulations of the
same case.

design layouts are also shown individually so as to gain fur-
ther insights into this behavior. These results are limited to
exponential corrected relation since the influence of the wind
direction resolution does not vary for the different geometric
yaw approaches. In general, the values of AEP improvement
obtained for the 10° bin size are lower with respect to the
results presented in Fig. 12, as a consequence of the higher
randomization of the initial population.

Two different effects can be detected from this analysis.
First, the AEP values decrease for both the sequential and the
co-design methods when the bin size is halved from 10 to 5°.
Increasing the wind direction resolution, more wake inter-
actions are simulated within the farm, amplifying the wake
losses. This sensitivity regarding the wind direction resolu-
tion is enhanced by the characteristics of the base case, where
the limited number of turbines and the higher power density
lead to fewer wake interactions and prevent wake expansions.
Moreover, the squared shape of the domain causes the wind
directions that are multiples of 45° to be characterized by
high wake losses. This occurs due to the tendency of the tur-
bines to be positioned at the corners of the domain to maxi-
mize the use of the available area. All of these directions can-
not be simulated in the case that the bin size is set to 10°, lim-
iting the accuracy of the results. However, the AEP reduction
obtained for the 5° bin size is more evident for the co-design
case, diminishing the improvement obtained through this ap-
proach. Nevertheless, this effect is expected to decrease when
the number of turbines is larger, due to the occurrence of
wake interaction for a wider range of wind directions. The
second effect that can be detected from Fig. 19 concerns the
AEP trends as the wind direction bin size is reduced from
5° to lower values. It can be observed that AEP values of
the co-design layouts remain stable, whereas those of the se-
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quential layouts increase when a finer resolution is adopted.
Therefore, they tend to converge towards the AEP values of
the layouts optimized using the co-design method, i.e., lead-
ing to an AEP improvement equal to 0% and nullifying the
usefulness of this approach. However, such a result is highly
conditioned by the application of the serial-refine method for
yaw optimization with a fine wind direction resolution. For
instance, when a bin size of 1.25° is adopted for the simula-
tions, the optimal yaw angle is recalculated for every 1.25°.
Therefore, it is assumed that during the farm operation the
wind direction is measured with an accuracy higher than 1.25
and the yaw angles of turbines are modified every time such a
change of 1.25° is detected. These conditions are far from be-
ing realistic, as mentioned by Quick et al. (2020). Therefore,
the results presented in Fig. 19 are altered by this assumption,
which is not consistent with current wind farm operational
limits. Nevertheless, it can be concluded that the application
of an extremely precise wake steering control would saturate
the benefits of the co-design approach proposed in this study.

7 Discussion

This section aims to interpret and provide a further explana-
tion of the results presented in the previous paragraphs. In
general, the methodology introduced in this work to solve
the WFLOP based on co-design approach, namely the LO-
GA and the different geometric yaw relations, has succeeded
to improve upon the methods available in literature. How-
ever, the increase in the AEP of 0.8% described by Stanley
et al. (2023) for a site characterized by Gaussian hill spatially
varying inflow cannot be obtained for common sites such as
the HKN location adopted for this study. Specifically, val-
ues up to 0.6% have been obtained in this analysis, when
farms composed by more than 25 wind turbines are consid-
ered. As mentioned by Stanley et al. (2023), this limited per-
centage can be translated into significant amounts in terms
of revenue and energy production. Specifically, since HKN
wind farm plans to fulfill the energy demand equivalent to
1 million households, this increase of 0.6% can be quantified
as the consumption of 6000 households in this case (Cross-
wind, 2024). Most importantly, this approach based on ge-
ometric yaw angles does not involve a significantly higher
computational cost with respect to traditional methods, un-
like other co-design implementations. On the other hand, the
limited improvement in the AEP obtained with the co-design
approach is affected by the uncertainty related to the engi-
neering models adopted for the calculations. Moreover, this
modest increase in the AEP can be difficult to detect dur-
ing wind tunnel experiments or field tests. These considera-
tions can challenge the reliability of this method despite the
promising results obtained from the simulations.

Besides the benefits associated with the co-design ap-
proach in the case that wind farm control is applied during
operation, this study has also highlighted the downsides of

not implementing such a control strategy. A decrease in the
AEP is considered in this case to be a consequence of adapt-
ing the objective function of the WFLOP to the wake steer-
ing technique. The magnitude of such a loss in energy pro-
duction is similar to the gain observed if the coherent proce-
dure is applied. Therefore, it is essential that the wind farm
operator makes firm decisions regarding the control strategy
prior to the design phase. Otherwise, the limited improve-
ment of the co-design approach would be further challenged
by the uncertainty caused by the future decisions of the wind
farm operator. To prevent such a situation, a multi-objective
co-design approach is proposed in this study, optimizing the
wind farm layout for both the case when wake steering is
applied and the case when this does not happen. Therefore,
such a method increases the reliability of the wind farm lay-
out, minimizing the risk related to a future decision regarding
the control strategies made during the operation of the farm.

The perspective and the limitations of the co-design ap-
proach for wake steering have been shown by the sensitiv-
ity analysis performed in this study. First, a decrease in the
AEP gain is observed for low power densities, irrespective
of the shape of the available surface. Such behavior proves
that including the geometric yaw within the WFLOP is more
effective when wake steering plays a major role. In particu-
lar, higher gains are obtained when the distances between the
turbines decrease; hence the wake effect is more impactful.
However, after a certain power density this improvement can
saturate due to the impossibility of further mitigation of the
wake deficit. Second, similar explanations can be provided to
justify the dependence of the AEP improvement on the farm
size, expressed in terms of number of turbines. In principle,
extending the size of the farm increases the number of down-
stream turbines that experience lower wind speeds, hence
boosting the potential of wake steering and consequently
of the co-design approach. However, a saturation trend can
also be observed in this case, caused by the impossibility of
deflecting the wake towards a turbine-free region when the
number of turbines surpasses a certain limit. Lastly, when
analyzing the effect of different wind resources it can be ob-
served that the sites characterized by unidirectional wind do
not benefit significantly from the co-design approach. In this
case, the traditional methods adopted to solve the WFLOP ar-
range the positions of the turbines in order to avoid alignment
along the dominant wind direction, limiting the necessity of
applying wake steering.

The results described in these sections are limited to the
conditions tested in this study, giving a broad quantitative
overview of the co-design potential but leaving some points
of discussion that can be addressed qualitatively as follows.
First, the wake models adopted in this work can influence the
results of this analysis. Specifically, the adoption of a wake-
added turbulence model such as that of Crespo and Hernan-
dez (1996) is expected to widen the wake shape and enhance
its recovery. This could decrease the effectiveness of wake
steering and the co-design approach in the case of large wind
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farms. However, these choices are not expected to signifi-
cantly impact either the geometric yaw relations or the mag-
nitude of the AEP gains described in this study. Second, the
results presented in this research refer to the chosen refer-
ence turbine, i.e., the DTU 10 MW, and therefore can differ
in the case of a different turbine type. Nevertheless, all the
geometric relations presented here are normalized with the
rotor diameter; hence they are not sensitive to the size of
the turbine. However, the mismatch between the geometric
models, which generally scale with D, and the wind turbine
power, proportional toD2, can influence the analysis. This is
expected to have a consequence on the coefficients of the ge-
ometric yaw relations, requiring additional tuning, whereas
the final conclusion should not be impacted significantly.

Lastly, the analysis of the effect of the wind direction res-
olution adopted for AEP calculation with wake steering has
highlighted the importance of this parameter for the evalu-
ation of the co-design approach. Specifically, the simplicity
of the base case chosen to enable a straightforward compari-
son between the different methods has caused high sensitiv-
ity with respect to the wind direction bin size. In general, the
use of a fine resolution seems to decrease the benefits of the
co-design method, increasing the uncertainty in the results
presented in this work. However, whereas the magnitude of
the AEP improvement is seriously affected by the size of the
wind direction bins, the trends with the variables of interest
are expected to remain valid. Overall, this analysis has em-
phasized the necessity of including uncertainties within the
yaw optimization process, as suggested by the work of Quick
et al. (2020). This would enable a more realistic evaluation
of the co-design approach.

8 Conclusions

A genetic algorithm tailored to the layout optimization and
referred to as the LO-GA has been developed in this study,
where the crossover and the mutation phases are imple-
mented to capture the physical meaning of the optimization
variables in order to improve the exploration of the design
space. This method enables the improvement of regular lay-
outs, usually not achievable with basic versions of a GA.
Moreover, three novel relations have been introduced to cal-
culate the geometric yaw angles, namely linear, exponential
and exponential corrected approaches. Whereas the former
two methods are based only on the streamwise and cross-
stream distances of the nearest turbine, the last approach con-
siders all the downstream turbines within the wake, enabling
a more accurate prediction.

A base case consisting in a 16-turbine farms located at
the HKN site has been used to calculate the improvement
achieved with the co-design method, for which an increase in
the AEP between 0.3% and 0.4% has been obtained. To eval-
uate the potential of the co-design approach based on wake

steering, a wider range of cases have been tested, and the
conclusions are summarized in the following list:

– The wind farms characterized by a high power density
benefit the most from the co-design approach, irrespec-
tive of the shape of the available surface where the tur-
bines can be positioned.

– By increasing the number of turbines, an AEP increase
up to 0.6% can be obtained. However, this value stabi-
lizes for a number of turbines higher than 25.

– Sites characterized by unidirectional wind do not benefit
significantly from the co-design approach.

Besides the advantages in terms of AEP increase that we
have mentioned, this study has investigated the effect of not
applying the control strategy during the operation phase in
a layout optimized using the co-design method. Specifically,
it has been shown that a decrease in the AEP would occur,
prompting a recommendation that firm decisions about the
control strategy have to be taken prior to the design phase. To
minimize the risk of losses related to future decisions regard-
ing the control strategy, a multi-objective co-design method
has been proposed, for which the layout is optimized simul-
taneously for the case when wake steering is applied and,
when this does not occur, during the operation phase. Adopt-
ing this approach, the AEP losses in a 16-turbine layout can
be limited to 0.1% if wake steering is not adopted, while the
AEP gain is kept above 0.3% in the case that wake steering
is applied.

An analysis of the effect of the wind direction resolution
has shown that the magnitude of the AEP gains is signifi-
cantly affected by this parameter. Decreasing the size of the
wind direction bins has resulted in a negative effect on the
benefit of the co-design approach. However, such an influ-
ence is partially caused by the unrealistic assumption of min-
imal error in wind direction measurements and the absence
of constraints in yaw actuation. Therefore, this analysis has
considered the necessity of integrating uncertainties within
the yaw optimization to provide an accurate evaluation of the
co-design method, indicating an interesting pathway for fu-
ture research.

Lastly, some other recommendations for future work are
mentioned. First, the geometric yaw relations can be im-
proved to provide a more accurate approximation of the op-
timal yaw angles. Specifically, the relations developed in this
study neglect the scenario when wake steering is not ap-
plied when two aligned turbines are too close to each other.
Second, the integration of grey-/black-box machine learning
models in the co-design framework is recommended to un-
derstand if a further increase in the AEP can be achieved in
the case of a better approximation of optimal yaw angles.
This study has shown that better predictions of the optimal
yaw angles do not lead to a significant improvement in the
co-design approach. However, there is still a gap between
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the yaw angles obtained with the serial-refine method and the
geometric yaw relations which could be filled using models
based on machine learning techniques. Third, another rec-
ommendation for future work concerns the objective of the
WFLOP, which could be extended further than the AEP, for
instance to load mitigation.
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