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Abstract. Floating offshore wind turbines (FOWTs) are equipped with various sensors that provide valuable
data for turbine monitoring and control. Due to technical and operational challenges, load estimations for moor-
ing lines and fairleads can be difficult and expensive to obtain accurately. This research delves into a methodol-
ogy where simulated floater motion measurements and wind speed measurements, derived from forward-looking
nacelle-based lidar, are utilized as inputs for different types of neural networks to estimate fairlead tension time
series and damage equivalent loads (DELs). Fairlead tension is intrinsically linked to the dynamics and the po-
sition of the floater. Therefore, we systematically analyze the individual contribution of floater dynamics to the
prediction quality of fairlead tension time series and DELs. Wind speed measurements obtained via nacelle-
based lidar on floating offshore wind turbines are inherently influenced by the platform’s dynamics, notably
the rotational pitch displacement and surge displacement of the floater. Consequently, the lidar wind speed data
indirectly contain the dynamic behavior of the floater, which, in turn, governs the fairlead loads. This study lever-
ages lidar-measured line-of-sight (LOS) wind speeds to estimate fairlead tensions. Training data for the model
are generated by the aeroelastic wind turbine simulation tool, openFAST, in conjunction with the numerical lidar
simulation framework ViConDAR. The fairlead tension time series are predicted using long short-term mem-
ory (LSTM) networks. DEL predictions are made using three different approaches. First, DELs are calculated
from predicted time series; second, DELs are predicted using a sequence-to-one LSTM architecture, and third,
DELs are predicted using a convolutional neural network architecture. Results indicate that fairlead tension time
series and DELs can be accurately estimated from floater motion time series. Further, we found that lidar LOS
measurements do not improve time series or DEL predictions if motion measurements are available. However,
using lidar measurements as model inputs for DEL predictions leads to similar accuracies as using displacement
measurements of the floater.

1 Introduction

As countries worldwide set ambitious targets for floating off-
shore wind turbine (FOWT) installations and with numer-
ous upcoming projects in the pipeline, the installed capac-
ity of FOWTs is anticipated to grow significantly in the cur-
rent decade. Projections indicate that the global installed ca-
pacity of floating wind power will increase to 16.5 GW by
2030 (GWEC, 2022). For the large-scale commercial in-
stallation of FOWTs, reliable load-monitoring systems are

needed. FOWTs are outfitted with sensors that deliver crucial
data for controlling and monitoring single turbines and wind
farms. Virtual sensors present a valuable alternative when
measuring specific physical quantities is either challenging
or expensive. Specifically, the mooring lines of FOWTs, vi-
tal for stability, are susceptible to mechanical failures that
could lead to severe consequences, including safety hazards,
environmental damage, and economic losses. Fatigue and ex-
treme loads are key contributors to such failures, particu-
larly in mooring lines and fairleads, as identified by Shafiee
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(2022). Consequently, precise estimations of loads on these
components are essential for effectively monitoring floating
offshore wind turbines.

Although mooring lines perform critical functions, mon-
itoring and assessing the remaining life span of individual
lines is difficult. Different authors (see, e.g., Gao and Moan,
2007; Benasciutti and Tovo, 2005) have proposed methods
to derive fatigue damage of mooring lines in the frequency
domain while avoiding the need for rain-flow-counting al-
gorithms in the time domain. In principle, these methods
could be used in operational settings assuming that represen-
tative spectral properties of the target loads are known. How-
ever, the harsh marine environment and logistical challenges
make installing sensors and maintaining their accuracy dif-
ficult over long periods. Studies have investigated various
approaches to model and predict mooring line loads in this
context. An overview of modeling approaches for mooring
line loads based on physical principles can be found in Borg
et al. (2014). Physical mooring line models describe the
mooring line behavior using knowledge about its mechan-
ics and underlying physical laws. Different model fidelities,
ranging from quasi-static to multi-body and finite-element
models, are described in the literature. While finite-element
models can calculate mooring line loads very accurately, the
high computational costs make them impractical for moni-
toring applications. Multi-body models, as described in Hall
(2020), combine good accuracy with acceptable computa-
tional costs, making them applicable for general monitoring
applications. However, the floater dynamics in 6 DOF (de-
grees of freedom) must be known, which might not be the
case in operational settings.

Data-driven models can make predictions without a phys-
ical description between input and output quantities at low
computational costs. However, training data-driven models
typically involves large sets of training data that must be
available through measurements or representative simula-
tion models. Different studies have demonstrated the po-
tential of data-driven models for predicting physical quan-
tities, not only for mooring line load predictions. In the study
by Azzam et al. (2021), observable predictor signals were
employed to train neural networks for predicting the load
on a wind turbine gearbox. Likewise, Dimitrov and Göç-
men (2022) explored various network architectures to pre-
dict and forecast blade root bending moments, detect wake
centers, and assess blade-tip-to-tower clearance. In Hlaing
et al. (2023), Bayesian neural networks are used for a fleet
monitoring approach, where models are trained on measured
load data from one fully monitored turbine. At the same
time, predictions are made for other turbines in the fleet. The
study uses 10 min statistics of different available time series
measurements as input and predicts damage equivalent tower
bending moments. Similarly, de N Santos et al. (2023) used
a fleet monitoring approach to predict long-term damage ac-
cumulation of tower bending moments employing physics-
informed neural networks.

Walker et al. (2022) developed data-driven digital twin
models for predicting and forecasting mooring line tension
based on measured operational time series data, including
floater dynamics signals and ambient wind speed. The devel-
oped model could predict mooring line tension time series
accurately and make near-future (1 min) tension forecasts.
The use of predicted time series for design equivalent load
(DEL) analysis was not investigated. In contrast to this work,
our study is focused on leveraging lidar inflow measurements
for mooring line load predictions and predicting DELs by uti-
lizing different modeling approaches.

Various studies have used nacelle-based lidar inflow mea-
surements for turbine load calculation. For instance, in Dim-
itrov et al. (2019) and Conti et al. (2021), measured lidar
wind speed time series are used to constrain synthetic turbu-
lent wind fields and lidar-estimated wind field statistics are
used to parameterize the constrained wind fields. These wind
fields are further used to simulate turbine responses using an
aeroelastic simulation code. While the method yields good
results for load validation, it is not suitable for real-time mon-
itoring applications. In our study, we aim to demonstrate the
ability of data-driven lidar-based models to predict fairlead
tension in real time. The idea of this approach was first pre-
sented in Gräfe et al. (2023b). This initial study demonstrated
the general feasibility but did not analyze all relevant aspects
systematically. We build on the existing study while adding
different aspects to the present study. The feature selection
is made systematically, allowing conclusions on the contri-
bution of individual input features for the prediction quality.
To understand the effect of different lidar patterns better, we
investigate four different lidar patterns with increasing den-
sity of focus points and compare the resulting performance.
A new approach for the prediction of DELs is introduced.
Instead of calculating DELs from predicted time series, we
investigate machine learning methods to predict DELs di-
rectly from input time series signals. The environmental con-
ditions are sampled considering randomized atmospheric and
oceanic conditions in an attempt better to reflect the stochas-
tic nature of real met-ocean conditions. The influence of sen-
sor noise in the models’ input features has been considered
and evaluated in a comparative study.

1.1 Objectives

With the present work, we aim to provide insights into the
prediction of fairlead tension time series and DELs using ma-
chine learning techniques. Further, we investigate the value
of lidar inflow measurements in this context. In short, the ob-
jectives of this work are the following:

– to investigate diverse machine learning approaches suit-
able for constructing virtual sensor models to predict
fairlead tension time series and DELs;

– to analyze the contribution of individual input features
to the models’ performance – considered input features
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include platform dynamics and position measurements,
supervisory control and data acquisition (SCADA) sig-
nals, and lidar inflow measurements;

– to evaluate the influence of noise in platform position
and dynamics input signals on the model prediction ac-
curacy; and

– to investigate the value of lidar inflow measurements for
fairlead tension prediction and analyze the sensitivity to
different lidar patterns.

1.2 Structure of the work

In Sect. 2, the overall methodology of the study, the simu-
lation environment, and the different prediction models are
introduced. In Sect. 3 we introduce the case study used to
demonstrate the performance of our approach. This section
describes the numerical FOWT model, the different investi-
gated lidar configurations, and the environmental conditions
for creating the training and testing database. In Sect. 4 we
present the results of the time series prediction and DEL pre-
diction models and evaluate their performance. In Sect. 5, a
final discussion on the results and the transferability of the
proposed models to operational environments is given.

2 Methodology

We adopt a numerical approach to create training data for the
models and to assess their predictive capabilities. This ap-
proach integrates the use of openFAST, an aeroelastic wind
turbine simulation code (Jonkman, 2007), with ViConDAR,
a numerical lidar simulation code (Pettas et al., 2020; Gräfe
et al., 2022), for generating the necessary datasets. Synthetic
turbulence boxes are created employing TurbSim, an open-
source wind field generation tool (Jonkman, 2014). We en-
gage openFAST version 3.2.1 to conduct aeroelastic simu-
lations of relevant FOWT responses, including fairlead ten-
sions. The turbine responses and synthetic turbulent wind
fields feed into the numerical lidar simulator to produce syn-
thetic lidar data reflecting the influence of motion in six de-
grees of freedom. The fairlead tensions, turbine dynamics,
and turbine responses characterized by blade pitch, power
output, and nacelle yaw angles, along with corresponding li-
dar measurements, are used to train neural networks for pre-
dicting fairlead tension time series and DELs. The perfor-
mance of these predictions is then validated against the gen-
erated simulation data. An illustrative diagram outlining this
methodology is presented in Fig. 1.

2.1 Numerical lidar simulation environment

Floater movements influence the measurements obtained by
nacelle-based lidar systems on FOWTs. A recent study by
Gräfe et al. (2023a) highlights that the motion of the floater–
tower assembly, particularly its rotational movements, alters

the orientation of the lidar beams. This deviation from fixed
systems leads to variations in the line-of-sight (LOS) ve-
locity measurements and displaces the lidar’s focal points.
When a turbulent wind field is probed, this leads to motion-
induced variations of the measurements. Furthermore, the
floater’s combined translational and rotational dynamics in-
troduce velocities to the nacelle. These translational veloc-
ities are superimposed on the measurements. The compre-
hensive analysis and quantification of these influences are de-
tailed in Gräfe et al. (2023a). Our research uses these motion-
induced variations in lidar data, employing uncorrected LOS
velocity readings as inputs for our load prediction models.
It should be noted that the sampling frequency of the lidar
limits the effect of platform dynamics on lidar radial wind
speed measurements. High-frequency dynamics, higher than
half of the lidar sampling frequency, cannot be captured.
Motion-influenced lidar measurements are simulated using
the open-source lidar simulation environment ViConDAR.
ViConDAR is a numerical framework for simulating lidar
measurements in turbulent wind fields using simulated mea-
surements as constraints in synthetic wind field generation.
ViConDAR has been adapted for consideration of floating
dynamics of the lidar system in 6 DOF (degrees of freedom).
To reflect the influence of floater motions it requires the input
of the rotational displacements (yaw, pitch, roll); the trans-
lational displacements in surge, sway, and heave direction;
and the translational velocities in the surge, sway, and heave
direction, which are obtained through the openFAST simula-
tions.

2.2 Mooring-line-load-determining parameters

Catenary mooring lines, governed by the principles of the
catenary shape, are subject to dynamic loading that fluctu-
ates with the motions of the platform. In the case of catenary
mooring lines, the forces exerted at the fairlead – both verti-
cal and horizontal – can be collectively described as the fair-
lead tension force, which is subject to frequent fluctuations,
as detailed in studies like those by Hall and Goupee (2015)
and Özinan et al. (2020).

Fairlead tensions are intrinsically linked to the dynamics
of the floater, which operates in 6 DOF. The floater’s transla-
tional and rotational movements dictate the fairlead’s relative
positioning to the anchor point. Therefore, these displace-
ment factors primarily govern the quasi-static loading experi-
enced by a catenary mooring line. Moreover, additional load-
ing components on the mooring line arise due to the transla-
tional velocities of the fairlead about the anchor. The effi-
ciency of a lidar-based model for predicting fairlead tensions
hinges on its ability to accurately interpret turbine displace-
ment and velocity patterns from the measured lidar radial
wind speed data. The performance of such a model relies on
its capacity to discern these patterns, which are indicative of
the underlying dynamics influencing the fairlead tensions.
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Figure 1. Overview of the simulation, training, and evaluation methodology. White boxes denote tools and process steps used, and blue
boxes denote datasets used and generated.

2.3 Virtual load sensor models

In the context of wind turbine operation, control, and mon-
itoring, the measurement of key physical parameters is cru-
cial. Nonetheless, there are scenarios where direct measure-
ment through conventional sensors is impractical or unattain-
able. In such instances, the use of virtual sensors presents a
viable alternative. These sensors perform indirect estimations
of the target quantities by utilizing available measurement
data as inputs to model the desired outputs. The nature of the
model employed in this process varies based on the under-
standing of the input–output relationship. When this relation-
ship is clearly defined, physical models can be utilized. Con-
versely, data-driven models can be employed in situations
where the relationship is either unknown or too complex for
a physical model to encapsulate. This is the case for predict-
ing fairlead tensions from platform positions, dynamics, and
lidar inflow measurements, as investigated in this work.

This study delves into two distinct applications of the vir-
tual load sensor model. We employ a sequence-to-sequence
model to predict the time series of fairlead tension load. Ad-
ditionally, we examine and compare three different modeling
approaches for predicting fairlead tension DELs.

2.3.1 Time series prediction model

The virtual load sensor time series model is built as
a sequence-to-sequence long short-term memory (LSTM)
model where the model uses input time series sequences to
predict target time series sequences. LSTM networks are re-
current artificial neural networks that have proven particu-
larly effective in capturing time dependencies in input data
(Hochreiter and Schmidhuber, 1997). The key feature of
LSTMs is their ability to remember or forget previous inputs
selectively over extended periods. This is achieved through
specialized memory cells that store information over multi-

ple time steps. Unlike traditional neural networks, LSTMs
have a gating mechanism that regulates the flow of informa-
tion between cells, allowing them to selectively retain or dis-
card information based on its relevance to the current state of
the network.

The network structure that has been chosen for this model
consists of six layers as shown in Fig. 2. The window size
defines the number of time steps in the input features. Pre-
dictions are made for the same number of target time series
time steps, while no forecasts into the future are made. A
hyperparameter tuning process determines the window size
used in this study. Since we further use the predicted time
series for calculations of DELs an overall sequence length
of 600 s is needed. Therefore, input sequences are divided
into several shorter sequences based on the optimized win-
dow size in the prediction step. Predictions are then made
in succession while remembering the LSTM cell states for
each subsequence. Subsequences are concatenated after the
prediction for the calculation of DELs.

2.3.2 DEL prediction models

Accurately predicting DELs is vital when considering the po-
tential use and application of virtual load sensors for fairlead
tensions. DELs are used to monitor fatigue loads and es-
timate remaining lifetimes. A rain-flow-counting algorithm
counts the number of cycles ni with load amplitudes Si in
each sequence. DELs are calculated based on Miner’s rule
for damage accumulation (Miner, 1945). For each sample se-
quence DELi is calculated by

DELi = m

√
1
Nref

∑
i

niS
m
i . (1)

In this equation, Nref represents the reference cycle count,
and m denotes the Wöhler exponent. Using the guidelines of
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Figure 2. Sequence-to-sequence time series prediction model architecture.

DNVGL-OS-E301, the Wöhler exponent for studless moor-
ing chains made of steel is set at m= 3. Additionally, the
reference cycle count Nref, assuming a reference cycle fre-
quency of 1 Hz, is set at 600.

We evaluate the prediction quality of fairlead tension
DELs for three different modeling approaches. First, the time
series model as described in Sect. 2.3.1 is trained to predict
fairlead tension time series. The fairlead DELs are then cal-
culated from the predicted and concatenated time series using
Eq. (1). Second, a sequence-to-one regression model archi-
tecture predicts DELs directly from the input time series se-
quences. In this case, the model is trained to predict a single
estimate of DEL for each set of input time series. In contrast
to the sequence-to-sequence model for time series prediction
the sequence-to-one architecture uses only the last output of
the LSTM layers for a given input sequence to produce the
DEL prediction. This LSTM output is then passed through a
fully connected layer and a regression layer to produce the
final DEL estimate for the given input sequence. The model
architecture is shown in Fig. 3.

The third investigated DEL prediction approach employs
a convolutional neural network. Convolutional neural net-
works (CNNs) have traditionally been associated with im-
age processing tasks, but they have also proven to be effec-
tive for time series classification. CNNs can extract meaning-
ful features from sequential data by using 1D convolutional
layers to scan through the time series, identifying patterns
within the data. These learned features can capture essen-
tial temporal information, such as trends and frequencies,
making CNNs useful in applications like the prediction of
DELs. The architecture of the model employed in this study
is shown in Fig. 4. The input time series are fed through a
one-dimensional convolutional layer, which applies filters to
the input time series, allowing the network to detect patterns
and relevant features at various scales and positions within
the data. The pooling layer follows the convolutional layers
and reduces the spatial dimensionality of the feature maps.
The fully connected layer connects all the neurons from the
previous layer to each neuron in itself. Finally, the regression
layer consists of a single neuron, which produces the final
regression output for DEL estimation.

2.4 Model performance

The performance of the time series prediction model in this
study is assessed using the RMSEN (root mean squared er-
ror normalized) metric. RMSEN is defined as the root mean
squared error between the predicted time series Ypred and the
actual target time series Y , normalized by the standard devi-
ation σy of the reference time series. RMSEN is calculated
using Eq. (2).

RMSEN=
1
σy

√∑N
i=1(Ypred−Y )2

N
(2)

In this equation, Ypred represents the predicted values, Y
denotes the actual reference values, and N is the total num-
ber of data points in the sequence. For a comprehensive eval-
uation across the entire testing dataset, both Ypred and Y are
concatenated, encompassing all test sequences. In this con-
text,N refers to the total count of data points across the com-
plete testing dataset, and σy is the standard deviation calcu-
lated over the entire reference dataset.

DEL predictions are evaluated using absolute percentage
errors, which allow an easier interpretation of results. Abso-
lute percentage errors between predicted and reference DELs
are calculated by

APE=
∣∣∣∣DELpred−DELref

DELref

∣∣∣∣ · 100, (3)

where DELref is the reference DEL and DELpred is the pre-
dicted DEL value.

2.5 Feature selection

In this study, the selection of input features for various mod-
els was carried out manually, aligning with the study’s objec-
tive to assess the impact of individual input features on pre-
diction accuracy. Besides the lidar system, we consider input
features, typically available through FOWT monitoring sys-
tems in real-world scenarios, including SCADA as well as
inertial measurement unit (IMU) and global navigation satel-
lite system (GNSS) data. Consequently, scenarios combining
platform dynamics, SCADA signals, and lidar measurements
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Figure 3. Seq2One model architecture.

Figure 4. One-dimensional convolutional neural network architec-
ture for time series regression architecture.

were distinctly categorized. As outlined in Sect. 2.2, the plat-
form dynamics across 6 degrees of freedom (DOF) are cru-
cial in determining fairlead tensions, leading to the inclusion
of both platform displacements and velocities in our analy-
sis. Additionally, standard SCADA system outputs like blade
pitch, power, and nacelle yaw signals were considered, given
their potential relevance to the prediction task. Lidar line-of-
sight (LOS) signals were also incorporated for each case to
ascertain their specific contribution to prediction accuracy.

To manage the scope of our investigation, platform dynam-
ics were grouped into four categories: translational displace-
ments, rotational displacements, translational velocities, and
rotational velocities, with each category encompassing sig-
nals in the x, y, and z coordinates. For cases A to E, the
model inputs were restricted to platform dynamics, SCADA
signals, and nacelle yaw position. In contrast, cases ALidar to
ELidar were expanded to include radial wind speed measure-
ments from the lidar, facilitating a focused analysis of lidar
signals’ impact. Case FLidar is unique, using only the lidar
LOS wind speeds and nacelle yaw position, while the nacelle
is always perfectly aligned with the wind direction; the latter
is included to inform the model about the global wind direc-
tion, a parameter not evident from the radial wind speeds.
This inclusion is crucial as it informs the model of the rotor’s

alignment, subsequently influencing the rotor thrust forces
and the resulting floater dynamics. This particular case is de-
signed to evaluate the potential of a model based solely on
lidar data in predicting fairlead tensions. A summary of all
these scenarios is presented in Table 1.

2.6 Hyperparameter tuning

To enhance model performance, hyperparameters are opti-
mized through a tuning process, similar to the methodology
described by Dimitrov and Göçmen (2022). This optimiza-
tion differentiates between two categories of hyperparame-
ters. The first category encompasses parameters that shape
the architecture and training attributes of the models, such as
the number of layers and the learning rate. The second cate-
gory specifies the dataset configuration, including the quan-
tity of training data sequences and the input and target time
series window lengths.

In this study, each model architecture necessitates distinct
hyperparameters, necessitating independent optimization for
each. The hyperparameters were optimized using a Bayesian
optimization approach, leveraging the experiment manager
functionality in MATLAB’s statistics and machine learning
toolbox (MATLAB, 2020). Due to computational limitations,
the optimization is not carried out for each case and lidar
pattern individually. Each model architecture has been opti-
mized for case A and ALidar separately, and the optimized
parameters have been applied to all cases. The hyperparame-
ters, encompassing the parameter space and optimized values
for both the time series and DEL prediction networks, are de-
tailed in Table 2. The adaptive moment estimation (ADAM)
algorithm was employed to optimize the model parameters
during training. Under the defined hyperparameters, training
a single virtual load sensor model usually lasts approximately
1 h, and predicting a 10 min target sequence is accomplished
in under 1 s.
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Table 1. Summary of all modeling cases and input features.

Feature A B C D E ALidar BLidar CLidar DLidar ELidar FLidar

LOS velocities [m s−1] x x x x x X X X X X X
Nacelle yaw [°] X X X X X X X X X X X
Blade pitch [°], power [W] [°] X X X X X X X X X X x
Platform transl. displ. (surge, sway, heave) [m] X X X X x X X X X x x
Platform rot. displ. (pitch, roll, yaw) [°] X X X x x X X X x x x
Platform transl. velocities (x,y,z) [m s−1] X X x x x X X x x x x
Platform rot. velocities (x,y,z) [° s−1] X x x x x X x x x x x

Table 2. Prediction model hyperparameters.

Model Hyperparameter Parameter space case A case ALidar

TS Number of LSTM layers 1–3 1 1
Number of LSTM units per layer 50–200 130 100
Number of fully connected layers 1–3 1 1
Window length 50 : 50 : 600 100 100
Number of units in fully connected layers 50-200 190 60
Dropout rate 0–0.5 0.25 0.3
Number of training sequences 200–1800 1800 1800

DEL Seq2One Number of LSTM layers 1–3 1 1
Number of LSTM units per layer 50–200 130 110
Number of fully connected layers 1–3 1 1
Number of units in fully connected layers 50–200 80 150
Dropout rate 0–0.5 0.3 0.26
Number of training sequences 200–1800 1800 1800

DEL convolution Number of convolutions 1–3 2 2
Filter size 1–30 25 17
Number of filters 1–100 55 67
Pool size 1–50 6 1
Dropout rate 0–0.5 0.2 0.2
Number of training sequences 200–1800 1800 1800

3 Simulation setup

3.1 FOWT model

The University of Maine’s VolturnUS-S reference floating
wind turbine, detailed in Allen et al. (2020), features a
semisubmersible substructure paired with the International
Energy Agency’s (IEA) 15-240-RWT 15 MW reference wind
turbine, as described in Gaertner et al. (2014). This turbine
has a rotor diameter of 240 m and a hub height of 150 m.
The floating support structure is a steel design, comprising
three radial and one central cylindrical body, with the tur-
bine tower connected to the central column. Stability and sta-
tion keeping are achieved through three mooring lines, each
850 m long and the mass per length is 685 kg m−1, attached
to the radial bodies. A visual representation of the floater, in-
cluding its geometry, the locations of fairleads, and the lidar
installation point, is depicted in Fig. 5 (right). Comprehen-
sive details on the design specifications of both the floater

Table 3. Floater natural frequencies.

DOF Natural
frequency

Surge 0.007 Hz
Sway 0.007 Hz
Heave 0.049 Hz
Roll 0.036 Hz
Pitch 0.036 Hz
Yaw 0.011 Hz

and the mooring lines are available in Allen et al. (2020).
Additionally, to assist in the analysis of frequency contents
in predicted time series, Table 3 lists the natural frequencies
of the FOWT model.
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Figure 5. (a) Lidar pattern and coordinate systems for numerical lidar simulation. (b) Floater geometry, mooring line layout, and lidar
position.

3.2 Lidar configuration

Four different lidar patterns, as depicted in Fig. 6, with an
increasing number of focus points, are investigated in this
study. The figure shows the position of focus points in the
y–z plane (see Fig. 5) in front of the turbine. The measure-
ments for each focus point are taken sequentially with a tem-
poral distance of 1/nbeam seconds, where nbeam is the num-
ber of focus points in the pattern. In this way, the time se-
ries of each LOS velocity has a sampling frequency of 1 Hz.
The measurement range is set to 300 m. The beam range gate
length is set to 30 m and discretized by 10 equidistant points
along the range gate. Additionally, Gaussian white noise of
SNR= 20 dB is added to each measurement. This is done to
mimic the uncertainties of real lidar measurements, which
could originate from hardware components or data process-
ing.

3.3 Atmospheric conditions

A set of synthetic wind fields is generated using the Veers
method for turbulence creation Veers et al. (1998). The total
number of wind fields is limited to 500 due to limited compu-
tational capacities. The mean wind speed of each wind field
is randomized between 4 and 20 m s−1, the turbulence inten-
sity is randomized between 4 % and 16 %, and the power-law
shear exponent is randomized between 0 and 0.2. All wind
field parameters are listed in Table 4.

3.4 Creation of database

This study utilizes a dataset comprising 2200 simulations,
each lasting 600 s, encompassing floater dynamics, lidar
measurements, fairlead tensions, and DEL values. For each
simulation, one turbulent wind field is randomly selected
from the aforementioned database of 500 wind fields. To mit-
igate the impact of transient effects typically present at the

Table 4. Turbulent wind field parameters.

Parameter Value

Wind speed [m s−1] 4 : 1 : 20
Turbulence intensity [%] 4 : 1 : 16
Surface roughness [m] 0.03
Shear exponent [–] 0.0 0.1 : 0.2
Spatial grid resolution [m] 5
Grid size [m] 300× 250
Time step [s] 0.05
Usable time [s] 600

start of simulation runs, each simulation is extended to a total
duration of 1200 s, with the initial 600 s being excluded from
analysis. For the simulation of 1200 s turbine response, the
periodic property of the generated turbulence boxes is used.
Moreover, all sequences utilized in the training, validation,
and testing phases are standardized, ensuring a mean of zero
and a standard deviation of 1 across the entire dataset.

The ocean conditions in the aeroelastic simulations are
determined based on the methodology proposed by Müller
and Cheng (2018), which accounts for a basic correlation
between wind speed, wave height, and wave period. To do
this, wind speed is categorized into three distinct load ranges
(LR): below-rated, rated, and above-rated. Each range has
specified upper and lower limits for wave height and period.
Depending on the mean wind speed of the chosen wind field,
wave conditions are randomly sampled within these prede-
fined boundaries. The specific parameters for wave condi-
tions, corresponding to the different wind speed ranges, are
detailed in Table 5.

In each aeroelastic simulation conducted for this study, ra-
dial wind speed measurements are generated for four distinct
lidar patterns. The wind direction, relative to a fixed Earth
coordinate system, is randomly chosen within a range of 0
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Figure 6. Lidar patterns considered in the analysis.

Table 5. Parameter space wave conditions, where Hs is the signifi-
cant wave height and Tp is the peak wave period.

Parameter LR1 LR2 LR3
[min, max] [min, max] [min, max]

Wind speed 4 : 10 11 : 14 15 : 20
range [m s−1]
Hs [m] 0.3, 3.2 0.5, 5.0 0.7, 7.0
Tp [s] 1.7, 13.3 1.2, 12.3 0.9, 11.9

to 359°, while the nacelle is always aligned with the wind
direction. Similarly, the wave heading, also about the fixed
Earth system, is randomly selected across the same 0 to 359°
range. To align with the 1 Hz sampling rate of the lidar ra-
dial wind speed measurements, all feature and target time
series within the simulations are downsampled accordingly.
All predictions and performance evaluations for time series
and DELs are only based on the downsampled time series.
To develop the models, up to 1800 of these simulations are
allocated for training. Additionally, 200 simulations are used
for model validation during the hyperparameter optimization
phase, and another 200 are reserved for the final testing of
the model.

3.5 Measurement noise

In a pragmatic utilization context of the trained predictive
models, the required input data have to be obtained from
several sensors. Each distinct sensor category may be sub-
ject to measurement inaccuracies. To address the influence
of noise present in the acquired measurement data, a noise
modeling procedure has been implemented for every indi-
vidual input feature of the models, subsequently introducing
it into the simulated time series. It is assumed that an inte-
grated GNSS–IMU sensor obtains the position and dynamics
measurements, which combines an inertial measurement unit
(IMU) with a global navigation satellite system (GNSS). The
IMU includes an accelerometer, a gyroscope, and a magne-
tometer. Based on this setup, a sensor fusion model is used
to create measurements from the simulated ground-truth dy-

Table 6. Inertial navigation system accuracy values.

Parameter Value (rms)

Pitch/roll [°] 0.1
Yaw [°] 0.2
Position accuracy [m] [1, 1, 0.05]
Velocity accuracy [m s−1] 0.05
Angular velocity accuracy [° s−1] 0.001
Acceleration accuracy [m s−2] 2× 10−4

namics and position signals. The noise of integrated sensor
systems is dominated by white noise (see, e.g., Blum and
Dambeck, 2020). Therefore, the measurement noise of the
output signals is modeled using a white noise process. The
accuracy of output signals used in this study is based on fact
sheets of commercially available GNSS–IMU receivers (see,
e.g., SBG-Systems, 2023). Accuracy parameters are summa-
rized in Table 6.

4 Results

4.1 Time series prediction

Figure 7 shows the RMSEN values across the testing dataset
for all modeling cases and lidar patterns with and without
the presence of noise in the dynamics measurements. Com-
paring cases A to E to cases ALidar to FLidar (see Table 1) for
all four lidar patterns, adding the LOS wind speed measure-
ments from the lidar to the model features does not improve
the prediction accuracy. This indicates that the use of lidar
signals as predictors for fairlead tensions does not provide
additional value compared to dynamics and SCADA signals.

The best performance is observed in case A, which incor-
porates all categories of platform dynamics, showing their
collective importance in predicting fairlead tensions. A grad-
ual increase in RMSEN is noted with the sequential re-
moval of specific dynamics categories: rotational displace-
ment, translational velocities, and then rotational velocities.
Case D exhibits an RMSEN increase of approximately 0.015
compared to case A for noisy input signals. This relatively
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Figure 7. RMSEN of time series prediction for all cases and lidar patterns. Cases A–D-Noise as well as cases ALidar–FLidar-Noise denote
cases with the influence of measurement noise in dynamics and position measurements.

minor increase suggests that the translational position of the
floater plays a pivotal role in time series signal prediction,
with additional dynamics groups having less impact on the
RMSEN. In case FLidar, all lidar patterns demonstrate ele-
vated RMSEN values. A noteworthy but minor trend is the
reduction in RMSEN as the number of focus points in the
lidar pattern increases up to the 9P squared pattern. This im-
plies that the ratio of informative content to the number of
input features may be more favorable in the 9P pattern com-
pared to the others. Regarding the impact of noise in the dy-
namics model inputs, a consistent pattern is seen across cases
A to D, with RMSEN values rising by around 0.02. This uni-
form increase indicates that the effect of noise is independent
of the type of input feature used and generally introduces an
additional layer of uncertainty to the predictions.

Figure 8 illustrates a comparison between predicted time
series and reference values, along with their power spec-
tral density plots, for cases A through E. The first peak in
the frequency spectrum (around 0.15 Hz) corresponds to the
wave frequency of the example, and the second peak (around
0.4 Hz) corresponds to the structural dynamics of the tower–
floater assembly. In case A, which includes both rotational
and translational displacements and velocities, the model ac-
curately predicts the time series with frequency components
up to 0.5 Hz. In case B, the predictions fail to capture fre-
quency contents above 0.25 Hz, highlighting the significant
role of rotational velocity inputs in the model’s predictive ca-
pability. For cases C and D, which lack data on both transla-
tional and rotational velocities, the model is limited to accu-
rately reflecting only lower-frequency fluctuations up to ap-
proximately 0.15 Hz. Despite these variations in frequency
content, it is important to note that the RMSEN differences
between these cases are relatively small (as shown in Fig. 7).
Therefore, the necessity and benefit of including additional
input features largely depend on the specific application of
the time series predictions. In contexts like the calculation
of DELs, discussed in Sect. 4.2, the ability of a model to
account for higher-frequency contents could significantly in-
fluence the resulting DEL values.

Figure 9 shows a time series prediction example of case
FLidar for lidar pattern 9P, which only uses the lidar LOS

and nacelle yaw information as input. This model can repro-
duce low-frequency fluctuations originating from variations
in the wind field. Frequencies originating from the floater’s
response to the wave excitation and higher-frequency dynam-
ics of the floater are not captured by the model.

4.2 Fairlead tension DEL prediction

4.2.1 Prediction without lidar measurements

Figure 10 displays the prediction accuracy for DELs using
three different model architectures, covering cases A through
E. In each box plot, the lower and upper bounds of the box
represent the 25th and 75th percentiles of the data distribu-
tion, respectively. The sample’s median is indicated by the
horizontal line in each box. Any data point marked as a cir-
cle is classified as an outlier; these are values that lie more
than 1.5 times the interquartile range beyond the box’s up-
per or lower boundaries. The whiskers of the box plot extend
from the edges of the box to the furthest data points that fall
within the range defined by the whisker length. The whisker
range is defined by the highest and lowest values, which do
not fall under the definition of outliers.

This study observes several consistent trends across dif-
ferent model architectures. Case A uniformly outperforms
other cases, suggesting that both rotational and translational
displacements, along with their respective velocities, signif-
icantly contribute to the accuracy of DEL predictions. The
similarity in the median error magnitude, error value distri-
bution, and outlier count across all models suggests that each
modeling architecture is generally effective for DEL predic-
tion tasks.

The gap in prediction accuracy between cases A and B is
marginal for all models, hinting at a relatively minor role of
rotational velocity inputs in overall DEL prediction accuracy.
Conversely, cases C and D exhibit higher absolute percentage
errors than A and B across all models, with this effect being
more pronounced in the convolutional and Seq2One models.
These cases also show a broader range of prediction errors
and increased outliers. The difference in prediction accuracy
between cases C and D is relatively small for all models, in-

Wind Energ. Sci., 9, 2175–2193, 2024 https://doi.org/10.5194/wes-9-2175-2024



M. Gräfe et al.: Machine-learning-based virtual load sensors 2185

Figure 8. Example of time series predictions for cases A–E-Noise. Top: prediction versus reference time series. Bottom: PSD of prediction
vs. reference time series.

Figure 9. Example of time series predictions for case FLidar, 9P.
(a) Prediction versus reference time series. (b) PSD of prediction
vs. reference time series.

dicating that rotational displacements have a smaller impact
than translational displacements in predicting DELs.

Interestingly, the influence of noise on the input data is
either minimal or inconsistent across all models, suggesting
that the level of introduced noise does not significantly con-
tribute to uncertainty in DEL predictions. In some instances,
such as in case TS A, the presence of noise even slightly
improves prediction accuracy. This could be attributed to en-
hanced generalization capabilities when models are trained
on noisy data (see, e.g., Um et al., 2017).

Besides these similarities, the three models show signif-
icant differences in their ability to predict fairlead tension
DELs. While the median error values for cases A and B are
similar for all three models, cases C and D show approxi-

mately 10 % higher median errors for the convolutional and
Seq2One models.

The approach for calculating the DELs based on time se-
ries predictions shows a notably narrower range of error val-
ues, especially apparent in cases B, C, and D. Furthermore,
both the convolutional and Seq2One models tend to predict a
greater number of outliers, and the errors generated by these
models span a wider range of magnitudes. This difference in
performance can be attributed to the intrinsic characteristics
of the different modeling approaches used. For the time se-
ries prediction model, DEL values are derived analytically.
This method is robust in situations where the predicted time
series are reasonably accurate in scale and capture the low-
frequency fluctuations of the signal. Under these conditions,
the DEL calculation algorithm is less likely to yield DEL re-
sults with high errors. On the other hand, the convolutional
and Seq2One models derive DEL predictions only on a sta-
tistical basis. They lack an inherent understanding of the an-
alytical procedures of the DEL calculation. Consequently, as
observed in this study, these models are more prone to higher
prediction uncertainties.

Interestingly, the error median for case E is significantly
higher for the time series model compared to convolution and
Seq2one, although the spread of error and the number of out-
liers are smaller. The prediction accuracy of the time series
prediction can explain this. As shown in Fig. 8, the time se-
ries model for case E cannot predict the low-frequency fluc-
tuations of the signal correctly. Consequently, the calculated
DEL values show higher median errors.
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Figure 10. Absolute percentage errors of DELs for cases A–E with and without the influence of noise. (a) Time series model. (b) Convolu-
tional model. (c) Sequence2One model.

Overall, the results presented in Fig. 10 suggest that
achieving DEL predictions with a median absolute percent-
age error (APE) below 10 % is feasible, provided the full in-
put dataset (case A) is available, and the investigated model-
ing approaches are applied.

Figure 11 shows the model-predicted DELs about the ref-
erence DELs, calculated from the reference time series for all
model architectures and cases A to D. Additionally, the result
of a linear regression and the coefficient of determination are
shown for each case. As indicated by Fig. 10 case A pro-
vides the best prediction accuracy for all models. However,
for convolutional and Seq2One models higher scatter around
the 1–1 reference can be observed. Although the time series
prediction shows the least scatter around the 1–1 reference, a
negative bias or underestimation of DELs predictions can be
observed for the time series approach. While this bias is rela-
tively small for case A, it is more pronounced for cases with
fewer model input features. Particularly, large DEL values
are strongly underestimated (see TS case E). The behavior of
the time series prediction itself can explain this. As shown
in Fig. 8, the correct representation of the time series sig-
nals frequency content depends on the availability of input
features. Consequently, the calculated DEL values are nega-
tively biased if the frequency content of the reference signal
is not reflected in the time series predictions.

The convolutional and Seq2One models exhibit different
characteristics. A notable pattern is observed where both
models tend to overestimate smaller DEL values and under-
estimate larger ones. As a result, their predictions tend to
be shifted towards the center of the DEL distribution. This
effect becomes more evident when the models have fewer
input features. This trend is especially prominent in cases
C, D, and E, where the models’ inability to predict smaller
DEL values is observable. The underlying reason for this ef-
fect possibly stems from the purely statistical nature of these

models. Unlike the analytical DEL calculation approach, the
convolutional and Seq2One models cannot effectively distin-
guish between low-load conditions. In contrast, the time se-
ries prediction model, combined with the analytical DEL cal-
culation method, shows a better ability to detect these subtle
differences in low-load scenarios. This distinction in model
performance highlights the limitations of a purely statistical
approach, particularly in contexts where distinguishing be-
tween closely related load conditions is crucial for accurate
DEL prediction.

Figures 12 and 13 show the relative error between pre-
dicted and reference DELs for two cases (Fig. 12: TS case
A, Fig. 13: convolution case A). The error is shown relative
to the randomized environmental conditions used as input
for the aeroelastic simulations. The colors of individual data
points reflect the absolute magnitude of the respective DEL
prediction.

For TS case A, the negative bias in DEL prediction is re-
flected by the distribution of relative errors. It can also be
observed that high relative errors occur for relatively small
absolute DEL values. Conversely, data points with relatively
large absolute DEL values show comparatively small rela-
tive errors. Concerning the sensitivity to environmental con-
ditions, the relative error depends on the wave conditions.
High relative errors accumulate for low wave heights, in-
dicating difficulties in predicting DEL values correctly for
low hydrodynamic loading scenarios. Similarly, large rela-
tive errors occur at low wind speeds, indicating inaccurate
predictions for low aerodynamic loads and related turbine ex-
citations. No clear influence of wind direction, wave period,
wave direction, and turbulence can be observed.

For case A, convolution (Fig. 13), different patterns can be
observed. Overall, the increased scatter of DEL predictions
is reflected in the relative errors. Similar to TS case A, large
relative errors occur for low absolute DEL values. However,
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Figure 11. One-to-one comparison between predicted and reference DELs for cases A–E under the influence of noise. Top: time series
model. Middle: convolutional model. Bottom: Seq2One model.

large relative errors tend to be positive, indicating an overes-
timation of DELs. High relative errors tend to accumulate for
low wave heights and low turbulence conditions. It is impor-
tant to emphasize that the models are specifically trained to
forecast absolute DEL values, focusing the training on reduc-
ing large absolute errors rather than relative ones. The rela-
tive error sensitivity in the Seq2One model displays consis-
tent patterns with these observations, and as such, its results
are not discussed separately.

4.3 Predictions using lidar measurements

In this section, the results of the DEL prediction using li-
dar inflow measurements are presented. The analysis of time
series predictions for cases ALidar to ELidar (see Sect. 4.1) re-
vealed that the additional use of lidar measurements as model
input features does not improve the prediction accuracy. This

is also true for DEL prediction with all investigated model
architectures and lidar patterns. Therefore, in the following,
we focus on the discussion of predictions made only based
on lidar measurements (case FLidar).

Figure 14 shows the absolute percentage error for case
FLidar for all three model architectures over the four inves-
tigated lidar patterns. The definition of the box plots is the
same as in the previous section. The comparison of results
for different lidar patterns suggests a correlation between
prediction accuracy and the density of points within the pat-
tern. For time series predictions, there is a tendency toward
smaller errors in predictions for patterns with a higher num-
ber of points. For the time series prediction model, the most
accurate predictions, as indicated by the median error, are
observed for the 25-point (25P) pattern. In contrast, for the
convolutional and Seq2One models, the 9P pattern shows the
best performance (lowest median error).
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Figure 12. Sensitivity of relative errors between predicted and reference DELs to environmental conditions for case A, the time series model.

Figure 13. Sensitivity of relative errors between predicted and reference DELs to environmental conditions for case A, the convolutional
model.
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Figure 14. Absolute percentage errors of DELs for case FLidar for all lidar patterns and model architectures.

When comparing the overall performance, both the con-
volutional and Seq2One models demonstrate significantly
lower median errors than the time series model. However,
they also exhibit a higher incidence of outliers. This indicates
that for the time series model, the DEL calculation procedure
is more robust against high relative prediction errors. In this
case, the median prediction accuracy is determined by the
underlying prediction of fairlead tension time series based
on lidar measurements.

Figure 15 shows predicted versus reference DELs for the
25P patterns and the three model architectures. The observed
trends are similar to those observed for the non-lidar cases
in the previous section. The time series model exhibits high
negative bias, increasing with the absolute magnitude of DEL
values. The convolution and Seq2One models tend to over-
estimate small DELs and underestimate large DELs. In par-
ticular, the inability of Seq2One and convolution models to
correctly predict small DEL values can be observed.

Figure 16 shows the sensitivity of prediction errors to the
randomized environmental conditions in the input data for
the convolutional model and 9P lidar pattern. While overall
much higher relative error values and a wider range of error
can be observed compared to the non-lidar cases, the visi-
ble trends are similar. High relative errors occur for small
absolute DEL values, while a positive bias for small DEL
predictions and a negative bias for large DEL predictions are
visible. No clear dependency of relative error values on wind
speed, wind direction, and wave direction is visible. High rel-
ative errors occur for low wave heights, indicating that the
floater motion in these conditions cannot be extracted from
measured lidar signals. Similarly high relative errors occur
for low turbulence conditions.

5 Discussion

In the present study, different models for predicting fairlead
tension time series and DEL have been developed. All mod-

els are trained to predict fairlead tension 1 (see Fig. 5). Due
to the symmetry of the floater and the mooring line layout,
it can be expected that the presented results represent all
three fairleads. In the case of a non-symmetric floater design
or mooring line layout, individual models for each fairlead
would need to be trained.

The findings discussed here are derived from a specific
floater model employed in this research. However, it can
be expected that the core outcomes of this study do apply
to other floater designs. This statement is based on the as-
sumption that the dynamics of the platform fundamentally
determine fairlead tension loads. In scenarios where these
dynamics are accurately captured through measurements, as
in cases A to D, it can be expected that training the model ar-
chitectures presented in this study would yield similar results
for different floater designs.

The accuracy of predicting fairlead tension using nacelle-
based lidar inflow measurements is likely to be significantly
influenced by the specific dynamic behavior of the floater. As
detailed in Gräfe et al. (2023a), the impact of floater motions
on nacelle-based lidar measurements is predominantly gov-
erned by the frequency and amplitude of movements in vari-
ous degrees of freedom, such as pitch or surge. Consequently,
the effectiveness of lidar in capturing floater dynamics heav-
ily depends on the design of the floater and the configuration
of its mooring lines. In the case of the floater model used in
this study, the effect of its motion on lidar measurements is
relatively minor. As a result, lidar data demonstrated limited
efficacy in accurately predicting fairlead tensions. Further-
more, the analysis revealed only marginal differences among
various lidar patterns, indicating that a simplistic representa-
tion of inflow, captured by a single time series signal, is ad-
equate for achieving the observed results. This implies that
similar measurements could potentially be obtained using
simpler instruments like cup or sonic anemometers.

The dataset used for model training, validation, and test-
ing in this study is simulated using an aeroelastic wind tur-
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Figure 15. One-to-one comparison between predicted and reference DELs for case FLidar. (a) Time series model. (b) Convolutional model.
(c) Seq2One model.

Figure 16. Sensitivity of relative errors between predicted and reference DELs to environmental conditions for case FLidar, 9P, convolutional
model.

bine simulation code in combination with a numerical lidar
simulator. While this simulation-based approach can show
the general feasibility of the approach, several considerations
have to be made for a real application. In a practical set-
ting, the model training data could either be acquired through
real measurements or a simulation model. If real fairlead
tension measurement data are used, it must be ensured that
they reflect all relevant environmental conditions. Especially
in extreme conditions, gathering data in sufficient quantities
could be difficult. The use of training datasets for other tur-
bines of the same type, e.g., in a fleet of FOWTs, could be
possible. However, even for FOWTs identical in construc-
tion, differences in the orientation or the mooring line layout
could lead to unexpected effects or bias in the load predic-

tions. Suppose a FOWT simulation is used to generate the
training database. In that case, it is essential that the simula-
tion model is validated and reflects the behavior of the real
system accurately across all relevant environmental condi-
tions. Also, more sophisticated methods using a combination
of simulated and measured data, as suggested by Schröder
et al. (2022), e.g., through a transfer learning approach, could
be beneficial in this context. All models in this study have
been trained on the entire training dataset, assuming no prior
knowledge about environmental conditions in the prediction
step. One approach to improve prediction accuracy could
involve training separate models for specific environmental
conditions, e.g., bins of wind direction or wind speed. While
this approach could potentially improve the performance of
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individual models, it would require an additional process step
in the prediction, which is selecting the specific model based
on the present conditions.

In this study, sensor noise was modeled to represent model
input data realistically. The analysis indicates that this mod-
eled noise has a relatively small impact on time series pre-
dictions, though the exact magnitude of this influence is not
specified. For the prediction of DELs, the effect of noise ap-
pears negligible, suggesting that other sources of uncertainty
in the model play a more significant role than sensor noise.
This finding underscores the potential practicality of using
a virtual load sensor approach. However, it is important to
note that the study only accounted for sensor noise. Other
factors, such as systematic errors, sensor malfunctions, un-
corrected biases in measurements, poor time synchroniza-
tion, or loss of satellite signal, were not considered and could
lead to larger discrepancies in DEL predictions. In scenarios
with such issues, supplementing predictions with lidar mea-
surements could provide a valuable redundancy or serve as a
reference to identify erroneous predictions. This is especially
true if a lidar inflow measurement system is already available
due to its use in the turbine’s control system.

Three different model architectures were evaluated for the
prediction of DELs. Among these, the procedure that calcu-
lates DELs from predicted time series, particularly for cases
A to D that utilize floater dynamics as inputs, exhibited supe-
rior performance. This is true in terms of both median errors
and scatter of prediction errors. A possible explanation lies
in the definition of the DEL metric. Variations in the time
series are amplified to the power of the Wöhler exponent.
Depending on the value of the Wöhler exponent, this leads
to a higher realization-to-realization uncertainty compared to
other statistical metrics such as the mean of a time series.
While the time series prediction approach captures these un-
certainties relatively well, the purely statistical approaches
show inferior performance in capturing these uncertainties.
Future work should, therefore, include a sensitivity analysis,
showing the effect of the Wöhler exponent on the prediction
accuracy.

The convolutional network architecture yielded the best
results for the predictions made based on lidar measure-
ments. High relative errors were more frequent in instances
of small absolute DEL values. This finding carries signifi-
cance in scenarios where DELs are accumulated for long-
term damage estimations, such as calculating a structure’s
remaining lifetime. In this case, the impact of high relative
errors on overall damage is mitigated due to the nonlinear re-
lationship between DEL and damage, depending on the spe-
cific value of the Wöhler coefficient. This aspect highlights
the importance of understanding the error characteristics in
DEL predictions, especially in their application to long-term
structural health monitoring and life cycle analysis.

The hyperparameters for each model were fine-tuned us-
ing a Bayesian optimization process, employing a distinct
validation dataset for this purpose. However, due to con-

straints in computational resources and the extensive range
of cases and pattern combinations, it was not feasible to op-
timize every scenario. Consequently, optimization was per-
formed explicitly for cases A and ALidar across each model
architecture. While the impact of optimized parameters on
model performance was generally found to be modest, a pos-
sibility remains that fine-tuning hyperparameters for all in-
dividual cases might enhance prediction accuracy in certain
instances.

6 Conclusions

In this research, various machine learning approaches were
explored for predicting fairlead tension time series and dam-
age equivalent loads (DELs) utilizing simulated dynamics
and SCADA data from the UMaine VolturnUS-S reference
floating offshore wind turbine (FOWT). The study also ex-
amined the potential of incorporating inflow measurements
from a forward-looking, nacelle-mounted lidar system based
on simulated lidar data. Additionally, the impact of noise on
the dynamics input measurements was assessed by introduc-
ing realistic noise levels into the simulated signals.

For time series predictions, a long short-term memory neu-
ral network was employed. Our findings indicate that incor-
porating rotational and translational displacements and ve-
locities achieves the highest prediction accuracy. The effect
of noise in the dynamics input measurements on prediction
accuracy was found to be small (quantify the impact). Aug-
menting the input feature set with lidar measurements did not
enhance prediction accuracy in the cases studied. Predictions
based solely on lidar data broadly captured the reference se-
quences’ order of magnitude and low-frequency fluctuations.

In predicting DELs, three methodologies were investi-
gated: first, calculating DELs based on time series predic-
tions; second, using a sequence-to-one (Seq2One) LSTM
network; and third, employing a convolutional neural net-
work architecture. Consistent with the time series predic-
tions, including all examined platform dynamics inputs led to
the highest accuracies across all model architectures. Adding
lidar measurements to the dynamics input features did not
improve accuracy. However, models relying solely on lidar
measurements for predictions achieved comparable accura-
cies (with an absolute percentage error – APE – of approxi-
mately 20 %) to those utilizing platform displacement inputs.
For predictions based solely on lidar data, direct DEL pre-
diction by the neural network outperformed DEL calculation
based on predicted time series.

Notably, measurement noise in the platform dynamics in-
puts had a negligible effect on our study’s outcomes. Over-
all, our results suggest that measurements from a GNSS–INS
sensor are crucial for accurately predicting fairlead tension
time series and DELs. The integration of lidar inflow mea-
surements could serve as a beneficial backup in cases of sen-
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sor failures or as a reference system to verify the proper func-
tioning of the actual load prediction model.
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