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Abstract. In the context of a wind farm project, the wind resource is assessed to predict the power output and
the optimal positioning of wind turbines. This requires taking wind measurements on the site of interest and
extrapolating these to the long term using so-called “measure, correlate, and predict” (MCP) methods. Sensor,
power supply, and software failures are common phenomena. These disruptions cause gaps in the measured
data, which can especially be long in offshore measurement campaigns due to harsh weather conditions causing
system failures and preventing servicing and redeployment. The present study investigates the effect of mea-
surement data gaps on long-term offshore wind estimates by analyzing the bias they introduce in the parameters
commonly used for wind resource assessment. Furthermore, it aims to show how filling the gaps can mitigate
their effect. To achieve this, we perform investigations for three offshore sites in Europe with 2 years of con-
current measurements. We use reanalysis data and various MCP methods to fill gaps in the measured data and
extrapolate these data to the long term. Current standards demand high data availability (80 % or 90 %) for wind
measurement campaigns, so we expect that the effect of missing data on the uncertainty in long-term extrapola-
tions is of the same order of magnitude as other uncertainty components such as the measurement uncertainty or
the inter-annual variability. Nevertheless, our results show that the effects of gaps are considerably smaller than
the other uncertainty components. For instance, gaps of 180 d cause an average deviation of the long-term mean
wind speed of less than 0.04 ms−1 and a 95th percentile deviation of less than 0.075 ms−1 for all tested sites.
Due to the low impact of gaps, gap filling does not have the potential to significantly reduce the uncertainty in
the long-term extrapolation.

1 Introduction

Reliably predicting wind speed and wind direction is nec-
essary to analyze a potential wind farm site and to lower
the economic investment risks associated with the project.
These forecasts are based on data that are collected on the
pre-selected site. The wind resource assessment accuracy in-
creases with the amount of on-site data available. Neverthe-
less, the cost of the measurement campaign increases with its
duration. Therefore, wind farm operators resort to measure-
ment campaigns of 1 to 2 years to save time and costs. These
measurements are then extrapolated to the whole expected
lifetime of the wind farm, which usually reaches between 20
to 30 years (Rohrig et al., 2017).

The long-term extrapolation (LTE) is done by determin-
ing a correlation function that describes the relationship be-
tween the measurement data set and an available reference
data set, which gives a long-term record of the meteorolog-
ical conditions from a nearby site. This correlation is estab-
lished over the training period, in which both data sets are
available. In the second step, the correlation function is ap-
plied to the reference data in the target period (the period in
which there is no measurement available). The methods that
follow this principle are known as “measure, correlate, and
predict” (MCP) methods (MEASNET, 2016).

For industry applications, the most commonly used MCP
method is based on linear regression through concurrent
measurement and reference data points (Carta et al., 2013).
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This procedure can be extended by doing a different regres-
sion for each wind direction sector or each wind speed range.
Furthermore, MCP methods using multiple regression func-
tions (Beltran et al., 2010), probabilistic distributions (Boru-
jeni et al., 2021), and reference data sources (Carta et al.,
2013) have been proposed. Hanslian (2014) classifies the
MCP methods into two types: type 1 methods, which are
based on time series corrections such as linear regressions
and excel in estimating time series, and type 2 methods,
which take a probabilistic approach so that they suit the
prediction of wind speed distributions and average values.
The studies of Schwegmann et al. (2023) and Borujeni et al.
(2021) show that various machine learning algorithms can be
used as MCP methods as well. Among the algorithms tested
by Schwegmann et al. (2023), the K-nearest-neighbor (KNN)
regression method performs best in doing 1 d wind speed pre-
dictions and is recommended for further applications.

A significant proportion of the wind data collected in mea-
surement campaigns is erroneous or unavailable due to mea-
surement equipment failures or external disturbances. The
data gaps generated by these events can have lengths of sev-
eral months, often depending on how quickly the site can
be reached. An overview of offshore met mast measure-
ments by Meyer and Gottschall (2022) shows that gaps of 2
or 3 months are a common phenomenon and that longer
gaps are possible as well. As the missing data increase the
long-term extrapolation uncertainty, there are multiple guide-
lines on minimum wind data availability for wind measure-
ment campaigns. For wind resource assessment, availability
must surpass the 80 % (FGW, 2020) or even the 90 % mark
(MEASNET, 2016). Other purposes, such as verification
of floating lidar measurement systems, require availabilities
surpassing 95 % (OWA, 2018). Common solutions for pre-
venting or compensating for data losses are robust measure-
ment setups, device monitoring, redundancies, and measure-
ment campaign extensions. These measures are either costly
or decrease the suitability of the data set for wind resource
assessment. For instance, extending the campaign leads to
inhomogeneous data coverage across the seasons, leading to
a biased wind resource assessment.

Gaps can be filled to increase the measurement availabil-
ity and reduce errors in wind resource assessments. A sim-
ple approach for filling single-value gaps by interpolating
through adjacent time stamps is studied by Pappas et al.
(2014). Another option for filling gaps in wind speed and
direction measurements is to extrapolate data from other
heights through physical wind profile modeling (Landberg,
2015) or by using machine-learning-based methods (Rouho-
lahnejad et al., 2023). If the gaps are longer than a single
value and no measurements from other heights are avail-
able, using an MCP method is also an option for filling the
data gaps (MEASNET, 2016). Nevertheless, Gottschall and
Dörenkämper (2021) show that filling the gaps does not al-
ways mitigate their effect on an LTE, as this effect is already

very small, with a 30 d gap causing an error of approximately
0.01 ms−1 on average for the long-term mean wind speed.

The present study builds on the results of Gottschall and
Dörenkämper (2021) with respect to the effect of gaps on
long-term extrapolations, extending the investigated cases to
measured data with longer and multiple gaps. Furthermore,
the impact of the choice of the gap-filling MCP method on
the LTE is investigated by analyzing the mitigation of the
effect of gaps for different gap-filling methods (including the
method used by Gottschall and Dörenkämper, 2021). For the
present investigation, we use the same data as Gottschall and
Dörenkämper (2021) to ensure the comparability of results.
The focus of the present study lies only on wind speed and
wind direction data, although results may be valid for other
atmospheric parameters as well.

The present work is structured into six sections, including
this introduction. Section 2 describes the met mast data from
different sites taken as measurement data and the ERA5 re-
analysis data for the locations of the met masts taken as refer-
ence data for the MCP methods. Section 3 includes a descrip-
tion of the artificial gap introduction into the measurement
data, an overview of the MCP methods used, and a descrip-
tion of the method used to measure the effects of gaps and
gap filling on long-term extrapolations. Section 4 presents
the results of the main research questions addressed:

– How do the three implemented MCP methods (linear
regression, sector average deviation addition, and KNN
regression) compare to each other when filling artificial
data gaps?

– Is there a correlation between the length of a measure-
ment data gap and its effect on the long-term extrapo-
lation? How does this correlation change for multiple
gaps instead of one?

– Under which circumstances does gap filling mitigate the
effect of gaps on long-term extrapolations?

The results of the research questions are discussed in
Sect. 5. Finally, in Sect. 6, the conclusions of the present
study are summarized.

2 Data basis

Offshore met mast measurements at three sites and numer-
ical data obtained for the closest available location to each
of the met masts are the data sources used for the investiga-
tion of the present study. These sites represent various off-
shore conditions in the North and Baltic seas. We selected
the same data sets as Gottschall and Dörenkämper (2021), as
the present investigation builds on their studies.

2.1 Sites and met mast measurement data

In the present study, met mast measurements are used as
training data for the MCP methods. The data sets from three
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Figure 1. Position of the sites FINO2, FINO3, and IJmuiden, including wind roses for the pre-processed met mast data for the period from
1 July 2012 to 30 June 2014. Adapted from Meyer and Gottschall (2022). Made with the Natural Earth package of Cartopy (Met Office,
2010–2015).

met masts, IJmuiden, FINO2, and FINO3, are pre-processed
and used. Therefore, various surrounding conditions are con-
sidered, as the sites have different distances to the coast and
atmospheric stabilities. These three measurement data sets
are publicly available for research purposes. Their positions
can be seen in Fig. 1.

The measurements from the met masts are all taken with
cup or sonic anemometers and wind vanes. The 10 min av-
eraged values of horizontal wind speed and wind direction
are used. The values from the sensors closest to 90 m above
mean sea level are taken since this is a common hub height
of offshore wind turbines. A simultaneous measurement pe-
riod of 24 months is considered in the present work: from
1 July 2012 to 30 June 2014. We select this period because
of the high data availability of the three sites and because no
wind farms were erected or decommissioned nearby during
that time (Gottschall and Dörenkämper, 2021).

The data sets of the three masts contain gaps. In the pre-
processing step, these gaps are filled before the application of
the methodology described in Sect. 3. To complete the wind
direction time series, measurements from sensors at lower
heights are used. The missing wind speed values are taken
from lower heights as well, in this case multiplying by a fac-
tor to account for the wind profile as described by Gottschall
and Dörenkämper (2021). To reach a 100 % measurement
data availability in all sites, the remaining gaps are filled us-
ing the KNN MCP method. For this, we set the K parameter
to 200 points for wind speed and 700 points for wind direc-
tion. A detailed description of the KNN method used can be
found in Sect. 3.1.3. The KNN filling is the only difference
between the input data used in the present study and the data
used by Gottschall and Dörenkämper (2021). The following
specifications apply to the met masts and the sites:

– The IJmuiden met mast is located in the North Sea ap-
proximately 75 km west of the coast of IJmuiden (co-
ordinates: 52°51′00′′ N, 3°26′24′′ E). It provides mea-

surements at several heights and is described in more
detail by Poveda et al. (2015). For the analysis in the
present study, the wind speed measurement at 92 m (cup
anemometer) and wind direction measurement at 87 m
are used. For the measurement period and heights used,
the mean wind speed at this site is 9.88 ms−1, and the
mean wind direction is 233.4°.

– The FINO2 met mast is situated in the central southern
Baltic Sea (coordinates: 55°00′25.2′′ N, 13°09′14.4′′ E)
and is thus affected by distances to land of less than
50 km in most directions. FINO2 provides wind mea-
surements at various heights between 32 and 102 m
above sea level, technically described in Leiding et al.
(2012). The wind speed and direction measurements
from the sensors mounted at a 92 m altitude (cup
anemometer and vane, respectively) are considered in
the present investigation. For the measurement period
and heights used, the mean wind speed at this site is
9.59 ms−1, and the mean wind direction is 228.3°.

– FINO3 is a met mast located in the North Sea, 80 km
west of Sylt (coordinates: 55°12′00.0′ N, 7°09′36.0′′ E).
No land influences the main wind direction sectors from
the south to northwest. Leiding et al. (2012) offer de-
tailed descriptions and data analyses of the FINO mea-
surements, as well as technical information about this
met mast. The measurements of wind speed and direc-
tion from the sensors at the heights of 92 and 101 m,
respectively, are used in the present work. For the mea-
surement period and heights used, the mean wind speed
at this site is 9.60 ms−1, and the mean wind direction is
243.6°.

As the reanalysis data used as a reference for the MCP
methods are only available with hourly resolution, we use
only the 10 min met mast measurement values that are time-
stamped at whole hours.
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2.2 Reanalysis reference data

In contrast to the generally short-term and expensive met
mast measurements, reanalysis data are available globally,
for periods reaching back to the year 1950, and without gaps.
Nevertheless, reanalyses are currently not capable of captur-
ing weather conditions at a specific location as accurately as
a met mast or a lidar due to their limited spatial and temporal
resolution. Therefore, the sole use of reanalysis data for wind
site assessment is disregarded. Nevertheless, the data are still
commonly used in the industry as reference data for MCP
methods (Gottschall and Dörenkämper, 2021). The fifth ma-
jor global reanalysis (ERA5) is the most recent generation of
reanalysis data issued by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Hersbach et al., 2020).
The time resolution for the atmospheric parameters is 1 h,
and the spatial resolution is 0.25° in latitude and 0.25° in
longitude. For each met mast, we take the ERA5 data set that
results from the spatial bi-linear interpolation between the
four grid points that are closest to the met mast location. The
period between the years 1994 and 2014 is used, as this is
the target period of the long-term extrapolations done in the
present work.

We are aware of the existence of other sources with higher
spatial and temporal resolutions that can be taken as refer-
ences for the MCP methods as well. Some examples of these
are the data from the New European Wind Atlas (NEWA)
(Dörenkämper et al., 2020) and the mesoscale modeling
data optimized with the Weather Research and Forecasting
(WRF) model (Gottschall and Dörenkämper, 2021). Never-
theless, both of these sources have a worse correlation with
the met mast measurements used in the present work than
ERA5 data, which makes them less suitable as references for
the MCP methods (Meyer and Gottschall, 2022). Therefore,
in the present study, ERA5 is used as reference data for the
MCP methods for gap filling and long-term extrapolating.

The ERA5 reference data sets show a strong linear corre-
lation with the respective met mast measurements. The coef-
ficients of determination (R2) between ERA5 and met mast
wind speed data are 0.89 for the sites of FINO2 and FINO3
and 0.93 for the site of IJmuiden.

3 Applied methodology

The methods used to introduce artificial gaps into the met
mast measurements; fill these gaps; and extrapolate the origi-
nal, gapped, and filled data sets to the long term are described
in the following subsections. Furthermore, the methods used
to evaluate the performance of MCP methods and the effect
of gaps on long-term extrapolations are presented.

3.1 MCP methods

In the present study, met-mast-measured data sets are ex-
tended in time, either to fill data gaps or to extrapolate them

to the long term. For these applications, we use the following
MCP methods:

– sector-wise linear interpolation (SLI) as described in
Sect. 3.1.1

– sector average deviation (SAD) as described in
Sect. 3.1.2

– K-nearest-neighbor (KNN) regression as described in
Sect. 3.1.3.

The three implemented MCP methods correct the refer-
ence time series when applied. MCP methods that follow this
principle are classified as type 1 methods by Hanslian (2014).
According to Hanslian (2014), type 1 methods are the most
suitable for predicting time series, while type 2 MCP meth-
ods are the most suitable for predicting distributions. Type 1
methods include the creation of a correlation function be-
tween the concurrently measured data and reference data and
the application of the correlation function to correct the ref-
erence time series of the target period. The KNN method has
type 2 features, as it classifies the wind speed data before ap-
plying the correction. Figure 2 shows a flowchart of the time
series correction MCP methods.

3.1.1 Sector-wise linear interpolation (SLI) MCP method

The most commonly used MCP method for extrapolating
wind speed measurements to the long term is the simple
linear interpolation method (Carta et al., 2013). Given its
widespread use and the high correlation between measure-
ment and reference data in all investigated sites, we consider
this method in the present work.

The correction is done separately for each 30° wind direc-
tion sector to account for inhomogeneous surrounding con-
ditions. As recommended by Carta et al. (2013), we add a
Gaussian noise term, although the option without a noise
term is investigated in Sect. 4.1. In the following, this MCP
method is abbreviated as SLI (sector-wise linear interpola-
tion).

3.1.2 Sector average deviation (SAD) MCP method

Generally, the long-term wind direction is assumed to be the
same as the wind direction recorded over a year-long period
at the same site (Carta et al., 2013). However, several studies
reviewed by Carta et al. (2013) propose MCP methods for es-
timating the long-term wind direction. One of the most com-
mon wind direction MCP correction methods is the sector-
wise deviation correction. It is used, for instance, in the stud-
ies of Gottschall and Dörenkämper (2021) and the SpeedSort
method presented by King and Hurley (2005).

In the sector-wise deviation MCP method, the average
wind direction deviation between the concurrently measured
data and reference data is calculated for each wind sector.
These deviations are added to the reference data from the
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Figure 2. Workflow of a time series correction MCP method used to obtain a corrected reference time series. Reference data are marked in
gray, measured data in blue, and corrected reference data in orange.

target period to obtain the MCP-corrected time series. In the
present work, a sector size of 30° is chosen. We do not con-
sider data pairs for which the reference wind speed value is
less than 3 ms−1, as we estimate the wind direction measure-
ments to be inaccurate for such low wind speeds. A Gaussian
noise term is applied to avoid empty wind direction ranges in
between the sectors (the option without a noise term is in-
vestigated in Sect. 4.1 as well). In the following, this MCP
method is abbreviated as SAD (sector average deviation).

3.1.3 K-nearest-neighbor (KNN) MCP method

In Sect. 4.1 and 4.3, we use the novel K-nearest-neighbor
(KNN) regression MCP method in addition to the traditional
MCP methods to fill the gaps. In the studies of Schwegmann
et al. (2023), the KNN method shows the best results among
several other MCP methods for filling gaps between 1 and
23 h. Schwegmann et al. (2023) test the performance of sev-
eral MCP methods by calculating the root mean square er-
ror (RMSE), the coefficient of determination (R2), and the
Jensen–Shannon distance between the original measurement
and the MCP-filled data. We implement this algorithm us-
ing the Python package scikit-learn (Pedregosa et al., 2011).
Contrary to the SLI and SAD, we use this algorithm to cor-
rect wind speed and direction.

To correct each reference data point from the target pe-
riod, the KNN algorithm finds the K reference points from
the training period with the shortest distance to the point
to be corrected (K-nearest neighbors). The distance between
reference data points is calculated in the dimensions of the
physical parameters included in the algorithm (also called
features). A regression through the measurement values con-
current with the K-nearest neighbors gives the target value
(Cover and Hart, 1967; Schwegmann et al., 2023). Cyclical
parameters such as the wind direction are split into their sine
and cosine values to include them in the feature space.

Schwegmann et al. (2023) found the feature combination
that results in the lowest RMSE between the filled and the

original wind speed time series: wind speed, wind direction,
surface pressure, surface latent heat flux, sea surface temper-
ature, and the temperature difference between the sea sur-
face and 2 ma.s.l. These features are also used in the present
work. Furthermore, several settings influencing the KNN re-
gression algorithm (also called hyperparameters) are speci-
fied. Schwegmann et al. (2023) selected the hyperparameter
combination that gives the lowest RMSE between the orig-
inal and predicted data for a testing subset. In the present
work, the hyperparameters are selected as follows:

– Number of neighbors (K). The K that results, on aver-
age, in the lowest RMSE between the filled and origi-
nal measurement data when filling single 30 d gaps with
shifting gap starting dates (see Sect. 3.3.1) is used.

– Dimension of the distance calculation in the feature
space. The two-dimensional (Euclidean) distance is
used.

– Weighting of the features. Uniform weighting is used.

– Other hyperparameters affecting computation time,
such as leaf size. Default values of scikit-learn are taken.

The one-dimensional Nelder–Mead simplex algorithm
(Arora, 2017) is used to find the optimum K for each site.
Table 1 lists the average and the standard deviation across all
introduced gaps of the optimum K for predicting wind speed
and direction.

In Table 1, the standard deviation is higher than the aver-
age for every parameter and site. Therefore, the optimal se-
lection of K varies drastically depending on the data that are
predicted, and no optimum exists for the general case. How-
ever, we use the mean values listed in Table 1 when filling
the gaps with the KNN method, as they are estimates of the
optimal K.
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Table 1. Mean and standard deviation (SD) of K for which the RMSE between the originally measured and the KNN-filled data is minimized.
Values are obtained for 30 d gaps. Results are shown for wind speed and wind direction for all investigated sites. Values are rounded to the
closest integer.

Site Wind speed mean Wind direction mean Wind speed SD Wind direction SD

FINO3 343 1950 374 3895
FINO2 800 931 2455 2538
IJmuiden 543 1661 923 3322

3.1.4 MCP method performance metrics

There are multiple ways to evaluate the performance of an
MCP method. One approach is calculating the statistics that
compare the originally measured data with the predicted
data value by value. The RMSE (Schwegmann et al., 2023;
Hanslian, 2014) and the R2 (MEASNET, 2016; Schweg-
mann et al., 2023) are the most widely used statistics for this.
Nevertheless, long-term extrapolations aim to estimate over-
all statistics, such as long-term mean wind speed and long-
term wind speed distribution. For this reason, comparing the
statistics of the predicted and the original measurement data
is a method used in many studies as well (Gottschall and
Dörenkämper, 2021; Hanslian, 2014; Schwegmann et al.,
2023).

For the present study, we use three overall time series
statistics and two value-by-value statistics to evaluate the per-
formance of the SLI, SAD, and KNN methods:

– absolute mean wind speed (MWS) difference between
the predicted and original data (overall statistic)

– wind speed distribution error (DE) between the pre-
dicted and original data quantified by the chi-squared
test with wind speed bins of 1 ms−1 (overall statistic)

– absolute mean wind direction (MWD) difference be-
tween the predicted and original data (overall statistic)
(the wind direction differences are in the range of−180
to 180°, as they are calculated using the shortest path
within the 360° circle)

– RMSE between the predicted and original wind speed
data (value-by-value statistic)

– RMSE between the predicted and original wind direc-
tion data (value-by-value statistic).

The lower the value of the performance statistics, the bet-
ter the performance for all metrics. In Sect. 4.1, we calculate
these statistics for 105 artificially introduced 120 d gaps with
different start dates (see Sect. 3.3.1 for more details on gap
introduction). The averages of the MCP performance statis-
tics over all introduced gaps are taken as the criteria to de-
scribe the performance of each MCP method.

3.2 Long-term extrapolations

In the present work, we calculate long-term extrapolations
(LTEs) to a target period of 20 years between 1 July 1994
and 30 June 2014 with ERA5 as reference data. The follow-
ing subsections contain details on the MCP method used for
long-term extrapolating and a description of how the effect
of gaps on long-term extrapolations is evaluated.

3.2.1 Long-term extrapolation MCP method

MCP methods based on linear regression are the most com-
monly used for extrapolating measured wind speed time se-
ries to the long term. The sector average deviation MCP
method (refer to Sect. 3.1.2) is commonly employed for wind
direction extrapolation (Carta et al., 2013). Therefore, we use
the SLI and SAD MCP methods for the long-term extrapola-
tions to obtain the results shown in Sect. 4.2 and 4.3. For the
LTE, both MCP methods include the Gaussian noise term.

In the present work, the gaps are included in the target pe-
riod when doing a long-term extrapolation of a gapped data
set. Therefore, the gaps are filled with the corrected long-
term reference time series obtained when extrapolating. Fig-
ure 3 shows a schematic representation of this process.

The gaps are filled before the long-term extrapolations
to calculate the results for the LTE of filled data shown in
Sect. 4.3. In these cases, the filled gaps are considered part
of the measurement data and belong to the training period
instead of the target period.

3.2.2 Evaluation of the effect of gaps on long-term
extrapolations

The energy yield of a wind turbine is calculated using the
wind speed distribution. Therefore, this is the most rele-
vant output of a long-term extrapolation, along with the
mean wind speed (MWS) and mean wind direction (MWD)
(MEASNET, 2016). Hence, Gottschall and Dörenkämper
(2021) consider that the effect of gaps on an LTE correlates
with the mean wind speed, mean wind direction, and distri-
bution deviations between the extrapolated gapped and orig-
inal data. Therefore, we use the MWS and MWD difference
between the long-term-extrapolated gapped and original data
to quantify the effect of gaps on an LTE. The wind direc-
tion differences are calculated using the shortest path with the
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Figure 3. Workflow of a time series correction MCP method used for long-term extrapolation. Case with gapped measurement. Reference
data are marked in gray, measured data in blue, and corrected reference data in orange. Periods for which data are not available in the
respective data set are marked in white. The long-term-extrapolated measurement is composed of corrected reference and measured data.

360° circle. Additionally, we use the wind speed distribution
error (DE) between the long-term-extrapolated gapped and
original data to evaluate the effect of gaps on the LTE. We
calculate the DE using the chi-square test with wind speed
bins of 1 ms−1. Analogously, we quantify the effect of gap
filling on an LTE through the deviations between the statis-
tics of the extrapolated filled and original data.

To calculate the long-term MWS, MWD, and distribution,
the extrapolated data set includes the measurement from the
training period and the corrected reference data from the tar-
get period (see Fig. 3). Analyses are repeated for gaps with
different starting dates (see Sect. 3.3) for each gap duration
investigated in Sect. 4.2 and 4.3. To generalize the results
over all gaps with the same gap duration introduced, we use
two metrics:

– The first is the RMSE between the gapped and the
original long-term-extrapolated MWS, MWD, and dis-
tributions. We adopt this metric from Gottschall and
Dörenkämper (2021) to assess the average effect of gaps
on long-term extrapolations.

– The second is the 95th percentile (P95) of the abso-
lute deviation between the gapped and the original long-
term-extrapolated MWS, MWD, and distributions. We
use this metric to highlight the highest 5 % of all ana-
lyzed gap effects.

We use the same metrics for the deviations between the
filled and original long-term statistics to analyze the effect of
gap filling on long-term extrapolations.

3.3 Gap generation

An artificially gapped data set is needed to evaluate the ef-
fect of gaps on a long-term extrapolation as described in

Sect. 3.2.2. We do this by replacing the originally measured
wind speed and direction values with non-numerical (NaN)
values. A gap consists of one or multiple consecutive NaN
values. We define each gap by setting the starting time stamp
and the number of the consecutive NaN values. The follow-
ing subsections describe the two gap types investigated in the
present work.

3.3.1 Single gap with shifting start date

The single-gap introduction follows the procedure used by
Gottschall and Dörenkämper (2021). It is composed of the
following steps:

– Step 1. Introduce a gap with a defined starting date and
duration into the measurement.

– Step 2. Derive a data set from the gapped data (filling
the gap and/or extrapolating to the long term).

– Step 3. Calculate statistics of the derived data set (mean
wind speed, distributions, etc.).

– Step 4. Shift the gap starting date forward by 7 d.

– Step 5. Repeat all previous steps with the shifted gap.

The gap is shifted through the 2-year measurement, re-
sulting in a total of 105 gapped data sets analyzed. For gaps
whose ending date surpasses the end of the measurement pe-
riod, the corresponding number of time stamps is deleted at
the beginning of the data set. In Sect. 4.1, results are shown
for gaps with a duration of 120 d. Section 4.2 and 4.3 include
gaps with durations ranging from 0 to 180 d in steps of 30 d.
Considering a 2-year measurement period, 180 d missing im-
plies roughly 75 % data availability.
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3.3.2 Multiple gaps with random start dates

We developed a process to introduce multiple gaps in a data
set. These gaps represent unforeseeable availability losses in
a more realistic manner than a single gap. This method in-
cludes the following steps:

– Step 1. Introduce multiple gaps with defined single and
combined lengths into the measurement. The starting
date of each gap is selected randomly.

– Step 2. Derive a data set from the gapped data (filling
the gap and/or extrapolating to the long term).

– Step 3. Calculate statistics of the derived data set (mean
wind speed, distributions, etc.).

– Step 4. Repeat all previous steps until the average over
all repetitions of the statistics calculated in Step 3 con-
verges.

For gaps that extend beyond the measurement ending time
stamp, a corresponding number of NaN values is introduced
at the start of the measurement time series. Overlapping gaps
are merged into a single gap with their combined length.

We use this method to analyze the effect of multiple gaps
on long-term extrapolations in Sect. 4.2. For this, combina-
tions of gaps with total durations ranging from 0 to 180 d in
steps of 30 d are introduced. Every single gap within those
combinations is 30 d long, as this is a plausible time window
between the failure of an offshore wind measurement system
and its redeployment. Pre-defining the single and combined
gap lengths constrains the number of introduced gaps.

For the investigation shown in Sect. 4.2, we require the
convergence of the effect of gaps on long-term extrapo-
lations. Therefore, the parameters presented in Sect. 3.2.2
must converge. We only use the long-term mean wind speed
RMSE for determining convergence. Accordingly, the rep-
etition of Steps 1 to 4 is terminated when the long-term
mean wind speed RMSE stays within a range of 0.0001 ms−1

for the last 100 gap combinations introduced. This criterion
leads to stable results for all parameters describing the effect
of gaps on long-term extrapolations.

3.4 Gap filling

The results shown in Sect. 4.1 and 4.3 involve filling artificial
gaps in the measured data using the MCP methods described
in Sect. 3.3. When filling a gap, the measurement–reference
data pairs for the period outside of the gap are used for train-
ing, and the reference data from the period covered by the
gap are corrected. This procedure is illustrated in Fig. 4.

4 Results

The following subsections show the results that aim to an-
swer the research questions stated in the Introduction. We

obtain these results using the data and the methods described
in Sects. 2 and 3.

4.1 Comparison between MCP methods

The average performance of each MCP method, analyzed as
described in Sect. 3.1.4, is shown in Tables 2 to 4.

On average, the KNN method performs slightly better than
the SLI and SAD methods (for wind speed and wind direc-
tion, respectively) when measured by the RMSE over the
gaps. By this metric, the performance of the MCP methods
with a noise term is considerably worse than the performance
of the same methods without a noise term. On the contrary,
the distribution error when using the SLI method is lower
with than without a noise term. It can also be noted that
the MWS and MWD deviations are almost identical for the
SLI and SAD options with and without a noise term. When
comparing the performance of the KNN method to the per-
formance of the SLI and SAD methods (both with a noise
term), differences between the three sites can be seen. For
the FINO3 data, the KNN method performs better than the
SLI and SAD methods for the MWS deviation, MWD devia-
tion, and DE. For the FINO2 data, the KNN method performs
best for the MWS deviation, but the SLI method with a noise
term shows a lower DE, and the SAD method shows a lower
MWD deviation. For the IJmuiden data, the KNN method
shows the highest MWS deviation of all MCP methods. The
distribution error is lower for the SLI method with a noise
term than for the KNN method. The KNN method shows the
lowest MWD deviation.

4.2 Effect of gaps on long-term extrapolations

To analyze the impact of single gaps on long-term extrapola-
tions, we follow the procedure outlined in Sect. 3.2.2: com-
paring the long-term statistics of the gapped data with the
long-term statistics of the original data. In Fig. 5 we show
the long-term mean wind speed, mean wind direction, and
the Weibull parameters A and k depending on the gap start-
ing date. The Weibull parameters are obtained by fitting the
wind speed distribution with a Weibull distribution function.
Figure 5 shows results for the FINO3 site for a measurement
time series with no gaps and for a time series with a gap
of 30, 60, and 90 d.

For all long-term statistical parameters shown in Fig. 5,
the deviation between the gapped and the original parameters
varies depending on the gap starting date. These differences
increase with increasing gap duration. The increase in the
effect of gaps is particularly pronounced for the starting dates
for which the smallest (30 d) gaps already have their highest
impact on the LTE statistics. We obtain similar results for
FINO2 and IJmuiden data. Note that the variability of the
LTE statistics of the original data seen in Fig. 5 is due to the
noise term, as a new long-term extrapolation of the original
data is done for each gap starting date.
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Figure 4. Workflow of a time series correction MCP method used to fill a measurement data gap. Reference data are marked in gray,
measured data in blue, and corrected reference data in orange. Periods for which data are not available in the respective data set are marked
in white. The filled measurement is composed of corrected reference and measured data.

Table 2. Performance statistics of the sector-wise linear interpolation (SLI), sector average deviation (SAD), and K-nearest-neighbor (KNN)
MCP methods for the FINO3 site. The statistics shown are the mean wind speed (MWS) and mean wind direction (MWD) average deviations,
the average wind speed distribution error (WS DE), and the average wind speed and wind direction root mean square errors (WS and WD
RMSEs). Deviations between the MCP-predicted and the original statistics are calculated over 120 d periods, with starting dates spaced by
7 d along the measured period. The lowest value of each column is written in bold.

MCP method MWS deviation [ms−1] WS DE [%] MWD deviation [°] WS RMSE [ms−1] WD RMSE [°]

SLI 0.13 3.47 – 1.34 –
SLI with noise term 0.13 2.49 – 1.85 –
KNN 0.06 1.81 3.81 1.30 18.4
SAD – – 4.66 – 18.5
SAD with noise term – – 4.65 – 18.9

To generalize over all gap starting dates, the RMSE be-
tween the gapped and original LTE statistics (see Sect. 3.2.2)
is shown in Fig. 6 for all sites. The root mean squared distri-
bution error between the original and gapped LTE is shown
instead of the Weibull parameter deviations. Analogously to
Fig. 6, Fig. 7 shows the P95 of the absolute deviations be-
tween the gapped and original LTE statistics.

Figure 6a, c, and e show the results for a single gap with
different gap lengths, introduced as described in Sect. 3.3.1.
An almost-linear correlation between the statistics measuring
the effect of gaps and the gap length can be recognized. For
all sites, a gap of 0 d affects the LTE due to the noise term. It
leads to a mean wind speed RMSE of roughly 0.005 ms−1,
a mean wind direction RMSE of 0.05°, and a distribution
RMSE of 0.02 % to 0.025 %. For gaps longer than 0 d, there
are differences between the sites, which increase with in-
creasing gap size:

– For the MWS (Fig. 6a), results for the FINO2 and
FINO3 sites show a higher mean wind speed RMSE
between the gapped and original LTE data (around

0.037 ms−1 for 180 d gaps) than for the IJmuiden site
(roughly 0.02 ms−1 for 180 d gaps).

– For the MWD (Fig. 6c), results for the FINO3 and IJ-
muiden sites show higher RMSEs (approximately 0.7°
for 180 d gaps) than for the FINO2 site (nearly 0.3° for
180 d gaps).

– For the wind speed distribution (Fig. 6e), there are few
differences between the results for each site, with IJ-
muiden showing the lowest distribution RMSE (roughly
0.047 % for 180 d gaps) and FINO3 showing the highest
(nearly 0.065 % for 180 d gaps).

These effects on the long-term extrapolation are negligible
(< 1 %), considering that the 2-year mean wind speed in all
measurement sites is between 9.5 and 10 ms−1 and that the
wind direction has a range of 360°. This is true even for 180 d
gaps, which implies that roughly 25 % of the measured data
are missing.

Figure 6b, d, and f show the RMSE of the long-term statis-
tics over all introduced 30 d gap combinations depending
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Table 3. Performance statistics of each MCP method for the FINO2 site. Abbreviations of statistics and MCP methods are as described in
Table 2. The lowest value in each column is written in bold.

MCP method MWS deviation [ms−1] WS DE [%] MWD deviation [°] WS RMSE [ms−1] WD RMSE [°]

SLI 0.17 3.06 – 1.44 –
SLI with noise term 0.16 2.60 – 2.01 –
KNN 0.12 2.71 1.82 1.42 19.0
SAD – – 1.55 – 19.1
SAD with noise term – – 1.54 – 19.5

Table 4. Performance statistics of each MCP method for the IJmuiden site. Abbreviations of statistics and MCP methods are as described in
Table 2. The lowest value in each column is written in bold.

MCP method MWS deviation [ms−1] WS DE [%] MWD deviation [°] WS RMSE [ms−1] WD RMSE [°]

SLI 0.08 2.56 – 1.32 –
SLI with noise term 0.08 1.78 – 1.84 –
KNN 0.10 2.38 2.98 1.32 18.0
SAD – – 3.34 – 18.1
SAD with noise term – – 3.32 – 18.5

on the combined gap length (for more information on the
multiple-gap introduction, see Sect. 3.3.2). Similar to the
single-gap case, a linear relationship between the effect of
gaps and combined gap length can be seen. Furthermore, the
differences between the sites are similar for the multiple- and
the single-gap case. Nevertheless, when measured using the
RMSE between the gapped and original long-term statistics,
the effect of multiple gaps is smaller than the effect of the
single gap for all sites and gap lengths.

As expected, the P95 linearly increases with gap size and
is higher than the RMSE for all sites. Figure 7 shows the
following effects of gaps on long-term extrapolations:

– For the MWS (Fig. 7a), there is a higher P95 of devi-
ations between the gapped and original LTE data for
FINO2 and FINO3 (around 0.07 ms−1 for 180 d gaps)
than for IJmuiden (roughly 0.04 ms−1 for 180 d gaps).

– For the MWD (Fig. 7c), the FINO3 and IJmuiden sites
show a higher P95 of deviations (approximately 1.2° for
180 d gaps) than FINO2 (nearly 0.5° for 180 d gaps).

– For the wind speed distribution (Fig. 7e), only slight
differences are observed between the sites, with IJ-
muiden showing the lowest P95 of distribution devi-
ations (roughly 0.075 % for 180 d gaps) and FINO3
showing the highest (approximately 0.1 % for 180 d
gaps).

The values of the P95 of the deviations are roughly dou-
ble the values of the RMSE for all sites, parameters, and gap
lengths. The P95 values are still below 1 % for the 180 d gaps
for all assessed parameters. As for the RMSE, the P95 devi-
ations are higher for single gaps than for multiple gaps for
equal combined durations.

4.3 Impact of gap filling on long-term extrapolations

In a final step, we use single gaps (introduced as described in
Sect. 3.3.1) to evaluate the effect of gap filling on long-term
extrapolations with the method described in Sect. 3.2.2. Fig-
ure 8 summarizes the results of this investigation by showing
the variation in the RMSE calculated over all gap starting
dates between LTE statistics of the original and gapped data
(continuous lines) and between the original and filled data
(dotted lines).

Figure 8b, d, and f show the effect of filling the wind speed
gaps with the SLI MCP method and the wind direction gaps
with the SAD MCP method. It can be seen that filling the
gaps with these methods does not affect the long-term ex-
trapolations for any of the sites and analyzed parameters.
The noise term used when filling and extrapolating causes
the minimal deviations between the gapped and filled LTEs.

Figure 8a, c, and e show an approximately linear corre-
lation between the effect of gaps and the gap length for the
KNN-filled gaps for all sites. According to these subplots,
filling with the KNN method has a different impact on the
long-term extrapolations depending on the site and the eval-
uated statistic:

– For the FINO3 data, filling with the KNN method re-
duces the RMSE for all metrics.

– For the FINO2 data, filling with the KNN method re-
duces the mean wind speed RMSE but increases it for
the mean wind direction and the wind speed distribu-
tion.

– For the IJmuiden data, filling with the KNN method re-
duces the mean wind direction RMSE but increases it
for the mean wind speed and wind speed distribution.
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Figure 5. Long-term mean wind speed (subplot a), mean wind direction (subplot b), and Weibull parameters A (subplot c) and k (subplot d)
of the original and gapped data depending on the gap starting date. Results for the original data are shown in solid black lines and for gap
durations of 30, 60, and 90 d in purple, teal, and light green lines, respectively. Long-term extrapolations are done with the sector-wise linear
interpolation (for wind speed) and sector average deviation (for wind direction) MCP methods with a noise term. Results are shown for the
FINO3 site.

It must be noted that the sites and statistics for which fill-
ing with the KNN method reduces the effect of gaps on the
long-term extrapolations are the same as the cases found in
Sect. 4.1, for which the KNN method shows a better perfor-
mance than the SLI and SAD methods with noise terms. We
discuss this and other considerations given to the results in
Sect. 5.

5 Discussion

When comparing the performance of the MCP methods in
Sect. 4.1, we find that they perform differently depending on
the site and the metric used. The KNN MCP method excels
when estimating each single data point because the selection
of K is optimized for this purpose (reduction in the RMSE
between measurement and prediction; see Sect. 3.1.3). This
agrees with the results shown by Schwegmann et al. (2023).
The methods with noise terms perform the worst by this mea-
sure, as they introduce an artificial error into each data point.
Nevertheless, the addition of the noise term does not affect
the mean wind speed and direction values, as the artificial
error is averaged to 0.

Regarding the wind speed distribution, Hanslian (2014)
points out that type 1 MCP methods, such as linear regres-
sion, are best suited for predicting wind speed time series but
distort distributions. Tables 2 to 4 show a lower distribution
error in the original data when the noise term is added than
when it is not. Therefore, we conclude that the noise term
partly compensates for the distortion of the wind speed distri-
bution induced by the linear regression for the cases tested in
the present work. The noise term consists of random samples
of a Gaussian distribution added to each wind speed value.
Therefore, the distribution distortion is only compensated for
if the distribution of the measured data used for testing is
more similar to a Gaussian distribution compared to the dis-
tribution of the predicted data. This is the case for the in-
vestigated sites, but the contrary is possible for other sites or
periods, for which the addition of the noise term would in-
crease the distribution distortion. Therefore, we dismiss the
Gaussian noise term as a universal solution for this issue and
introduce the KNN method as an alternative. This is an ana-
log MCP method by the criteria of Hanslian (2014). These
methods combine type 1 and type 2 features and can also dis-
tort distributions, as the analogs found (neighbors in the case
of KNN) tend to have values closer to the mean as opposed
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Figure 6. Long-term mean wind speed (subplots a and b), mean wind direction (subplots c and d), and distribution (subplots e and f) RMSEs
between the original and gapped data calculated over all introduced gaps for each gap duration. Results for one gap with a shifting start date
are on the left (subplots a, c, and e), and results for multiple gaps with random start dates are on the right (subplots b, d, and f). Long-term
extrapolations are done with the sector-wise linear interpolation (for wind speed) and sector average deviation (for wind direction) MCP
methods with a noise term. Results for the FINO2, FINO3, and IJmuiden sites are shown in blue, orange, and green, respectively.

to further away from the mean (Hanslian, 2014). No clear
choice between the KNN method and the linear interpolation
with a noise term can be derived from the results in Sect. 4.1
for predicting wind speed distributions. Given the error po-
tentially introduced by the noise term, we recommend us-
ing either distribution-based MCP methods, such as matrix
methods (see Hanslian, 2014), or analog methods, such as
KNN, when predicting wind speed distributions. All methods
studied in Sect. 4.1 have similar performances in predicting
wind speed and direction averages. We assume that the lin-
ear interpolation and sector average deviation MCP methods
are sufficient for this purpose, although more complex meth-
ods might give slightly better results. If an accurate point-by-
point prediction is the aim, the RMSE between the predicted
and the testing measured data is to be reduced. Given the re-
sults obtained in Sect. 4.1 and in the work of Schwegmann
et al. (2023), we consider that training a KNN or other ma-

chine learning models such as those shown by Schwegmann
et al. (2023) is the best solution.

It must be noted that the statistics listed in Tables 2 to 4
are an averaged value over the results obtained for each in-
troduced gap. Therefore, the comparison between the perfor-
mance statistics for one specific gap may differ from the av-
erages shown. The classification of MCP methods based on
their performances is only valid for the data, gap introduction
procedure, and metrics used in the present work.

In the present study, we apply the metric proposed by
Gottschall and Dörenkämper (2021) to describe the effect
of gaps on long-term extrapolations with the linear regres-
sion MCP method with a noise term. The different results
for the long-term extrapolations are due to using different
wind sector divisions, regression functions, and target peri-
ods compared to Gottschall and Dörenkämper (2021). Never-
theless, the finding of the low and seasonally changing effect
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Figure 7. Long-term mean wind speed (subplots a and b), mean wind direction (subplots c and d), and distribution (subplots e and f)
P95s of the absolute deviations between the original and gapped data calculated over all introduced gaps for each gap duration. Results
for one gap with a shifting start date are on the left (subplots a, c, and e), and results for multiple gaps with random start dates are on the
right (subplots b, d, and f). Long-term extrapolations are done with the sector-wise linear interpolation (for wind speed) and sector average
deviation (for wind direction) MCP methods with a noise term. Results for the FINO2, FINO3, and IJmuiden sites are shown in blue, orange,
and green, respectively.

of gaps aligns between Gottschall and Dörenkämper (2021)
and the present study. We build on the study of Gottschall
and Dörenkämper (2021) by increasing the gap length and
by introducing multiple gaps. The increase in the effect of
gaps with increasing gap size is expected, as the gapped
and original data sets increasingly differ. Nevertheless, even
180 d gaps (corresponding to approximately 75 % availabil-
ity) show a small effect. These gaps cause long-term mean
wind speed errors of only 0.07 ms−1 and 0.037 ms−1 on av-
erage for the P95 at FINO2 and FINO3. The 0.037 ms−1

value is roughly 0.38 % of the mean wind speed measured.
This added uncertainty is minor compared to other long-term
uncertainty sources such as the uncertainty in the wind speed
measurement, which can surpass 3 % (Pulo et al., 2021). We
show that the effect of gaps is even smaller for multiple gaps
with the same combined gap length. We assume that this is

because the single gap is longer and more likely to cut out an
entire season so that climatic effects specific to that season
are ignored.

Figure 5 shows an example of the seasonality of the effect
of gaps for FINO3. In this case, the long-term extrapolations
are most sensitive to gaps covering the spring and autumn
months. We could observe a similar seasonality for the other
analyzed sites. The results of Gottschall and Dörenkämper
(2021) also show the largest impact of gaps when they cover
spring and autumn months for all sites. Nevertheless, the dif-
ferences between the seasons in that study are slight and
therefore non-conclusive because only 30 d gaps are consid-
ered. As the sensitivity of long-term extrapolations to the sea-
son of the gap is not the object of the present study, we do
not investigate this topic further. However, a follow-up study
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Figure 8. Long-term mean wind speed (subplots a and b), mean wind direction (subplots c and d), and distribution (subplots e and f) RMSEs
between the original and gapped data (continuous lines) and between the original and filled data (dotted lines). RMSEs are calculated over
all introduced gaps for each gap duration for single gaps with shifting start dates. Gap filling is done with the KNN MCP method on the
left (subplots a, c, and e) and with the sector-wise linear interpolation (SLI; for wind speed) and sector average deviation (SAD; for wind
direction) MCP methods with a noise term on the right (subplots b, d, and f). Long-term extrapolations are done with the SLI and SAD
methods with a noise term. Results for the FINO2, FINO3, and IJmuiden sites are shown in blue, orange, and green, respectively.

with a more extensive analysis might be of interest to the
stakeholders involved in wind resource assessment.

Given the small effect of gaps on long-term extrapolations,
we recommend lowering the requirements of data availability
of over 80 % or 90 % given in current guidelines (MEAS-
NET, 2016; FGW, 2020) for offshore measurement cam-
paigns. This will reduce the cost of obtaining on-site wind
data while not impacting the wind resource assessment sig-
nificantly. Furthermore, we align with the method used to
assess effects of gaps on long-term extrapolations recom-
mended by Gottschall and Dörenkämper (2021) and used in
the present investigation. This can be a valid method not only
for further investigations into the effect of gaps but also for
estimations of the effect of a real gap on a wind resource as-
sessment scenario.

Even though gaps have a small effect on the long-term ex-
trapolations in the investigated cases, we show how gap fill-
ing can change the effect of gaps on the LTE. When filling
with the linear regression method, no difference between the
filled and gapped long-term extrapolations can be seen. This
is because the same MCP method and reference data sets are
used for filling and extrapolating. In this case, the training
measurement data and the correction function of the MCP
method are the same for filling the gaps and for extrapolating
the gapped data set. Therefore, the correction function of the
long-term extrapolation already contains the information that
is obtained by filling the gaps and stays unchanged when the
gap-filling data are factored in.

Gap filling might decrease the bias of the LTE caused by
gaps when done with an MCP method other than the extrapo-
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lating method. We investigate this using the KNN method for
filling and the linear interpolation (for wind speed) and sec-
tor average deviation (for wind direction) MCP methods with
noise terms for extrapolating. With this setting, gap filling
does not always mitigate the effect of gaps on the LTE (see
Fig. 8a, c, and e). Nevertheless, the effect of gaps is mitigated
for the predicted parameters and sites, for which KNN per-
forms better for gap filling than the linear interpolation and
sector average deviation MCP methods with noise terms (see
Sect. 4.1). We presume that the gap-filling performance and
the reduction in the effect of gaps on the LTE correlate for
each predicted statistical parameter and site. This can be in-
vestigated further with various gap-filling and long-term ex-
trapolating MCP methods and different data sets. However,
neither the performance of a gap-filling method nor the re-
duction in the effect of gaps on the LTE can be calculated for
a real gap in the measured data. Therefore, introducing and
analyzing the effect of filling artificial gaps are the only ways
to estimate the effect of filling real gaps. Hereby, the period
cut out by the real gaps has to be considered (periods with
very high or low wind speeds might have the largest effects
when cut out). Artificially cutting out periods with a similar
wind climate to the period cut out by the real gaps might give
insight into how the real gap affects the long-term extrapola-
tion. If redundant measurements are available (for example,
data from another height or a nearby deployed floating lidar
system), gaps should be filled with those redundancies as a
reference instead of with reanalysis data. As less correction
is needed for reference data from redundant measurements,
we expect gap filling to reduce the uncertainty in long-term
extrapolations in these cases.

6 Conclusions

Since data gaps are common in offshore wind measurements,
multiple guidelines limit the proportion of missing data al-
lowed. Therefore, wind-measuring stakeholders resort to ex-
pensive wind measurement campaigns due to monitored re-
dundant systems and prolonged measurement periods. One
of the goals of the present study was to find out whether the
current industry requirements of measurement data availabil-
ity are justifiable or too conservative for offshore measure-
ment campaigns. To answer this question, we built on the
research of Gottschall and Dörenkämper (2021) and investi-
gated the effect of gaps on long-term (20-year) extrapolations
in multiple settings. We analyzed the effects of gaps with var-
ious lengths and numbers for the same sites as those investi-
gated by Gottschall and Dörenkämper (2021): met mast mea-
surements from FINO2, FINO3, and IJmuiden from the pe-
riod between 2012 and 2014. Throughout the present study,
we used the linear regression MCP method with ERA5 as
reference data for long-term extrapolating. The metric we
used for evaluating the effect of gaps on the extrapolations is
the RMSE between the measured and the gapped long-term

mean wind speed, mean wind direction, and distribution over
all introduced gaps. The study on the effect of gaps on long-
term extrapolations yielded the following results:

– In alignment with the results of Gottschall and
Dörenkämper (2021), we found that gaps have a mi-
nor impact on long-term extrapolations. Even for data
availability of 75 %, the deviation between the gapped
and the original long-term mean wind speed does not
surpass 0.075 ms−1 in 95 % of the cases for any of the
analyzed sites. We obtained similar results for the long-
term mean wind direction and wind speed distribution.

– A single gap has a larger effect on the long-term ex-
trapolation than multiple gaps with the same combined
length. We assume this is because a single wind data
gap is more likely to cut out a climatic event than sev-
eral shorter gaps spread throughout the time series.

In addition to investigating the effect of gaps on long-
term extrapolations, we analyzed the possibility presented
by Gottschall and Dörenkämper (2021) of filling the gaps
to decrease their effect on the extrapolation. We introduced
the KNN, linear interpolation, and sector average deviation
MCP methods for filling data gaps and compared their per-
formance. Furthermore, we evaluated the relationship be-
tween the performance of a gap-filling MCP method and its
reduction in the effect of gaps on a long-term extrapolation.
We obtained the following results:

– The linear interpolation MCP method distorts wind
speed distributions. Adding a Gaussian noise term re-
duces the distribution distortion for sites with bell-
shaped distributions. However, this reduces the accu-
racy of predicting a wind speed time series value by
value.

– The KNN MCP method shows good results (compared
to the linear regression and sector average deviation
methods) when predicting mean wind speed, mean wind
direction, wind speed distributions, and wind speed and
wind direction time series.

– Filling the gaps does not impact the long-term extrapo-
lation if the filling and extrapolating processes are done
with the same MCP method and reference data.

– The effect of gaps on long-term extrapolations is re-
duced through filling with the KNN method for the
same parameters and locations for which the KNN
method outperforms the linear interpolation and sector
average deviation MCP methods in terms of gap filling.

According to the present findings, the minimum data avail-
ability acceptable for an offshore measurement campaign
should be lower than the 90 % currently demanded by most
standards. As gaps have a small effect on extrapolations, gap

https://doi.org/10.5194/wes-9-2217-2024 Wind Energ. Sci., 9, 2217–2233, 2024



2232 M. G. Jonietz Alvarez et al.: Impact of data gaps on long-term offshore wind resource estimates

filling does not significantly reduce the effect of gaps. Never-
theless, data from a different measurement height or a nearby
deployed device are often available. The data taken nearby
have a lower uncertainty and better correlation with the an-
alyzed measurement compared with modeled data such as
ERA5. Therefore, we expect that using the nearby data as
reference data for the gap-filling MCP method reduces the
effects of gaps on the long-term extrapolation, even if this
effect is minor.
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