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Abstract. Despite the promise of wind farm control through wake steering to reduce wake losses, the deploy-
ment of the technology to wind plants has historically been limited to small and simple demonstrations. In this
study, we develop a wake steering control system and deploy it to 10 turbines within a complex 58-turbine wind
plant. A multi-month data collection campaign was used to develop a closed-loop tuning and validation process
for the eventual deployment of the system to 165 turbines on this and two neighboring wind plants. The system
employs a novel actuation strategy, using absolute nacelle position control instead of yaw sensor offsets, along
with a model in the loop performing real-time prediction and optimization. The novel model architecture, which
employs data-driven input estimation and calibration of an engineering wake model along with a neural-network-
based output correction, is examined in a validation framework that tests predictive capabilities in both a dynamic
(i.e., time series) and an aggregate sense. It is demonstrated that model accuracy can be significantly increased
through this architecture, which will facilitate effective wake steering control in plant layouts and atmospheric

conditions whose complexities are difficult to resolve using an engineering wake model alone.

1 Introduction

Wind turbines extract kinetic energy and momentum from
the atmosphere to convert them into electrical energy. This
process generates a wake downstream of each turbine, where
the wind speed is slower and more turbulent than the in-
flow. As wind turbines are commonly deployed in clusters
or arrays, the wake of one turbine can negatively impact the
production of neighboring downstream turbines. Wind plant
wake losses are site-specific, depending on both the wind cli-
matology (e.g., wind speed, direction, turbulence) and the
wind plant layout (e.g., turbine row spacing). Wake losses
for US wind plants, both onshore and offshore, have been es-
timated to be between 2 % and 20 % (Bensason et al., 2021;
Lee and Fields, 2021), with offshore wake losses expected
to be considerably higher than onshore losses (Rosencrans
et al., 2024).

Modern concepts to enable wind farm flow control, where
turbines in a wind plant work collectively to maximize over-

all wind plant production, as opposed to “greedy” individ-
ual turbine-centric control behavior, have opened up avenues
for wake loss mitigation. Recovering as little as 1 % in an-
nual energy production (AEP) through wake mitigation can
provide of the order of an additional billion dollars in an-
nual revenue (assuming 1 TWhyr~! production at USD 0.10
per kilowatt hour; EIA) for an industry that is increasingly
subject to margin pressure. Because of this immense oppor-
tunity, methods for wake mitigation have recently received
significant research attention (Dong et al., 2022; Andersson
etal., 2021).

One promising method for wake mitigation is wake steer-
ing, which involves strategic yaw misalignment to redirect
turbine wakes away from neighboring downstream turbines
(Howland et al., 2022b; Campagnolo et al., 2022; Doekemei-
jeretal., 2021; Campagnolo et al., 2020; van den Broek et al.,
2022; Gebraad et al., 2016). Although inducing yaw mis-
alignment for wake steering will reduce the steering turbine’s
power, the downstream turbine will experience less wake
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overlap and therefore a higher rotor-averaged wind speed,
resulting in a net increase in power production for the tur-
bine pair. The effectiveness and viability of wake steering
have been demonstrated in simulations (Gebraad et al., 2016;
Howland et al., 2022a; Howland, 2021; Debusscher et al.,
2022), wind tunnel tests (Campagnolo et al., 2020), and field
campaigns (Doekemeijer et al., 2021; Howland et al., 2022b;
Ahmad et al., 2019). However, tests within utility-scale wind
plants have thus far been relatively simple, primarily being
applied to a small number of turbines and in limited wind
conditions or using simple control algorithms and actuation
techniques, e.g., low-dimensional yaw misalignment lookup
tables (LUTs) or static offsets applied to wind vane signals.
Thus, wind farm control via wake steering remains rela-
tively immature and has not achieved widespread commer-
cial adoption.

More sophisticated, model-based controllers have been
tested in simulations and simple experiments and show
promise. The engineering wake models (EWMs) these con-
trollers use have the ability to incorporate more dimensions
than just wind speed and direction, e.g., turbulence inten-
sity (TI), turbine state, derating, wind shear, and wind veer,
while remaining sufficiently computationally efficient to be
used in real time. “Closed-loop” models also incorporate
mechanisms for ongoing tuning to better match observations,
thereby enabling more effective wind farm control (Doeke-
meijer et al., 2020; Howland et al., 2022a), which is impor-
tant since EWMs omit some physics to remain computation-
ally feasible. Howland et al. (2022a) in particular showed
how a simple LUT-based controller would fail to optimize
plant power in all wind condition regimes.

In this study we develop a model-based wake steering con-
troller with a novel hybrid architecture. The model therein
uses data-driven input estimation and calibration of an EWM,
along with a neural-network-based “output corrector”. One
key feature of this model architecture is that its complexity
can be incrementally increased over time, enabling immedi-
ate deployment but allowing for continual improvement as
operational data are collected, hence closing the loop. We
deploy a minimally tuned version of this controller to 10 tur-
bines within a 58-turbine utility-scale wind farm, omitting
the output corrector in order to collect a validation dataset
for model training and to demonstrate the viability of this
hybrid approach in closing the loop and improving model
predictive capability — and therefore optimizing performance
— over time.

2 Methods

The primary objective of this study was to develop and de-
ploy a wake steering control system that could be applied
to wind plants of 50 or more turbines in potentially com-
plex layouts, with varying numbers of online turbines, power
limits, and atmospheric conditions, as would be encountered
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in the real world. The control problem can be thought of as
seeking to maximize the sum of all turbines’ power produc-
tion, which is a function of the wind characteristics (speed,
direction, TI, etc.) and turbine states (online status, power
limit, nacelle direction, or yaw angle), the latter of which is
the only means of actuation.

Although instantaneous farm power is straightforward to
observe through the supervisory control and data acquisi-
tion (SCADA) system, there is currently no analytical form
available to compute optimal nacelle directions for real-time
wake steering control. Despite being shown to be effective in
wind tunnel experiments at constant wind direction (Kumar
et al., 2023), an extremum-seeking controller would be im-
practical for the current application given the large number
of actuation variables, the variability of wind direction, the
relatively long advection times due to the 13D spacing, and
the difficulty “dithering” the turbines’ yaw position. A LUT-
based controller would require many dimensions to capture
all the various permutations of wind conditions and turbine
states and would therefore require a prohibitive number of
simulations or experiments to develop. For the commercial
wind plant studied here, described in Sect. 2.2, a LUT-based
controller that allows for variation in wind speed and direc-
tion across the plant would contain of the order of 100 bil-
lion rows. Thus, a model-based controller was chosen for the
present work.

2.1 System architecture

The high-level system architecture of the control system is
shown in Fig. 1. In this system, a centralized controller
is connected to the SCADA system collecting signals (real
power, turbine state, rotor speed, etc.) at a nominal 1 Hz fre-
quency from all turbines (Post et al., 2022). The controller
is connected to WindESCo Swarm Edge devices installed in
each turbine to be actuated and sends absolute nacelle posi-
tion set points rather than yaw offsets to the turbines, which
allows the control problem to be solved in the global coordi-
nate system instead of being relative to the local wind mea-
surement (Post et al., 2023). This alleviates any issues with
yaw measurement nonlinearity (i.e., the measured yaw error
at the wind sensor is distorted when the turbine is yawed) and
helps the system account for local variation or biases in wind
characteristics. In contrast, a non-global control algorithm
would make decisions based on a yawing turbine’s local wind
direction, but the wind direction could be slightly different
at a downstream turbine, causing suboptimal set point selec-
tion. Every minute, an optimization algorithm uses the wake
model to predict farm power as a function of yaw to deter-
mine the optimum values, and corresponding nacelle position
set points are subsequently sent to the Swarm Edge devices.

Digging one level deeper, the wake model architecture is
shown in Fig. 2. This model is split into three parts:
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Figure 1. Wake steering controller system architecture.
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Figure 2. Wake model architecture.

1. calibrated input estimation
2. aphysics-based EWM

3. neural-network-based output correction.

In the input estimation step, raw data collected from the plant
are transformed into input values suitable for the steady-state
EWM. The input calibrations use relatively simple models,
some of which can be derived from historical data in which
wake steering was not active, but these calibration models
are critical to getting accurate predictions from the EWM,
as seen later. Lastly, all input data, EWM inputs, and EWM
outputs are sent to the output corrector, which has the job
of making up for any physics not captured in the EWM.
The input estimation and output correction parameters are
intended to be solved for in an automated offline process, af-
ter which the controller is updated approximately daily. This
is in contrast to other closed-loop algorithms, which might
update their parameters every iteration.

2.2 Pilot installation and data collection campaign

A preliminary version of this wake steering control system
was deployed to a commercial onshore wind farm in Utah,
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USA. The initial deployment did not use an output corrector,
as the primary goal was to collect data where wake steering
was attempted by a minimally tuned model to develop the
full closed-loop model training and validation process.

The wind farm layout is shown in Fig. 3. This site consists
of 58 Clipper C99 model turbines, each with a hub height
of 80 m, a rotor diameter (D) of 99 m, and a rated power of
2.5 MW. The transverse spacing between turbines is approx-
imately 2.8 D, while the downstream turbine row spacing is
about 13 D. For the pilot deployment, 10 out of the 58 tur-
bines were augmented with hardware and software to enable
wake steering control, with the assumption that the remain-
ing turbines (including turbines at two adjacent co-operated
sites, 165 turbines in total) would eventually be instrumented
and controlled. To the best of our knowledge, this is the
largest campaign of its kind, with the next largest campaign
being that of Howland et al. (2019), where six utility-scale
turbines were wake steered. Further, this is the first wake
steering control system deployed that uses absolute nacelle
position set points sent from a centralized controller.

Waking occurs at a variety of wind directions, but the pre-
dominant waking wind direction is from the south and south-
southwest, as demonstrated by the wind rose in Fig. 4. For
this reason, and because two co-operated wind farms situ-
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Figure 3. The distribution of wind turbines (colored circles) at
the wind farm studied here. The red circles indicate turbines with
Swarm Edge hardware and software. The turbine IDs are labeled to
aid future discussions.
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Figure 4. The wind rose for the 3 years prior to the start of the pilot
test (September 2018—September 2021).

ated immediately north of the site can cause wind farm wak-
ing under northerly wind conditions, we direct our attention
to southerly winds in this study. The farm layout presents a
challenge for wake steering control given its relatively long
spacing in the predominant wind direction and close spacing
in the transverse wind direction, meaning that flow control
will need to occur over relatively long distances and with
relatively high precision to avoid steering wakes into tur-
bines instead of away from them. This larger distance might
also mean lower wake losses since there is more room for
wake spreading and recovery. As shown later, wake losses are
approximately 17 % when second-row turbines are directly
waked, thanks to significant time spent in stable atmospheric
conditions.
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It should be noted that at this spacing a downstream rotor’s
half width represents an angle of approximately 2°, mean-
ing that a small shift in wind direction can produce a large
change in the location of the wake and therefore its impact
on a downstream turbine. It therefore follows that a controller
will need a highly accurate estimate of wind direction to de-
termine optimal yaw offsets.

The pilot wake steering data collection campaign took
place over 4 months, from 1 December 2021 to 1 April 2022.
During this time, we gathered data with wake steering tog-
gled on and off every hour to attempt to collect equal
amounts of data in each state in similar wind conditions.
A preliminary minimally tuned wake model was deployed
on the farm during this measurement campaign. As seen in
Sect. 3.1, while this model did not predict farm power with
acceptable accuracy, and therefore likely did not achieve op-
timal wake steering performance, it did show evidence of
power gains at downstream turbines when wake steering.
More importantly, this pilot data collection phase allowed us
to naturally collect training data in a wide range of wind con-
ditions and for various wake steering scenarios, enabling the
closed-loop model training and validation process to produce
a model that should achieve optimal wake steering perfor-
mance going forward.

2.3 Engineering wake model

NREL’s FLOw Redirection and Induction in Steady
State (FLORIS) EWM (version 2.4) was selected for the cur-
rent work (NREL, 2021) due to its prevalence within the
wind energy community (e.g., van Beek et al., 2021; Mey-
ers et al., 2022), its applicability to wind farm control, and
its computational speed and simplicity. FLORIS predicts the
steady-state flow field in a wind farm, including the power
of each turbine, given the ambient wind conditions as well
as the wind turbine and wind plant configuration informa-
tion. Typical FLORIS model wind inputs include the ambient
wind direction, ambient wind speed, ambient TI, wind shear,
and wind veer. Other FLORIS model wind farm inputs in-
clude each turbine’s geometric information (hub height, ro-
tor diameter, spatial coordinates) and performance character-
istics (power curve, thrust curves, and typical power losses
under off-yawed conditions).

FLORIS does have a wide range of sub-models to se-
lect from, each with their own tuning parameters, e.g.,
to control how fast wakes recover or deflect when steer-
ing. The default sub-models and parameters have typically
been determined through a combination of theory, exper-
iments, and high-fidelity simulations (Doekemeijer et al.,
2020; Bastankhah and Porté-Agel, 2016). Since this study
is focused on estimating ambient conditions and using ma-
chine learning models, we used FLORIS with its default
wake models and parameters, which are described in de-
tail in NREL (2021). These included the Crespo—Hernandez
wake turbulence model (Crespo and Hernandez, 1996), the
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sum of squares freestream superposition wake combination
model, the Gauss deflection model (Bastankhah and Porté-
Agel, 2016; King et al., 2021), and the Gauss—legacy veloc-
ity model (Bastankhah and Porté-Agel, 2016; Niayifar and
Porté-Agel, 2016).

2.4 Input estimation and calibration

We now discuss the approach for preprocessing data to esti-
mate the input conditions passed to the EWM, along with the
model state (i.e., calibrations), in order to produce the most
accurate power predictions possible.

2.4.1 Turbine performance curves

To predict turbine power output, FLORIS computes the flow
field velocity and then uses the nondimensional power co-
efficient (Cp) to determine the power at each turbine. Cp is
defined as

Co=1— M
P=7T" >

3PAUZ,
where P is the power produced by the turbine, p is the air
density, A is the rotor-swept area, and U, is the ambient
wind speed.

We consider two possible approaches for determining the
power coefficient curves:

1. Use the values as published by the original equipment
manufacturer (OEM). This approach was used in our
initial deployment.

2. Infer the power coefficient curves from historical
SCADA data.

Although the curves derived using both methods should be
similar, it is common for them to differ due to differences
between the idealized turbine performance assumed by the
OEM and its actual performance on site or due to changes
in nacelle transfer functions. Since we know our wind speed
estimation algorithm will use nacelle wind speed, it makes
sense then to compute the Cp curves as a function of the na-
celle wind speed. Doing so will implicitly include nacelle
transfer function effects on the measured wind speed, remov-
ing this potential source of bias when mapping wind speed to
power. Note that with this approach it is possible to compute
unrealistic power coefficients, i.e., those above the Betz limit,
as a result of inaccurate nacelle transfer functions. However,
since FLORIS only uses the Cp curve to compute power af-
ter computing wind speed, the resulting power predictions
should overall be consistent with the power curve as com-
puted against nacelle anemometer measurements and, there-
fore, with observed SCADA data.

Figure 5 compares the OEM Cp curve with one modeled
using 3 years of historical SCADA data; differences between
the two curves are most evident in the 5 to 12ms~! range.
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Turbines that were waked, offline, or derated were removed
from the dataset, as were turbines whose nacelle wind speed
was below the OEM cut-in wind speed. The last filtering step
was added to avoid biased Cp estimates at low wind speeds,
as turbine power is often strongly affected by the rotor in-
ertia. While it is also possible to determine turbine-specific
Cp curves using historical SCADA data, this approach re-
sulted in noisy results (particularly for turbines undergoing
frequent maintenance or derating). Hence, a single Cp curve
was derived and applied to all turbines since all turbines on
the farm were of the same model. While assuming a single
Cp wind speed curve may lead to biases in the model power
predictions in some scenarios (e.g., if measurement biases
differ between individual turbines), this was not observed to
be a significant issue on this particular wind farm.

FLORIS also requires thrust coefficient (Ct) curves,
which govern momentum extraction and affect wake deficits.
The thrust coefficient Ct is defined as

T

CT:—
1 9
1PAUZ,

2

where T is the thrust produced by the turbine. Unlike
the Cp curves, there is no independent way to verify the
Ct curves. Therefore, the values defined by the OEM were
used, which relies on the assumption that the wind speeds
in the thrust coefficient values match those from the nacelle
anemometers.

2.4.2 Power loss due to yaw misalignment

The power of a turbine will decrease under non-zero yaw an-
gles. Capturing the proper relationship between yawing and
power loss is important due to its influence on wake steering
optimization. This relationship is typically modeled through
a cosine exponent p,

P = Pycos’y, (3

where P is the power produced by a turbine with a yaw error
of y, and Py is the power that would be produced at 0° yaw
error.

The FLORIS default value of p is 1.88, which is based on
large-eddy simulation (LES) results (Gebraad et al., 2016).
(To model power production properly above rated wind
speeds, FLORIS adjusts the turbine’s effective wind speed
rather than the power using a cosine exponent of p/3. This
effective wind speed is then used to look up the power.) Sub-
sequent studies have shown that p may vary across different
turbines and wind conditions (Howland et al., 2020; Liew
etal., 2020). However, we did not observe a significant differ-
ence in model performance when using the default value of p
versus values obtained through a separate estimation proce-
dure based on SCADA data. Therefore, the FLORIS default
p value of 1.88 was used in this study. Although we use the
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Figure 5. The Cp curve from the OEM and derived from historical SCADA data. Note that there is a minor discrepancy at 6.5 ms™

Lin the

OEM curve, where our transcription was 553 kW instead of the OEM’s 533 kW.

default cosine exponent, the power loss with yawing relation-
ship will be implicitly accounted for in our output corrector
model discussed later.

2.4.3 Ambient wind speed estimation

One required input to the FLORIS wake model is the ambient
wind speed. First, we apply a rolling average in time on the
high-frequency wind speed measurements; i.e.,

t

U,‘(l)E% / U;(tHdt', 4)

t—Ty

where U, (1) is the time-filtered velocity of turbine i at time ¢,
U;(¢) is the high-frequency velocity of turbine i at time ¢,
and Ty is the size of the averaging window (the subscript
U indicates that it applies to the velocity). We found model
performance to be generally equivalent for time filters be-
tween 1 and 10 min and therefore used a constant value of
Ty = 5 min in this study.

We next need to determine which of these turbine ve-
locities correspond to unwaked turbines, since the wind
speed inputs to our waked model correspond to ambient
wind conditions. We estimate which turbines are unwaked
based on the estimated ambient wind direction computed in
Sect. 2.4.4 and the geometric parameterization in IEC (2017)
(see Fig. Al of this reference). From our experimental data,
we observed that under periods of high atmospheric stability,
wakes can persist for longer distances than the 20 rotor diam-
eter cutoff assumed in IEC (2017), and therefore we require
a turbine to be at least 30 rotor diameters downstream of a
potential waking turbine to be considered unwaked.

Since wind speeds measured at operational and non-
operational turbines may be different (e.g., nacelle
anemometer wind speeds are affected by rotor-induced
flows and nacelle transfer functions) and the Cp curve in
Sect. 2.4.1 was derived only from operational turbines, it is
recommended to exclude wind speed measurements from
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non-operational turbines. This can be done by excluding
turbines whose power or rotor speed falls below some
threshold. However, even after these filtering steps, it is
possible that a turbine will exhibit implausible nacelle
anemometer wind speed measurements. These can be
excluded by filtering any turbine wind speeds that are a
certain number of standard deviations from the mean value
over all turbines, though this treatment was not found to be
necessary for wind speed in the current study.

We finally apply a spatial filtering step to translate turbine-
level time-filtered wind speed measurements to wind speed
inputs in our wake model. That is, for turbine i, we compute
the ambient, spatially averaged wind speed U ; (¢) as

Zw (xi,xj)Uj(t)

. _J
UOO,l(t)— Zw (xl’xj) ’
J

®)

where the summation ) takes place over all turbines (ex-

J
cluding those removed from the analysis due to waking, of-
fline states, or implausible data), with weights between tur-
bines i and j with Cartesian positions of x; and x ; defined
as

—r2n
w(xi,xj) = %, (6)
where
_ llxi —x;1l/D
r= N (7

D denotes the turbine rotor diameter, and Ny is a nondimen-
sional scaling factor corresponding to the number of rotor
diameters to use in the spatial filter. Small values of Ny al-
low for a larger degree of wind speed heterogeneity or non-
uniformity in the model, whereas high values of Ay corre-
spond to a more homogeneous wind speed field.

Ny — oo is equivalent to a farm-wide average wind
speed, which is the most common approach in the litera-
ture (Doekemeijer et al., 2020; Howland et al., 2022b). For
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large farms, however, it may be important to capture spa-
tial wind speed variations to accurately predict power lev-
els. Doekemeijer et al. (2022) observed heterogeneous wind
speeds on the industrial-scale wind farms in their study but
also noted difficulties in accurately modeling these hetero-
geneous wind speeds with FLORIS due to either deficien-
cies in the FLORIS model or uncertainties in the background
wind conditions. They derived a generalized inflow profile
from annual wind speed measurements and used this profile
to translate a homogeneous farm-averaged wind speed into
heterogeneous turbine-level wind speeds. The advantage of
our approach over that of Doekemeijer et al. (2022) is that it
can account for more instantaneous spatial variability in the
wind speed on a farm. We assess the effect of including wind
speed heterogeneity in our model in Sect. 3.

2.4.4 Ambient wind direction estimation

The approach for ambient wind direction estimation mirrors
much of that for ambient wind speed estimation but with an
additional complexity associated with the use circular quan-
tities.

As before, we start by applying a time filter to 6;(¢), the
high-frequency wind direction signal for turbine i:

t t
_ 1 1
0;(t) =atan2 | — / sin; (¢+))dt’, — / cos@;(tH)dt’ |, (8)
Ty Ty
t—Ty =Ty

where atan2 is the two-argument arctangent function, and
Ty is the wind direction temporal filter width. (As with the
wind speed (Sect. 2.4.3), we observed little dependence on
this parameter for 7y between 1 and 10min and therefore
used a constant value of Ty =S5 min.) Outlier filtering is
then applied to 6;(¢) to exclude offline turbines and turbines
whose estimated wind directions differ significantly from the
mean wind direction (in a circular sense) across the farm.

At this stage, as with the wind speeds, we apply a spatial
filtering process (with nondimensional wind direction filter
width A, analogous to wind direction filter width Ay from
Sect. 2.4.3) to obtain the spatially and temporally filtered
ambient wind direction 6 ;(t). For estimating wind direc-
tion, the nearly universal approach in the literature (Flem-
ing et al., 2017; Ahmad et al., 2019; Howland et al., 2019;
Fleming et al., 2020; Simley et al., 2021; Doekemeijer et al.,
2021, 2022) is to use a single wind direction (corresponding
to My — 00). However, in our initial pilot study (Sect. 2.2),
we used Ny = 5 to attempt to model wind direction hetero-
geneity on the farm. We determined, however, that this did
not improve the model performance on this farm, presumably
due to difficulties in FLORIS of accurately modeling hetero-
geneous wind directions. For that reason, we switched to a
simple farm average for the wind direction in the remaining
models studied in this paper (see Sect. 3.2). We denote this
farm-averaged wind direction as 6 (7).
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When computing the wind directions, there are two poten-
tial sources of the high-frequency wind direction 6;(¢). The
simplest is the SCADA wind direction signal; however, this
signal is often not calibrated to true north, and even after cal-
ibration, it may not be sufficiently accurate for use in wake
steering. We also have access to the nacelle direction reported
by GNSS (global navigation satellite system) compasses in
the Swarm Edge devices installed on 10 turbines. The wind
direction can be computed from the GNSS compass nacelle
direction and the measured yaw error, and we expect this
measure of wind direction to provide a higher level of accu-
racy. In our initial “naive” model deployment, we used a mix
of both signals: GNSS compass wind directions were used
where available, and SCADA nacelle directions (that were
manually calibrated in the past based on direction readings
taken by operators in the field) were used otherwise. How-
ever, this approach gave unrealistic wind direction predic-
tions (due to issues calibrating the SCADA wind directions
and inconsistencies in the sensors), and so we switched to us-
ing only GNSS compass wind directions in all other models,
assigning turbines without GNSS compasses zero weight in
the spatial filtering process.

The wind direction obtained through this approach, how-
ever, may differ from that needed in the model to best capture
waking due to sensor biases, underlying atmospheric con-
ditions, or model inaccuracies. One approach for tuning the
wind direction to best capture waking is to use the input mea-
surements as is but to adjust model coefficients (e.g., those
pertaining to veer or wind direction deflection by the rotor).
However, this approach is not preferred in the case of sensor
biases, since we may be tuning model coefficients to unre-
alistic values to compensate for inaccurate input conditions.
We therefore instead adjust the wind directions themselves
following a similar approach to that outlined in Kanev (2020)
and Doekemeijer et al. (2022).

Figure 6 shows the target and reference turbines selected
for estimating the wind direction adjustments. Target tur-
bines are subjected to waking from one row of upstream tur-
bines when wind is from the south. Reference turbines are
the southernmost turbines, excluding turbines outfitted with
Swarm Edge devices to avoid confounding effects on power
from high yaw errors. We could extend our analysis to deeper
turbine rows to determine offsets for these turbines. How-
ever, we observed that the waking signal became weaker and
more diffuse for these turbines, making parameter estimation
difficult. A similar conclusion was reached in Kanev (2020).

For each target turbine i, we compute the power ratio at
time ¢, R;(t), as

Ri(1) = Pi(1)
l N}'cfZPr(t)’

r

€))

where P;(t) is the power produced by turbine i at time f,
Nt denotes the number of reference turbines selected, and

> indicates a summation over each reference turbine. Fol-
"
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Figure 6. Turbines selected as targets (blue) and references (red)
for estimating wind direction offsets.

lowing the typical convention in the literature (Kanev, 2020;
Fleming et al., 2020; Doekemeijer et al., 2022), these tem-
poral results are then binned by the farm-averaged ambient
wind direction 6, (?), and the mean power ratio in each bin is
reported. Results are computed over 4 months of operational
data using a 5 min temporal averaging period. Prior to bin-
ning, we filter target and reference turbines for yaw errors be-
low 5° (to avoid power losses due to yawing), region 2 wind
and power conditions, and wind directions between 152 and
242° (measured clockwise, with 0° indicating true north to
ensure wind is from the south).

For a given wind direction bin, we compute the model pre-
dictions of the power ratio as a function of wind direction by
running FLORIS with a single wind direction (corresponding
to the center of the bin), a single wind speed (corresponding
to the overall mean wind speed in the dataset), and a TI of
10 %. While we could obtain more representative model re-
sults by simulating each of the wind directions, wind speeds,
and turbulence intensities in our observations, the primary
focus of our analysis at this stage is on matching the direc-
tional pattern of waking and unwaking in the data, for which
a fixed wind speed and TI are sufficient and computationally
advantageous.

Following Doekemeijer et al. (2022), we determine the op-
timal offset to the wind direction A6; at each turbine to max-
imize the correlation between the binned power ratios in the
observations R;(0,) and those from the model le"de] (Oo):

A6; = arg g max (1 Ri©), R™ 0 + 26)) ] ). (10)

Here, r is the Pearson correlation coefficient. We selected
the correlation coefficient as our optimization function rather
than a quantity like the mean-squared error because our
model has not yet been tuned to match the waking strength
observed in the data. At this stage, we simply want to ensure

Wind Energ. Sci., 9, 2235-2259, 2024

P. Bachant et al.: Development and validation of a hybrid data-driven model-based wake steering controller

we can match the directional pattern of waking and unwak-
ing.

Figure 7 shows the correlation coefficients for each of the
six target turbines identified in Fig. 6. Wind direction offsets
ranging from —10 to 10° are used under the assumption that
the wind direction shift in excess of 10° is not needed. (Neg-
ative values indicate a counterclockwise correction to the
wake direction, whereas positive values indicate a clockwise
correction.) If no wind direction offsets were needed, the cor-
relation coefficients should peak at Af; = 0°. The fact that
the peak is offset from 0° indicates that this additional adjust-
ment to the wind direction signal is necessary. For many of
the turbines, we observe two nearly identical peaks: one near
—7° and one near +5°. This pattern makes sense geometri-
cally: because of the close row-wise spacing of the front-row
turbines, many of the target turbines (19, 20, 23, 24) can be
waked by a different front-row turbine as a result of a 12°
(—7 to +5°) wind direction shift.

The challenge is then in determining whether a turbine
should have a positive or a negative wind direction shift. To
resolve this, we consider turbine 22. Because there is a gap in
the front-row turbines upstream of turbine 22 (see Fig. 6), we
do not expect the same symmetrical pattern in the correlation
coefficients. Indeed, we notice that turbine 22 exhibits a peak
for AG; = 5° but no corresponding peak for negative A#6;.
Figure 8 compares the mean power ratio in the data to that
predicted by the model under a +5° wind direction shift.
The agreement in trends between the data and model is good,
showing limited waking (power ratios near 1) for wind direc-
tions around 190° (corresponding to the gap in the front-row
turbines) and waking (power ratios near 0.8) around 180 and
200°.

Based on this analysis, we assign a positive wind direction
offset of 5° for turbine 22 and assume the positive solution
branch also holds for the remaining turbines. Since most tar-
get turbines show a peak at +5° (turbines 20 and 23 are slight
exceptions, with peaks at +6 and +4°, respectively), we ap-
ply a single global +5° wind direction offset.

To explore the sensitivity of the wind direction offset to the
time range considered, we repeated this analysis over differ-
ent 2-month training periods within the overall dataset. While
there were small variations in the optimal wind direction off-
sets between different times for certain turbines (typically of
the order of 1-2°), a farm-wide wind direction offset of about
5° was a consistent finding. We therefore use a global, time-
invariant offset in wind direction.

2.4.5 Ambient turbulence intensity estimation

The ambient TT computation is performed similarly to the
ambient wind speed computation presented in Sect. 2.4.3,
with an additional preliminary step of computing the TI 7;(¢)
from the high-frequency wind speed:

9u; (1)

(Ui(n)

I(t) = , (11)
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under a +5° wind direction shift in the model.

where oy, ;) denotes the standard deviation of the high-
frequency wind speed for turbine i over the previous 10 min
time window, and (U;(¢)) is the mean of the high-frequency
wind speed of turbine i over the same time window.

The approach then closely parallels the wind direction ap-
proach, with removal of TI values from waked turbines and
optional outlier filtering. We finally apply a simple spatial
average to obtain a single turbulence intensity value I (¢) to
use in the model at time ¢.

The estimate of the ambient TI I, (#) made directly from
nacelle anemometry is not necessarily the best input to the
FLORIS model. When modeling TI, nacelle anemometers,
by virtue of their location downstream of the rotor, are af-
fected by rotor-induced turbulence and so do not capture the
ambient flow characteristics (Smith et al., 2002). Wind tur-
bine manufacturers introduce a nacelle transfer function to
estimate the ambient wind speed based on measurements be-
hind the rotor; however, the theory, implementation, limita-
tions, and accuracy of a given nacelle transfer function are
rarely disclosed. For example, St. Martin et al. (2017) found
that different nacelle transfer functions should be used based
upon the atmospheric stability and turbulence levels. In ad-
dition, even if we had perfect knowledge of the ambient tur-
bulence intensity, this quantity will likely not exactly corre-
spond to the FLORIS model TI, which should be viewed as a
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model parameter that influences wake spreading and stability
rather than as a perfect correlate of the ambient TI observed
in the field.

For these reasons, we considered an additional step to map
the ambient TT as measured by the nacelle anemometer (/o)
to that needed in the FLORIS model (Z,) to better resolve
the observed waking conditions. To do so, we first select tur-
bines, wind directions, and wind speeds with high levels of
waking (as indicated by frequent occurrences of low power
ratios) and denote these as waking cases of interest. Histor-
ical data corresponding to each waking case of interest are
then binned by the ambient nacelle TI. In each nacelle TI
bin, we compute the optimal turbulence intensity to use in
FLORIS to minimize the mean-squared difference between
the power ratio of the turbine in the historical data for a
given wind speed and direction, R;(/so|Usc.i,0c0), and that
predicted by the model, Rf“odel(Ioo |Uso.is 00):

Too (Ino) = argz,_min ([ R; (Ioc|Uso,i Oox;)

2
— R (T [Use, i, Oy | ) (12)

Equation (12) gives optimal FLORIS turbulence intensity
values Z, for a range of different nacelle turbulence intensi-
ties I, from which a regression relationship can be formu-
lated.
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In the initially deployed model (see Sect. 2.2), we deter-
mined the following TI mapping based on a single waking
case of interest:

Too =0.0571 — 1.831 +29.612 —67.113.. (13)

However, we found that while a given mapping tended to
improve the power predictions of the turbine under consid-
eration, the results did not generalize to other turbines in the
wind farm. The model without a TT mapping gave the most
consistent results over the range of turbines considered, and
so we chose to omit the TI mapping for the new models de-
veloped here. We expect, however, that TI mapping may still
be beneficial on other farms, especially those where the na-
celle anemometer TI reading differs significantly from the
ambient TL.

2.5 Output corrector

The output corrector architecture devised is shown in Fig. 9.
Available inputs are the raw, high-frequency input data from
the SCADA system and Swarm Edge devices, the EWM in-
puts, and the EWM outputs. The last block before return-
ing predicted power is a so-called “feature space filter”,
which prevents the output corrector from returning its ma-
chine learning predictions for feature values (in a multidi-
mensional sense) very far from those upon which it has been
trained, falling back to the EWM predictions in these cases.
Again, the purpose of the output corrector is to provide the
most accurate predictions possible for the power of every tur-
bine on the plant. The output corrector must also be able to
handle varying yaw angles for any upstream turbines to be
used for optimization.

In general, the measurement system provides signals at
turbine i at time ¢, representing the power, wind speed, air
density, yaw misalignment, and nacelle position for the set
of m turbines on the farm i € 1, ..., m = T . In this setup, we
wish to develop a set of models that will predict the power
at every turbine within the farm. Waked and freestream tur-
bines are treated differently. The set of freestream turbines is
defined as 7y € 7, and the set of waked turbines is defined
as Tw C T such that T,,NTs = &. These signals are combined
into a feature matrix in the form X; (#), where the subscript
i indicates the turbine ID, “s” indicates the signal name, and
t indicates the timestamp. The feature matrix can include raw
input data, EWM inputs, EWM outputs, and time-lagged ver-
sions of each.

We use this feature matrix as the input into an arbitrary
machine learning model framework. The aim is to predict
the power at each turbine on the farm at a desired frequency,
and at least one model will be trained for each target turbine.
In this framework, we have m Tk possible features in the full
dataset, where k is the number of signals collected, and T in
this context describes the number of time lags available for
use. In our study, we limit 7 to 2: the current time and the

Wind Energ. Sci., 9, 2235-2259, 2024

P. Bachant et al.: Development and validation of a hybrid data-driven model-based wake steering controller

1 min time lag. Limiting the discussion to the physically rel-
evant signals listed above, including a 1 min time lag of each
signal, and excluding the wind speed and power signals of
the target turbine, we have 574 features to choose from when
predicting the power of a single turbine.

We can treat the power predicted at a single turbine, P;(t),
as a function of the data collected by all other turbines on
the farm, P;(t) = f (X s(1)). However, this level of depen-
dence creates problems for a machine learning model when a
turbine is offline, derated, or disconnected from the SCADA
server. Automated imputation methods are challenging to de-
ploy due to the uncertainty in the case of a missing or altered
signal. One way to combat this problem is through the use
of dimensionality reduction tools, which are commonplace
in data science applications.

We use a physics-informed dimensionality reduction to
select features with causative relationships between control
variables and power production. This algorithm is based on a
parameterized modification to IEC (2017), which is used to
approximately define the wind direction sector where a tur-
bine is waked by another turbine. The width of the waked
sector at turbine i and generated by turbine j is defined by

Owli, j] = arctan(2.5D /L +0.15) + 10, (14)

where D. is the equivalent rotor diameter, and L. is
the actual straight-line distance between turbines i and j
(IEC, 2017). The wind directions where turbine i is waked
by turbine j are then computed as Opminlij]=6c[i, j1+
aby /2 and Omax[i, j1 = 6.[i, j1—aby /2, where Opminli, j] and
Omax i, j] are the minimum and maximum wind directions in
which turbine i is waked by turbine j. Here, 6. is the an-
gle between turbines i and j. Our modification to this ap-
proach is to use a parameterized scaling factor, ¢, and a dis-
tance threshold parameter, Dy,x, when computing the wind
sector bounds. Here, o controls the final width of the wake
sector. Dpax is used to discard any waked sectors where
Le > Dmax. The IEC standard can be recovered using o = 1
and Dpax = 20.

This partitioning algorithm takes the following steps, for
each turbine i:

1. Determine the set of turbines that wakes turbine i, 7.

2. Determine the bounds of each wake sector 0y [i, j]Vj €

Tu-

3. Merge any overlapping wind sectors, noting which tur-
bines generated the wake in that sector.

4. Find all wind directions where turbine i is not waked by
any upstream turbine, and add these to the set of wind
sectors.

This algorithm is repeated for each turbine on the farm. It
results in a set of wind sectors for each turbine, ®;. In each
wind sector, we have a set of turbines, 7; @, whose signals are
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Figure 9. Output corrector architecture.

relevant to predicting the power at turbine i. Subsequently,
the model training process is described as follows:

1. For each turbine, i, select the set of wind sectors ©;.

2. For each wind sector in ®;, select relevant turbine sig-
nals, §, from all turbines in 7; e.

3. Remove the power and wind speed signals of turbine i
from the feature set.

4. Subset the full dataset X;(¢) to the relevant signals,
X; 5(0).

5. Find the set of timestamps, f, where the farm-averaged
wind direction lies in the chosen wind sector.

6. Train the model on Xi’g(ﬂ.

Thus, a single model is trained for each turbine and each
wind sector. The number of wind sectors varies per turbine
and depends on the farm layout. The number of features used
to train each model depends on the number of waking tur-
bines in the chosen wind sector.

For the remainder of this study, models for turbines in
waked sectors use the following features measured at up-
stream turbines to predict the power of the waked turbine:
wind direction as measured by the GNSS compass and na-
celle anemometer, 1 min rolling average of SCADA wind
speed, 1 min rolling average of estimated yaw error, 10 min
rolling TI measured at the nacelle, 1 min rolling average
of SCADA power, 1 min rolling average of SCADA power
lagged by 1 min, and the EWM-predicted power. In addition,
the models use the same features measured at the target tur-
bine but with the target turbine’s current 1 min rolling av-
erage of wind speed and power measurements omitted (the
time-lagged measurements are still used as features).

For the remainder of this study, models for turbines in
freestream sectors use the following features measured at the
turbine of interest to predict its own power: 1 min rolling av-
erage of estimated yaw error, 10 min rolling TI measured
at the nacelle, wind direction as measured by the GNSS
compass and nacelle anemometer, 1 min rolling average of
SCADA wind speed, 1 min rolling average of SCADA power
lagged by 1 min, and the EWM-predicted power.
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Six features are always used to predict a freestream tur-
bine’s power. For a waked turbine, 7n + 5 features are used,
where n is the number of upstream turbines used in the mod-
eling. This results in a minimum of 12 features and a maxi-
mum of 404, depending on how the partitioning is done.

The default IEC distance cutoff of 20 rotor diameters was
used, and the disturbed wind sector width was reduced by a
factor of 8 from the IEC value (IEC, 2017). This was then
used to partition the input space with a varied number of fea-
tures per model. A minimum of 1000 samples were required
in each sector before a model was trained. A multilayer per-
ceptron was trained for each turbine—wind sector with hid-
den layers of (20, 50, 50, 50, 50, and 20) nodes and a rec-
tified linear unit (ReLU) activation function. Scikit-learn’s
MLPRegressor implementation (Pedregosa et al., 2011)
was used in this study.

ReLU functions are piecewise continuous and not differ-
entiable, which can be challenging for gradient-based opti-
mization of farm power. Differentiable activation functions
are available in other machine learning libraries, e.g., Tensor-
Flow, though these significantly increase the cost of training
and prediction. ReLLU suffices for the purposes of this study,
since the focus is on predicting observed behavior.

For the feature space filter, a one-class support vector ma-
chine was used to identify extrapolation from the training
data prior to making predictions. This can be thought of as
detecting outliers in new input features compared to the fea-
tures used to train the model. Any feature that was miss-
ing in more than 60 % of the data was dropped from the
feature space during training and prediction. Individual data
points (i.e., specific timestamps) were dropped if any remain-
ing features were missing values. Derated and offline data
were removed from the training dataset but remained in the
test dataset. In the partitioning scheme, these features are
dropped on a per-model basis.

There are many potential causes for missing data in the
SCADA pipeline, and it is difficult to automatically deter-
mine what imputation strategy is most appropriate for any
particular missing data point. As a result, no imputation is
performed during training or prediction. During the predic-
tion stage, all features used in training must be available for
a prediction to be made. Any features that were dropped dur-
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ing training must be dropped during prediction. Because of
the frequency with which missing data occur in the SCADA
pipeline, using a large number of features can dramatically
reduce the dataset size. By partitioning the farm into small
sectors, the waked turbine model is only allowed to depend
on a very small number of freestream turbines’ signals. This
means that the probability that a row has a feature with a
missing value is much smaller than if we were to use larger
partitions, and this increases the dataset size available for
training.

2.6 Validation methodology

In order to close the loop on the model, a validation process
was developed to quantify its fitness for use in a controller.
Given the need to predict the farm power accurately, one sim-
ple validation metric might be some aggregate of the power
prediction error. However, it is hard to know what thresh-
old makes for an acceptable model simply by computing this
metric over a given dataset.

We therefore took a phenomenological approach to val-
idation, developing metrics and visualizations that test the
model’s ability to predict important phenomena, namely the
ability to predict the following:

— the effects of waking on turbine power (when it occurs
and how severely),

— the response of the waked power loss to upstream steer-
ing
— the power loss incurred by an upstream steering turbine.

The model must be able to respond to slow transients in the
wind conditions and must thus accurately represent when
a turbine transitions between waked and non-waked states.
Power gains occur over longer timescales, and thus the model
should accurately capture the mean power loss due to wak-
ing as a function of wind direction, wind speed, and TI. If
a model can predict all of these phenomena accurately on a
1 min basis, we assume it will optimize the turbine nacelle
positions for wake steering control effectively. Results are
presented and discussed in the following sections from this
perspective.

3 Results

3.1 Validation results from initial model

We first present some validation results for the initially de-
ployed naive or minimally tuned model to motivate the
creation and validation of new variants. As discussed in
Sect. 2.6, we seek to model waking and unwaking events dy-
namically and in aggregate. We inspect our dynamic mod-
eling capabilities through an example time series and then
study aggregate modeling through power ratio versus wind
direction plots.
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One such time series is shown in Fig. 10, which corre-
sponds to a time when wake steering control was enabled.
Figure 10a shows the estimated wind direction of a down-
stream waked turbine (turbine 23, blue) and an upstream
wake steering turbine (turbine 11, red). (Refer to Fig. 3 for
more details on the turbine numbering and layout.) The hor-
izontal red line in this plot denotes the expected wind direc-
tion around which the downstream turbine will be waked by
the upstream turbine. In Fig. 10a, we observe a difference in
the modeled wind directions of the downstream and upstream
turbines, which will complicate our ability to wake steer cor-
rectly, since the model needs to account for wake propaga-
tion under heterogeneous wind directions. Nevertheless, it is
clear that the wind direction is near a direction where the
downstream turbine might be waked. Figure 10b shows the
yaw error of the upstream turbine. From the high yaw errors
of the upstream turbine, we deduce that wake steering oc-
curs throughout much of this time series. (The yaw error of
the downstream turbine remains near 0°, indicating that it is
not actively wake steering, as expected.) Figure 10c shows
SCADA power and model power predictions for these two
turbines. We observe that while the model often predicts min-
imal waking (e.g., at 04:05 UTC, model power predictions
of upstream and downstream turbines are similar, suggest-
ing successful wake steering), the actual data tell a differ-
ent story: the SCADA power value of the downstream tur-
bine is sometimes well below the upstream turbine (e.g., at
04:05 UTC), indicating that strong waking is still present and
that our wake steering approach was not successful. Finally,
we see that even for the upstream turbine, there are signifi-
cant differences between the SCADA and model power val-
ues. These discrepancies highlight the shortcomings of the
initial model and the need for model tuning to perform suc-
cessful wake steering.

We use power ratio versus wind direction plots (see
Sect. 2.4.4) to assess our ability to capture waking and un-
waking in aggregate. Reference turbines for this calculation
are determined based upon the modified IEC criteria intro-
duced in Sect. 2.4.3. Figure 11 shows the power ratio ver-
sus wind direction for turbine 23 (the downstream turbine
discussed in the time series plot above), computed over the
entire 4 months of our experimental campaign. The data are
filtered for wind speeds between 5 and 12ms~! and powers
between 200 and 2500 kW (to ensure region 2 operation). To
clarify trends in the data, we use the overlapping binning ap-
proach suggested in Fleming et al. (2019), with a bin width
of 4° and a step of 2°.

SCADA data and model predictions are shown both when
wake steering control is deactivated and when wake steering
control is activated. The model and the SCADA show low
power ratio values near wind directions of 195 and 210°, in-
dicating that waking is occurring here. However, the strength
of waking in the absence of wake steering is significantly
over-predicted by the model (much lower power ratios near
waking wind directions in the model than in the SCADA
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Figure 10. Example time series showing wind direction (a), yaw error (b), and power (c) for an upstream turbine (red) and a downstream
turbine (blue). The dashed lines indicate model predictions, and the solid lines indicate SCADA results. The dotted horizontal line in (a) shows
a wind direction where the downstream turbine (23) is expected to be waked by the upstream turbine (11).
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Figure 11. Power ratio versus wind direction for turbine 23 from the SCADA (solid lines) and the model (dashed lines). Results are
shown both with wake steering control deactivated (‘“no wake steering”’) and with wake steering control activated (“wake steering”). Error
bars correspond to 83 % confidence intervals such that marginally non-overlapping error bars approximate a 95 % statistically significant

difference between the means (Goldstein and Healy, 1995).

data). From the SCADA data, we observe an increase in
the power ratios when wake steering control is activated,
demonstrating that wake steering successfully increases the
power of this downstream turbine. However, the differences
in power ratios with and without wake steering are much
larger in the model than in the SCADA data. This indicates
that despite the gains, the model does not properly “under-
stand” the plant behavior and therefore is not able to optimize
the plant to its full potential, hence the effort here to improve
model predictive capability.

3.2 New models tested

Four additional models were created to be validated against
the pilot dataset. These have increasing levels of complex-
ity to demonstrate the value of each component added to the
model and the sensitivity to various model parameters.

The selected models are summarized in Table 1. Model 0
is the initial naive model that was deployed during our pi-
lot campaign. Model 1 represents the baseline model for our
model tuning study, with no wind direction offsets, farm av-
eraging of the wind speed (Ny — 00), and no output cor-
rector. We then add the estimated wind direction offset in
Model 2 to study its effect in isolation. Model 3 is similar
to Model 2 but uses a 10 D Gaussian consensus wind speed
(My = 10) rather than a farm average to study the effect of
wind speed heterogeneity. Finally, we use the full output cor-
rector architecture as Model 4. Because neural networks have
a high risk of overfitting, Model 4 is a combination of two
trained models: one trained on data from 1 December 2021-
1 February 2022 and one from 1 February—1 April 2022.
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Each model is used to predict the data held out from its train-
ing data. We concatenate the two holdout sets to approxi-
mate the aggregate performance of Model 4 over the entire
time range. It is important to note that this is a conservative
test of the output corrector capability, since in a real-world
closed-loop application the model would be retrained more
frequently; i.e., it would not be used in the controller for
months, or even weeks, without being retrained.

3.3 Aggregate metrics

We studied several metrics to compare the overall perfor-
mance of the models: the mean-squared error of the power
signals, mean-squared error of the power ratio signals, cor-
relation coefficient of the power signal, and correlation co-
efficient of the power ratio signal. All metrics showed sim-
ilar trends, so for ease of interpretation and comparison, we
chose the correlation coefficient of the power ratio (in a 1 min
time series sense) as our main metric on which to judge
model performance. The correlation coefficient of the power
ratio is also strongly affected by modeling errors across the
entire plant because incorrect power predictions at the refer-
ence turbines will affect the power ratio predicted at all tur-
bines on the farm. The correlation coefficient of the power ra-
tio is computed for each model over different subsets of data
and groups of turbines and is shown in Table 2. Quantities
were computed over the total validation time range (1 De-
cember 2021 to 1 April 2022).

As expected, the initial naive model performance is gen-
erally poor, in agreement with our observations in Sect. 3.1.
The remaining validations therefore focus on Models 1-4.
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Table 1. A description of the parameters used for each model in this study. Cp denotes the source of the power coefficient curve, with OEM
indicating that the curves were determined from OEM specifications and SCADA indicating that the curves were determined by fitting to
historical SCADA data. Wind direction source gives the wind direction source. A6 is the estimated wind direction offset. Ny and Ny denote
the wind speed and wind direction spatial filter widths, respectively. The TI mapping column indicates whether a TI mapping is used. (The
details of the TI mapping for Model O are given in Sect. 2.4.5.) The output corrector column indicates whether the output corrector is used.

ID Cp Wind direction source A8 Ny Ng TI Output
mapping  corrector

0 OEM SCADA and GNSS compass ~ 0° 00 5 Yes No

1 SCADA  GNSS compass 0° 00 oo No No

2 SCADA  GNSS compass 5° oo oo No No

3 SCADA  GNSS compass 5° 10 oo No No

4 SCADA  GNSS compass 5° 10 oo No Yes

Table 2. The correlation coefficient of the power ratio for different models. Because different models will differ in terms of the impact on
freestream power estimation and waked power estimation, we decompose the dataset into different wind direction sectors and waking/waked
turbine clusters. “Full wind sector, all turbines” shows overall performance. “Wind from the south, all turbines” focuses on all turbines for the
waking wind sector of interest (wind directions from 152 to 242° and wind speeds from 5 to 12 m s~1). “Wind from the south, turbines 8—13”
considers the performance of predicting upstream turbines that may wake the second-row turbines. “Wind from the south, turbines 19-24"
examines the performance of predicting turbines that may be waked in the second row.

Model number 0 1 2 3 4
Data subset

Full wind sector, all turbines 0.058 0.058 0.063 0.173 0.837
Wind from the south, all turbines 0.048 0.068 0.083 0.779 0.894

Wind from the south, turbines 8—13 0.058 0.089 0.087 0.748 0.933
Wind from the south, turbines 19-24  0.158 0.096 0.199 0.474 0.724

Starting from the baseline model (Model 1), the aggregate
metrics generally improve with each addition to the mod-
eling framework, and this improvement holds across most
subsets of the data. The addition of the wind direction offset
(Model 1 to Model 2) improves the power ratio correlation
coefficients slightly for all turbines in the full wind sector.
By examining the subsets of the data, we see that this change
is driven by improvements to second-row turbines (19-24)
and that front-row turbines (8—13) show negligible differ-
ences (the slight differences observed are likely just due to
differences in the reference turbines, which change as the
wind direction changes), as expected.

Allowing wind speed heterogeneity (Model 2 to Model 3)
substantially improves the correlation coefficients for two
reasons. The first is an improvement in modeling the refer-
ence turbine powers in the front row, which is evident from
the large increase in correlation coefficients across upstream
turbines 8—13, from 0.087 to 0.748. The second is an im-
provement in modeling the local ambient wind speeds that
the engineering wake model uses to derive the wake deficit,
which can be seen from the moderate increase in correlation
coefficients across downstream turbines 19-24, from 0.199
to 0.474. Since Model 3 shows larger correlation coeffi-
cients on upstream turbines (0.748) than on downstream tur-
bines (0.474), we conclude that this model is more success-
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ful in predicting upstream turbine power than downstream
turbine power.

The output corrector model (Model 4) shows the best per-
formance across all data subsets. The correlation coefficient
for Model 4 is about 0.7 to 0.9 (depending on the dataset con-
sidered), indicating excellent agreement between this model
and the observations, demonstrating the value of this hybrid
approach in improving a model’s understanding over time.
Additionally, the greatly improved performance of Model 3
over Models 1 and 2 highlights the potential for deploying an
initial model without an output corrector, providing reason-
able accuracy while enough wake steering observations are
collected to train the output corrector to the point where it
can make predictions on the effects of various yaw misalign-
ments.

3.4 Power ratio versus wind direction

Figure 12 shows the power ratio as a function of the SCADA
wind direction when wake steering was disabled for two rep-
resentative waked turbines: 19 and 24. The data have been fil-
tered for region 2 wind conditions and for times when wake
steering control was toggled off, yielding about 2 to 3 weeks
of data over the 4-month measurement period. As in Fig. 11,
we use overlapping bins (4° bin width and 2° bin step) to
reduce noise in the data.

Wind Energ. Sci., 9, 2235-2259, 2024
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Figure 12. The power ratio as a function of a turbine’s SCADA wind direction from SCADA and various models for turbines 19 (a) and
24 (b) when wake steering is disabled. Error bars correspond to 83 % confidence intervals such that marginally non-overlapping error bars
approximate a 95 % statistically significant difference between the means (Goldstein and Healy, 1995). Models 2 and 3, which differ in wind
speed heterogeneity, show similar patterns of waking behavior but different magnitudes. The output corrector model (Model 4) differs from
other models in magnitude for both turbines and in phase for turbine 24. The baseline model (Model 1) shows a relatively large phase shift

with respect to the SCADA data.

Wind directions with low power ratios in Model 1 are off-
set from those in the SCADA, indicating that this model does
not capture wake locations properly. (For example, Model 1
shows a trough in the power ratio at 188° in Fig. 12a, whereas
the SCADA shows a peak in the power ratio here.) By includ-
ing the wind direction offset, Model 2 significantly improves
predictions of wake locations, especially for turbine 19 in
Fig. 12a. However, we still observe misalignment in some
peak and trough locations between Model 2 and the SCADA
for turbine 24 in Fig. 12b. (For example, Model 2 shows a
peak at 188°, while the SCADA shows a peak at 192°.)

Model 3 (which introduces wind speed heterogeneity)
shows similar peak and trough locations to Model 2 but with

Wind Energ. Sci., 9, 2235-2259, 2024

different power ratio magnitude values. This suggests that
wind speed heterogeneity does not have a significant impact
on downstream waking locations but may affect the expected
power losses. While the overall metrics in Sect. 3.3 indicate
that Model 3 performs better on downstream turbines, the
power ratio results do not show a clear improvement in accu-
racy with Model 3. Model 4 shows the closest match in peak
and trough locations in the SCADA, particularly in Fig. 12b,
indicating that the output corrector model gives the best pre-
diction of waking and unwaking trends.

In Fig. 13, we consider these same plots for times when
wake steering was enabled. This will allow us to assess if our
model tuning process also improves the accuracy when up-
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Figure 13. The power ratio as a function of a turbine’s SCADA wind direction from SCADA and various models for turbine 19 (a) and
24 (b) when wake steering is enabled. Error bars correspond to 83 % confidence intervals such that marginally non-overlapping error bars
approximate a 95 % statistically significant difference between the means (Goldstein and Healy, 1995).

stream turbines may yaw to steer downstream wakes. The re-
sults mirror those with wake steering disabled. As before, we
observe that the wind direction offset generally improves our
modeling of wake locations (e.g., compare the power ratio
predictions at 200° among SCADA, Model 1, and Model 2
in Fig. 13a), but there is some slight misalignment for tur-
bine 24 near 190° in Fig. 13b. Also as before, while the power
ratio values differ between Models 2 and 3, the peak and
trough locations are similar, and Model 3 does not represent a
clear improvement from Model 2. The peak and trough loca-
tions from Model 4 most closely match the SCADA for both
turbine 19 and turbine 24, indicating that the output corrector
model is expected to give the best predictions of wake loca-
tions, but discrepancies still exist when comparing Model 4
to SCADA values.
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Finally, Fig. 14 shows binned mean power ratio predic-
tions versus wind direction for turbine 23, for comparison
with the initial deployed model predictions shown in Fig. 11.
We see again how Model 1 fails to predict the correct wake
locations. Models 2 and 3 appear to overestimate the impact
of waking and the benefit from wake steering, while Model 4
shows the closest agreement with the observed performance.

3.5 Time series

We finally consider two time series in detail in an anecdotal
examination of model performance. For the first time series,
we consider a case without wake steering, and for the second
time series, we consider a case with wake steering.

Wind Energ. Sci., 9, 2235-2259, 2024
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Figure 14. Turbine 23’s power ratio as a function of its own SCADA wind direction computed with various models with wake steering
disabled (a) and enabled (b), for comparison to the initial deployed model performance shown in Fig. 11.

3.5.1 Time series without wake steering

Figures 15 and 16 compare SCADA results and model pre-
dictions for a representative time series when wake steering
control was disabled. Figure 15 shows results for turbine 10
(an upstream turbine). As expected, adding the wind direc-
tion offset (Model 1 to Model 2) has a negligible effect,
since this turbine is unwaked. While the power predictions
from Models 1-3 follow the same trend, Model 3 matches
the SCADA power values most closely, indicating that in-
troducing wind speed heterogeneity into the model improves
the predictions at upstream turbines, in agreement with our
findings in Sect. 3.3. Model 4 has the strongest correlation
with the underlying SCADA time series and gives the most
accurate power predictions, as expected, since it involves
machine learning on real-world operational data. However,
Model 4 predictions lag the measured power by about 1 min
and exhibit slightly higher power values throughout much of
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the time series. While the reason for the time lag is unclear,
the biased power values indicate that this turbine produced
higher power in the training period in comparable wind con-
ditions. This bias is not expected to be an issue in a field
deployment of this model architecture, since the deployed
model would continually be retrained based on the latest
available data and would thus be less affected by historical
changes in turbine performance.

Model 4’s discrepancies highlight the challenges of inter-
preting machine learning models, which would ideally have
errors that are not correlated in time. In other words, a cor-
rectly specified model will have errors that appear to be in-
dependent and identically distributed, as well as zero mean
Gaussian noise. When model errors (residuals) are correlated
with one of the input features (in this case, time), then there
is typically an opportunity to improve the model.
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Figure 15. Example time series showing the power of turbine 10 when wake steering is disabled. Turbine 10 is a freestream turbine in this
sector. SCADA results are compared against the predictions from various models from Table 1.

While we can hypothesize about how the model makes
predictions, it is more difficult to understand why the model
converged to a particular solution. A strong case can be made
that the time-lagged target turbine’s power is a strong pre-
dictor of the most recent power, and the model just makes
small perturbations to the time-lagged power signal (which
is the intent of the feature space design). A case can also be
made that the advection time causes the observed time lag.
However, the goal is to determine how to improve the model,
but it is unclear why the model fails to converge to a non-
time-lagged solution in our current implementation, since it
should have the necessary features to do so. Potential paths
forward could be additional feature engineering, such as in-
cluding additional time lags, collecting more training data,
and/or adjusting the model hyperparameters.

Figure 16 shows results for turbine 22 (the turbine down-
stream of turbine 10). From Fig. 16(a), we see that this tur-
bine will encounter one waking wind direction (dashed hor-
izontal line) over this hour. Model 1 (which has no wind
direction offset) predicts that we cross this wind direction
at 23:45 UTC and then transition to a wind direction with
less waking (23:50 UTC to the end). Models 2 and 3 (which
include the +5° wind direction offset) predict that we will
reach this wind direction and remain there for the final 10 min
of the time series.

The power ratio and power predictions (Fig. 16b and c,
respectively) provide a good test of these models. Model 1
predicts that waking occurs from about 23:30 to 23:45 UTC
(power ratios below 1) and is not present near the end of the
time series. The SCADA data, however, show that waking
occurs from about 23:45 UTC to the end of the time series,
highlighting the potential for detrimental control decisions
if Model 1 were to be used in a wake steering controller.
Model 2 captures this trend very well, suggesting that the
wind direction offset has enabled us to successfully predict
the dynamic onset of waking. Model 3 shows very similar
results to Model 2 and thus that including wind speed hetero-
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geneity has little effect on this downstream turbine (in con-
trast to the benefit it provided on the corresponding upstream
turbine).

While Models 2 and 3 substantially improve waking pre-
dictions near the end of this time series, discrepancies re-
main between these models and the SCADA early in the time
series. For example, at 23:15 UTC, the SCADA shows low
power ratios and powers for this turbine, which do not seem
to be explained by waking. Model 4, however, is generally
able to capture these trends well, indicating that our output
corrector approach can represent phenomena beyond what
can be captured in an EWM (e.g., large levels of flow het-
erogeneity or rapid-flow transients). As before, Model 4 has
an apparent 1 min time lag and some biased power values, the
latter of which may be due to changes in turbine performance
from the training period. Again, this is a conservative test of
the output corrector since it was not trained on the 2-month
period that contains this time series.

3.5.2 Time series with wake steering

Figures 17 and 18 compare SCADA results and model pre-
dictions for a representative time series when wake steering
was activated (the same time series considered in Fig. 10).
Figure 17 shows results for turbine 11 (an upstream turbine
that is wake steering). As can be observed in Sect. 3.5.1,
adding the wind direction offset (Model 1 to Model 2) has
a negligible effect here, and introducing wind speed het-
erogeneity (Model 2 to Model 3) improves the power pre-
dictions. Model 4 again correlates well with the underlying
SCADA signal; however, there is a slight bias toward the
power predictions that we attribute to different turbine per-
formance in the training period, which could be addressed
by retraining the model on the latest data.

Figure 18 shows results for turbine 23 (the turbine down-
stream of turbine 11). From Fig. 18a, we see that Model 1 ex-
pects turbine 23 to be significantly waked by turbine 11 and
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Figure 16. Example time series showing wind direction (a), power ratio (b), and power (c) for turbine 22 for a time when wake steering is
disabled. SCADA results are compared against the predictions from various models from Table 1. The dotted horizontal line in (a) shows a
wind direction where the downstream turbine (22) is expected to be waked by the upstream turbine (10). Several drops in power ratio occur
throughout the time series, likely due to a combination of heterogeneity and waking on short timescales.
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Figure 17. Example time series showing the power of turbine 11 when it is steering. SCADA results are compared against the predictions

from various models from Table 1.

thus predicts a power ratio below 1 for the entire time range
considered (Fig. 18b). The SCADA data, however, show that
the power ratio fluctuates between a value near 1 (indicating
no waking) and a value below 1 (indicating waking). Mod-
els 2 and 3 include the +5° wind direction offset, shifting the
model wind direction (Fig. 18a) above that at which we ex-
pect significant waking. As a result, the model power ratios
are larger and closer to the SCADA data over much of the
time range. One exception is at the start of the time series
(04:00 UTC), where the SCADA shows much lower power
values than the models. The cause of this discrepancy is un-
clear, since the average wind directions and TIs (not shown)
are similar to those at later times when there are higher pow-
ers (04:20 UTC). As before, we expect this phenomenon to
be driven by wind condition transients or heterogeneity lev-
els that are not captured by our engineering wake model. Fi-
nally, we see that while allowing wind speed heterogeneity
(Model 2 to Model 3) changes the power and power ratio
predictions of the downstream turbine, it does not substan-
tially improve the model accuracy at the downstream turbine
for this particular time series. Model 4 shows strong corre-
lation with the observations and successfully captures addi-
tional information missed by Models 1-3. Though the dataset
does not contain enough operations similar to this scenario to
evaluate the downstream turbine’s energy gain in aggregate,
this should be a focus of future work, along with the ability
to predict the upstream turbine’s power loss, in order to as-
sess the model’s effectiveness at predicting the total impact
of wake steering.

3.6 Suitability for optimization

Despite doing better at predicting the 1 min behavior of the
plant power, the models must also be assessed for their suit-
ability to be used with an optimization algorithm to find the
optimum yaw values for all steerable turbines. Given that
all models except Model 4 use an analytical formulation de-
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signed to be continuous for gradient-based optimization, it
can be assumed that they will not cause any problems therein.
However, Model 4 had to be tested to ensure its predictions
of farm power remained smooth in the yaw angle dimension.

Figure 19 shows the resulting farm power gain predicted
over a parameter sweep of turbine 13’s yaw angle. We refer to
the predicted farm power gain due to yawing a single turbine.
The numerator is the sum of each turbine’s power caused by
changing only turbine 13’s yaw angle. The denominator is
the sum of each turbine’s power with all yaw angles set at
zero. Behind the scenes, there is a suite of machine learning
models being used to recompute the power at each individ-
ual turbine (one model per turbine). Only a small subset of
downstream turbines’ powers (hopefully one or two, depend-
ing on the wake width) depends on this freestream turbine’s
yaw error. Only one upstream turbine’s power depends on
this yaw angle (the turbine whose yaw angle is being ad-
justed). When this individual model reverts back to the en-
gineering wake model, the predicted power for the affected
subset changes significantly. The other turbines’ powers re-
main at their adjusted values. Therefore, between Models 3
and 4, the numerator and the denominator are very different
values, even when a single machine learning reverts back to
using only the EWM. The difference in bias between the un-
derlying EWM and the machine learning model is the cause
of the discontinuity.

A wake steering controller would roughly want to find the
maximum of this function in order to prescribe optimum yaw
values. We see that there is a discontinuity in the results with
the output corrector, highlighting the effectiveness of the fea-
ture space filter in preventing extrapolation beyond the train-
ing data. However, we also see the potential for “trapping”
the controller output if the discontinuity were reversed such
that it might never prescribe larger yaw angles, and therefore
the output corrector would not be able to learn from obser-
vations at these larger yaw angles. This is not the case in
Fig. 19; i.e., the feature-space-filtered EWM results would
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Figure 18. Example time series showing wind direction (a), power ratio (b), and power (c) for turbine 23, which is downstream of a turbine
that is wake steering (turbine 11). SCADA results are compared against the predictions from various models from Table 1. The dotted
horizontal line in (a) shows a wind direction where the downstream turbine (23) is expected to be waked by the upstream turbine (11).
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Figure 19. Predictions of farm power gain as a function of turbine 13’s yaw angle with and without the output corrector (Models 4 and 3,
respectively). For Model 4, the full output corrector is used for yaw error values between —6 and +7°. Outside of this range, all individual
models in the ensemble will revert back to the engineering wake model, if that model depends on turbine 13’s yaw error. All other models in

the output corrector ensemble are used for the entire range.

inspire a larger yaw angle, but this may not always be the
case. To this end, further work may be required to ensure pre-
dictions are smooth in the yaw angle dimension or to detect
times when yaw angles are being limited by the discontinuity
such that the EWM can be used to further explore the feature
space.

One final consideration is computational cost. The
changes made to get to Model 3 from Models 1 and 2 do
not appreciably increase computational cost, allowing for a
real-time optimization to be computed in less than 1 min. The
output corrector, however, adds costs from the model selec-
tion logic, neural network prediction, and feature space fil-
tering. In the form tested here, this increases the time to run
a wake steering optimization several-fold. This is certainly
not insurmountable given the potential of neural networks to
use higher-performance libraries and GPU hardware and/or
to store information about the gradient of the target with re-
spect to features (namely yaw in our case), which negates the
need to use a finite difference to compute gradients as in the
implementation tested here.

4 Conclusions

A model-based wake steering control system was developed
and deployed to 10 turbines on a 58-turbine wind farm with
13 rotor diameter spacing in the predominant wind direc-
tion — to the best of our knowledge the largest and most
complex wake steering campaign to date. Wake steering was
achieved through absolute nacelle position control, eliminat-
ing the shortcomings of control via yaw offsets applied to a
turbine’s own measurement of the wind direction. Initial re-
sults from the pilot study showed power gains at the selected
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downstream turbines as a result of wake steering, though as
expected, the preliminary minimally tuned model was not
able to perfectly predict and therefore optimize the plant be-
havior. Based on the collected wake steering dataset, we de-
veloped a novel model architecture and validation approach
to close the loop in order to improve the predictive capability
and therefore wake steering performance over time. The val-
idation approach included high-level aggregate metrics (on
the entire farm and on important subsets of the data), a power
ratio binned by wind direction for waked turbines, and a de-
tailed examination of key time series in the operational data.

It was shown that the most simplistic model provided poor
predictions of plant behavior, indicating the importance of
this validation process for effective control. As complexity
was added to the model, predictive capability improved. The
most accurate model included a data-driven wind direction
offset calibration, a Gaussian spatial filter to allow for wind
speed heterogeneity, and a neural-network-based output cor-
rector. However, even without the output corrector, it was
shown that it is possible to achieve substantial improvements
with data-driven engineering wake model input estimation/-
calibration.

The output corrector results show great promise for lever-
aging the rapidly advancing fields of artificial intelligence
and machine learning in order to develop more effective wind
farm control systems. In this study a relatively simple neural
network architecture was employed, and some weaknesses of
the approach were highlighted, namely the additional com-
putational cost required to make predictions and the poten-
tial for discontinuous outputs between the neural networks
and the engineering wake model in the space of the optimiza-
tion actuation variable (yaw angle). However, there is a vast
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array of new avenues to explore in future work: introduc-
ing more complex neural network models designed for fore-
casting (such as long short-term memory or transformers) to
enable a “preview” of wind direction like that simulated in
Sengers et al. (2023), imposing physical constraints on the
models, or using learned gradient information for efficient
optimization.

Future work should also focus on testing the model’s abil-
ity to predict the change in the downstream turbine power
and power ratio due to wake steering — not only its absolute
value — both in a time series sense and in aggregate. Once
enough operational data have been accumulated, the overall
energy gain of the entire control system should also be evalu-
ated, taking into account upstream turbine losses due to yaw.
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