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Abstract. The disturbed atmospheric pressure near a wind farm arises from the turbine drag forces in combi-
nation with vertical confinement associated with atmospheric stability. These pressure gradients slow the wind
upstream, deflect the air laterally, weaken the flow deceleration over the farm, and modify the farm wake recov-
ery. Here, we describe the airflow and pressure disturbance near a wind farm under typical stability conditions
and, alternatively, with the simplifying assumption of a rigid lid. The rigid lid case clarifies the cause of the
pressure disturbance and its close relationship to wind farm drag.

The key to understanding the rigid lid model is the proof that the pressure field p(x,y) is a harmonic function
almost everywhere. It follows that the maximum and minimum pressure occur at the front and back edge of the
farm. Over the farm, the favorable pressure gradient is constant and significantly offsets the turbine drag. Upwind
and downwind of the farm, the pressure field is a dipole given by p(x,y)≈ Axr−2, where the coefficient A is
proportional to the total farm drag. Two derivations of this law are given. Field measurements of pressure can be
used to find the coefficient A and thus to estimate total farm drag.

1 Introduction

The construction of offshore wind farms may significantly
help our society transition to renewable energy, but the wind
slowing by these farms may ultimately limit their potential
for electric power generation (Ahktar et al., 2022). This is-
sue has an extensive literature, reviewed recently by Stevens
and Meneveau (2017), Archer et al. (2018), Porte-Agel et
al. (2020), Pryor et al. (2020), and Fischereit et al. (2021).
An integral part of the wind slowing by turbine drag is the
creation of a local pressure field. This pressure disturbance
was initially neglected (Jensen, 1983) but has been recently
estimated in connection with gravity wave (GW) generation
(Smith, 2010, 2022; Wu and Porté-Agel, 2017; Allaerts and
Meyers, 2018, 2019). In a stably stratified atmosphere, the
lifting of the air caused by farm drag creates gravity waves
aloft whose pressure field acts back on the lower atmosphere.

This pressure field modifies the airflow in ways that the
direct action of turbine drag cannot. First, it can decelerate
the flow before it reaches the first row of turbines, so-called
“blockage” (Bleeg et al., 2018) in wind farm terminology or
“blocking” in mountain meteorology. Second, it can deflect

the air to the left and right. Third, over the farm, it can fight
back against the turbine drag, helping to keep the wind flow
strong. Finally, it slows the downwind recovery of the wake.

The pressure field near a wind farm is analogous in some
respects to that for a single turbine. The airflow approaching
a turbine disk begins to decelerate upwind due to an adverse
pressure gradient, and its corresponding axial induction fac-
tor reduces the turbine efficiency to the Betz limit (Hanson,
2000). According to Gribben and Hawkes (2019), the local
non-hydrostatic pressure disturbance decays inversely as the
square of the distance upstream. The farm-generated hydro-
static pressure disturbance may be more far-reaching.

In discussing the cause of the pressure field, we shall exer-
cise caution as the cause may be model dependent. In com-
pressible subsonic aerodynamics, acoustic waves play a role
in creating the pressure field. In stratified flow, gravity waves
play a role. In presumed non-divergent flow, the pressure
field is usually determined diagnostically as the cause is hid-
den from view. The pressure field exists simply to keep the
flow non-divergent.

In this paper, we compare the wind farm pressure field
in the realistic gravity wave (GW) model with the ideal-
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ized rigid lid (RL) model. The rigid lid approximation retains
some of the features of the atmospheric problem but allows
us to derive simple theorems and closed-form solutions that
clarify the cause, nature, and impact of the pressure field.

We begin by recalling the governing equations for the two-
layer model of Smith (2010) and describe the rigid lid (RL)
limit. Second, we derive approximate closed-form expres-
sions for the far-field and near-field pressure. Third, we dis-
cuss the cause of the pressure field and its role in the wind
farm disturbance. Finally, we consider using pressure mea-
surements to estimate total farm drag and the use of the RL
model in industrial applications.

2 The gravity wave (GW) model and the rigid lid (RL)
limit

Our method for computing the response to wind farm drag
forces uses a two-layer stratified hydrostatic gravity wave
(GW) model solved with fast Fourier transforms (FFTs). This
model consists of a lower turbine layer from which momen-
tum is removed by specified drag forces and a Rayleigh
restoring force that decays the farm wake (Smith, 2010,
2022). An overlying density-stratified layer responds to ver-
tical displacement and creates a hydrostatic pressure field
p(x,y) that acts back on the turbine layer. The linearized
governing momentum equations for the turbine layer are

U

(
∂u

dx

)
+V

(
∂u

∂y

)
=−ρ−1

(
∂p

∂x

)
+Fx −Cu, (1a)
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)
+V

(
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∂y

)
+Fy −Cv, (1b)

where F (x,y) is the turbine drag, U is the ambient wind,
u(x,y) is the drag-induced perturbation wind, and C is the
Rayleigh restoring coefficient (Smith, 2022). After these
equations are solved for the perturbation wind field, the lin-
earized scalar wind deficit is computed from Deficit(x,y)=
−(U ·u)/|U |. Its area integral is the total deficit:

TD=
∫∫

Deficit(x,y) dxdy. (2)

Taking the dot product of Eq. (1) with the ambient wind U =

(U,V ) and integrating over the whole domain relates TD to
the turbine drag (Smith, 2022):

TD=
−1
|U |C

∫∫
U ·F (x,y) dxdy. (3)

Because the pressure field p(x,y) decays at infinity, it
does not influence TD but alters the spatial distribution of
Deficit(x,y). The impact of the deficit on farm power gen-
eration is described by the average relative speed deficit
γ = Deficit/|U |. For example, γ = 0.02 is a 2 % reduction
in wind speed over the farm.

The GW model discussed herein uses the hydrostatic as-
sumption and thus does not take into account the pres-
sure field associated with vertical fluid acceleration. Pressure
fields in this model are generated only by density anoma-
lies aloft. If an airflow streamline approaching a wind farm
curves sharply upwards, a region of non-hydrostatic high
pressure will be generated below it. These effects are easily
incorporated in the linearized FFT modeling framework, but
we do not do that here. In mountain wave theory, for exam-
ple, such effects are usually neglected for horizontal scales
greater than 1 km. Non-hydrostatic effects are certainly im-
portant on the scale of an individual turbine but less so on the
farm scale where hydrostatic effects are expected to domi-
nate. Some wind farm models, such as that of Gribben and
Hawkes (2019), include the non-hydrostatic effect but ne-
glect the hydrostatic effect.

We first ran the two-layer GW model with the realistic pa-
rameters shown in Table 1. The model’s two stability param-
eters are the reduced gravity g′ of the inversion and Brunt–
Väisälä frequency N of the troposphere given by

g′ = g
1θ

θ
= 0.1ms−2 and N =

√
g

θ

dθ
dz
= 0.01s−1, (4)

where θ is the potential temperature. We set the Rayleigh
restoring coefficient C to a fairly small value so the wake
recovery is slow but fast enough to prevent periodic wrapping
from the FFT method. To compute the turbine drag force F ,
we define the disk area ratio (DAR) as the ratio of rotor disk
area to planform farm area. We chose DAR= 0.0077 and a
turbine thrust coefficient of CT = 0.75. With a wind speed
of U = 10 ms−1 and turbine layer depth of H = 400 m, the
wind farm drag per unit air mass is then

|F | = F =
DAR ·CT ·U

2

2H
=

(0.0077)(0.75)(102)
2(400)

= 0.0007218ms−2. (5)

For illustration, we chose horizontal farm dimensions a =
b = 7000 m. The total drag on the farm is then

Drag= ρ · a · b ·H ·F ≈ 17× 106 N. (6)

A few output parameters from this reference run are given in
Table 2, including the maximum vertical displacement of the
inversion, the maximum wind speed deficit, the normalized
farm-averaged speed deficit (γ ), and the difference between
the two pressure extrema (1p). In the reference run, the in-
version is displaced upward by 11.8 m, the maximum speed
deficit is 0.468 ms−1, the average relative speed deficit is
γ = 0.0315, and there is a 1p = 2.38 Pa pressure difference
across the farm.

To investigate the influence of atmospheric stability
(Eq. 4), we ran the GW model several more times – first with
the two stability parameters g′ =N = 0. When there is no
stability, the turbine drag slows the airstream and displaces
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Table 1. Parameters of the reference gravity wave (GW) model.

Parameter Symbol Units Value

Ambient wind speed U ms−1 10
Layer depth H m 400
Applied drag force F ms−2 0.0007218
Farm drag Drag N 17000000
Interface reduced gravity g′ ms−2 0.1
Tropospheric stability N s−1 0.01
Rayleigh restoring coefficient C s−1 0.00033
Farm size a, b km 7 by 7
Grid size dx, dy km 0.5 by 0.5

the top of the turbine layer upwards, but no hydrostatic pres-
sure disturbance is generated.

We then increased each stability parameter (Eq. 4) from
zero towards a large value (Table 2). The vertical displace-
ment of the fluid decreased towards zero and the pressure
perturbations increased from zero. Other model output val-
ues changed only slightly. The maximum wind speed deficit
decreased slightly from 0.445 to 0.323 ms−1 in the rigid lid
limit. The average relative speed deficit over the farm de-
creased slightly from γ = 0.0226 to 0.0195.

One striking aspect of Table 2 is that the g′ series and
the N series of runs approach the same rigid lid (RL) limit.
The trends are smooth for the N series but the g′ series
of runs shows a singularity when the Froude number Fr=
U/
√
g′H ≈ 1. Ultimately, increasing either type of stability

takes us to the same rigid lid solution with finite wind deficit
and pressure difference but a vanishing vertical displace-
ment. When N = 0, the vertical displacement approaches
zero as 1/g′, and when g′ = 0 it approaches zero as 1/N .

The planform patterns of the gravity wave (GW) and rigid
lid (RL) solutions are compared in Figs. 1 and 2. The wind
speed deficit patterns (Figs. 1a and 2a) show the wake caused
by the farm drag but also show the influence of the pressure
fields. Both show upstream deceleration, which is stronger in
the RL case, and lateral regions of accelerated flow down-
wind of the farm. The wind speed deficit patterns over the
farm are different also due to pressure forces acting on the
flow. The pressure fields (Figs. 1b and 2b) show an up-
wind maxima and downwind minima of approximately simi-
lar magnitude. The RL case, however, has these two extrema
shifted upwind, and the whole field is exactly anti-symmetric
with respect to the upwind–downwind direction.

3 The harmonic pressure field

We can understand the rigid lid (RL) solution more fully by
noting that the pressure field p(x,y) in that case is a har-
monic function almost everywhere. A harmonic function is
one which satisfies Laplace’s equation ∇2p = 0. To prove
this hypothesis, we apply the divergence operator to Eq. (1),

giving

U (ux + vy)x +V (ux + vy)y =

−ρ−1(pxx +pyy)+Fx,x +Fy,y −C(ux + vy)
or

U · ∇(∇ ·u)=−ρ−1
∇

2p+∇ ·F −C(∇ ·u). (7)

With the rigid lid, the horizontal flow field is non-divergent
flow so ∇ ·u= 0, and Eq. (7) becomes

∇
2p = ρ∇ ·F . (8)

Thus, the RL pressure field is a harmonic function except at
the windward and leeward edges of the wind farm where the
turbine drag force is divergent (i.e., ∇ ·F 6= 0).

To illustrate the harmonic property of p(x,y) we show the
Laplacian of the pressure field for the reference GW case
in Fig. 3a and the rigid lid case in Fig. 3b. They differ in
important details. In Fig. 3a, ∇2p = 0 is violated over most
of the field in a complicated pattern, while in Fig. 3b it is
violated only over the farm front and back edges, in agree-
ment with Eq. (8). The Laplacian in Fig. 3 was computed
in Fourier space with 1̂(k, l)=−(k2p̂(k, l)+ l2p̂(k, l)) and
then inverted.

Recall that a harmonic function has no local maxima or
minima and therefore only takes on values that are between
the boundary values. As p(x,y) decays at infinity, the pres-
sure would therefore vanish were it not for these two small
non-harmonic regions. Thus, these two regions in Fig. 3b
support or cause the pressure field seen in Fig. 2b.

4 The cause of the RL pressure field

In non-divergent flow, the role of pressure is to maintain the
non-divergent property of the flow. As the turbine force field
F (x,y) is divergent at the farm edges, the pressure field must
arise instantly to prevent any flow divergence there. That is
the meaning of Eq. (8). At the windward edge, for example,
the outward diverging pressure forces balance the converging
turbine drag forces.

This interpretation is supported by noting that pressure
is insensitive to the Rayleigh restoring force coefficient C
in Eq. (1). The dashed curve in Fig. 4b shows the wind
speed deficit where we increase the coefficient 10-fold to
C = 0.0033 s−1. In Fig. 4b, the wind speed deficit is dramat-
ically reduced while the pressure field is unchanged. This in-
dependence of the pressure field fromC is a unique feature of
the rigid lid case and not found in the more general GW case
where the Rayleigh force is divergent. The Rayleigh force
is non-divergent because the RL flow is non-divergent, and
therefore it does not influence the pressure field.

5 Role of the pressure field

The two pressure fields, GW and RL, are compared along
the centerline in Fig. 4a and b. Both transects have an up-
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Table 2. Wind farm disturbance properties as stability is increased towards the rigid lid limit. The value A is the estimated strength of the
pressure dipole. Note that n/a stands for not applicable.

g′ N Maximum Maximum γ 1p A

displacement deficit (9) (15)
ms−2 s−1 m ms−1 Pa Pam

0.1a 0.01a 11.7 0.468 0.0315 2.38 2335
0 0 18 0.445 0.0226 0 n/a
0.05 0 21 0.539 0.0272 1.33 n/a
0.1 0 18 0.589 0.0236 2.57 n/a
0.2b 0 21.6 0.682 0.0507 7.06 n/a
1 0 1.72 0.307 0.0196 3.94 8302
10 0 0.135 0.32 0.0194 3.24 6821
100 0 0.0132 0.323 0.0194 3.18 6702
1000 0 0.0013 0.323 0.0194 3.18 6691
0 0 18.0 0.445 0.0226 0 0
0 0.005 13.9 0.444 0.0247 0.595 906
0 0.01 11.9 0.432 0.0257 1.09 1754
0 0.02 8.8 0.403 0.0259 1.81 3132
0 0.1 2.4 0.335 0.0222 2.99 6019
0 1 0.25 0.324 0.0197 3.17 6646
0 10 0.025 0.323 0.0195 3.18 6686
0 100 0.0025 0.323 0.0195 3.18 6689

a Reference GW case. b Near-resonant case Fr≈ 1.

Figure 1. Zoom of the disturbance caused by a 7 km by 7 km wind farm from the realistic gravity wave (GW) model: (a) wind speed deficit
(m s−1) and (b) pressure (Pa). Airflow is from left to right. White dots mark the corners of the farm. In panel (b), the red dots are pressure
sampling points. The full domain is 200 km by 200 km.

wind maximum and downwind minimum. The GW pres-
sure field (Fig. 4a) is smoother with a maximum over the
farm and a smaller minimum in the near wake. In the rigid
lid case (Fig. 4b), the pressure maximum and minimum
points are equal in magnitude and shifted upstream slightly
to the farm edges. In both cases, the air decelerates as it ap-

proaches the farm under the adverse pressure gradient. The
linearized Bernoulli equation derived from Eq. (1), Uu(x)=
−ρ−1p(x), is approximately valid upwind, so as the pressure
rises the wind speed drops. There is also an adverse pressure
gradient downwind of the farm. Overall, the pressure field
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Figure 2. Zoom of the disturbance caused by a 7 km by 7 km wind farm from the idealized rigid lid (RL) case: (a) wind speed deficit (ms−1)
and (b) pressure (Pa). Airflow is from left to right. White dots mark the corners of the farm. In panel (b), the red dots are pressure sampling
points. The full domain is 200 km by 200 km.

Figure 3. Laplacian of the pressure field with units Pam−2. (a) Reference GW case and (b) rigid lid case. Airflow is from left to right. White
dots mark the corners of the farm. A low-pass filter has been applied to panel (b).

smooths out the velocity field by spreading the deceleration
upwind and downwind.

A key feature of the rigid lid solution is the linear pressure
field over the farm, so we define

1p =Max(p)−Min(p), (9)

so the pressure gradient force is

PGF=−ρ−1
(

dp
dx

)
≈1p/ρa. (10)

Using values from Tables 1 and 2, the non-dimensional
force ratio is

PGF
F
=

(3.18Pa)
(1.2kgm−3)(7000m)(−0.0007218ms−2)

=−0.52. (11)

Thus, in this case, the favorable pressure gradient cancels
52 % of the turbine drag over the farm. The magnitude of
this ratio increases with aspect ratio AR= b/a.
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258 R. B. Smith: The wind farm pressure field

Figure 4. Centerline properties of the farm disturbance including the farm mask, wind speed deficit (×5 ms−1), interface displacement
(/5 m), and pressure (Pa): (a) reference GW case and (b) rigid lid case. In panel (b), the dashed line is the wind speed deficit with a larger
Rayleigh restoring coefficient (C = 0.0033 s−1). The pressure is unchanged. Airflow is from left to right.

6 The far-field pressure

Equation (8) is the Poisson equation where the scalar ρ∇ ·F
is the equivalent of a point charge in an electrostatic analogy.
If we define B(x,y)= ρ∇ ·F then the general solution to
Eq. (8) using Green’s function is

p(x,y)=
(

1
4π

)∫∫
ln
(
(x− x′)2

+ (y− y′)2)
·B(x′,y′) dx′dy′. (12)

While the logarithm function in Eq. (12) diverges at infinity,
Eq. (12) itself is well behaved because

∫∫
Bdxdy = 0. If we

lump the front and back edge contributions into two delta
functions,

B(x,y)≈ ρFb
(
δ
(
x+

a

2
,y
)
− δ

(
x−

a

2
,y
))
, (13)

then from Eq. (12) for r � a, we obtain asymptotically the
dipole

p(x,y)≈
−ρFabx

2πr2 =−A
[ x
r2

]
, (14a)

where r =
√
x2+ y2 and the constant

A=

(
1

2π

)
ρ ·F · a · b. (14b)

This dipole formula (Eq. 14) is consistent with the pressure
field pictured in Fig. 2b. The isobars for Eq. (14a) are cir-
cles touching each other at the origin. Thus, Eq. (14a) sat-
isfies p(x,0)= p(x/2,±x/2). On the 45◦ lines (y =±x),
∂p/∂x = 0; so the isobars are parallel to the x axis there.

In the present computation (Table 1), the drag force is
F = 0.0007218 m s−2, so we predict from Eq. (14b) thatA=
6754Pam. We checked this prediction against our computed

pressure field (Fig. 2b) by using the pressure at distance
d = 8 km upstream from the farm center. Using Eq. (14a),

A= p(x =−d,y = 0)(d)= 6689Pam (15)

(see Table 2). The small 1 % difference between these two A
values verifies our solution. The 1 % difference arises from
the fact that 8 km is not far enough upstream to be in the far
field.

Green’s function method with two delta functions (Eqs. 12
and 13) can also be used to find the pressure field near the
farm center. The result is

p(x,y)≈−2
ρFbx

aπ
. (16)

The non-dimensional force ratio for a = b is then
PGF
F
≈−

2
π
≈−0.64, (17)

roughly similar to the computed FFT value in Eq. (11).

7 Alternate derivation of the drag-induced pressure
dipole

In the previous section, we used Green’s function solution
to Eq. (8) to derive the far-field pressure dipole Eq. (14).
We now re-derive this formula using a physical volume-
conservation argument. When the farm drag slows the flow,
it creates a volume flow deficit (Q) in the wake. A farm with
downwind dimension a with drag force (F ) per unit mass
(units ms−2) will create (from 1) a wake with speed deficit
Deficit= F · a/U . The lost volume flux in the wake is

Q= Deficit · b ·H = F · a · b ·H/U, (18a)

or using Eq. (6)

Q=
Drag
ρU

, (18b)
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with units m3 s−1. We balance the volume budget by adding
an equal point source Q at the origin. Confined to a layer of
depth H , the velocity field from a point volume source Q is

u=

(
Q

2πH

)( x
r2

)
and v =

(
Q

2πH

)( y
r2

)
. (19)

The radial speed is ur =
√
u2+ v2 so the volume flow isQ=

2πrHur.
If the mean flow U is added to the source flow Eq. (19),

the total fluid speed at each point is

S2
= (U + u)2

+ (v)2. (20)

This combined flow is equivalent to the familiar Rankine half
body of width W = Fab

U2 . A similar approach was used by
Gribben and Hawkes (2019) for a single turbine. In the ab-
sence of dissipation, Bernoulli’s equation gives the pressure
anomaly at each point:

p(x,y)=−
(

1
2

)
ρ(S2
−U2). (21)

Combining Eqs. (20) and (21) and linearizing gives a dipole
pressure pattern in the far field,

p(x,y)≈−ρU
(

Q

2πH

)( x
r2

)
=−A(x/r2), (22)

where

A=

(
1

2π

)
ρ ·F · a · b, (23)

in agreement with Eq. (14). If the total farm drag has been
computed in newtons, then using Eq. (6) the pressure coeffi-
cient is

A=

(
1

2πH

)
Drag, (24)

where H is the depth of the layer into which the drag has
been applied. The pressure coefficient A has units of pascal
meters (Pam). If the farm is not rectangular, the product a ·b
in Eq. (23) can be replaced with the farm area.

8 Blockage and deflection

As the RL source function expression Eq. (19) provides good
estimates of the far-field pressure, we can use it to estimate
airflow blockage and deflection. For upstream blocking, the
wind disturbance will decay inversely with distance upwind.
At the front edge of the farm, we evaluate Eq. (19) to give

u
(
x =−

a

2
,y = 0

)
=

(
F · a · b

2πU

)( x
r2

)
=−

F · b

πU
. (25)

The small pressure reduction and wind speed maxima near
the downwind farm corners (Fig. 1) can also be explained
with these formulae (Eqs. 22 and 25).

The upwind pressure field deflects the airflow to the left
and right. The maximum lateral speed is located near the
farm lateral edge at x = 0, y = b/2. From Eq. (19),

v

(
x = 0,y =

b

2

)
=

(
F · a · b

2πU

)( y
r2

)
=
F · a

πU
. (26)

In the present example with a = b (Table 1), the magnitudes
of u and v are both 0.16 ms−1. Potential errors in Eqs. (25)
and (26) come from using the far-field formulae too close to
the farm and the influence of Rayleigh friction.

9 Application to industrial RL models

In addition to the conceptual value of the rigid lid (RL) model
emphasized herein, it could also be used in industrial or engi-
neering models of wind farm disturbance. Any quasi-analytic
model or computational fluid dynamics (CFD) model could
utilize the RL assumption to simplify the computation. This
is an easy way to incorporate the effects of atmospheric sta-
bility. Our results confirm this logic but only in a qualita-
tive way. We have shown that the RL model overidealizes
the pressure dipole and shifts the pressure field slightly up-
wind. Worse still would be the assumption that RL models
will not have a pressure field because they do not support
gravity waves. In fact, the rigid lid assumption requires that
a pressure field be generated from the leading and trailing
edge of the farm where the turbine drag vector field is diver-
gent. Any properly designed RL model would have a dipole
pressure field very similar to that described in Eqs. (14) and
(22).

10 Determining total farm drag from pressure
measurement

The direct link between farm drag and far-field pressure
dipole (Eqs. 14 and 24) in the RL case allows us to determine
total farm drag with a pair of pressure measurements. If pres-
sure sensors are located a distance d upwind and downwind
of the farm center, then the difference in pressure between
those two sensors 1PM gives the pressure dipole coefficient
using Eqs. (14) or (22):

A=1PM · d/2. (27)

From A, the total farm drag is found using Eq. (24):

Drag= 2πHA. (28)

In the rigid lid (RL) case (Fig. 2b) the pressure values 8 km
upstream and downstream are p =±0.84 Pa, so 1PM =

1.68 Pa. Using Eqs. (27) and (28), we obtain A= 6720 Pam,
and the total farm drag is Drag≈ 17× 106 N, in agreement
with the specified drag in Table 1.

In the reference GW case (Fig. 1b), the upstream and
downstream pressure values are p = 0.292 Pa and p =
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−0.607 Pa, so 1PM = 0.899 Pa. Using these GW case val-
ues in the rigid lid formulae (Eqs. 27 and 28) gives Drag≈
9× 106 N. Thus, the error in Eqs. (27) and (28) is large, but
a measured 1PM still provides a useful lower bound on the
farm drag. If more accuracy is needed, use the linear GW
model or a full-physics mesoscale model.

11 Discussion

When turbine drag in a wind farm slows the wind, the low-
est layer must thicken to conserve mass and push the higher
layers upwards. The influence of this lifting depends on the
atmospheric static stability. With no stratification, this up-
ward displacement will not generate a hydrostatic pressure
disturbance.

When moderate stable stratification is present, the upward
displacement will create pressure anomalies that act on the
turbine layer. The computation of the pressure field typically
requires the use of a gravity wave (GW) model. When the
stratification is very strong, the GW solutions approach the
rigid lid (RL) limit where little or no vertical displacement
occurs. In this situation, we can compute the pressure field
directly from the non-divergent assumption, without having
to consider gravity waves. A pressure field dipole is then cre-
ated to prevent flow divergence at the front and back edge
of the wind farm where the turbine drag is divergent. The
rigid lid approximation allows closed-form expressions that
deepen our understanding of the wind farm pressure distur-
bance.

Surprisingly, the GW and RL solutions are qualitatively
similar. Both have an upwind–downwind, high–low pressure
difference. Pressure forces act to smooth out the deceleration
of the wind by the farm. They reduce the deceleration over
the farm with a favorable pressure gradient and add deceler-
ation zones upwind and downwind with an adverse pressure
gradient. They also produce small areas of deflected and ac-
celerated airflow to the left and right of the farm.

In the real atmosphere, the inversion strength is only about
g′ = 0.1 ms−2 and the tropospheric stability is about N =
0.01 s−1. With these values, air above the turbine layer may
still be significantly displaced but the confinement is suffi-
cient that some of the rigid lid characteristics appear (Figs. 1,
2, and 4). The stability values need to be an order of mag-
nitude larger, however, before the rigid lid approximation
becomes a quantitatively accurate approximation to the full
GW results. (see Table 2).

We propose two applications for the RL solutions. First,
they provide an approximate way to compute total farm drag
from upwind and downwind pressure measurements. Sec-
ond, they may apply directly to industrial wind farm models
that use a rigid lid to reduce computational time and com-
plexity.
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