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Abstract. A major issue in quantifying potential power generation from prospective wind energy sites is the
lack of observations from heights relevant to modern wind turbines, particularly for offshore where blade tip
heights are projected to increase beyond 250 m. We present analyses of uniquely detailed data sets from lidar
(light detection and ranging) deployments in New York State and on two buoys in the adjacent New York Bight
to examine the relative power generation potential and power quality at these on- and offshore locations. Time
series of 10 min wind power production are computed from these wind speeds using the power curve from
the International Energy Agency 15 MW reference wind turbine. Given the relatively close proximity of these
lidar deployments, they share a common synoptic-scale meteorology and seasonal variability with lowest wind
speeds in July and August. Time series of power production from the on- and offshore location are highly
spatially correlated with the Spearman rank correlation coefficient dropping below 0.4 for separation distances
of approximately 350 km. Hence careful planning of on- and offshore wind farms (i.e., separation of major plants
by > 350 km) can be used reduce the system-wide probability of low wind energy power production. Energy
density at 150 m height at the offshore buoys is more than 40 % higher, and the Weibull scale parameter is 2 ms−1

higher than at all but one of the land sites. Analyses of power production time series indicate annual energy
production is almost twice as high for the two offshore locations. Further, electrical power production quality
is higher from the offshore sites that exhibit a lower amplitude of diurnal variability, plus a lower probability
of wind speeds below the cut-in and of ramp events of any magnitude. Despite this and the higher resource, the
estimated levelized cost of energy (LCoE) is higher from the offshore sites mainly due to the higher infrastructure
costs. Nonetheless, the projected LCoE is highly competitive from all sites considered.

1 Introduction

The United States government has set a goal of reaching net
carbon-neutral emissions from the power generation sector
by 2035 and a net carbon-neutral economy by 2050 (U.S.
White House, 2023). As part of this plan, the U.S. Depart-
ment of Interior is committed to deploying 30 GW of off-
shore wind power by 2030 (U.S. Department of the Interior,
2021). However, in 2021, 93 % of electrical power produced
by global wind turbines was derived from those deployed in
onshore rather than offshore wind farms, partly due to the

higher investment required for offshore wind power installa-
tion (IEA, 2022). Within the United States, as of the end of
2022, there was over 145 GW of wind energy installed ca-
pacity onshore and only 42 MW offshore (American Clean
Power, 2023).

Enhanced deployment of wind turbines offshore offers
great promise in terms of enhanced renewable energy pen-
etration into the electricity generation portfolio for three pri-
mary reasons:
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– First, wind speeds tend to be higher and more consis-
tent offshore due to both the lower surface roughness
and lack of obstacles and topographic features that ex-
tract momentum and reduce both the wind speed and
wind resource (Pryor and Barthelmie, 2002). Accord-
ingly, capacity factors (CFs), which are the ratio of ac-
tual annual power generation divided by the theoretical
maximum power generation, are typically higher off-
shore. For example, data from operating wind farms in
Denmark indicate CFs from four offshore wind farms
with installed capacity (IC) of 160 to 400 MW of 41 %–
53 %, while CFs from smaller onshore wind farms (IC:
16–70 MW) are 28 %–41 % (Enevoldsen and Jacobson,
2021). Within the United States, the mean CF for on-
shore wind farms built between 2014 and 2019 is ap-
proximately 41 % (Wiser et al., 2021). Simulations us-
ing numerical models for offshore wind energy lease ar-
eas along the US east coast indicate CFs above 46 %
largely as a result of the higher wind speeds offshore
(Pryor et al., 2021; Barthelmie et al., 2023).

– Second, there are generally fewer social barriers than
exist on land (e.g., competition for land, noise concerns,
visual blight) (Diógenes et al., 2020), although there
are considerations regarding co-use (e.g., for commer-
cial fishing and marine navigation) (Stone et al., 2017;
Kirkegaard et al., 2023). Further, the onshore resource
in available areas may not be sufficient to meet pro-
jected needs (Esteban et al., 2011). In this context it is
worth noting that the US technical offshore wind capac-
ity exceeds 2000 GW with the potential to produce over
7200 TWhyr−1, nearly twice current US electricity use
(4240 TWh) (Musial et al., 2016).

– Third, many major metropolitan areas are located near
coastlines, making offshore wind a convenient energy
source (Pryor et al., 2021). The cost of transmission
and electricity loss during transmission across high-
voltage lines both increase with transportation distance
(Bamigbola et al., 2014).

Here we focus on the first of these reasons and specifically
seek to quantify the potential benefit of offshore wind tur-
bine deployments using analyses of uniquely detailed wind
profiles from an onshore lidar (light detection and ranging)
network and an offshore lidar network. We use these data
sets to quantify and compare three aspects of the wind power
generation potential on- and offshore:

1. Wind resource and power production. We present
Weibull probability distribution parameters and derive
energy density from the wind speed time series and
compare and contrast the inferred wind resource at the
onshore and offshore sites. We further compute and
compare the annual energy production (AEP) from the
time series of wind speeds at each lidar site using a com-
mon wind turbine power curve.

2. Power quality. Intermittency is frequently cited as a bar-
rier to increased wind power integration into the elec-
trical grid (Bistline and Blanford, 2021). We quantify
and compare the frequency of zero power production
and intensity and probability of so-called ramp events
(i.e., rapid changes in wind speed and power produc-
tion) (DeMarco and Basu, 2018; Pichault et al., 2021)
from each onshore and offshore site where lidars have
been deployed.

3. Predictability and persistence of wind speeds and power
production (Haghi et al., 2013; Haslett and Raftery,
1989). Within liberalized electricity markets, wind farm
owner/operators bid in advance (e.g., 24 h in advance)
and are charged penalties for any imbalance between the
bid and actual production (Pinson et al., 2007). Hence,
accurate forecasts of wind generation are important
to reduce penalties and maximize revenue (Barthelmie
et al., 2008). Persistence models where the power pro-
duction at some future time is modeled as a function
of power production in the recent past are often used
as a benchmark forecast against which more sophis-
ticated short-term power production models are com-
pared (Kariniotakis et al., 2004). Also, many statistical
short-term forecast models are predicated in part on per-
sistence (Zeng and Qiao, 2011) and thus are most skill-
ful when the power production time series exhibits high
temporal autocorrelation. We quantify the temporal au-
tocorrelation of power production from each onshore
and offshore site and compare the degree to which elec-
trical power production from the onshore and offshore
locations differs with respect to persistence and short-
term predictability.

We further use these lidar measurements to quantify and
compare a key driver of wind turbine loading at the on- and
offshore locations:

4. Extreme or anomalous wind shear across the rotor
plane. Low-level jets (LLJs) are confined wind speed
maxima within the lower atmospheric boundary layer
(Stensrud, 1996) and are associated with enhanced ver-
tical wind speed (and sometimes directional) shear rela-
tive to typical near-logarithmic profiles. LLJs within the
wind turbine rotor plane are associated with higher aero-
dynamic and structural loading (Gutierrez et al., 2019;
Gadde et al., 2021). Analyses of simulations with the
Weather Research and Forecasting (WRF) model sug-
gest that offshore coastal regions of the US mid-Atlantic
(including the locations of the buoys from which data
are presented) generally exhibit a weakly sheared pro-
file across the rotor plane and a relatively low fre-
quency of LLJs (Aird et al., 2022; McCabe and Freed-
man, 2023). Previous research found LLJs in the low-
est 500 m of the atmosphere are most frequent south of
Massachusetts and during the summer (8 % of all hours)
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(Aird et al., 2022). They frequently occur at heights that
intersect the wind turbine rotor plane and at wind speeds
within typical wind turbine operating ranges. Further,
LLJs diagnosed from the WRF output were most intense
and have the lowest elevation under strong horizon-
tal temperature gradients and lower planetary boundary
layer heights. For comparative purposes, data from the
New York State Mesonet (NYSM) lidars are used here
to evaluate wind shear across the rotor plane and the oc-
currence, intensity, and height of LLJs at the onshore
locations.

We also analyze the lidar data to quantify two other prop-
erties of relevance to wind energy integration into the elec-
tricity generation supply:

5. Co-variation of wind speeds and power production with
varying distance separation (Pryor et al., 2014; Sol-
brekke et al., 2020). The electric power transmission
network in the contiguous United States comprises three
main interconnections (eastern, western, and Electric
Reliability Council of Texas (ERCOT)) and 66 “bal-
ancing authorities” that oversee regional operation of
the electric grid and are referred to as regional trans-
mission operators (RTOs) or independent system op-
erators (ISOs). New York (NY) State currently oper-
ates as a single state ISO. NY is both a net importer of
electricity and the third most efficient state in terms of
energy use per US dollar of economic activity (https:
//www.eia.gov/state/analysis.php?sid=NY, last access:
3 August 2023). Careful planning of wind farm loca-
tions on- and offshore could ensure stable supply of
wind-generated electricity into the grid and thus aid the
transition from electricity imports and a current depen-
dence on nuclear and natural gas (Eryilmaz et al., 2020).
Here we quantify the spatial autocorrelation of power
production from each onshore and offshore site where
the lidars have been deployed to evaluate the decorre-
lation distance and hence provide guidance regarding
optimal spatial scale of wind farm separation (on- and
offshore) for stability of wind power supply.

6. Seasonality and diurnal variability of wind power pro-
duction (WPP) on- and offshore for demand matching.
Electricity demand varies with the level of economic ac-
tivity and seasonal heating/cooling requirements which
are a function of the regional climate (Castillo et al.,
2022; Staffell and Pfenninger, 2018). Generally, elec-
tricity demand in the United States is minimized be-
tween approximately 04:00 and 06:00 LT (local time),
is high between 08:00 and 16:00 LT, and peaks between
18:00 and 21:00 LT (Burleyson et al., 2021). Diurnal
variability of wind power generation is a function of lo-
cation and land use but, for example, in ERCOT is high-
est at night (Kiviluoma et al., 2016), consistent with the
expectation based on daytime variations in atmospheric

stability caused by changes in net radiation and the sur-
face energy balance. Because the oceans have higher
specific heat capacity than land, this scale of variabil-
ity is typically not present in the far offshore (> 20 km
from the coast) (Barthelmie et al., 1996). At the sea-
sonal scale, wind resources and power production in
the midlatitudes and specifically the contiguous United
States tend to peak in between October and April and
are lowest in July or August due to pronounced shifts
in the storm track and the frequency and intensity of
mid-latitude cyclones (S. C. Pryor et al., 2020). Re-
cent research suggests WPP is highest in southeastern
Canada and the northeastern United States during Jan-
uary and February (Coburn and Pryor, 2023). Thus, fi-
nally, we quantify whether electrical power from wind
turbines deployed offshore exhibit higher or lower tem-
poral matching with electricity demand in New York
State at both the diurnal and seasonal scales.

2 Data sources

Here we analyze long-term (multi-year) measurements from
two major lidar (light detection and ranging) field deploy-
ments: the New York State Mesonet (NYSM) onshore lidar
network and the New York State Energy Research and Devel-
opment Authority (NYSERDA) floating lidar campaign. All
of the locations considered here lie within a separation dis-
tance of a few hundred kilometers and hence are within the
so-called “macro-beta” scale that is influenced by synoptic-
scale transitory mid-latitude cyclones (i.e., 400–4000 km)
(Stull, 2017). Thus, the expectation is that all sites will ex-
perience a relatively similar synoptic-scale meteorological
regime and that differences in wind resources, power qual-
ity, and so forth can be largely attributed to differences in the
surface: land versus ocean.

2.1 NYSERDA lidar buoys

To support development of offshore wind energy, NY-
SERDA undertook a campaign to deploy lidar on buoys near
prospective offshore wind lease areas (Optis et al., 2021).
Here we present data from two of those locations (Fig. 1):
the Hudson North E05 buoy is located within the Ocean
Winds East (OCS-A 0537) lease area, and the Hudson South
E06 buoy is located along the Bight Wind Holdings (OCS-
A 0539) lease area (BOEM, 2023). The lidars deployed on
these buoys are ZephIR ZX300M units. They report mean
wind speeds, wind direction, and other properties in 10 min
intervals every 20 m up to a maximum height of 200 m. The
performance of different series of these robust lidars has been
extensively evaluated (Barthelmie et al., 2016; Kelberlau and
Mann, 2022; Smith et al., 2006), and best practice has been
developed for deployment of lidars on floating platforms
(Bischoff et al., 2017). The lidar from the Hudson North E05
buoy has data available from August 2019 through February
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Figure 1. Map of the locations of the two NYSERDA lidar buoys and the 17 NYSM stations. Red points indicate the buoys and seven NYSM
sites with the highest data recovery; blue points indicate the remaining NYSM sites.

2022. The lidar on the Hudson South E06 buoy operated from
September 2019 through February 2022, but there is lower
data availability during August through November (which is
partly due to a temporary break in data collection for repairs
to the buoy). The lidars have an overall data recovery rate
of wind speeds at approximately 140 m above sea level of
about 77 % for the Hudson North E05 buoy and 67 % for the
Hudson South E06 buoy.

2.2 New York State Mesonet

New York State has also invested in a Mesonet (NYSM) to
aid hazard mitigation and disaster preparedness. The NYSM
includes a network of 17 profiler stations (Shrestha et al.,
2022; Brotzge et al., 2020) (Fig. 1). The lidars deployed
as part of the NYSM are the Leosphere WindCube WLS-
100 series Doppler lidar (Bingöl et al., 2010; Kumer et al.,
2016). These pulsed lidars have a vertical range of many
kilometers and are also configured to report wind speed
and direction measurements every 25 m in 10 min inter-
vals. The period for which data are available varies by lo-
cation but is generally from January 2019 to December
2022. The sites listed in alphabetical order with their re-
spective abbreviation and in terms of data availability for
wind speeds at 150 m are the following: Albany (ALBA,
36.7 %), Belleville (BELL, 29.8 %), Bronx (BRON, 64 %),
Buffalo (BUFF, 44.0 %), Chazy (CHAZ, 53.3 %), Clymer
(CLYM, 48.4 %), East Hampton (EHAM, 68 %), Jordan
(JORD, 51.6 %), Owego (OWEG, 56 %), Queens (QUEE,
73 %), Red Hook (REDH, 54.8 %), Staten Island (STAT,

57 %), Stony Brook (STON, 59 %), Suffern (SUFF, 36.2 %),
Tupper Lake (TUPP, 53.6 %), Wantagh (WANT, 62 %), and
Webster (WEBS, 49.3 %). For much of the following analy-
ses, only the seven sites with data recovery rates (i.e., wind
speeds available at 150 m height) > 55 % are included.

A critical determinant of lidar-derived wind speed and
direction climates is the carrier-to-noise ratio (CNR) used
in quality control procedures. CNR is the ratio of the re-
ceived carrier strength to the intensity of the received noise.
Larger values imply higher measurement accuracy, but there
is ambiguity in terms of the optimal CNR threshold to en-
sure high wind climate fidelity. Early research with coher-
ent continuous-wave wind lidar proposed use of a –22 dB
CNR threshold to screen out periods with unacceptably high
wind speed uncertainty (Frehlich, 1996), and this thresh-
old has subsequently been widely adopted (Bischoff et al.,
2017). Detailed analyses of measurements to 600 m height
with Leosphere WLS70 pulsed Doppler lidar relative to sonic
anemometers found use of a −22 dB CNR threshold caused
a 7 % to 12 % overestimation in the long-term mean wind
speed, with the higher discrepancy over coastal and marine
sites (Gryning et al., 2016). A more recent study, using data
from the Leosphere WLS70 deployed on the FINO platform
in the North Sea, found a high sensitivity of the wind rose
and mean wind speed to use of thresholds lower than−29 dB
(Gryning and Floors, 2019). That analysis further found that
for heights of 100 to 200 m, application of a −22 dB CNR
threshold caused a 12 % overestimation of mean wind speed,
which decreased to 9 % when a CNR threshold value of
−35 dB was applied (Gryning and Floors, 2019). Optimal
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CNR thresholds may vary with site conditions and instru-
ment. Use of different thresholds will influence not only data
quality but also data availability.

As indicated by the above, all lidar data time series are
incomplete. The NYSM data sets are particularly biased to-
ward data availability in the summer months. Thus, in the
following additional analyses are performed for the “best
available year”, defined as the 365 d period that has high-
est data availability computed across both NYSERDA buoys
and the seven NYSM sites. This “best year” extends from
19 September 2019 at 22:50:00 EST to 18 September 2020
at 22:50:00 EST. Data availability in each of the nine sites
for this period is BRON (67.0 %), EHAM (72.9 %), OWEG
(69.4 %), QUEE (78.7 %), STAT (60.0 %), STON (70.1 %),
WANT (79.3 %), Hudson North E05 (92.1 %), and Hudson
South E06 (86.6 %).

Enquiries with the NYSM network operator did not
resolve any common root cause for the low data availability
from these lidars. Documentation associated with the data set
notes the causes as “calibration errors; power failures; and/or
communication failures.” And it further indicates “Only
manufacturer-developed QA/QC procedures are applied
to the data and there might still be some undetected er-
rors.” (readme accessible from http://www.nysmesonet.org/
networks/profiler#stid=prof_alba, last access: 3 Au-
gust 2023).

2.3 ERA5 reanalysis

Wind data from the European Centre for Medium-range
Weather Forecasting ERA5 reanalysis are used to provide
a climatological context for analyses of the lidar data. Al-
though the lidar data sets that we analyze here are – to our
knowledge – unique in terms of the duration and number of
sites considered, we also contextualize the results and infer-
ences drawn from these multi-year, but relatively short dura-
tion, observations using the> 40-year duration ERA5 reanal-
ysis product (Hersbach et al., 2020). This analysis explicitly
acknowledges the presence of low-frequency variability (sea-
sonal to multi-decadal) in mid-latitude wind speeds and wind
resources (S. Pryor et al., 2020b) and is designed to quantify
the uncertainty on mean wind speeds and power production
computed from the relatively short lidar data time series.

The ERA5 reanalysis system assimilates a broad range of
observing station, buoy, radiosonde, and satellite data, and
many atmospheric variables including wind components are
available at an hourly time step with a spatial resolution of
0.28◦× 0.28◦ (Hersbach et al., 2020). Herein we analyze
once-hourly estimates of the u and v wind components at
a height of 100 m. We use ERA5 output for the period of
record with highest quality data assimilated into the reanaly-
sis system: 1979–2022. This time period also includes the ob-
servational period of the lidars. ERA5 estimates of wind and
wave conditions has been extensively independently evalu-
ated and shown to exhibit relatively high fidelity (S. C. Pryor

et al., 2020; Gramcianinov et al., 2020; Sharmar and Mark-
ina, 2020; Hallgren et al., 2020). However, past research has
also indicated substantial spatiotemporal variability in the fi-
delity of ERA5 wind speed products of relevance to wind
energy contexts (Pryor et al., 2020a; Kalverla et al., 2020;
Meyer and Gottschall, 2022; Knoop et al., 2020). Here we
are using ERA5 output to (i) examine climatological variabil-
ity and thus contextualize the short observational records, (ii)
provide context for the spatial decay of association manifest
in the remote sensing observations, and (iii) quantify the bias
in annual mean wind speeds due to seasonal bias in lidar data
availability.

2.4 Electricity demand

Electrical demand (in MWh) for New York State is also
presented, and mean values are computed for each hour
of the day and each month of the year based on hourly
values for 2016–2022 as reported by the U.S. Energy In-
formation Administration (EIA) hourly electric-grid mon-
itor (https://www.eia.gov/electricity/gridmonitor/dashboard/
electric_overview/US48/US48, last access: 3 August 2023).

3 Methods

3.1 Wind resource and potential power production

Two-parameter Weibull distributions (A= scale and
k= shape) are fitted using maximum likelihood estimation
(Pryor et al., 2004) and used to describe the probability
distributions of wind speeds (U ) at or close to 150 m height
from each lidar:

f (U )=
k

A
·

(
U

A

)k−1

· exp

(
−

(
U

A

)k)
. (1)

The power in the wind that can be harnessed by wind tur-
bines is often described using the energy density, which can
be derived from the time series of wind speed measurements
or the Weibull distribution parameters:

E =
1
n
·

1
2
· ρ ·

n∑
1
U3
=

1
2
· ρ ·A3

·0

(
1+

3
k

)
, (2)

whereE is in Wm−2, ρ is the air density, and n is the number
of time stamps from which wind speeds are available and 0
is the gamma function (Troen and Lundtang Petersen, 1989).

The electrical power that would be generated by a wind
turbine located at each lidar site is determined using the
power curve from the International Energy Agency (IEA)
15 MW reference wind turbine, which has a hub height of
150 m and a rotor diameter of 240 m (Fig. 2). We acknowl-
edge that the physical dimensions and rated capacity of wind
turbines deployed offshore are much larger than those that
have traditionally been deployed onshore, but use of a single

https://doi.org/10.5194/wes-9-263-2024 Wind Energ. Sci., 9, 263–280, 2024

http://www.nysmesonet.org/networks/profiler#stid=prof_alba
http://www.nysmesonet.org/networks/profiler#stid=prof_alba
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48


268 R. Foody et al.: Quantitative comparison of power production and power quality onshore and offshore

Figure 2. Power curve for the IEA 15 MW reference wind turbine
(Gaertner et al., 2020).

wind turbine allows direct comparison across sites. The time
series of 10 min power production and annual energy pro-
duction (AEP, in MWhyr−1), i.e., the sum of the electrical
power production in a year from a single 15 MW wind tur-
bine at each lidar location, are used herein for the estimation
of electrical power production and power quality.

3.2 Power quality

The probability of wind speed and power production ramp
events are computed from the NYSERDA and NYSM lidars
and in the case of wind speeds are normalized as follows:

δu(t)
σδu
=
u(t + τ )− u(t)

σδu
, (3)

where u(t) is the wind speed at time t , δu(t) is the wind speed
increment from the prior time step, τ is the chosen time in-
crement, and σδu is the standard deviation of the wind speed
increments (DeMarco and Basu, 2018). δu(t)

σδu
= 2 indicates an

increase in wind speed between two consecutive measure-
ments (here τ = 10 min) of a magnitude that is equal to 2
standard deviations of wind speed changes computed from
the entire time series and thus lies in highest 2.5 % of values.
Conversely, δu(t)

σδu
=−2 has a similarly low probability but is

associated with a large-magnitude decline in wind speed be-
tween two consecutive measurements.

Spatial and temporal correlation coefficients are also pre-
sented herein. In all cases, non-parametric Spearman rank
correlation coefficients are used because wind speeds and
power production are not Gaussian distributed variables
(Wilks, 2011). Temporal autocorrelation coefficients of the
power production time series are used to derive e-folding
timescales (i.e., the time delay at which the correlation coef-
ficient drops to e−1, i.e.,∼ 0.37), which are used to represent
the timescales at which the system “loses” the memory of
the initial state (Wilks, 2011). To assess the statistical signif-
icance of the correlation coefficients, Student’s t test is used
(Wilks, 2011). In this process, a t statistic is computed from

the correlation coefficient (r) and the sample size (n):

t = r ·

√(
n− 2
1− r2

)
. (4)

Due to the high correlation in time, n is corrected to the
effective sample size (n′) using

n′ ≈ n ·
1− r1
1+ r1

, (5)

where r1 is the lag-1 autocorrelation and n is the total num-
ber of samples. The resulting t score is compared with criti-
cal values (tcrit) for n′. If t > tcrit, the correlation coefficient
is statistically different from zero for a confidence level of
99 %, and the wind speed time series or electrical power
production time series from two sites are significantly cor-
related.

Spatial correlation coefficients are also computed for
power production time series from the onshore and offshore
sites to examine the association as a function of separation
distance, and thus the degree to which power production
across sites will be synchronized in time. The e-folding con-
cept can also be applied in this context, to quantify the dis-
tance at which the power production from two sites is no
longer significantly correlated. Past research has generally
found that the correlation between wind speeds and wind
power production from wind farms exhibits an exponential
decay with increasing separation distance (St. Martin et al.,
2015). Herein we fit both single exponential and double ex-
ponential fits with the following forms:

y = a · exp(b · x) (6a)
y = a · exp(b · x)+ c · exp(d · x), (6b)

where y is the Spearman correlation coefficients (r) for the
time series of 10 min power production estimated for each
pair of NYSERDA and NYSM sites, and x is the spherical
separation distance between each pair of locations. Fit coef-
ficients – a, b, c, and d – are derived using maximum likeli-
hood estimation (Wilks, 2011).

3.3 Wind profiles

To quantify the wind shear across the rotor plane, we invoke
the following power law:

U1

U2
=

(
z1

z2

)α
, (7)

where Ux is the wind speed at height (zx) and α is the
shear coefficient f (stability, surface roughness length) (Ir-
win, 1979). The International Electrotechnical Commission
(IEC) 61400-1 standard states the expected value of α over
land is 0.2 and is typically in the range of 0.05 to 0.25
and uses a value of 0.2 in the normal wind profile model
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(IEC, 2019). The occurrence of α beyond this range implies
shear across the rotor plane differs from this design expecta-
tion and hence may indicate higher mechanical loading. Pro-
files of wind speeds from the NYSM lidars are used with
Eq. (7) to quantify the frequency of occurrence of anoma-
lous shear in two classes: negative shear exponents (α < 0)
and α > 0.3 conditionally sampled to include only periods
when the 150 m wind speed is above 3 ms−1, the cut-in for
the IEA 15 MW reference wind turbine. Due to the very low
frequency of reported wind speeds at 50 m from the NYSM
lidars, this analysis is performed using wind speeds from 100
and 250 m, which is sufficient to conform to the IEC standard
recommendation that the shear be computed over a height
differential of at least one-third of the rotor plane.

To capture LLJs of possible relevance to wind energy ap-
plications, LLJs are identified here in any wind speed profile
that exhibits a vertically confined wind speed maximum in
the lowest 500 m of the atmosphere with wind speeds above
and below that level that are > 2 ms−1 slower than in the
maximum (Aird et al., 2021, 2022). This is to ensure the
results are comparable to those reported previously for off-
shore regions of the US east coast that used an analysis verti-
cal window of 20 to 530 m (Aird et al., 2022). Alternative
metrics to detect LLJs have been proposed, including use
of normalized wind increments by the height interval (i.e., a
shear definition) (Hallgren et al., 2023; McCabe and Freed-
man, 2023).

3.4 Climatological context

Hourly zonal (u) and meridional (v) wind components at 10
and 100 m height are obtained for all ERA5 grid cells in
that contain NYSM and NYSERDA sites and are converted
to wind speed at 150 m height (U150ERA5) using α derived
from wind speeds at 10 and 100 m computed using Eq. (7).
The mean shear exponent computed from wind speeds at 10
and 100 m height is 0.21, with variability over monthly and
interannual timescales of less than 3 %, yielding a multiplier
on the 100 m wind speed of 1.09, which is applied to obtain
U150ERA5. HourlyU150ERA5 estimates are used to calculate
hourly wind production (P 150ERA5) using the IEA 15 MW
reference wind turbine. The long-term records of U150ERA5
and P 150ERA5 are used to assess the uncertainty in annual
mean wind speeds and AEP resulting from the limited dura-
tion data records at the NYSM and NYSERDA lidars using
a bootstrapping approach (Wilks, 2011). Hourly values from
the 40-year U150ERA5 and P150ERA5 record are randomly
resampled 1000 times with replacement using the number
of hours from each month that the lidar data are available
(Fig. 3). For each of these 1000 bootstrapped samples the an-
nual mean wind speed and AEP is calculated to provide an
estimate of uncertainty that arises due to the short time se-
ries from the lidars. Additionally, Spearman correlation co-
efficients between the time series of P 150ERA5 at all NYSM
and NYSERDA grid cells are calculated for the full 44-year

record and used to contextualize the spatial correlation de-
rived using the lidar measurements.

3.5 Levelized cost of energy

As indicated above, there are many possible advantages in
deploying wind turbines offshore as a component of the elec-
tricity generation system. One potential disadvantage is that
offshore wind energy generation costs are expected to be
higher than those from onshore wind, although it is still less
than those from nuclear (Barthelmie et al., 2023). The simple
levelized cost of energy (LCoE) model applied here is similar
to that developed in Barthelmie et al. (2023):

LCoE=
CAPEX ·CRF+OPEX

AEP
, (8)

where CAPEX is the capital costs, CRF is the cost recov-
ery factor, and OPEX is the annual operations and mainte-
nance. Fixed costs are used here (Table 1), and AEP is the
annual electricity production from analyses described herein.
Project lifetimes are assumed to be 30 years, and no adjust-
ment is made for turbine availability or other losses such as
wakes or electrical losses. For the offshore locations, CAPEX
is calculated from the values in Table 1 with no adjust-
ments for distance to the coast, water depth, etc., and the wa-
ter depth is appropriate for bottom-mounted wind turbines.
Thus, the estimated LCoE values from this simplified model
are best-case values.

4 Results

4.1 Wind resource, potential power production, and
LCoE

Wind speed time series from all the lidars (Table 2) indi-
cate similar seasonality due to their relative proximity. High-
est monthly mean wind speeds at ∼ 150 m occur during the
cold season (November to March), and lowest values are
observed during summer (July and August) (Fig. 3). This
is consistent with the climatology of the US northeast with
the cold season months exhibiting a high frequency of mid-
latitude cyclone passages and with data from operating wind
farms that exhibit highest CF during late winter and early
spring (Pryor et al., 2023). The data also indicate consider-
ably higher wind speeds at 150 m based on data from the li-
dars deployed offshore (Fig. 3). The mean wind speeds at
this height from the two NYSERDA buoy-mounted lidars
are 10.1 ms−1, while the mean wind speed from the Owego
NYSM site (located< 400 km away) is 7.72 ms−1 (Table 2).
In August, the mean monthly wind speed at the Hudson
North buoy is 7.76 and at Owego is 6.08 ms−1; in Decem-
ber, the mean monthly wind speed at these two sites is 11.24
and 9.16 ms−1, respectively. Data from the lidar buoys also
show a consistently higher frequency of U = 15–25 ms−1

when the IEA 15 MW reference wind turbine operated at
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Figure 3. Monthly mean wind speed at∼ 150 m (ms−1, solid lines) and fraction of data availability (dashed lines) for the seven NYSM sites
with highest data availability (a, b) and both NYSERDA buoy sites (c), as well as wind roses for the OWEG (d) and Hudson North E05 (e).
A value of 0.08 for the fraction of data availability for a given month indicates 8 % of the total sample is comprised of values recorded in that
month.

Table 1. Key parameters for the LCoE model. Values taken from Stehly and Duffy (2022).

Onshore Offshore

Capital expenditures (CAPEX) (million USD per MW) 1.501 3.871
– turbine (million USD per MW) 1.03 1.3
– fixed charge rate, i.e., cost recovery factor (CRF) (%) 5.88 5.82
– project costs (million USD per MW) 0.120 0.67
– foundation (million USD per MW) 0.075 0.496
– electric infrastructure including sub-stations (million USD per MW) 0.132 0.693
– finance (USD MW−1) (plus other costs for offshore includes, e.g., decommissioning) 0.113 0.704

Operational expenditures (OPEX) (USD MW−1 yr−1) 0.04 0.111

rated capacity (Fig. 2). Figure 3 further indicates the presence
of seasonality in data availability. The excess representation
of August in the Hudson North E05 data will tend to lead
to a negative bias in the overall wind resource and estimated
power production because wind speeds in that month are typ-

ically lower than other months (Fig. 3). The mean monthly
wind speed from August–November in data from the Hud-
son South E06 lidar is 9.75 ms−1, which is below the overall
mean, so the relatively low data availability in these months
at E06 may also lead to a small negative bias in the derived

Wind Energ. Sci., 9, 263–280, 2024 https://doi.org/10.5194/wes-9-263-2024



R. Foody et al.: Quantitative comparison of power production and power quality onshore and offshore 271

Ta
bl

e
2.

W
ei

bu
ll

di
st

ri
bu

tio
n

pa
ra

m
et

er
s

fr
om

th
e

15
0

m
w

in
d

sp
ee

d
tim

e
se

ri
es

(a
nd

95
%

co
nfi

de
nc

e
in

te
rv

al
s,

C
I)

an
d

en
er

gy
de

ns
ity

de
riv

ed
fr

om
th

os
e

pa
ra

m
et

er
s.

A
E

P
co

m
pu

te
d

us
in

g
th

e
IE

A
15

M
W

w
in

d
tu

rb
in

e
po

w
er

cu
rv

e,
al

on
g

w
ith

th
e

fr
eq

ue
nc

y
of

ze
ro

po
w

er
an

d
po

w
er

pr
od

uc
tio

n
at

ra
te

d.
T

he
da

ta
sh

ow
n

in
ita

lic
s

ar
e

co
m

pu
te

d
us

in
g

th
e

m
os

tc
om

pl
et

e
co

nt
in

uo
us

12
-m

on
th

pe
ri

od
.T

he
co

lu
m

n
he

ad
ed
e
-f

ol
di

ng
tim

e
sh

ow
s

th
e

tim
e

fo
rt

he
Sp

ea
rm

an
co

rr
el

at
io

n
co

ef
fic

ie
nt

to
fa

ll
be

lo
w

e−
1 .

T
he

9t
h

an
d

10
th

co
lu

m
ns

sh
ow

th
e

fr
eq

ue
nc

y
of

ex
tr

em
e

sh
ea

rf
or

al
lp

er
io

ds
w

he
n
U

at
15

0
m
>

3
m

s−
1 .

T
he

fo
llo

w
in

g
co

lu
m

n
sh

ow
s

es
tim

at
ed

le
ve

liz
ed

co
st

of
en

er
gy

(L
C

oE
)v

al
ue

s
de

riv
ed

us
in

g
th

e
as

su
m

pt
io

ns
de

sc
ri

be
d

in
Se

ct
.3

.5
ba

se
d

on
A

E
P

es
tim

at
es

sh
ow

n
in

th
e

fif
th

co
lu

m
n

an
d

de
riv

ed
us

in
g

th
e

lid
ar

ob
se

rv
at

io
ns

.

Si
te

W
ei

bu
ll

sc
al

e
W

ei
bu

ll
sh

ap
e

E
ne

rg
y

A
E

P
Fr

eq
ue

nc
y

of
Fr

eq
ue

nc
y

of
e
-f

ol
di

ng
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
L

C
oE

pa
ra

m
et

er
(A

)
pa

ra
m

et
er

(k
)

de
ns

ity
(E

)
(G

W
h

yr
−

1 )
no

po
w

er
m

ax
im

um
tim

e
(h

)
of
α
<

0
of
α
>

0.
3

(U
SD

M
W

h−
1 )

(m
s−

1 )
[C

I]
[C

I]
(W

m
−

2 )
pr

od
uc

tio
n:

(r
at

ed
)p

ow
er

U
<

3/
pr

od
uc

tio
n

(%
)

U
>

25
m

s−
1

(%
)

B
R

O
N

6.
91

5
[6

.8
96

,6
.9

35
]

2.
01

3
[2

.0
05

,2
.0

21
]

26
7

35
.6

15
.3

/0
.0

6
5.

16
8.

0
15

.0
23

.4
49

.0

7.
14

6
2.

03
1

29
3

38
.7

14
.8

/0
.0

7
5.

67
8.

0

E
H

A
M

10
.1

6
[1

0.
13

,1
0.

18
]

2.
15

3
[2

.1
44

,2
.1

61
]

79
4

71
.7

6.
38

/0
.3

1
21

.2
9.

3
15

.4
17

.0
26

.0

10
.3

2
2.

20
2

81
6

73
.0

5.
63

/0
.4

0
23

.1
9.

3

O
W

E
G

8.
70

3
[8

.6
78

,8
.7

27
]

2.
17

2
[2

.1
63

,2
.1

81
]

49
6

58
.3

9.
02

/0
.1

8
11

.4
9.

7
10

.9
13

.9
33

.9

8.
51

4
2.

16
8

46
5

56
.0

8.
96

/0
.1

9
12

.5
9.

0

Q
U

E
E

7.
60

7
[7

.5
87

,7
.6

27
]

2.
00

0
[1

.9
93

,2
.0

08
]

35
8

43
.3

12
.2

/0
.1

4
8.

66
8.

8
19

.0
17

.3
45

.3

7.
48

4
2.

00
9

34
0

41
.9

13
.0

/0
.1

2
7.

75
7.

8

ST
A

T
7.

60
2

[7
.5

80
,7

.6
25

]
2.

01
4

[2
.0

06
,2

.0
22

]
35

5
43

.6
12

.4
/0

.1
4

6.
49

7.
2

15
.9

20
.2

43
.7

7.
55

0
2.

02
9

34
5

43
.4

13
.0

/0
.1

2
6.

17
7.

3

ST
O

N
9.

42
3

[9
.3

96
,9

.4
50

]
2.

03
9

[2
.0

30
,2

.0
48

]
66

8
64

.1
9.

29
/0

.1
1

15
.6

9.
7

16
.7

15
.2

29
.4

9.
44

7
2.

03
7

67
4

64
.4

9.
29

/0
.1

3
17

.5
9.

8

W
A

N
T

9.
28

2
[9

.2
54

,9
.3

09
]

1.
97

0
[1

.9
62

,1
.9

77
]

66
2

60
.0

7.
64

/0
.4

7
13

.8
8.

3
25

.3
10

.4
31

.6

9.
18

5
2.

01
1

62
7

60
.1

8.
01

/0
.4

5
17

.1
7.

8

H
ud

so
n

N
or

th
E

05
11

.4
0

[1
1.

36
,1

1.
43

]
2.

12
7

[2
.1

17
,2

.1
37

]
11

34
79

.7
5.

30
/0

.4
8

30
.6

11
.3

61
.9

11
.4

2
2.

14
7

11
30

80
.5

5.
48

/0
.5

3
36

.3
11

.7

H
ud

so
n

So
ut

h
E

06
11

.3
8

[1
1.

34
,1

1.
42

]
2.

12
3

[2
.1

11
,2

.1
34

]
11

31
80

.0
5.

94
/0

.4
6

27
.2

10
.0

64
.4

11
.0

4
2.

07
3

10
56

77
.4

6.
84

/0
.3

1
21

.4
10

.7

https://doi.org/10.5194/wes-9-263-2024 Wind Energ. Sci., 9, 263–280, 2024



272 R. Foody et al.: Quantitative comparison of power production and power quality onshore and offshore

Figure 4. Probability distributions from the Weibull fits to 10 min wind speeds at 150 m height from the NYSERDA lidar buoys and the
NYSM stations for all available data (a) and year with common highest data availability (“best year” of September 2018–2019) (b). Note:
probability distributions from Hudson North E05 and Hudson South E06 virtually overlay each other in (a).

mean energy density and power production (Fig. 3). The sea-
sonality in data availability is particularly consistent and am-
plified at the NYSM sites. As shown in Fig. 3, at WANT (the
site with the highest seasonal bias in data availability) over
12 % of the total observations were recorded in July, while in
a data set free of availability bias this value would be 8.5 %.
Bootstrapping of ERA5 data indicates the mean annual wind
speed computed from the lidar time series at the NYSM sites
is likely underestimated by∼ 1.5 %–4.5 %, while AEP is un-
derestimated by∼ 3 %–10 % due to the high data availability
in summer. Analyses of wind speed data from the NYSM li-
dars at all measurement heights from 100 to 500 m indicate
that, averaged across all stations, the data availability as a
function of height varies only by ± 2.5 %.

The Weibull distribution fits to 150 m wind speeds from
the buoy-mounted lidars have very similar shape and scale
parameters (Fig. 4 and Table 2). Consistent with expecta-
tions, the Weibull scale parameters from the NYSERDA
buoys are also substantially higher than those from the seven
NYSM sites and exceed values from the NYSM by 2 ms−1

for all sites except EHAM, which is on Long Island and
within 1 km of the coastline (Fig. 1). The Weibull distribution
parameters translate to higher energy densities at the loca-
tions of the buoys (Table 2). This is also true for calculations
based on the “best year” of data (Table 2). When wind speeds
from the “best year” are used to compute the Weibull fits and
AEP, differences of 0.1 %–3 % in the Weibull scale parame-
ters and 1 %–8 % in AEP are found relative to estimates from
the longest available records (Table 2). Even compared to the
NYSM location with the highest Weibull scale parameter and
highest mean wind speeds (EHAM), both buoys have over
40 % higher energy density. Application of the power curve
from the IEA 15 MW reference turbine to the wind speed
time series yields AEP values for the buoy-mounted lidars

that are a factor of almost 3 higher than some of the NYSM
sites (e.g., QUEE and STAT) and nearly twice as much as
many NYSM stations except EHAM (Table 2). Thus, con-
sistent with expectations, the wind speed time series from
the lidars operated on the NYSERDA buoys indicate a sub-
stantially better wind resource and higher projected electrical
power output (AEP) than is estimated based on data from the
NYSM lidars.

Despite higher projected AEP for the offshore locations,
the additional costs involved in installing and operating off-
shore wind farms result in higher LCoE estimates for the
offshore sites (Table 2). LCoE estimates derived using AEP
at the NYSM sites and assumptions stated in Sect. 3.5 (Ta-
ble 1) are 26 to 49 USDMWh−1, while estimates for the NY-
SERDA buoy locations are 62–64 USDMWh−1.

4.2 Power quality

Three aspects of power quality are evaluated using the wind
speed at ∼ 150 m (U ) and power production time series. The
first is the probability of wind speeds at which no power is
produced: U < 3 ms−1 or U > 25 ms−1. The probabilities
of wind speeds below the cut-in speed of the IEA 15 MW
wind turbine (U < 3 ms−1) are substantially higher for the
NYSM sites than the offshore locations (Table 2 and Fig. 4).
Indeed, for three of the seven NYSM sites the probability of
wind speeds below cut-in is well over twice that for the off-
shore sites, and even the locations of Long Island that are
very close to the coast (EHAM and WANT) exhibit consid-
erably higher frequency of U < 3 ms−1 than is derived using
data from NYSERDA lidars (7.6 % and 6.4 % versus 5.3 %
and 5.9 %; see Table 2). The frequency of U above cut-out
(U > 25 ms−1) is higher based on data from the lidars on
the buoys, but the overall frequency is low at all locations
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Figure 5. (a) Probabilities of wind speed ramp events computed from the 10 min data from the NYSERDA lidar buoys and the NYSM
sites computed using Eq. (3) and reported for four locations at or near operating wind turbines: FINO 1 is (offshore) in the North Sea,
Cabauw is in the western portion of the Netherlands, Høvsøre is in Jutland, Denmark, and NWTC is in the foothills of the Colorado Rocky
Mountains (data digitized from DeMarco and Basu, 2018). Wind ramps computed from the hourly ERA5 output are shown by the gray
polygon. (b) Probabilities of wind power production ramp events at the locations of the NYSERDA buoys and the NYSM sites computed
by applying the power curve for the IEA 15 MW reference wind turbine to the lidar wind speeds. The probabilities of no change (i.e., power
± 0 %) are not shown to aid visibility.

(< 0.5 %). Thus, wind turbines deployed offshore at the NY-
SERDA buoy locations will produce some power on a con-
siderably larger fraction of the time than any of the onshore
locations. This inference is true whether the entire time series
or the “best year” of data is considered.

The second component of power quality is the intermit-
tency in terms of the probability and magnitude of ramp
events – that is, rapid changes in wind speed and/or power
production. Wind speed time series at 150 m height from
the NYSM and NYSERDA lidars indicate clear similarities
in terms of ramp event magnitude and frequency to those
derived using data from the FINO1 platform in the North
Sea, Cabauw onshore in western portion of the Netherlands,
Høvsøre in coastal Jutland, Denmark, and National Wind
Technology Center (NWTC) in the foothills of the Colorado
Rocky Mountains (DeMarco and Basu, 2018) (Fig. 5). Data
from the NYSERDA buoys indicate a low probability of
wind speed ramps of all magnitudes relative to the NYSM
lidars (Fig. 5), and all lidar time series indicate a substan-
tially higher probability of a ramp-up (increase) than a ramp-
down (decrease) of a given magnitude in wind speeds. Wind
speed ramps in hourly ERA5 data exhibit a narrower distri-
bution owing to spatial and temporal averaging, illustrating
the need for in situ data for capturing high-resolution wind
variability (Fig. 5). Consistent with the lower probability of
large-magnitude rapid changes in wind speed offshore, data
from the NYSERDA buoys (Hudson North E05 and Hud-
son South E06) indicate probabilities of a wind power ramp
with >± 20 % change in power are considerably lower than
those from any of the onshore locations (Fig. 5). Thus, the
chance of experiencing an increase or decrease in electrical
power production of 20 % from one 10 min period to the next

is substantially lower for wind turbines deployed offshore.
This indicates that wind turbines deployed offshore are likely
to exhibit less intermittency in terms of electrical power pro-
duction, which is critical to efficient grid integration (Ayo-
dele et al., 2012).

The third aspect of power quality is predictability. The
autocorrelation in power production at different time lags
for the NYSM lidars exhibits clear diurnal oscillations and
shorter e-folding timescales. Power production estimates us-
ing wind speeds from the Hudson North E05 buoy show the
largest e-folding time of ∼ 68, 10 min periods (11.3 h) and
∼ 70, 10 min periods (11.7 h) in the “best year” of data. Com-
parable estimates for data from the Hudson South E06 buoy
are ∼ 60 and 64, 10 min periods (10.0 and 10.7 h) (Table 2
and Fig. 6). These relatively large e-folding times for the
buoy locations indicate a longer atmospheric “memory” at
these sites, indicating the potential for more accurate short-
term power prediction forecasts because each time step is
strongly dependent on the value in previous time step(s).

4.3 Spatial correlation

While power production from wind farms is inherently in-
termittent at the local scale, aggregation over large spatial
scales reduces power fluctuations (Potisomporn and Vogel,
2022; Pryor et al., 2014; Simão et al., 2017; S. C. Pryor et al.,
2020; St. Martin et al., 2015). However, the optimal spatial
scale of integration is likely to be a strong function of the
prevailing meteorology. Thus, an analysis of power produc-
tion computed based on lidar data at each of the NYSM pro-
filer stations and NYSERDA buoys is undertaken to quantify
the spatial decorrelation scale. Consistent with the a priori
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Figure 6. Temporal autocorrelation (computed using Spearman
correlation coefficients) of the wind power production at different
lag times based on data from the NYSERDA buoys and the NYSM
stations. The horizontal line denotes a correlation of e−1, which is
used here as a first-order estimate of the e-folding time.

expectation based on past research, the correlation of time
series of estimated power production at the different loca-
tions decays exponentially with increasing separation dis-
tance (Fig. 7). The highest correlation coefficient is between
power production time series from the two NYSERDA buoys
(0.834; see SM Table 1 and Fig. 7). NYSM sites EHAM and
STON have an almost identical separation distance as the
buoys (Fig. 1), but these time series of estimated power pro-
duction have a slightly lower correlation coefficient (0.764)
due to variability caused by the presence of land use land
cover and terrain features onshore. For the sample sizes of
data from the lidars and a lag-1 autocorrelation of > 0.9, ap-
plication of Eqs. (4) and (5) implies the power production
time series would be considered fully de-correlated at Spear-
man correlation coefficients < 0.2. As shown in Fig. 7 this
level is not reached for the sites at which the lidars are de-
ployed. Nevertheless, exponential fits to correlation coeffi-
cients as a function of separation distance imply that on av-
erage the correlation coefficients drop below about 0.4 for
separation distances of ∼ 350 km. This suggests that care-
ful siting of wind farms on- and offshore could be used to
decrease coherent variations in electrical power production
within the NY ISO. Output from ERA5 when converted to
electrical power production exhibits higher correlation coef-
ficients at similar separation distances to the lidars consistent
with the higher spatial smoothing inherent in reanalysis prod-
ucts (Fig. 7).

4.4 Shear conditions and LLJs at the NYSM onshore
sites

The lidar data from all 17 NYSM sites indicate a very high
frequency of extreme wind shear (Table 2). This is likely due
in part to the heights being considered lying outside of the
surface layer where the wind power law is most likely to

Figure 7. Spearman spatial correlation coefficient (r) of power
production for the lidar (blue) and ERA5 (black) output sam-
pled at the NYSERDA and NYSM locations against the sep-
aration distance between all 19 sites (17 onshore, 2 offshore).
Solid blue points indicate location pairs with high data availabil-
ity; open points represent the relationships including the remain-
ing NYSM sites. The star represents the correlation between the
two NYSERDA buoys. Best-fit lines (y denotes the Spearman cor-
relation coefficient; x denotes spherical distance between loca-
tions) are shown for the lidar: y= 0.8703exp(−0.002377x) (solid
red) and y= 0.4021exp(−0.01595x) + 0.5914exp(−0.0012x)
(dashed red). The fit to the ERA5 estimates has the form
y= 0.9942exp(−0.00183x) (dashed black).

be an appropriate approximation. Nevertheless, all NYSM li-
dars have a very high frequency of shear exponents computed
using wind speeds at 100 and 250 m for wind speeds at 150 m
of 3 to 25 ms−1 that lie beyond the 0 to 0.3 expected range.
At all the NYSM sites, 5 % of shear exponent values during
wind turbine operation lie above 0.39 and a further 5 % of
values fall below−0.09. The high frequency of extreme pos-
itive shear at many of the sites is likely to be due to the high
surface roughness lengths since many of the NYSM sites are
in the southeast of the state in highly urbanized locations.
The frequency of negative shear is highest at WANT, on
Long Island, likely in part because of the local land use land
cover variability. The occurrence of negative shear 10.9 %–
25.0 % of the time from the NYSM sites is broadly compara-
ble to the frequency of occurrence of negative shear between
heights of 42–292 m (12 %) found in WRF simulations over
the US state of Iowa (Barthelmie et al., 2020). A high posi-
tive shear exponent (α > 0.2) was also found in analyses of
WRF output in Iowa (> 38 %), again consistent with the es-
timated probability of occurrence derived using the NYSM
lidar data (100 to 250 m) (Table 2). The implication is that
large wind turbines deployed in these locations may expe-
rience a relatively high frequency of large unbalanced rotor

Wind Energ. Sci., 9, 263–280, 2024 https://doi.org/10.5194/wes-9-263-2024



R. Foody et al.: Quantitative comparison of power production and power quality onshore and offshore 275

Figure 8. Monthly mean low-level jet (a) core wind speed (ms−1), (b) core height (m), and (c) the mean frequency of occurrence (probability
of occurrence in any given 10 min lidar profile) across the seven NYSM sites. A LLJ frequency of 5 % calculated from the lidar deployed at
QUEE for the calendar month of May indicates that LLJs were indicated in 5 % of all 10 min periods during this month. Data in panels (a)
and (b) indicate that at that site in the month of May the associated LLJ mean core wind speed is 11 ms−1 and the mean core height above
ground is 330 m.

loads and reduced component lifetimes unless such loads can
be appropriately compensated (Hur et al., 2017).

Consistent with the lower wind speeds during the summer
(Fig. 3), weaker synoptic forcing during this season, and pre-
vious analyses of LLJ offshore (Aird et al., 2022), all NYSM
sites exhibit the highest frequency of LLJ occurrence in the
summer months (Fig. 8). The highest frequency of occur-
rence (14 % of all 10 min periods) of LLJs occurs during June
at EHAM on the coast of Long Island (Fig. 8). Analyses of
the WRF simulations for this location found a LLJ frequency
during June of 11 % and a very similar seasonal cycle of oc-
currence (Aird et al., 2022). The site-to-site variability in LLJ
probability at the different NYSM locations is due to local
site conditions (e.g., proximity to the coastline, topographic
variability and land use–land cover variability) that are linked
to the dynamical causes of LLJs (Balsley et al., 2003; Kallis-
tratova et al., 2009; Blackadar, 1957; Holton, 1967). LLJ core
heights are also lower during the summer months, with lidar
observations from WANT indicating a mean LLJ core height
of < 280 m during June (Fig. 8). However, for most of the
NYSM locations the mean LLJ core heights are above 300 m
and thus above the swept area even of the IEA 15 MW refer-
ence wind turbine. There is a higher probability of LLJs inter-
secting with the rotor plane during summer. However, LLJs
diagnosed from the onshore lidars are typically at greater el-
evations than are indicated offshore by the WRF simulations,

where LLJ cores were frequently < 200 m above the sea sur-
face (Aird et al., 2022). It is important to acknowledge that
comparisons of LLJ climates derived from lidar measure-
ments and WRF modeling should be done cautiously and that
LLJ detection from the lidar wind speed profiles is critically
dependent on unbiased data availability. Nevertheless, this
analysis suggests LLJs within the rotor plane, as a source of
large, unbalanced rotor loads and reduced blade lifetimes, are
less frequent at these onshore locations.

4.4.1 Demand matching

Electricity demand in New York State tends to peak in the
afternoon (∼ 17:00 EST, eastern standard time) and in sum-
mer (highest values in July), though a secondary maximum
occurs in January (Fig. 9). Wind power production calcu-
lated from the NYSM/NYSERDA lidars and ERA5 grid-
cell data (P150ERA5) show highest values at night (01:00
to 05:00 EST) and during winter to spring (December–
April), with the lowest production during the day (13:00 to
16:00 EST) and during the summer (Fig. 9). Wind power pro-
duction estimated based on lidar data from the NYSERDA
buoy locations exhibits markedly lower diurnal and seasonal
variability than is estimated at the NYSM sites, varying by
± 10 % around the mean versus ± 25 % at NYSM. This re-
sults in a reduction in mean absolute error (MAE) between
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Figure 9. Normalized (a) diurnal and (b) monthly cycles of elec-
tricity demand for New York State (black) and wind power produc-
tion (WPP) at NYSM (red) and NYSERDA (magenta) sites. ERA5-
derived WPP is shown for the grid cells which contain the NYSM
and NYSERDA lidars (thin, dashed lines) for the climatological pe-
riod, 1979–2022. The data are normalized to a mean value of 1,
so values of 0.9 or 1.1 in a given hour or month indicates WPP or
demand that is 10 % below or above the mean, respectively.

time series of normalized WPP from the offshore lidar and
electricity demand on both diurnal and seasonal timescales.
The MAE computed from the mean hourly offshore WPP
and demand is 0.19 when computed over the 24 h of the day
(Fig. 9a) and 0.13 when computed from the time series of
monthly mean values (Fig. 9b). Both are smaller than MAE
computed from WPP from the onshore lidars and demand on
these timescales, which are 0.25 and 0.20, respectively. This
implies there will be better matching to electricity demand
for power production from wind turbines deployed offshore.

5 Concluding remarks

Comparative analyses of wind resources and projected power
production quantity and quality at onshore and offshore lo-
cations have been hampered by the lack of high-quality hub-
height wind speed observations. Here we use uniquely de-
tailed lidar measurements from an onshore profiler network
and offshore campaign to compare projections of potential
power generation quantity and quality from offshore and on-
shore locations in New York State (Fig. 1). Returning to the
objectives articulated in Sect. 1, the study results indicate
there are significant benefits to offshore deployments of wind
turbines.

Wind resources at locations in the New York Bight (coastal
offshore areas southeast of New York State; Fig. 1) greatly

exceed those of all onshore locations within New York State.
The mean wind speeds at ∼ 150 m (U ) offshore are above
10 ms−1, while U is below 8 ms−1 at all onshore sites.
Weibull distribution fits to the 10 min wind speed time se-
ries indicate scale parameters that are higher by 2 ms−1 than
all onshore locations (Fig. 4) except EHAM, which is on
Long Island and is within 1 km of the coastline (Fig. 1).
Accordingly, energy densities are 40 % higher offshore and
power production estimated offshore using the power curve
of the IEA 15 MW wind turbine (Fig. 2) yield over twice the
AEP estimated for all onshore sites except EHAM (Table 2).
Power generation estimated from wind speed time series off-
shore also exhibits lower variability on diurnal and seasonal
timescales (Fig. 6) and improved matching to current elec-
tricity demand in New York State (Fig. 9). This implies that
not only is the offshore resource considerably larger offshore,
but the ability to meet electricity demand is better for wind
turbines deployed offshore. The differences in wind climates,
energy density, and estimated power production from the off-
shore and onshore lidar are of sufficient magnitude that they
likely exceed any discrepancy due to application of differ-
ent CNR thresholds in data screening procedures for the two
networks.

Analyses presented herein also suggest that power genera-
tion intermittency is lower for the offshore sites. The prob-
ability of wind speeds below cut-in or above cut-out for
the IEA reference wind turbine is lower offshore, as is the
probability of large magnitude wind speed and power ramps
(Fig. 5). For example, the probabilities of wind power ramps
with >± 20 % change in power over a 10 min period are
less than half as probable offshore as onshore. The higher
temporal autocorrelation of wind power production offshore
(Fig. 6 and Table 2) may also aid the accuracy of short-term
wind power forecasting for wind turbines deployed offshore,
yielding economic benefits to wind farm owner/operators and
enabling grid integration.

Conversely, the frequency of anomalous wind speed shear
and LLJs close to, or within, the rotor plane computed from
the NYSM lidar wind speed profiles are slightly higher than
those previously reported for the offshore areas from numer-
ical simulations (Aird et al., 2022), but LLJs also exhibit
higher elevations of the jet cores (Fig. 8) and thus may be
of less concern to wind turbine loading.

An analysis of the distance dependence of the co-
variability of power production derived from measured
10 min mean wind speed time series at the onshore and off-
shore sites indicates that the non-parametric Spearman cor-
relation coefficient drops below 0.4 at distances of about
350 km (Fig. 7). This implies that in order to ensure con-
sistency of electrical power production from wind farms in
New York State, major developments should be separated by
more than 350 km. This information could be used to guide
judicious selection of wind farm locations to minimize the
probability of concurrent low generation from onshore and
offshore sites.
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Thus, in accord with a priori expectations, analyses pre-
sented herein indicate there are advantages to the emerging
trend towards offshore wind energy deployments in terms of
the wind resource and the expected power quality and pre-
dictability (reduced ramp events, higher probability of rated
power, etc.). Despite higher project AEP for the offshore lo-
cations, the additional costs involved in installing and oper-
ating offshore wind farms result in higher LCoE estimates
for the offshore sites (Table 2). LCoE estimates derived us-
ing AEP at the NYSM sites are 26 to 49 USDMWh−1,
while estimates for the NYSERDA buoy locations are 62–
64 USDMWh−1. Nevertheless, projected LCoE from wind
energy for all of the sites investigated here in NY are com-
petitive with all other electricity generation sources, with the
possible exception of utility-scale PV, and much less expen-
sive than traditional sources such as coal and nuclear that,
according to a recent analysis, have an unsubsidized LCoE
of 65–152 USDMWh−1 and 131–204 USDMWh−1, respec-
tively (Lazard, 2023).

Code availability. Analyses presented here were performed using
normal functions within MATLAB™. No specialized codes were
developed or employed.
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paign are available from the following sources: OceanTech Ser-
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