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Abstract. As the use of wind energy expands worldwide, the wind energy industry is considering building
larger clusters of turbines. Existing computational methods to design and optimize the layout of wind farms
are well suited for medium-sized plants; however, these approaches need to be improved to ensure efficient
scaling to large wind farms. This work investigates strategies for covering this gap, focusing on gradient-based
(GB) approaches. We investigated the main bottlenecks of the problem, including the computational time per
iteration, multi-start for GB optimization, and the number of iterations to achieve convergence. The open-source
tools PyWake and TOPFARM were used to carry out the numerical experiments. The results show algorithmic
differentiation (AD) as an effective strategy for reducing the time per iteration. The speedup reached by AD
scales linearly with the number of wind turbines, reaching 75 times for a wind farm with 500 wind turbines.
However, memory requirements may make AD unfeasible on personal computers or for larger farms. Moreover,
flow case parallelization was found to reduce the time per iteration, but the speedup remains roughly constant
with the number of wind turbines. Therefore, top-level parallelization of each multi-start was found to be a more
efficient approach for GB optimization. The handling of spacing constraints was found to dominate the iteration
time for large wind farms. In this study, we ran the optimizations without spacing constraints and observed
that all wind turbines were separated by at least 1.4 D. The number of iterations until convergence was found
to scale linearly with the number of wind turbines by a factor of 2.3, but further investigation is necessary
for generalizations. Furthermore, we have found that initializing the layouts using a heuristic approach called
Smart-Start (SMAST) significantly reduced the number of multi-starts during GB optimization. Running only
one optimization for a wind farm with 279 turbines initialized with SMAST resulted in a higher final annual
energy production (AEP) than 5000 optimizations initialized with random layouts. Finally, estimates for the
total time reduction were made assuming that the trends found in this work for the time per iteration, number
of iterations, and number of multi-starts hold for larger wind farms. One optimization of a wind farm with
500 wind turbines combining SMAST, AD, and flow case parallelization and without spacing constraints takes
15.6 h, whereas 5000 optimizations with random initial layouts, finite differences, spacing constraints, and top-
level parallelization are expected to take around 300 years.
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1 Introduction: wind farm layout optimization

The use of wind energy worldwide increases year by year.
The global cumulative wind power capacity reached 837 GW
by the end of 2021, with a prediction of around 3200 GW
by 2030 (GWEC, 2022). This growth opens the path for the
wind energy industry to consider building larger wind farms.
The existing literature shows a gap in approaches and strate-
gies to efficiently perform wind farm layout optimization
(WFLO) with hundreds of wind turbines. A proper frame-
work to address the problem could enable a faster evaluation
of thousands of different configurations, allowing trade-off
sensitivity analysis and design insights in a more extensive
and faster way.

Since the first work on WFLO by Mosetti et al. (1994) us-
ing a gradient-free (GF) approach, the literature on the topic
has massively evolved around GF methods. GF-based ap-
proaches on the topic include metaheuristic methods such
as genetic algorithms (GAs) (Gonzélez et al., 2018; Wang
et al., 2015; Parada et al., 2017), particle swarm optimiza-
tion (PSO) (Hou et al., 2016; Pillai et al., 2017; Veeramacha-
neni et al., 2012; Wan et al., 2012; Pookpunt and Ongsakul,
2016), random search (RS) (Feng and Shen, 2017b, a), and
many others. GF methods explore the entire design space and
may find the global optimum at some point, but processing
time explodes with the number of design variables. There-
fore, GF methods tend not to scale well for problems with
many design variables (Martins and Ning, 2021; Ning et al.,
2019) and are more suitable for smaller problems (Wright
et al., 1999). Gradient-based wind farm layout optimization
(GBWFLO) has been explored more in the last few years.
Research in the field has been evolving, including analyti-
cal computation of the gradients (Guirguis et al., 2016, 2017;
Stanley et al., 2019), a quasi-Newton limited-memory opti-
mizer called limited-memory Broyden—Fletcher—Goldfarb—
Shanno (L-BFGS) that estimates the inverse of the Hes-
sian matrix using a generalized secant method (van Dijk
et al., 2017; Croonenbroeck and Hennecke, 2021), another
limited-memory optimizer called SNOPT (Sparse Nonlinear
OPTimizer) that explores the sparsity of the Jacobian ma-
trix (Tingey and Ning, 2017), SNOPT with finite differences
(FDs) (Fleming et al., 2016), SNOPT with analytical gradi-
ents (Gebraad et al., 2017), and adjoints (King et al., 2017;
Allen et al., 2020). Mittal et al. (2016) developed a hybrid GF
(GA) and gradient-based (GB) (fmincon) algorithm. A con-
cern regarding GBWFLO is getting stuck in local minima
due to the multi-modality of the problem, as visually demon-
strated in the literature (Thomas et al., 2022b). One possible
strategy to overcome local minima is to perform multi-starts
by running multiple optimizations with different initial so-
lutions. Multi-start GBWFLO can explore the design space
in a more extensive way, avoiding potential non-optimal fi-
nal solutions. However, the extra costs to run multi-starts can
become another concern for larger problems. In this context,
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efficient multi-starting is potentially a way of speeding up
GBWFLO.

The literature has few articles comparing GF and GB
methods in a systematic and standardized way (e.g., with
the same configurations). Brogna et al. (2020) performed
WFLO in complex terrain with 25 wind turbines, compar-
ing six GF methods with two GB methods that use Glob-
alSearch and MultiStart from MATLAB optimization tool-
boxes. They reported GF methods (RS, pattern search, and
local search) outperforming the two GB approaches analyzed
in terms of both computational costs and optimization re-
sults. Croonenbroeck and Hennecke (2021) performed lay-
out optimization to maximize profit and efficiency, which is
the ratio between the annual energy production (AEP) and
the theoretical maximum AEP. They compared a GB method
(L-BFGS-B) against GF algorithms, including modified ver-
sions of GA, PSO, simulated annealing (SA), and RS meth-
ods. They found L-BFGS-B to perform the fastest among all
the options but not with the best results in term of the AEP
on a spectrum of six runs. Guirguis et al. (2016) compared
GB methods with analytical derivatives and GAs. Addition-
ally, the study compared two GB interior point method (IPM)
approaches where one used the FD method to compute the
gradients and the other used exact analytical gradients. They
found the computational costs of the GB FD approach to be
around 20 times higher than the GB approach with analytical
gradients. Additionally, the GB approach with analytical gra-
dients resulted in 0.36 % higher wind farm efficiency. Even
though the literature is not in total agreement on which ap-
proach is the best, GB methods are worthy of further devel-
opment, especially for large WFLO with many design vari-
ables. In order to make GBWFLO more efficient and appli-
cable for large wind farms, the associated computational cost
and time need to be properly addressed. The next section
will break down the computational cost into different com-
ponents. In the following sections, approaches to reduce the
computational cost are proposed.

2 Total computational time for gradient-based (GB)
optimization

Equation (1) shows the total computational time to perform
GB optimization. To accomplish faster large GBWFLO, one
needs to tackle the bottlenecks of the problem, which are the
variables in Eq. (1).

Nmultistarts

Tiotal = (titer * Niter + tinit) ) (1)
Ncpu

where fotq] 1S the total computational time for the GBWFLO;
titer 1S the time per iteration; nje, is the number of iterations
until convergence; fipj; is the time to initialize the problem,
including the time to generate the initial layout, e.g., via
Smart-Start (SMAST) from Sect. 3.4.1; nmultistarts 1S the num-
ber of initial starts to avoid getting stuck in local minima, as
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visually demonstrated in Thomas et al. (2022); and finally,
nepu 1 the number of CPU cores available for parallelization
of the nmulistarts independent optimizations with different ini-
tial layouts.

2.1 Time per iteration

In GB optimization, each iteration typically consists of com-
puting the gradients of the objective function and constraints
with respect to all design variables, followed by a line search
that comprises one or more function evaluations of the ob-
jective and constraints. In this section, we analyze different
approaches to reducing the iteration time of GBWFLO.

2.1.1  Gradient computations: analytical vs. finite
differences

Computing gradients can be done with different methods.
In algorithmic differentiation (AD), all the lines of code are
differentiated. These lines are usually composed of simple
mathematical operations. AD performs differentiation with
respect to each relevant variable at each line of code by ap-
plying the chain rule and then sums up all the contributions.
The FD method computes the derivatives using a Taylor se-
ries expansion, as shown in Eq. (C1) (Appendix C). The FD
method computes the Jacobian matrix by looping through all
the dimensions to compute the function values, perturbing
with a determined step size, and computing the differences
in the function. The value of the step size dictates the trunca-
tion error. Smaller step sizes reduce the error but increase the
amount of numerical noise. The complex-step (CS) method
also relies on a Taylor expansion to compute the derivatives.
However, the step is represented by an imaginary term in the
complex plane (Eq. C3, Appendix C). The CS method typi-
cally doubles computational time, as there are 2 times more
bits in each value. As shown in Eq. (C4), we need to add a
complex step to an input and run f(x +ihe;) to find the gra-
dient with respect to that input. This means that all operations
in f, which depends on x, need to be executed on both the
real and the imaginary part. The advantage of the CS method
is that the only source of error is the truncation error, since
there is no associated subtraction cancellation error. Adopt-
ing smaller step sizes can reduce truncation errors.

2.1.2 Parallelization

One of the most common objective functions in WFLO is the
AEP, which is computed by summing up the contributions of
the various combinations of wind direction sectors and wind
speeds (referred to as flow cases). The number of flow cases
during each iteration is a function of the discretization of the
wind resource. To avoid numerical discrepancies, it is neces-
sary to finely discretize the bins of wind directions and wind
speeds. The number of flow cases can sum up to 8280 if wind
directions and wind speed bins of 1° (0 to 360°) and 1 m s7!
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(3 to 25ms~!) are considered, for instance. The contribution
of each flow case to the AEP is multiplied by the frequency of
occurrence of that combination, and all of them are summed
up sequentially in one CPU to calculate the total AEP. As
the flow cases are independent, parallelization could speed
up iterations because the calculation of AEP contributions of
each flow case can be performed simultaneously on several
CPUs rather than sequentially on one CPU. Throughout the
text, this is referred to as flow case parallelization.

2.1.3 Constraints

Handling constraints in GBWFLO can be done with penalty
functions, sequential quadratic optimization (SQP), and IPM
(Martins and Ning, 2021). Constraints in GBWFLO usually
include physical boundaries and minimal spacing between
turbines. Looking at the literature on WFLO, the spacing
constraint between turbines varies. Many studies consider 5
wind turbine rotor diameters (D) (Gao et al., 2015; Wang
etal., 2015; Parada et al., 2017), but others consider 4 D (Hou
et al., 2016; Rodrigues et al., 2015), 3 D (Mittal et al., 2017;
Abdulrahman and Wood, 2017), and 2 D (Stanley and Ning,
2019; Padrén et al., 2019; Kirchner-Bossi and Porté-Agel,
2018; Gebraad et al., 2017; Fleming et al., 2016), and a few
works consider values beyond 5D (Rodrigues et al., 2016).
When there are too many constraints in optimization, for
instance, large WFLO with wind turbine pair-spacing con-
straints, combining all the constraints into a single constraint,
is also possible (Martins and Ning, 2021).

2.2 Number of initial starts

Better initial guesses for the layout can potentially avoid
the worst local optima. In the previous literature, the GF
approach has been found in some studies to provide better
results than multi-start GB approach. However, just a few
starts were applied for the GB approach, and the layouts
were randomly initialized. It is unclear, for instance, if the
work done by Croonenbroeck and Hennecke (2021) to opti-
mize a wind farm with 20 wind turbines could have found
L-BFGS outperforming (in terms of the AEP) the GF meth-
ods if more multi-start runs had been applied (six runs in this
study). Examples of previous studies on multi-starts for GB-
WFLO considered random multi-starts (Brogna et al., 2020;
Yang and Deng, 2023; Thomas et al., 2023; Baker et al.,
2019) and Latin hypercube sampling (Guirguis et al., 2016),
while an example of a multi-start GF method (RS) also us-
ing randomly produced initial guesses is given in Feng and
Shen (2017a). A heuristic approach developed by Pérez et al.
(2013) assumed turbines were widely spread throughout the
wind farm area as a strategy to avoid the wake effects and
produce better initial guesses. They generated random reg-
ular rectangles, applied a rectangular transformation to ex-
tend the points to the wind farm boundaries, and used tri-
angulations to maximize the sum of the areas of the trian-
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gles. Still, they had to generate a set of random candidate
solutions to initiate the approach. One could enhance heuris-
tic approaches for the initial layout with physics information
(e.g., wake effects), avoiding random guesses for the layout.
These examples show that there is room for improving multi-
start GB methods, for instance, if layouts were initialized us-
ing some threshold or method based on physics, rather than
being purely random. The Smart-Start (SMAST) algorithm
is a heuristic approach based on physics, where wind turbine
wake effects guide the decisions to place wind turbines for
the initial layout sequentially. SMAST is now available in
PyWake (Pedersen et al., 2022), and here we show to what
extent the method can improve multi-starting for large GB-
WFLO. This, in turn, is potentially a way of improving multi-
starts for the GB optimization of wind farms, one of the ob-
jectives of this present study.

2.3 Objective and scope of the work

This work aims to speed up layout optimization for large
wind farms. The strategy is to tackle the bottlenecks in terms
of computational expenses. Specifically, on optimization it-
eration time, the objective is to show how different GB ap-
proaches and parallelization of the flow cases scale with
the number of wind turbines (n.). Moreover, we explore
a heuristic approach to produce better initial layout guesses
and improve multi-starting, which is necessary for GB meth-
ods.

2.4 Contributions to the existing literature

This work intends to complement and add new insights to the
existing literature by doing the following:

Evaluate how parallelization scales with ny¢ during
large GBWFLO.

Evaluate how different techniques to compute gradients
scale with n,; when performing GBWFLO.

Evaluate how njer scales with ny when performing
GBWFLO.

Demonstrate how nmultistarts Scales with ny and how to
reduce this number using a heuristic approach.

3 Methods

The AEP computations and the optimizations were per-
formed in PyWake (Pedersen et al., 2023) and TOPFARM
(Réthoré et al., 2014), which are open-source tools devel-
oped by the Technical University of Denmark (DTU). Exam-
ples of previous works using PyWake and TOPFARM can be
found in the literature (Rodrigues et al., 2022; Ciavarra et al.,
2022; Criado Risco et al., 2023; Quick et al., 2023; Peder-
sen and Larsen, 2020; Nyborg et al., 2023; Fischereit et al.,
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2021; Pérez-Rua and Cutululis, 2022). Section 3.1 provides
all the relevant details about the optimization formulation.
Section 3.2 shows the case studies considered in this work.
Section 3.3 describes the methods and assumptions to evalu-
ate iteration time, whereas Sect. 3.4 provides an overview of
the heuristic method to produce efficient initial layouts and
improve multi-start GBWFLO.

3.1 Optimization: problem formulation

For the AEP computations, an implementation of a Gaus-
sian wake model (Bastankhah and Porté-Agel, 2014) referred
to as Bastankhah Gaussian (BG) in Table 1 was considered.
The optimization algorithm used in this work is sequential
least-squares quadratic programming (SLSQP), which relies
on quasi-Newton methods (Powell, 1964; Liu and Nocedal,
1989) and is suitable for constrained GB optimization prob-
lems (Wu et al., 2020; Perez et al., 2012; Virtanen et al.,
2020). The optimization in this work follows the formulation
in Eq. (2), where the objective function is the AEP, and the
design variables are the layout coordinates x and y of the tur-
bines. Moreover, farm boundary constraints are applied to re-
strict the area upon which the turbines can move. TOPFARM
handles the design variables and constraints corresponding to
the problem formulation in Eq. (2).

Ng Ny
MaxAEP(x, y) A 87603 > Pa.u (¥, )" pa.u
’ d=1u=1

s.t.Cyj > OVk, j, ()

where C is a matrix of wind farm boundary constraints; d
denotes wind directions and u refers to wind speeds, with Ny
and N, standing for the number of wind directions and wind
speeds; Py, represents the power output of the wind farm
given by the wind turbine coordinate vectors x and y, for
wind direction d and inflow wind speed u; and lastly, pg , is
the frequency of wind direction d and inflow wind speed u.

When the wind farm is circular, the boundary constraint,
C,is a 1 x ny, matrix, defined in Eq. (3):

Ci,1 = Ryt —+/x7 + 7. 3

where k is an integer denoting the turbine number, Ry is the
wind farm radius, and the coordinates x and y have the origin
at the wind farm center.
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When the wind farm span is a parallelogram, the boundary
constraints, C, are defined as a 4 x nyw; matrix,

©UR _ (LR R
Cr1 = [(—)(yk_ymin)+x j|_xk» €]
Ymax — Ymin
UL LL
Xt —x
Cro=xi — |:<—> (Yk — Ymin) +xLL:| , )
Ymax — Ymin
Ck,3 = Ymax — Yk» ©6)
Ci.4 = Yk — Ymin, @)
where xUL, xUR xLL and xR are the upper-left, upper-right,

lower-left, and lower-right coordinates, respectively, that de-
fine the parallelogram boundaries. The upper axis of the par-
allelogram is assumed to be parallel to the x axis.

As pointed out in Sect. 2.1.3, adopted values of the spac-
ing constraint between wind turbines in a wind farm vary in
the literature. A spacing constraint value of 2D (Eq. 8) was
adopted for the layout initialization provided by the heuris-
tic algorithm (described in Sect. 3.4.1) and in the discussion
of spacing constraint costs in Sect. 4.1.3. For the remaining
optimizations, spacing constraints were disregarded and the
formulation of Eq. (2) was adopted. This setup for the spac-
ing constraint is adopted because the cost of handling spacing
constraints for each turbine pair does not scale well with ny,.
Additional discussion around the spacing constraint consid-
eration in this work is provided in Sect. 4.1.3, where we pro-
vide a plot showing the influence of spacing constraints on
speeding up GBWFLO across scales. Moreover, we show in
the Discussion section that the minimum spacing in our final
results is at least 1.4 D.

Ng Ny

max AEP(x, y) %8760 D Pa.u (X, ¥) " P
’ d=1u=1

5.t.Cy;Vk, j = 0

\/(Xi —xj)2 + (yi — yj)2 >2D, 3

where the sub-indices i and j denote spatial locations.

3.2 Case studies

Two case studies have been considered in this work, which
are summarized in Table 1. The power and Cr curves are
provided in Fig. la and b, respectively. The simulations to
investigate the time per iteration were performed with a real-
istic setup, the Horns Rev 1 wind farm. A Weibull distribu-
tion was fitted to the local wind resource (Fig. 1¢). We further
extended the analysis of Horns Rev 1 to assess how the ap-
proaches tested in this work scale with the number of wind
turbines ny, (Fig. 2).

The results for the number of iterations and number of
multi-starts are based on more than 55000 GBWFLOs per-
formed with a faster setup, which uses idealized 3.35 MW
wind turbines with constant Cr, site, and wake model defini-
tions from IEA Wind Task 37 case study 1 (IEA Wind Task
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37,2018; Baker et al., 2019). These wind turbines are slightly
different than the reference IEA 3.4 MW wind turbines de-
fined by Bortolotti et al. (2019). Extra cases were designed
to scale the analysis (Fig. 3). In this simplified setup, only
the rated wind speed (9.8 ms™!) is simulated, and all wind
turbines operate with constant Ct ~ 8/9. The wake model
for these simulations is the Bastankhah Gaussian (BG) with
a constant Ct & 0.964 (called simple Bastankhah Gaussian —
SBG in Table 1). Another reason for choosing the IEA 37 site
is related to the circular boundaries, as rectangular bound-
aries use 4 times more boundary constraints. Furthermore,
Fig. 1d shows the frequency of occurrence of wind directions
for the IEA 37 site. Note that, in the current study, we sim-
ulate 360 wind directions (as shown in Table 1) while only
16 wind directions were considered in the original IEA Wind
Task 37 case study. Our results are, therefore, not directly
comparable to the AEP results of the benchmark in Baker’s
work (Baker et al., 2019). Even though the absolute values
(such as the AEP) are not consistent with the original IEA
37, we expect our results on njer and multi-starts, as well as
the relative comparisons presented in this study, to be valid
for more realistic wind farm setups as well.

3.3 Time per iteration: Horns Rev 1

This section provides the methods implemented to accelerate
iteration time during the optimization described in Sect. 3.1.
These simulations use a realistic setup (Horns Rev 1), as de-
scribed in Sect. 3.2 and summarized in Table 1.

3.3.1 Gradient computation

We tested different techniques to compute the gradients and
evaluate how they scale with ny,, including the AD, FD, and
CS methods. The theoretical background of these different
gradient methods can be found in Sect. 2.1.1, in Appendix C,
or in the literature (Martins and Ning, 2021). In this work, we
have adapted PyWake to use “Autograd” (Maclaurin et al.,
2015) and perform AD to automatically calculate the gradi-
ents of the output (AEP) with respect to the inputs (layout
coordinates x and y).

3.3.2 Parallelization of the flow cases

This work implemented parallelization in a computational
cluster. Single-node operation was utilized with each node
being composed of 2x AMD EPYC 7351 CPUs, at 2.9 GHz,
with 16 cores and 128 GB of RAM. All the CPUs in each
node (32 CPUs per node) are set up to run one simula-
tion. PyWake parallelizes the flow cases, computing chunks
of wind directions and wind speeds throughout the several
CPUs within a node.

Wind Energ. Sci., 9, 321-341, 2024
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Table 1. Cases considered for the optimization and the setup and the models used in PyWake/TOPFARM.
Site nwt Wind turbine Wake model ~ Superposition WS bins WD bins
IEA 37 16, 36, 64, 130, 279, 566  IEA 37,3.35MW  SBG Squared sum 1 360
Horns Rev 1 100, 200, 300, 400, 500 V80, 2 MW BG Squared sum 23 360
35
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Figure 1. Power curves (a), Ct curves (b), and wind rose distributions for the sites considered in this study: Horns Rev 1(c) and IEA 37 (d).

3.4 Number of initial starts: IEA 37

As the total computational time for the GB approach is
a function of nmystarts, this section provides methods for
investigating that bottleneck. This work explores a heuris-
tic method (SMAST) to efficiently generate initial layouts
for WFLO. The objective of the method is to speed up
WFLO by reducing the number of multi-starts necessary to
achieve optimized solutions. Section 3.4.1 details SMAST,
and Sect. 3.4.2 presents a methodology to improve multi-
start GBWFLO based on a comparison between SMAST and
a random set of simulations.

3.4.1 The Smart-Start (SMAST) algorithm: a heuristics

method

The objective of SMAST is to provide a better initial lay-
out for multi-start GBWFLO. The process is described in
Algorithm 1. First, SMAST defines an array £ with all the
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potential positions for wind turbines, in this case a regular
grid of points covering the domain. Next, SMAST removes
positions from L that do not satisfy constraints, i.e., farm
boundary constraints. SMAST then computes the AEP at
all the remaining points in £, considering the wakes from
the turbines previously added. Next, SMAST randomly se-
lects a point p among the points associated with the highest
AEP, g, and places the next turbine at p. Finally, SMAST
removes p and all the points that violate the spacing con-
straint of the newly added wind turbine. This process is re-
peated until all wind turbines have been placed. As described,
SMAST ignores the wake effects of the turbine to be added;
i.e., the power reduction in the turbines already added due to
wake effects from the new turbine is ignored. This simplifi-
cation is, however, necessary to make the method feasible.
SMAST has a parameter to define the desired degree of ran-
domness (randomy.¢) when selecting the point p. If SMAST
is run without randomness (randomyc; = 0), the algorithm

https://doi.org/10.5194/wes-9-321-2024
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Figure 2. Variations considered in the scaled Horns Rev 1 site with
nwt = 100 (@), nwt = 200 (b), nwt =300 (c), nwt =400 (d), and
nwt = 500 (e). The 80 turbines marked in black are the original tur-
bines from the Horns Rev 1 layout, whereas the turbines marked in
white represent the rows and columns added to the original layout.

Scaled IEA 37 Large Wind Farms
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Figure 3. Scaled IEA 37 layouts with Ry values of 4500, 6750,
and 9750 m with nwt values of 130, 279, and 566, respectively.

places the turbine at the point with the highest AEP. In cases
where multiple points provide the highest AEP, e.g., in the
first iteration assuming a uniform site, the algorithm ran-
domly selects one of these points. This means that even for
randomy = 0, the algorithm is able to provide different lay-
outs. SMAST with some randomness (randomy,; > 0) takes
more possibilities for tpest points and picks one of them ran-
domly. The higher the randomy, is, the more lpest points are
considered. If SMAST is entirely random (randomy,c = 100),
SMAST bypasses the AEP calculation and quickly gener-
ates a random layout that satisfies the boundary and spac-
ing constraints. Another parameter that influences the AEP
provided by SMAST is the resolution of the grid defined in
Algorithm 1. Figures D1 and D2 show examples of SMAST
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AEP flow maps of the potential positions £ with grids with
resolutions of 3R and 6R (i.e., the distance between points in
L), respectively. Figures D3 and D4 show how the AEP and
the computational time vary according to the grid size. The
finer the SMAST grid, not only the higher the AEP (except
for ny = 16, where it stabilizes after 4R) but also the higher
the computational time of SMAST. The initialization time to
generate random layouts (randomycc = 100) is nearly negligi-
ble compared to, for instance, SMAST with randomyc; < 100
(Fig. D5), as the expensive loop to compute the AEP and
store information about remaining cells in each iteration is
bypassed. Memory can also be a problem in running SMAST
if the grid is too refined. We do not expect the minimum spac-
ing between turbines in the optimized layout to be sensitive
to the grid resolution provided by SMAST, as the optimizer
moves the turbines apart to avoid the highest-wake regions.

Algorithm 1 Smart-Start (SMAST) algorithm.

1: L <« {Potential positions for wind turbines}

2: L« L — 00B,; {OOB: Out of Boundary positions}
3: P <« {initialize empty turbine position vectors}
4: fori =1 to ny do

Zr < AEP(L, P)

minagp =random peth percentile of Z
lvest =1 € L, where Z(1) > minAE P
PERIvest, Where € g selects a random element
P=PUp

10:  drop elements of L where dist(L, p) <2 D
11: end for

R A

3.4.2 Random multi-start versus SMAST

Aiming to showcase the capabilities of SMAST to improve
multi-starting for GBWFLO, we consider sets of random
multi-start simulations with three different IEA 37 case stud-
ies: 16, 64, and 279 wind turbines. Those sets are the base-
line for the comparisons. The methodology in this work con-
sisted of running 10000 random simulations (two batches
of 5000 simulations) for each case (i.e., randomly generated
initial layouts), splitting the results into m chunks and com-
puting the maximum AEP of each chunk. Finally, the mean
and confidence intervals of the m maximum values are com-
puted. Figure 4 shows how the normalized optimized AEP
varies with the number of random initial starts for the three
cases. The AEP is normalized as the average optimal AEP
at 5000 initial starts for each batch. As there are two batches
with 5000 simulations for each farm size, we take the mean
between these two values. The bandwidth in the plots rep-
resents the standard deviation within a 99 % confidence in-
terval of the mean. To better clarify the methodology, let
us look at the 16-wind-turbine case at 1000 initial starts.
The procedure consists in splitting the 10000 simulations
into 10 chunks of 1000 simulations, computing the maxi-
mum AEP of each of the 10 chunks, and computing the mean
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Figure 4. Simulations with initial layout randomly generated for
three cases of IEA 37: 16, 64, and 279 wind turbines. These are the
baseline cases for comparison with SMAST.

and 99 % confidence interval of these maximum values with
Eq. (9). The results from Fig. 4 are used in Sect. 4.3, where
we showcase how SMAST improves GBWFLO by achiev-
ing the same final optimized results as the random approach
(to generate the initial layout) but with a reduced number of
multi-starts. Furthermore, what is noticeable in Fig. 4 is that
99.9 % of the maximum AEP is obtained at around 500 starts
for ny = 16, around 2500 starts for ny; = 64, and around
4000 starts for ny; =279. For small problems, the random
approach seems to work as the maximum AEP converges af-
ter a relatively low number of starts. Other methods are nec-
essary for larger problems, as the example with ny =279
shows, demonstrating that no full convergence is achieved
even after 5000 starts. We define convergence when the AEP
reaches 99.9 % of the normalized optimized AEP (y axis,
Fig. 4). In practice, convergence would mean a flat curve in
Fig. 4.

o
Vm

where AEP,, and AEPy, are the upper and lower bounds of
the AEP within a 99 % confidence interval, m is the num-
ber of chunks, AEPyean 1S the mean of the maximum AEP
value of each chunk, and o is the standard deviation of the
maximum AEP values.

AEPub, 1o = AEPmean £2.576 - 9)

4 Results and discussion

In this section, we present the results of our study on speed-
ing up GBWFLO by exploring each of the variables in
Eq. (1). Section 4.1 shows how different gradient compu-
tation methods (Sect. 4.1.1) and parallelization (Sect. 4.1.2)
impact fiier. Additionally, the influence of spacing constraints
on titer 1S shown in Sect. 4.1.3. Section 4.2 shows how njer
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scales with ny,. Section 4.3 shows how SMAST can improve
Nmultistarts for GBWFLO, and finally Sect. 4.4 addresses the
impact of these findings on the total optimization time.

4.1 Time per iteration

This section explores #jir during GBWFLO, as well as strate-
gies to speed up tir by different gradient computation meth-
ods and parallelization of the flow cases. These results are
based on the more realistic Horns Rev 1 setup.

4.1.1 Impact of the gradient computation method

Figure 5a shows the time per iteration for the AD, FD, and
CS methods, whereas Fig. 5b shows the speedup when com-
paring these gradient methods to the FD method. According
to Fig. 5a and b, AD computes gradients faster than the FD
and CS methods, especially as ny,; increases. AD is around
20 times faster than the FD method for 100 wind turbines,
and the speedup increases roughly linearly with ny. This is
expected and confirms that the FD approach is only feasi-
ble for optimizing small wind farms. Figure 5c shows the
memory usage for each method, revealing a trade-off be-
tween speed and memory. As ny increases, AD consumes
more memory than the FD and CS methods. AD memory
usage is 85 Gb for 500 turbines, which is usually beyond a
regular computer’s configuration. This value (85 Gb) is more
than 4 times higher than for the CS method and around 5
to 6 times higher than for the FD method. The conclusion
is that large wind farms (e.g., nwi = 500) can only be opti-
mized with AD, as the FD and CS methods would require
CPU usage on the order of years.

4.1.2 Impact of parallelization

Figure 6a shows the time per iteration for 1, 4, 16, and
32 CPUs, whereas Fig. 6b shows the speedup when compar-
ing these different parallelization schemes. As Fig. 5a and b
demonstrated the superiority of AD, the simulations shown
in Fig. 6a and b used AD. The speedup computations con-
sider one CPU as the baseline for comparisons. When sev-
eral multi-starts are needed, our results show top-level paral-
lelization of each optimization to be more efficient than par-
allelization of flow cases. According to Fig. 6a and b, paral-
lelization makes a positive contribution to reducing fir and
increasing the speedup. However, the speedup keeps constant
with the ny:. Moreover, the speedup when considering four
CPUs against one CPU (Fig. 6b) is 4-fold. The same com-
parison for 16 CPUs against 1 CPU results in a speedup
of around 12-fold, whereas 32 CPUs against 1 CPU have
a speedup of around 16-fold. These results indicate that the
speedup achieved by parallelizing the flow cases does not lin-
early increase with the number of CPUs. These results show
that parallelization of the multi-start process simulating one
seed in one CPU seems more effective than parallelization of
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Figure 5. Impact of different gradient computation methods on time per iteration (a), speedup (b), and memory usage (c). The speedup in

(b) takes the FD method as the basis for comparisons.

the flow cases. This means that if one needs to run hundreds
of multi-starts, then better CPU utilization can be achieved
by running each multi-start optimization in parallel, i.e., one
optimization per CPU. This was confirmed by a small test
where 100 multi-starts were optimized. In this test, the flow
case parallelization approach was around 2 times slower than
the multi-start parallelization approach.

4.1.3 Impact of spacing constraints

Figure 7 shows how the spacing constraint impacts fer, indi-
cating that handling spacing constraints does not scale well
with ny. On the blue curve of Fig. 7, each pair of turbines
has an associated minimal spacing that must be satisfied,
while the orange line has no pair-spacing constraints. Cal-
culating the spacing between the wind turbines and the as-
sociated gradients is relatively fast. The bottleneck is the
time spent on handling the constraints inside the optimizer,
which is seen to be considerable for large farms. The opti-
mizer used in this work is SLSQP. Calculating the distances
between 500 points takes around 0.01 s, and calculating the
gradients is similarly fast. SLSQP, however, needs to com-
pute the Lagrangian multiplier for all the constraints, and it
is assumed this is what takes most of the almost 2 h increase
in the iteration time (Fig. 7) when introducing wind turbine
pair-spacing constraints. In this example, handling the spac-
ing constraint of each wind turbine pair in a setup with 500
wind turbines takes roughly 2 h, which slows down the itera-
tion time by a factor of around 10. Obviously, wind turbines
must be placed with more than 1 D spacing to avoid a col-
lision, but this minimal distance is implicitly achieved even
without spacing constraints in all optimizations performed in
this study; see Sect. 4.5, where other issues related to spacing
that is too close are also discussed.

4.2 Number of iterations

The results in this section are based on optimizations of the
faster scaled IEA 37 case study, described in Sect. 3.2.
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Figure 8 shows the nj,, to achieve convergence as a func-
tion of ny; based on 5000 optimizations of each farm size,
nwt = {16, 36, 64, 130,279}. The mean nj; is seen to scale
linearly with ny¢: nier = 2.3ny¢ + 16. The linear fit of the
median has the same slope as Fig. 8 with just one decimal
difference. Additionally, two optimizations were performed
with 566 wind turbines to verify the linear extrapolation to
larger wind farm sizes.

In some cases njer is considerably higher than the mean.
We suspect that these outliers represent cases where the op-
timizer gets stuck in local minima.

In this case, njer scales almost perfectly linearly with 2.3
times ny,, but in general we expect nje, to be highly depen-
dent on the optimizer; its settings, e.g., tolerance; the nature
of the objective function and the constraints, e.g., the shape
of the boundary; and the scaling of the input, the objective
function, and the constraints. More investigation is needed to
make a general conclusion.

The 5000 optimizations of each farm size were per-
formed with different levels of randomness (1000 each),
randomyc = {0, 1, 10,50, 100}, but it was found that the
amount of randomness only has a minor impact on the num-
ber of iterations; see Fig. E2 in Appendix E.

4.3 Number of initial starts

The results on reducing the number of initial starts presented
in this section are based on simulations of the scaled IEA
37 study case described in Sect. 3.2. Our approach used a
heuristic algorithm to improve the multi-start GBWFLO op-
timization by providing a better guess for the initial layout.
Section 3.4.1 describes how the SMAST algorithm sequen-
tially places turbines in a gridded physical domain to ob-
tain an initial layout. The SMAST algorithm evaluates the
wind resource of each grid cell before placing each new tur-
bine. The more refined the grid is, the more expensive it is
to run SMAST. Before studying how to improve the multi-
start method, we ran a batch of simulations to check the sen-
sitivity of SMAST to several metrics (Appendix D and E,
Figs. D3, D4, E1, E2). The initial AEP provided by SMAST

Wind Energ. Sci., 9, 321-341, 2024




330

R. Valotta Rodrigues et al.: Speeding up large-wind-farm layout optimization

o
o
o

ul
o
o

400

Time per lteration [s]
N w
[=] (=]
o o

-
o
o

o] B=—— 32CPU

10 — 1CPU

— 32CPU

4 — _4CPU

1CPU

100 150 200 250 300 350 400 450 500
Number of Wind Turbines [-]
(a)

100 150 200 250 300 350 400 450 500
Number of Wind Turbines [-]
(b)

Figure 6. Impact of parallelization of the flow cases on time per iteration (a) and speedup (b) during GBWFLO.

N WT-pair-spacing constrajnts
2.0 — w WT-pair spacing constraints P P 3
! No spacing constraints
—
<
c 151
o
S
@©
—
2
= 1.0
—
[
o
Q
E o5
=
No spacing coﬁnrstrraints
0.0 +— — -

100 150 200 250 300 350 400 450 500
Number of Wind Turbines [-]
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per iteration during GBWFLO.

increases as the grid resolution becomes finer (as mentioned
in Sect. 3.4.1); however, there is a limit at which the AEP
no longer increases significantly (Figs. D3 and D4). Based
on the results, the SMAST grid resolution adopted in this
study is 3R (i.e., 3 times the wind turbine radius) for all
the cases, except the 566-wind-turbine case, where SR was
adopted to prevent memory problems. These resolution val-
ues provide, at the same time, a suitable initial AEP at rea-
sonable computational expense. To get a sense of SMAST
computational time for large wind farms, Table 2 shows a
summary of the mean time of SMAST and the AEP gain,
which is the percentage of improvement comparing the ini-
tial mean AEP provided by SMAST with randomy,c = 0 and
randompec = 100. The computational time for the smallest
case ny¢ = 16 is not high (only 3s), but it does not scale
well and gets up to around 3 h for the largest case in which
Nwt = 566.
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Table 2. SMAST computational time and gain for the IEA 37 cases
considered.

Nyt 16 36 64 130 279 566

3233 10742
11.05 10.54

Tinit [5] 3 11 53 413
AEP gain [%] 9.07 1123 12.14 1152

Figure 9 shows how the optimized AEP varies as a func-
tion of nmultstarts, considering different levels of random-
ness (randomp.t) for SMAST and different ny: values. The
dashed black lines in each plot show the maximum AEP and
the gray bands a 99 % confidence interval of the best result
for the optimized AEP among two sets of 5000 simulations
with entirely random initial layouts (randompe = 100). In
the 16-wind-turbine case, Fig. 9a, the random approach is
equal or superior to SMAST for all levels of randomness.
In the 64-wind-turbine case, Fig. 9b, SMAST with 0 % ran-
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domness needs only one start to obtain an AEP result that
is as high as the best of 5000 multi-start optimizations with
100 % randomness. SMAST with 1% and 10 % requires 2
and 122 initial starts (2-3 and 53414, respectively, within a
99 % confidence interval), respectively, to surpass the 100 %
random case with 5000 starts. It is also seen that for more
than 80 starts, 1 % randomness improves the AEP result. The
279-wind-turbine case, Fig. 9c, shows that the 0 % and 1 %
SMAST cases need one initial start to surpass the 100 % ran-
dom case, whereas the SMAST 10 % case requires approx-
imately eight initial starts (4—16 within a 99 % confidence
interval). Note, however, that even though one start with 0 %
randomness is enough to surpass the random case, it may
still be beneficial to run the simulation with multiple starts.
In this example, the maximum AEP can be increased by ap-
proximately 0.5 % by running 30 starts instead of 1.

These results indicate that more randomness gives a higher
AEP for a sufficiently high number of starts — the larger the
farms and the greater the randomness, the more starts are
needed. For the small ny; = 16 case, “sufficiently high” is
fewer than 20 starts. For the medium ny; = 64 case, 80 starts
are enough for 1 % randomness, while more than 500 starts
are needed when introducing more randomness. For the large
279-wind-turbine farm, sufficiently high is far beyond 500,
even for the 1 % randomness case. In summary, SMAST sig-
nificantly reduces the number of starts required to obtain a
high AEP result compared to the random approach when op-
timizing large-wind-farm layouts. Moreover, a randomness
value (randomyp;) lower than 100 % means that the initial
layout is limited to a subset of the design space. If the op-
timizer is not able to escape the local minima, this may also
limit the solution space. For small wind farms, a higher AEP
may be found by a random guess in the solution space that is
not accessible when using less randomness in the initial start.
For larger wind farms, finding a better solution by random-
ness is not realistic.

4.4 Total computational time

This section summarizes the potential reduction in the total
optimization time, fo1, for a wind farm with 500 wind tur-
bines by using all the strategies detailed in this work. The
total 18 estimated using Eq. (1) and combines the iteration
time found with the more realistic setup (Horns Rev 1) with
the number of iterations and multi-starts found with the faster
IEA 37 setup. Additionally, we assume that the result regard-
ing the number of multi-starts for 279 wind turbines is similar
for a wind farm with 500 wind turbines.

First, the time per iteration for 500 wind turbines using
the FD method and one CPU without spacing constraints
is 12.6 h (see Fig. 5a). Additionally, the time for computing
and handling spacing constraints for 500 wind turbines was
found to be 1.9h (see Figs. 7 and 6a). Therefore, the total
iteration time without the methods proposed in this work is
14.5 h. The number of iterations for a 500-wind-turbine case
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is estimated to be 1166 using the linear equation found in
Sect. 4.2. In this case, we set the number of random multi-
starts to 5000, which is not even enough to get a result as
good as one optimization with SMAST if the trend from
Fig. 9 continues up to 500 wind turbines. Hence, the total
optimization time on one node with 32 CPUs is estimated to
be 14.5h/iter - 1166iter - 5000starts /32 CPUs ~ 300 years.

Applying the methods presented in this work, i.e., AD,
flow case parallelization on 32 CPUs, and no spacing con-
straints, the time per iteration is reduced to 38 s (see Fig. 6a).
Using SMAST, one optimization is expected to give a higher
AEP than the approach described above. The time to gen-
erate an initial layout by SMAST is ~ 3.3 h. Therefore, the
total optimization time is 38 s/iter - 1166 iter+-3.3h=~ 15.6 h.

A slightly higher AEP can be obtained by running, e.g., 32
optimizations with SMAST. In this case, it is more efficient
to parallelize the starts rather than the flow cases. The itera-
tion time is thereby increased to 603 s (see Fig. 6a), and the
total optimization time becomes (603 s/iter-1166iter+3.3h)-
32 starts/32 CPUs =~ 199 h.

4.5 Discussion

When running GBWFLO for large wind farms, one criti-
cal aspect is the spacing constraint. As previous works in
WFLO considered small to medium wind farms, this prob-
lem was not explicitly apparent. That is why this work ap-
plied spacing constraints only to generate the initial layout
(by SMAST) and disregarded them for the remaining opti-
mization. That considerably reduced the computational ex-
penses to achieve the objectives of this study. This was only
possible because the wind turbines did not end up being too
close to each other. The strategy adopted in this work relied
on the inherent behavior of wind turbine wake models, which
places turbines apart from each other to produce more AEP,
guiding the optimizer driver towards separating them. As the
objective of the work is to show the impact of different gra-
dient computation methods, parallelization, and the capabili-
ties of SMAST, we do not expect disregarding the constraints
to affect the results. For all the optimizations, the turbines
were at least 1.4 D separated apart in the final optimized de-
signs, which is lower than typical spacing distances. It is cru-
cial, though, to reinforce that placing turbines too close to
each other can cause problems related to mechanical loads
on wind turbine components. Additionally, the applied engi-
neering wake models do not include a dedicated near-wake
model, and their behavior close to the turbine is therefore
missing some physical aspects. Furthermore, the constraint
handling problem may be solved by constraint aggregation,
but initial investigations showed a negative impact on the op-
timized AEP. Therefore, we decided to run the optimizations
in this study without spacing constraints and leave the in-
depth investigation of spacing constraint aggregation for fu-
ture work.
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n” variable refers to the number of initial starts at which the SMAST approach results in higher normalized optimized AEP, as compared to

10000 simulations, which used an approach with layouts randomly initialized.

In this work, the driver used for the optimization is the
open-source SLSQP. The choice for this driver has to do
with the possibility of a fully open-source simulation tool
(even though other tools such as IPOPT could have been
used). PyWake and TOPFARM, as mentioned in Sect. 3, are
open-source packages developed by DTU and well coupled
with SLSQP. Additionally, SLSQP is currently commercially
used by the wind energy industry to perform GBWFLO.
The literature shows, though, some studies pointing towards
the superiority of SNOPT for optimal AEP (Baker et al.,
2019; Thomas et al., 2022). Therefore, future work could use
SNOPT or another driver to confirm the trends found in this
work.

Another possibility of speeding up wind farm optimization
is to consider a subset of the flow cases. For wind farm AEP
computations, Thomas et al. (2022) demonstrated that at least
40 or 50 wind sectors are necessary to run WFLO. However,
wriggles can occur when simulating too few wind directions.
We define wriggles as direction-dependent variations in wind
turbine wakes when averaging all the wind directions with
their sector frequency weight. In simple cases, the occurrence
of such wriggles has been found to drastically increase the
number of local minima. Taking this into consideration, in
this work, we took the conservative approach of considering
wind direction bins of 1°. However, we acknowledge other
possibilities and intend to explore them in future work.

5 Conclusions

In this work, different strategies to accelerate WFLO of large
wind farms with hundreds of turbines have been explored.
We have focused on GB approaches as GF methods tend to
scale poorly for problems with many design variables. We
have separated the problem into reducing the iteration time,
the number of iterations, and the number of multi-starts (op-
timization with different initial layouts).
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The time per iteration has been investigated using a realis-
tic setup with scaled versions of the Horns Rev 1 wind farm
(100-500 wind turbines). It was found that the iteration time
can be decreased by computing gradients via AD compared
to the FD and CS methods. The speedup scales linearly with
the number of wind turbines and was found to be around 75
times for a wind farm with 500 wind turbines. However, on
personal computers or for even larger farms, AD may be-
come unfeasible due to its extensive memory requirements.

Simulating the different flow cases in parallel is another
approach to reducing the iteration time, but the speedup was
found to be roughly constant with the number of wind tur-
bines. Moreover, top-level parallelization was found to be
more efficient. In general, we therefore recommend using the
available CPUs to parallelize multi-starts with different ini-
tial layouts instead of flow cases.

Requiring all pairs of wind turbines to be separated by
some minimum distance introduces a considerable number of
optimization constraints. The time used to handle these con-
straints by the applied SLSQP optimizer scales very badly
with the number of wind turbines, dominating the iteration
time of wind farms with 300 wind turbines or more. The
problem may be solved by using another optimizer or by
constraint aggregation, but in this study, we ran the optimiza-
tions without spacing constraints and observed that all pairs
of wind turbines were separated by at least 1.4 D in all opti-
mizations.

The number of iterations needed to achieve convergence
was investigated using a faster setup (IEA 37 with up to 566
wind turbines). The mean number of iterations was found to
scale linearly with the number of wind turbines times 2.3.
This result is assumed to be highly dependent on the opti-
mizer; its settings; the boundary shape; and the scaling of
the inputs, outputs, and constraints. The heuristic Smart-Start
(SMAST) approach, which was used to obtain better initial
layouts, did not manage to reduce the number of iterations
significantly.
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The number of multi-starts, i.e., number of optimizations
performed with different initial layouts to obtain a result
close to the global maximum, was also investigated using the
faster setup (IEA 37 with up to 279 wind turbines). The num-
ber of multi-starts needed to reach 99.9 % of the best AEP
from 10 000 optimizations was found to depend on the wind
farm size: 500 starts for 16 wind turbines, 2500 starts for 64
wind turbines, and 4000 starts for 279 wind turbines. For the
biggest wind farm, however, it is suspected that 10 000 opti-
mizations would not be enough to find the global maximum.

Comparing SMAST with different levels of randomness
(randompc¢ = 0-100) revealed that more randomness in the
initial layouts gives a higher AEP when optimizing small
wind farms (16 wind turbines), while less randomness,
i.e., better initial layouts, is superior for large farms (64 and
279 wind turbines). It was found that the AEP obtained from
one optimization initialized with SMAST (randomp.t = 0)
was higher than the best AEP of 5000 optimizations initial-
ized with random wind turbine positions (randomp.; = 100).
It is expected that the superiority of SMAST will increase
even further for larger wind farms.

The reduction in total optimization time is estimated, as-
suming that the result regarding the number of multi-starts
for 279 wind turbines is similar for larger wind farms and that
the number of starts and iterations found using the faster IEA
37 setup can be combined with the iteration time from the
more realistic Horns Rev 1 setup. It was estimated that run-
ning one optimization with SMAST, AD, and flow case par-
allelization and without spacing constraints instead of 5000
optimizations with random initial layouts, the FD method,
spacing constraints, and top-level parallelization reduces the
total optimization time from around 300 years to 15.6 h while
increasing the AEP.

We suggest future works on large WFLO to explore the ef-
fect of constraint aggregation methods on iteration time and
the optimized AEP and to test the proposed approaches with
other optimizers and wind farm setups to generalize the re-
sults of this present work.
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Appendix A: Abbreviations and acronyms

AEP
AD
SMAST
GWEC
WFLO
GF

GA
PSO

RS
GBWFLO
L-BFGS
SNOPT
FDs

CS

GB

SA

IPM
SQP

SBG
SLSQP
OOB

Annual energy production
Algorithmic differentiation
Smart-Start

Global Wind Energy Council

Wind farm layout optimization
Gradient-free

Genetic algorithm

Particle swarm optimization

Random search

Gradient-based wind farm layout optimization
Limited-memory Broyden—Fletcher—Goldfarb—Shanno
Sparse Nonlinear OPTimizer

Finite differences

Complex step

Gradient-based

Simulated annealing

Interior point method

Sequential quadratic optimization
Bastankhah Gaussian

Simple Bastankhah Gaussian
Sequential least-squares programming
Out of boundaries
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Appendix B: Nomenclature

titer Time per iteration

Nmultistarts ~ Number of multi-starts

Niter The number of iterations until convergence

tiotal Total computational time for the GB approach

Nt The number of wind turbines in a wind farm

X Layout coordinate of the wind turbine in the x direction

y Layout coordinate of the wind turbine in the y direction

Cr Wind farm boundary constraint

k Integer number to represent the index of C and the turbine number
d Wind direction

u Wind speed

Ny Number of wind directions

N, Number of wind speeds

Py The power output of the wind farm given by the wind turbine coordinate vectors x and y
Pd.u The frequency of wind direction d and inflow wind speed u

R Wind farm radius

KU Upper-left coordinate that defines the parallelogram boundaries
xUR Upper-right coordinate that defines the parallelogram boundaries
KL Lower-left coordinate that defines the parallelogram boundaries
xR Lower-right coordinate that defines the parallelogram boundaries
Cr Thrust coefficient

WS bins Bins for the wind speeds
WD bins  Bins for the wind directions

L Vector of potential positions for wind turbines

Thest Points in £ with the highest AEP

)4 Point among tyeg

OOB Points out of the boundaries of the wind farm

P Wind turbine position vector

randomp,;  Level of randomness for layouts generated by SMAST

D Wind turbine diameter

AEPy, The upper bound of the AEP within a 99 % confidence interval

AEPy, The lower bound of the AEP within a 99 % confidence interval

m The number of chunks of the 10000 simulations with initial layouts randomly generated
AEPean The mean of all the maximum AEP values of each chunk m

o Standard deviation of the maximum AEP values of all chunks of size m
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Appendix C: Equations for gradient computations

Equation (C1) shows the FD generalized formula containing
all the high-order truncation terms for the forward difference.
Equation (C1) reduces to Eq. (C2) when considering only the
first-order truncation terms, where O (h) refers to the trunca-
tion error.

af  h*d*f

f(x)-i—h—-i-gg-i-

ha3f

—— ..., (C1
3! axj. D

f(x+h?j) =

where h represents the FD step size and €; is the unit vector
in the jth direction, as shown by Martins and Ning (2021).

of _ fethep=f@) oo ©
axj' h

where O(h) represents the truncation error.

Similarly to the FD method, for the CS method, Eq. (C3)
reduces to Eq. (C4) when disregarding higher-order trunca-
tion terms.

_ af  h? 32 n3 93
. Pox;
of _Im(f(x—i—lhej)) 2
_ij = + O0(h*) (C4)

Appendix D: Grid resolution

For the charts on the left in Figs. D1 and D2, the AEP is cal-
culated for a wind turbine with all potential positions, taking
into account wakes from the wind turbine(s) already added
(in black color). A new wind turbine (red) is added at the
best position. The chart on the right shows the final layout
provided by SMAST, where all 64 wind turbines have been
placed.
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Figure D4.
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Appendix E: Random parameter impact
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