

Aerodynamic optimization:

- Transition point between inner and outer blade section
- $\lambda_{d,outer}$ & $\lambda_{d,inner}$
- $a_{outer}(LW)$ & $a_{inner}(SW)$
- Twist offset $\xrightarrow{\text{influence on}}$ $a_{inner}(LW)$ & $\beta_{pitch}(v_{shift,end})$
- α_d (individually for each blade element)

designer in the loop

Eq. 1-4

$c(r)$ & $\beta(r)$

BEM

c_p, c_t, RBM
 $\rightarrow f(\beta, \lambda)$

Constrain RBM, optimize c_p

$v_{shift,start}, v_{shift,end}, v_{rated}$
Control schedule: $\beta, \lambda \rightarrow f(v)$

Weibull distribution,
Market value $\rightarrow f(v)$

AEP calculation

Check distribution:
Axial induction
AoA

AEP &
revenue

no

satisfied?

Explore influence on spec. rating (rotor radius)

Freeze: $c(r)$ & $\beta(r)$

designer in the loop

Aero-structural optimization (WISDEM, adjusted)

- Airfoil position (rel. thickness)
- Spar cap thickness

Constraints:

- Tip deflection
- Blade eigenfrequencies
- Strains in spar caps
- Stall margin

Objective: maximize COVE

Re-calculate
once
with new
airfoil
positions

SLSQP optimization

Tower and monopile optimization (WISDEM)

- Outer diameter
- Wall thickness

Constraints:

- material stresses
- shell buckling and global buckling
- eigenfrequency

Objective: Minimize combined structural mass of tower and monopile

Freeze rotor design

Freeze design

Aero-servo-elastic simulations (openFAST)

Selected DLCs for extreme loads