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3.2 Fractal dimension

This turbulent/non-turbulent interface is commonly de-
scribed by its fractal characteristics. Fractals were intensively
studied by Mandelbrot (1982) and became an object of inter-
est for the scientific community. To characterize a fractal its5

fractal dimension can be used.
An exemplary fractal curve, which corresponds to a

boundary in two-dimensional space, is given by a Koch curve
(Fig. 2). The scheme of construction is that from an interval
the center subinterval is replaced by two subintervals of the10

same size. From the resulting intervals, the center subinter-
vals are again replaced by two subintervals of the same size,
and so on to smaller and smaller intervals (increasing order
n). The result is a fractal boundary, which in this case is fol-
lowing a strict geometric law.15

The fractality, the fractal dimension, of this Koch curve
can be estimated by a box counting approach. To do so, boxes
with different edge length r are used and the amount of boxes
N(r) needed to cover the curve are counted. The fractal di-
mension Df can then determined by the slope of the relation20

N(r)∝ r−Df (1)

to 1.262 for the Koch curve (Sreenivasan and Meneveau,
1986).

Not always spatially high resolved data is available. Espe-25

cially atmospheric data is mostly only available by point wise
measurements. By Taylor’s hypothesis of frozen turbulence
(Taylor, 1938) this will give a one-dimensional slice through
a three dimensional field. However, by the additive rule of
co-dimensions for intersecting sets30

Df,3 =Df,2 +1 =Df,1 +2 (2)

the fractal dimension Df ,d in higher embedding dimensions
d can be estimated by data collected in a smaller embedding
dimensions (Mandelbrot, 1982; Sreenivasan and Meneveau,
1986).35
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Figure 2. Koch curve of the order n.
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Figure 3. Koch curve with one-dimensional slice and marked inter-
vals of crossings with the Koch curve (a). The corresponding inter-
vals give the Cantor set like plot (b).

Thereby, a simple way to estimate the fractal character-
istic of a boundary in three-dimensional or two-dimensional
space is to consider a one-dimensional slice (e.g. a point mea-
surement of the wind speed). Intervals on this slice with and
without a crossing of the boundary can be found (as indi- 40

cated in Fig. 3). The fractal dimension of this slice can be
estimated after Eq. 1 by the number of intervals N(r) on the
scale r needed to cover the boundary crossings. The result of
this box counting approach is Df,1 = 0.262 and after Eq. 2
gives the correct Df,2 = 1.262. 45

From this it becomes clear, that the fractal dimension of
higher dimensional fractals can be estimated from a one-
dimensional slice. Consequently, an adequate estimate of the
fractality of the TNTI in the atmosphere can be made by the
available single point measurements, which correspond to a 50

slice through a three-dimensional wind field.

3.3 Applied method

Typically, when applying methods to calculate the fractal di-
mension, the challenge lies in determining the interface us-
ing a threshold. Details on the herein applied method are dis- 55

cussed for the FINO1 site. A similar procedure as in de Silva
et al. (2013) is used to estimate the TNTI. To determine
the TNTI, the instantaneous turbulent kinetic energy (TKE)
is used to detect transitions between laminar and turbulent
phase. Subsequently, the just mentioned box counting ap- 60

proach is applied to characterize the TNTI by its fractality.
The instantaneous TKE is approximated by

E =
1

2
(u−umovavg)

2 (3)

with the moving averaged wind speed

umovavg =
1

Tfs

T/2∑
∆t=−T/2

u(t+∆t). (4) 65

Here the sampling frequency fs and the filter span T of 20 s
(for cup and propeller anemometer) and 90 s (for Lidar mea-
surements) are used.

For better comparison of different mean wind speeds, the
instantaneous TKE is normalized 70

Enorm = E/u2
movavg (5)


