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Abstract. The mid-Atlantic will experience rapid wind plant development due to its promising wind resource
located near large population centers. Wind turbines and wind plants create wakes, or regions of reduced wind
speed, that may negatively affect downwind turbines and plants. We evaluate wake variability and annual energy
production with the first yearlong modeling assessment using the Weather Research and Forecasting model,
deploying 12 MW turbines across the domain at a density of 3.14 MW km−2, matching the planned density
of 3 MW km−2. Using a series of simulations with no wind plants, one wind plant, and complete build-out of
lease areas, we calculate wake effects and distinguish the effect of wakes generated internally within one plant
from those generated externally between plants. We also provide a first step towards uncertainty quantification by
testing the amount of added turbulence kinetic energy (TKE) by 0 % and 100 %. We provide a sensitivity analysis
by additionally comparing 25 % and 50 % for a short case study period. The strongest wakes, propagating 55 km,
occur in summertime stable stratification, just when New England’s grid demand peaks in summer. The seasonal
variability of wakes in this offshore region is much stronger than the diurnal variability of wakes. Overall,
yearlong simulated wake impacts reduce power output by a range between 38.2 % and 34.1 % (for 0 %–100 %
added TKE). Internal wakes cause greater yearlong power losses, from 29.2 % to 25.7 %, compared to external
wakes, from 14.7 % to 13.4 %. The overall impact is different from the linear sum of internal wakes and external
wakes due to non-linear processes. Additional simulations quantify wake uncertainty by modifying the added
amount of turbulent kinetic energy from wind turbines, introducing power output variability of 3.8 %. Finally,
we compare annual energy production to New England grid demand and find that the lease areas can supply
58.8 % to 61.2 % of annual load. We note that the results of this assessment are not intended to make nor are they
suitable to make commercial judgments about specific wind projects.

1 Introduction

The US offshore wind industry is flourishing, with a tar-
get capacity of 30 GW by 2030 (FACT SHEET, 2023).
New England features the highest population density in the
United States and commensurate utility usage, making off-
shore wind an attractive regional electricity source. A total
of 27 active lease areas now span the mid-Atlantic Outer
Continental Shelf (OCS). The OCS features low turbulence

(Bodini et al., 2019) and fast winds, with 100 m winds av-
eraging 10 m s−1 (Musial et al., 2016). Consequently, large
wind plants will be constructed to harness the ample wind
resource.

Meteorological conditions and construction challenges
constrain siting options for large wind plants. Because the
average wind direction is southwesterly (Bodini et al., 2019),
a southwest-to-northeast wind plant orientation mitigates ex-
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ternal waking from neighboring plants. Further, preserving
efficient vessel transit, upholding common fishery practices,
and prioritizing safe Coast Guard search-and-rescue oper-
ations necessitate 1× 1 nm corridors (W.F. Baird & Asso-
ciates, 2019). Considering these constraints, wind plants will
be densely packed into clusters.

Densely packed clusters produce wakes that adversely af-
fect downwind turbines (Nygaard, 2014; Platis et al., 2018;
Lundquist et al., 2019; Schneemann et al., 2020). Wakes are
plumes downwind of turbines with slower wind speeds and
increased turbulence. Mid-Atlantic wakes induced by large
wind plants could impose wind speed deficits up to 2 m s−1

(Pryor et al., 2021; Golbazi et al., 2022). Wind speed deficits
can be replenished by wake recovery in which turbulence en-
trains momentum from aloft into the waked zone (Stevens
et al., 2016; Gupta and Baidya Roy, 2021). However, sta-
bly stratified conditions suppress mixing for wake recovery
(Fitch et al., 2013; Vanderwende et al., 2016; Porté-Agel
et al., 2020). Under certain conditions, mid-Atlantic wakes
could propagate 100 km or more (Pryor et al., 2021; Golbazi
et al., 2022; Stoelinga et al., 2022).

Wake characteristics have been evaluated using physics-
based models of varying complexity. High-fidelity meth-
ods include computational fluid dynamics models solving
Reynolds-averaged Navier–Stokes equations (Antonini et al.,
2020); large-eddy simulations resolving the turbine rotor as
an actuator disk (Mirocha et al., 2014; Aitken et al., 2014;
Shapiro et al., 2019; Arthur et al., 2020); and mesoscale
models parameterizing a hub-height momentum sink, some-
times including a turbulence source (Fitch et al., 2013; Volker
et al., 2015; Archer et al., 2020; Gupta and Baidya Roy,
2021), as reviewed by Fischereit et al. (2022). Pryor et
al. (2021) characterized mid-Atlantic wake impacts using
mesoscale modeling of 55 simulation days. They examined
modified wind plant layouts of 15 MW turbines under differ-
ent flow scenarios, considering power densities between 2.1
and 4.34 MW km−2. Stoelinga et al. (2022) estimated wake
impacts using 15 MW turbines and 16 simulation days under
typical southwesterly flow. Golbazi et al. (2022) considered
summertime wakes with three scales of turbines to consider
surface impacts. Finally, Rybchuk et al. (2022) addressed the
sensitivity to wake characteristics under idealized conditions
by varying planetary boundary layer (PBL) schemes.

In this work, we assess intra-plant and inter-plant
wakes throughout the mid-Atlantic OCS using a yearlong
mesoscale modeling study. The results of this assessment are
not intended to make nor are they suitable to make commer-
cial judgments about specific wind projects. The simulations
use the Weather Research and Forecasting (WRF) model
version 4.2.1 (Skamarock et al., 2019). One set of simula-
tions runs with no wind farms (NWF) as a control, validated
with lidar measurements, while the others use the Fitch wind
farm parameterization (WFP) (Fitch et al., 2012, with up-
dates described by Archer et al., 2020) to incorporate turbine
effects. Our simulations incorporate 12 MW turbines and a

power density of 3.14 MW km−2. Simulations employ dif-
ferent wind plant layouts, including one representative lease
area alone (ONE) within the Rhode Island–Massachusetts
(RIMA) block, all lease areas (LA), and the lease areas plus
the call areas (CA), to assess different waking scenarios (Ta-
ble 1). WFP simulations run separately by added turbulent
kinetic energy (TKE) amount, including 0 % added TKE
(TKE_0) and 100 % added TKE (TKE_100) to quantify the
full range of uncertainty. NWF, ONE, and LA simulations
run from 1 September 2019 to 1 September 2020 to cap-
ture a full year with available lidar measurement data. Due to
computational costs, CA simulations focus on the summer-
time stable period from 1 September to 31 October 2019 and
1 July to 31 August 2020 (Table 1). This time period high-
lights wake impacts during months with presumed frequent
stable stratification and high electricity demands (Livingston
and Lundquist, 2020) as a worst-case scenario.

The remainder of this article is structured as follows. Sec-
tion 2 introduces the model setup and configuration, model
validation, and the analysis methods. Section 3 discusses
variability in stratification, wakes, and power production.
Section 4 concludes the work and offers recommendations
for future work.

2 Methods

2.1 WRF modeling setup

We assess the effects of wakes and power production across
the mid-Atlantic OCS using numerical weather prediction
simulations with WRF version 4.2.1 and the WFP (Fitch et
al., 2012). Version 4.2.1 allows for modifying the amount of
TKE produced by wind turbines and ensures turbulence ad-
vection (Archer et al., 2020). Two nested domains comprise
6 and 2 km horizontal resolutions (Pronk et al., 2022; Xia et
al., 2022; Bodini et al., 2023; Redfern et al., 2023), respec-
tively, and the inner nest begins 20 grid cells into the par-
ent domain (Fig. 1). This same domain and period of study
have been used to explore interactions between power pro-
duction and sea breezes (Xia et al., 2022). Fine vertical res-
olution (10 m) near the surface stretches aloft, with 17 levels
within the lowest 200 m as recommended by Tomaszewski
and Lundquist (2020). We choose an 18 s time step in the
outer domain, 54 vertical levels, a 5000 Pa top, simple dif-
fusion, and damping 6000 m below the model top to prevent
gravity wave reflection. Hourly 30 km initial and boundary
conditions are provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) fifth-generation reanal-
ysis (ERA5) data set (Hersbach et al., 2020). Sea surface
temperature is provided by the UK Met Office Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA) data
set (Donlon et al., 2012). We choose the Noah land surface
model (Niu et al., 2011), the Mellor–Yamada–Nakanishi and
Niino level 2.5 PBL and surface layer (Nakanishi and Ni-
ino, 2006), new Thompson microphysics (Thompson et al.,
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Table 1. Summary of WRF simulations.

Simulation type Abbreviation Turbine type Period Added TKE amount No. of turbines

No wind farms NWF n/a Sep 2019–Sep 2020 n/a 0
One wind farm only ONE 12 MW Sep 2019–Sep 2020 0 % and 100 % 177
Lease areas LA 12 MW Sep 2019–Sep 2020 0 % and 100 % 1418
Call areas CA 12 MW Sep 2019–Nov 2019 100 % 3219

Jul 2020–Sep 2020

n/a: not applicable

2008), and the rapid radiative transfer model longwave and
shortwave radiative transfer (Iacono et al., 2008) schemes.
The Kain–Fritsch cumulus scheme parameterizes cloud mi-
crophysics in the outer domain only (Kain, 2004).

2.2 Wind turbine layouts

Wind turbines are sited within lease areas offshore of the US
East Coast (Fig. 1) as defined by the Bureau of Ocean Energy
Management (Bureau of Ocean Energy Management, 2023).
Following realistic deployment strategies, we site individual
turbines 1 nm, or 8.6 rotor diameters, apart and an additional
0.5 nm from lease area boundaries (W.F. Baird & Associates,
2019; Beiter et al., 2020; Walter Musial, personal communi-
cation, September 2020). This layout provides a power den-
sity of 3.14 MW km−2. Lower power densities in US waters
reflect wake concerns in Europe and the need to increase tur-
bine spacing for wake replenishment. Areas that had already
been approved for development are denoted as the lease ar-
eas. Areas where competitive interest was yet to be deter-
mined are denoted as the call areas. Both lease areas and call
areas are filled to spatial capacity with turbines (Fig. 1), rec-
ognizing renewable energy targets (218th Legislature, 2018).

2.3 Wind turbine characteristics

For our simulations, we parameterize 12 MW turbines which
are scaled by Beiter et al. (2020) from a 15 MW reference
turbine with a 138 m hub height and 215 m rotor diameter.
The power and thrust coefficient curves were held constant
from the 15 MW machine. The rotor diameter was scaled
to maintain a specific power of 332 W m−2, which is the
same as the reference 15 MW turbine. Then, the hub height
was determined such that a 30 m gap was maintained be-
tween the lower bound of the rotor tip and the sea sur-
face. No power is produced in region 1 of the power curve,
from 0 m s−1 to cut-in wind speed (3 m s−1). In region 2 of
the power curve, power production increases between cut-in
wind speed and rated speed (11 m s−1). In region 3, between
rated and cut-out wind speed (30 m s−1), an increase in wind
speed no longer yields additional power production (Beiter
et al., 2020) (Fig. 2a).

2.4 Wind farm parameterization

We use the WFP (Fitch et al., 2012) to incorporate the effects
of wind turbines on the 2 km grid. Horizontal wind speed re-
duction from turbine drag (Eq. 1), power production (Eq. 2),
and turbulence generation (Fitch et al., 2012; Archer et al.,
2020) (Eq. 3) are calculated in the WFP from the following:
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where i, j , and k represent Cartesian model coordinates;
CT
(
|V |ijk

)
is the wind-speed-dependent thrust coefficient;

|V | is the wind speed at turbine hub height; ρ is the air
density; Aijk is the rotor-swept area; Nij is the number
density of turbines in grid cell ij ; CP

(
|V |ijk

)
is the wind-

speed-dependent power coefficient; zk is the height of verti-
cal model level k; and CTKE is the fraction of energy con-
verted to TKE (Fitch et al., 2012). These values are calcu-
lated at each model level, as the use of a rotor-equivalent
wind speed generally exerts a minor effect (Redfern et al.,
2019).

The thrust and power coefficients (CT and CP, respec-
tively) vary with wind speed as defined by wind turbine man-
ufacturers (Fig. 2b). The thrust coefficient CT is the non-
dimensionalized thrust force exerted by wind on the rotor-
swept plane (Burton et al., 2011).

The power coefficient, CP, governs the fraction of rotor
kinetic energy converted into electrical power. This conver-
sion is not perfectly efficient due to electrical and mechanical
losses (Fitch et al., 2012; Archer et al., 2020). The leftover
fraction of energy (Eq. 4) from the difference between CT
and Cp is transformed into turbulence, CTKE.

CTKE = CT−CP (4)

Because electromechanical losses are not represented by the
WFP, all leftover energy converts to TKE, so the TKE may be
overestimated (Fitch et al., 2012; Archer et al., 2020). Some
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Figure 1. Simulation Domain 1 includes the entire region, and Simulation Domain 2 is outlined by the black rectangle. Each dot represents a
wind turbine. Wind energy lease areas are shown in gray and call areas in blue. The red square zooms in on the Rhode Island–Massachusetts
block of lease areas. The E05 (triangle) and E06 (diamond) floating lidars are shown in red. Atmospheric stratification is assessed at the red
X. Wake propagation distances are assessed along the dashed black lines.

Figure 2. Characteristics of the 12 MW scaled turbine used herein. (a) The power curve and (b) curves showing the thrust coefficients (CT;
dashed orange) and the power coefficients (CP; solid black) with wind speed across the x axis.

researchers suggest this TKE term is unnecessary (Volker et
al., 2015), although comparisons to large-eddy simulations
(Vanderwende et al., 2016) and observations (Siedersleben
et al., 2020) suggest the turbine-produced TKE is critical to
include. Any overestimation of TKE would enhance turbu-
lent mixing, thereby exaggerating turbulent transport of mo-
mentum that causes wake recovery and overestimating power
production. Therefore, Archer et al. (2020) propose reducing
CTKE to 25 %. For these simulations, we bound this uncer-

tainty by carrying out simulations with 100 % and 0 % added
TKE (Fig. A1). TKE advection is turned on.

2.5 Observations

We compared the NWF simulation to observations of off-
shore wind profiles. Two buoy-mounted meteorological
ocean observing systems, denoted E05 and E06, are located
within the Hudson North and Hudson South call areas of the
New York Bight (Fig. 3). Each buoy system samples line-of-
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sight boundary layer wind speed and wind direction using the
ZephIR ZX300M light detection and ranging (lidar) instru-
ment. The lidars are mounted 2 m above the sea surface and
take measurements at 20 m intervals up to 200 m, providing
10 min averages of wind speed and direction, which the New
York State Energy Research and Development Authority
(NYSERDA) has made publicly available (DNV, 2019). We
use floating lidar data to validate simulations for 1 Septem-
ber 2019 to 1 September 2020.

2.6 Stability classification

Different methods can be used to identify stratification, or at-
mospheric stability. Stable stratification can occur in coastal
regions when warm air advects over a cooler sea surface,
thereby suppressing buoyancy and turbulent mixing. Like-
wise, unstable stratification can occur when cool air advects
over a warmer sea surface. Some observations suggest more
frequent unstable stratification, based on the Obukhov length
(Archer et al., 2016). The sign of the Obukhov length de-
pends on the sign of heat flux and can be a useful metric for
determining stability conditions. Other observations suggest
that minimal turbulence and strong veer can be characteris-
tic of stable conditions (Bodini et al., 2019). Wind veer in-
creases in stable stratification as the influence of buoyant-
turbulence-induced friction decreases. Thus, winds turn to
approach quasi-geostrophic flow at a quicker rate, which can
be further exaggerated by the presence of a low-level jet.

We calculate the Obukhov length (Monin and Obukhov,
1954) (L), representative of the height at which buoyant pro-
duction of turbulence first dominates mechanical shear pro-
duction of turbulence:

L=−
u3
∗θv

κg
(
w′θ ′v

) , (5)

where u∗ is the friction velocity (UST from WRF output),
θv is the virtual potential temperature, κ is the von Karman
constant of 0.4, g is gravitational acceleration, andw′θ ′v is the
vertical turbulent heat flux (HFX from WRF output). Lengths
between 0 and −500 m are characterized as unstable strat-
ification, and lengths between 0 and 500 m are categorized
as stable stratification (Muñoz-Esparza et al., 2012). Lengths
approaching negative or positive infinity are neutral. Each
timestamp from the NWF run is assigned a stability for the
1 September 2019 to 1 September 2020 period at a grid point
centered on the RIMA block (Fig. 1).

2.7 Model validation

We validate the NWF model by comparing wind speed esti-
mated by the turbine-free simulations with observations from
E05 and E06 lidars. Model output is obtained from the grid
cells containing the lidars in 20 m intervals from 60 to 200 m
following Pronk et al. (2022). Wind speeds and directions

are compared using a suite of metrics recommended by Op-
tis et al. (2020) for wind resource assessment, including the
correlation coefficient (r), centered root-mean-square error
(cRMSE), and bias:

r =
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i (VWi
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NσWσL

, (6)
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))2
N

, (7)

Bias=

∑N
i

(
VWi
−VLi

)
N

, (8)

where V is the wind speed, N is the total number of values,
σ is the standard deviation, and subscripts “W” and “L” in-
dicate WRF and lidar, respectively. Earth mover’s distance
(EMD), or the Wasserstein metric, is calculated with a SciPy
function (Virtanen et al., 2020) as in other wind resource
evaluations (Hahmann et al., 2020). Each of these metrics
provides different insights into the performance of the model.
For instance, the correlation coefficient illuminates how well
the model captures the timing of weather systems and di-
urnal variability. EMD emphasizes the difference between
distributions but not the timing. Bias captures the difference
between measured and modeled values. Finally, cRMSE de-
scribes the random component of error.

The circularity of wind direction must be accounted for
in statistical calculations. For example, computing the aver-
age between 359 and 1°, using a typical arithmetic mean,
would result in 180°. However, the mean wind direction be-
tween those two values should be 360°. The SciPy (Virtanen
et al., 2020) and Astropy (Price-Whelan et al., 2022) Python
packages offer convenient functions which allow the user to
calculate statistics for a circular variable by passing in the
lower and upper bounds, in this case 0 and 360°. We calcu-
late the mean and standard deviation of wind direction us-
ing the SciPy circmean and circstd functions, respectively,
and the correlation coefficient using the Astropy circcorrcoef
function. The cRMSE for wind direction is then calculated
following

cRMSE=√
circmean

(
180°−

∣∣∣∣(DWi
−DW

)
−
(
DLi −DL

)∣∣− 180°
∣∣)2, (9)

where D is wind direction, and D is the circular mean of
wind direction. Bias is calculated similarly to Eq. (8), ex-
cept that differences between NWF and lidar values that are
less than−180° have 360° added and differences greater than
180° have 360° subtracted:

x =

{
x+ 360° for x <−180°
x− 360° for x > 180° , (10)

where x is the (DWRFi −DLidari ) difference.
Time stamps in which the lidar returns NaN values are re-

moved from WRF data sets during comparison (Table 2). Do-
ing so removes 8.1 % of wind speed data at 140 m at E05,
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Figure 3. Hub-height wind roses for the NYSERDA Hudson North (E05) and Hudson South (E06) floating lidars during the 1 Septem-
ber 2019 to 1 September 2020 period. The location of E06 is shown as the red diamond and E05 as the red triangle. The bottom row shows
wind roses segregated by atmospheric stratification.

Table 2. Percentage of data removed at 140 m due to not-a-number
(NaN) values.

Unstable Stable Neutral

E05 1.35 % 6.44 % 0.33 %
E06 3.64 % 9.48 % 0.62 %

made up by 1.22 %, 5.76 %, and 1.13 % in unstable, sta-
ble, and neutral stratification, respectively. Similarly, 13.7 %
of wind speed data are removed at E06 and are made up
by 3.20 %, 9.38 %, and 1.15 % in unstable, stable, and neu-
tral stratification, respectively. An r2 value of 1 indicates a
perfect correlation between NWF and lidar values. A value
of 0 for cRMSE indicates that all values, with model bias
removed, lie on the 1 : 1 regression line. A cRMSE value
greater than 0 indicates the distance of residual points from
the regression line. Negative biases indicate an underestima-
tion from WRF, while positive biases indicate overestima-
tion. A value of 0 for EMD indicates that probability density
functions from each data source are equivalent. A positive

EMD indicates that the NWF wind speed distribution must
shift towards lower values to match the lidar distribution.

NWF wind speed profiles are compared with lidar ob-
servations for the 1 September 2019 to 1 September 2020
period to assess model skill (Fig. 4). Note that Pronk et
al. (2022) provide validation metrics against the E05 lidar
profile during the same period of study and find similar re-
sults. Negative biases (Eq. 8) increase in magnitude with
height between 0 and −0.5 m s−1 (Fig. 4a), showing the
model underestimates the wind speed. Strengths of variation
(Eq. 6) among WRF output and the lidars range between
0.82 and 0.86 (Fig. 4b). Centered RMSE (Eq. 7) increases
with height around 2 m s−1 (Fig. 4c). Finally, EMD values
originate around 0.2 m s−1 at 60 m and increase with height
(Fig. 4d). Comparing lidars E05 and E06, WRF performs bet-
ter at E06 with a smaller bias by 0.04 m s−1, lower cRMSE
by 0.08 m s−1, better correlation by 0.003, and smaller EMD
by 0.05 m s−1.

We further assess the NWF performance, partitioned by
stability conditions. In unstable stratification, WRF wind
speeds have a negative bias that gradually increases in mag-
nitude with height from −0.5 m s−1 at 60 m (Fig. 5a). In sta-
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Figure 4. Vertical profiles for wind speed comparative metrics at the E05 (teal) and E06 (orange) lidars from 1 September 2019 to 1 Septem-
ber 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and (d) EMD.

ble conditions, WRF overestimates wind speeds by roughly
0.4 m s−1 at 60 m with biases approaching 0.0 m s−1 further
aloft (Fig. 5a). In neutral conditions, WRF overestimates
wind speeds by up to 0.3 m s−1 near the surface and underes-
timates wind speeds further aloft. Comparing between mean
E05 and E06 profiles, WRF performs better at the E06 lidar
location by 0.08 m s−1 in unstable conditions, 0.04 m s−1 in
stable conditions, and 0.1 m s−1 in neutral conditions.

NWF and lidar wind speeds correlate well. Correlation
remains the largest in unstable conditions for all heights
(Fig. 5b). The worst strength of relationship occurs in sta-
ble stratification, although there is improvement aloft, and by
160 m, correlation between stable and neutral conditions is
largely equivalent (Fig. 5b). On average, WRF performance
between lidar locations is the same in unstable and stable
conditions and better at E06 by 0.02 in neutral conditions.

Centered RMSE profiles change with stratification. In un-
stable conditions, cRMSE increases somewhat with height
originating from greater than 1.5 m s−1 at 60 m (Fig. 5c).
In stable stratification, the cRMSE profile begins at roughly
2.3 m s−1 at 60 m and increases with height. In neutral condi-
tions, cRMSE increases with height from around 2 m s−1. As
before, WRF performs better at E06. On average, cRMSE is
lower at E06 by 0.1 m s−1 in unstable conditions, by a negli-
gible amount in stable conditions, and by 0.1 m s−1 in neutral
conditions.

Earth mover’s distance has more variability with height. It
is the largest in unstable stratification, increasing with height
from roughly 0.5 m s−1 at 60 m (Fig. 5d). In stable condi-
tions, EMD decreases with height and originates at around
0.35 m s−1 at 60 m. In neutral stratification, EMD decreases
with height from about 0.2 m s−1. On average, WRF per-
forms better at E06 by 0.07 m s−1 in unstable conditions, by
0.04 m s−1 in stable conditions, and by 0.06 m s−1 in neutral
conditions.

Next, we show metrics to compare WRF output wind di-
rection profiles with lidar measurements. Bias is negative,
or counterclockwise, at both E05 and E06 lidar locations.
NWF output resolves wind directions better at E06 with
a mean bias of −7.8° with height as compared to −11.1°
at E05 (Fig. 6a). Correlation coefficients at both locations
are strong, at 0.83 and 0.82 for E06 and E05, respectively
(Fig. 6b). Mean cRMSE (Eq. 9) is similar between lidar loca-
tions, at 5.9 and 6.2° for E06 and E05, respectively (Fig. 6c).
Finally, EMD is lower at E06, increasing with height with
an average of 3.3° (Fig. 6d). EMD is larger at E05, increas-
ing with height with an average of 4.8° (Fig. 6d). Overall,
WRF performs better at E06 with lower absolute bias by 3.3°,
lower RMSE by 0.3°, higher correlation by 0.01, and lower
EMD by 1.48°.

We use the same metrics to validate WRF against lidar-
reported wind directions by stratification and begin with bias
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Figure 5. Vertical profiles for wind speed comparative metrics at the E05 (teal) and E06 (orange) lidar locations subset by stratification (US
– unstable, ST – stable, NT – neutral) from 1 September 2019 to 1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and
(d) EMD.

Figure 6. Vertical profiles for wind direction comparative metrics at the E05 (blue) and E06 (red) lidar locations from 1 September 2019 to
1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and (d) EMD.
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Figure 7. Vertical profiles for wind direction comparative metrics at the E05 (blue) and E06 (red) lidar locations subset by stratification (US
– unstable, ST – stable, NT – neutral) from 1 September 2019 to 1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and
(d) EMD.

(Fig. 7a). In unstable conditions, mean biases are −7.4° at
E06 and −11.5° at E05. In stable stratification, bias profiles
are more similar between lidar locations, reaching −8.6° at
E06 and −10.7° at E05. Bias is the smallest in neutral con-
ditions at both locations, with mean values of −6.8° at E06
and −10.2° at E05. Overall, WRF performs better at the E06
lidar location by 4.1° in unstable conditions and by 2.0° in
stable conditions and better at the E05 lidar location by 3.4°
in neutral conditions.

The correlation between WRF-derived lidar-measured
wind directions is strong in all stability conditions at both
lidar locations (Fig. 7b). The strength of relation in unstable
conditions is 0.85 at E06 and 0.81 at E05. In stable condi-
tions, the mean correlation is 0.75 at both E06 and E05. In
neutral conditions, the strengths of relation are 0.81 at E06
and 0.83 at E05. Overall, WRF performs better at E06 by
0.03° in unstable conditions and by 0.003° in stable condi-
tions and better at E05 by 0.01° in neutral conditions.

Profiles for cRMSE are similar in unstable and stable
conditions, with worse performance in neutral conditions
(Fig. 7c). In both unstable and stable conditions, mean
cRMSE is 5.9° at both E05 and E06. In neutral conditions,
mean cRMSE is 7.5° at E06 and 7.0° at E05. WRF performs
the same at both lidar locations in unstable and stable condi-
tions and is better at E05 by 0.4° in neutral conditions.

Large variability exists for EMD between lidar locations
in WRF (Fig. 7d). Unstable stratification features the largest
spread between lidar locations, with EMD values of 3.5° at

E06 and 10.4° at E05. In stable conditions, EMD is 7.0° at
E06 and 7.9° at E05. In neutral stratification, mean EMD
values are 5.7° at E06 and 6.4° at E05. On average, WRF
performs the best at the E06 lidar location: 6.9° in unstable
conditions, 0.8° in stable conditions, and 0.7° in neutral con-
ditions.

Wind speed time series are collected and averaged for the
full yearlong period from the grid cells housing lidars E05
and E06 in NWF and from the lidar measurements. The shear
exponent is calculated as

a =
log(V2)− log(V1)
log(z2)− log(z1)

, (11)

where V1 and V2 are the mean wind speeds at heights z1 and
z2, respectively. We hold V1 and z1 constant at a reference
height of 60 m and substitute V2 and z2 with values from 80
to 200 m at 20 m intervals.

Wind speed shear exponents (Eq. 11) differ between NWF
and the lidar measurements. The average exponents from li-
dars E05 and E06 are 0.117 and 0.122, respectively, and are
in good agreement with the annual average of 0.12 for both
measured and modeled results in the mid-Atlantic (Viselli et
al., 2018). The average exponents from WRF at grid cells
housing E05 and E06 are 0.099 and 0.106, respectively.
NWF-derived exponents correctly capture a decrease with
height and lower coefficients at the E05 lidar. However, the
exponents are smaller than those calculated from lidar mea-
surements by −0.018 and −0.016 at E05 and E06, respec-
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Figure 8. Mean wind speed shear exponent by height from NWF
(solid) and from lidar measurements (dashed) from 1 Septem-
ber 2019 to 1 September 2020. E05 is shown in blue, and E06 is
shown in orange.

tively. Smaller exponents in NWF may result from overesti-
mated mixing or misrepresentation of wave-induced rough-
ness.

We calculate profiles of the Perkins skill score (PSS)
(Perkins et al., 2007) between NWF and lidar wind speeds.
Wind speeds are considered at 20 m height intervals from 20
to 200 m. Each wind speed time series is subset by all time
stamps with unstable, stable, and neutral stratification. After
subsetting, time stamps where lidar observations return NaN
are removed from both lidar and NWF time series. At each
height, the probability distribution functions of wind speeds
are binned at 0.2 m s−1 intervals and normalized such that the
frequencies add to unity. The minimum frequency between
modeled and observed values for each bin is stored, and the
resulting stored values are summed to calculate the following
score:

PSS=
n∑
i=1

min(CW (z) ,CL (z)) , (12)

where n is the number of bins, C is the count of normalized
values in a bin, and z is the height. A PSS of 1.0 suggests
perfect overlap of the two distributions.

Profiles of PSS (Eq. 12) between NWF and lidar observa-
tions of wind speed vary by location and stratification. Per-
formance is generally best in unstable conditions at both E05
and E06 lidar locations with a mean value of 0.93. Perfor-
mance is the second best in stable conditions, starting around
0.90 at the surface and increasing to 0.93 at 120 m at E05.
At E06 in stable conditions, PSS reaches a maximum value
of 0.93 at 100 m. Neutral conditions exhibit worse PSS and
larger spread by location. AT E05, PSS minimizes at 0.85
at 160 m and maximizes around 0.88 at 60 m. At E06, PSS
scores minimize at 0.87 at 80 m and maximize at 0.89 at
140 m.

Figure 9. Vertical profiles of the Perkins skill score by stratification
at the E05 (teal) and E06 (orange) lidars subset by stratification (US
– unstable, ST – stable, NT – neutral).

2.8 Wake identification

The wake delineates the region downwind of turbines with a
velocity deficit and turbulence enhancement. We identify the
wind speed wake deficit by subtracting NWF wind speeds
from WFP wind speeds at the hub height. Averaging across
all times during the 1 September 2019 to 1 September 2020
period identifies the overall mean wake wind speed. Because
wakes typically propagate to the northeast during stable con-
ditions (Fig. 3), we calculate the propagation distance of
wakes along a line extending northeast of the RIMA block
(Fig. 1) and report the distance along the line where wake
wind speeds reach a threshold. In unstable conditions the
prevailing wind direction is northwesterly (Fig. 3), so we as-
sess the wake propagation distance to the southeast instead.
The threshold of −0.5 m s−1 is chosen following Golbazi et
al. (2022) and Rybchuk et al. (2022). Finally, we define the
areal extent of wakes as the area with a wind speed deficit
less than −0.5 m s−1.

2.9 Grid balancing

We compare model output energy production to New
England grid demand. Demand data are provided hourly
(NEISO, 2019). For comparison, we compute hourly aver-
ages of WFP power production from each set of simulations.
We compare those averages to the national energy supply by
acquiring the total from the U.S. Energy Information Admin-
istration (EIA, 2023).
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2.10 Power variability

Assessing power variability is essential for addressing tem-
porally changing grid demands. We assess the differences in
electricity generation for each deployment scenario by sep-
arately collecting power output from grid cells containing
wind turbines from ONE, LA, and CA simulations. Power is
summed across grid cells containing turbines and averaged at
1, 7, and 30 d intervals for comparison. We address seasonal
and diurnal variability by further separating and averaging
power production totals at each time step into bins by month
and hour of day. Power losses from the total, internal, and
external wake effects are calculated from the following:

Losstot = 100%−
(
PLA,CA

PNWF

)
× 100%, (13)

Lossint = 100%−
(
PONE

PNWF

)
× 100%, (14)

Lossext = 100%−
(
PLA,CA

PONE

)
× 100%, (15)

Lossext = Losstot−Lossint, (16)

where PLA,CA is the power production at ONE grid cells in
the presence of wakes by either the LA or the CA, PONE is
the power production in the presence of internal wakes from
ONE, and PNWF is the power production from coupling hub-
height wind speeds to the power curve. These methods are
performed separately by added TKE amount. We note that
the upwind conditions change in a LA or CA scenario due
to external wakes, which can modify the internal losses in
the numerator of Eq. (15). Thus, we provide an alternative
method for calculating the external power losses as the dif-
ference between the total losses and the internal losses in
Eq. (16).

Cluster-induced power deficits at ONE occur due to exter-
nal wakes from the upwind lease and call areas. Power output
from ONE, LA, and CA simulations are averaged in hourly
windows at grid cells containing ONE turbines to reduce the
effects of numerical noise (Appendix F). The resulting power
averages from LA and CA simulations are divided by the av-
erages from ONE at each time stamp. The hour of day and
month of year categorize each time stamp, and percentages
are placed into bins accordingly. Within each bin the percent-
ages are averaged. Only power production totals greater than
9.9 MW are considered when calculating power losses. This
threshold represents the power production total when all tur-
bines within ONE begin operating at the cut-in wind speed.
For reference, the total power production for ONE at rated
power is 2124 MW. This method is repeated separately for
TKE_0 and TKE_100 runs.

Individual wind turbines generate internal wakes within
the ONE plant that adversely affect power production. To
quantify internal wake effects at ONE, we collect NWF wind
speeds at the hub height in each cell containing ONE tur-
bines. Wind speeds are convolved with the power curve and

Figure 10. Stability classification using the Obukhov length for the
1 September 2019 to 1 September 2020 period at the RIMA block
from NWF. The tan crosshatch represents neutral stratification, teal
horizontal lines are stable stratification, and red vertical lines are
unstable stratification.

scaled by the number of turbines per cell at 0.01 m s−1 in-
tervals. This method returns the amount of power that ONE
would produce in the absence of wakes. Hourly power aver-
ages are obtained from both NWF and ONE runs and consid-
ered only if power production exceeds 9.9 MW. ONE power
totals are divided by the NWF power estimations from the
power curve. Again, each time stamp is categorized by hour
of day and month of year, and percentages are binned for
averaging. These steps are repeated for both TKE_0 and
TKE_100 runs.

3 Results

3.1 Year-round NWF stratification

The predominance of NWF stability conditions changes
throughout the year (Figs. 10, 11) as assessed using the
Obukhov length (Eq. 5) centered on the RIMA block.

The winter features predominant unstable stratification,
whereas the summer features frequent stable stratification
(Bodini et al., 2019; Optis et al., 2020) (Figs. 10, 11). The
strong stability in summer is caused by nearby surface-
heated air advecting over the colder OCS. These dynamics
reverse during winter when cold air from land advects over
warmer water. Overall, stratification is most frequently unsta-
ble during November and stable during June. April features
the greatest percentage of neutral conditions as the spring-
time transition from cooler to warmer air reduces the air–
sea temperature gradient. The same pattern occurs elsewhere
throughout the OCS because diurnal variability in stratifica-
tion is weaker than the seasonal cycle (Fig. 11). The mean
unstable, stable, and neutral percentages of occurrence at the
RIMA block are 44.3 %, 44.4 %, and 11.2 %, respectively, for
the 1 September 2019 to 1 September 2020 period. Stability
calculations from the model grid cells that house lidars E05
and E06 reveal similar results (Fig. B1). However, Lmay not
always represent conditions aloft (Fig. C1).
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Figure 11. Percentages of occurrence for (a) unstable stratification, (b) stable stratification, and (c) neutral stratification from 1 Septem-
ber 2019 to 1 September 2020.

3.2 Wake variability

Here, we categorize wakes by the maximum wind speed
deficit in space, the spatial extent, and the downwind prop-
agation distance. While wakes remain relatively unchanged
between TKE_0 and TKE_100, they drastically vary by strat-
ification. The maximum average wake wind speed deficit oc-
curs within the wind plant areas and intensifies from −1.5
to−2.8 m s−1, moving from unstable to stable conditions for
TKE_100 (Fig. 12a, c). Normalized with mean NWF hub-
height wind speeds of 9.2 m s−1 (unstable) and 11.2 m s−1

(stable), the corresponding mean wind speed deficits are
16 % and 25 %. Similarly, the maximum average wind speed
deficit intensifies from −1.8 to −3.1 m s−1, a normalized re-
duction of 19 % and 27 %, moving from unstable to stable
at TKE_0 (Fig. 12b, d). Thus, reducing TKE from 100 % to
0 % has a smaller impact on wake strength than increasing
stability.

The areal extent of wakes changes by stability and added
TKE. Wake deficits stronger than the −0.5 m s−1 cutoff in
unstable stratification at TKE_100 (Fig. 12a) cover a to-
tal area of 7208 km2 and represent the best-case scenario
where wakes impact the smallest area. In stable stratifi-
cation at TKE_100 (Fig. 12c), wakes cover a larger area
of 15 948 km2, or 2.2 times larger. A similar increase oc-
curs using TKE_0, although areal coverage of the wake
is larger due to weaker turbulence-induced wind speed re-
plenishment from aloft. At TKE_0 in unstable conditions
(Fig. 12b), wakes stronger than −0.5 m s−1 cover an area
of 7780 km2. In stable stratification, the area increases to
15 636 km2 (Fig. 12d), a factor of 2. The spatial extent of
strong wakes spreading furthest throughout the region, rep-
resenting the worst-case scenario, occurs in stable conditions

at TKE_100. Wakes interact between immediate wind plant
neighbors for all scenarios.

Stratification exerts a stronger effect on wake propaga-
tion distance than TKE does. For instance, wakes extend-
ing 3.7 km downwind in unstable conditions reach 55.4 km
in stable conditions at TKE_100 (Fig. 12a, c), similar to
the estimate of 50 km from Golbazi et al. (2022). Likewise,
wake deficits reaching 5.9 km downwind in unstable strat-
ification reach 55.4 km downwind in stable stratification at
TKE_0 (Fig. 12b, d). The same pattern exists for CA wakes
(Fig. D1). Overall, altering the added TKE amount has a
small impact on the propagation distance of wakes relative to
stratification, and combining stable stratification with TKE_0
results in the strongest wakes.

Yearly averaged wakes show similar trends with TKE and
stability (Table 4). The maximum wake strength intensifies
from −2.2 to −2.5 m s−1 moving from TKE_100 to TKE_0
(Fig. 12e, f). Reducing TKE also increases the spatial cover-
age of wakes from 13 040 km2 using TKE_100 (Fig. 12e) to
13 268 km2 using TKE_0 (Fig. 12f). Downwind propagation
distances remain similar over the yearlong period with wakes
reaching 43.4 km at TKE_100 and 41.3 km at TKE_0.

Reduced TKE limits turbulence-induced momentum
transport from aloft, thereby increasing wake strength. Coun-
terintuitively, longer-lasting wakes in TKE_100 develop
from a larger reduction in momentum from wake recovery
above the turbines (Fitch et al., 2012; Siedersleben et al.,
2020), leaving less momentum available for replenishment
downwind.
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Table 3. Wake wind speed reduction by stratification and TKE amount.

Unstable TKE_100 Stable TKE_100 Unstable TKE_0 Stable TKE_0

Wind speed deficit −1.5 m s−1
−2.8 m s−1

−1.8 m s−1
−3.1 m s−1

Normalized deficit 16 % 25 % 19 % 27 %

Figure 12. Average wake wind speeds among the lease areas during (a, b) unstable stratification, (c, d) stable stratification, and (e, f) the
full 1 September 2019 to 1 September 2020 period. Wakes are simulated with 100 % added TKE (a, c, e) or 0 % added TKE (b, d, f). Wind
speed deficits are shown by the colored contouring, and turbines are shown as the black dots. The −0.5 m s−1 threshold is outlined by the
dashed black line.

3.3 Power deficits

3.3.1 External wake losses

ONE experiences power deficits due to external wakes from
the LA and the CA. Considering external wakes from the
LA at TKE_0 (Eq. 15), the average yearlong power deficit
at ONE is 14.7 % (Fig. 13a) and increases to 15.7 % con-
sidering only the 4 stable CA months. When ONE is waked
by the LA at TKE_100, the average yearlong power deficit

reduces to 13.4 % (Fig. 13b) because increased turbulence
supports faster replenishment. During the 4 months only, the
deficit is 14.4 %. When incorporating wakes from the CA (at
TKE_100), the mean ONE power deficit (over 4 months) is
14.3 % (Fig. 13c). By calculating the external power losses as
the difference between total and internal losses (Eq. 16) in-
stead, the deficits are 8.97 % and 8.43 % for the LA at TKE_0
and TKE_100, respectively. However, power losses vary as
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Table 4. The wake wind speed deficit, spatial extent, and downwind propagation distance by added TKE amount.

Wind speed deficit Spatial extent Propagation distance

TKE_100 −2.2 m s−1 13 040 km2 43.4 km
TKE_0 −2.5 m s−1 13 268 km2 41.3 km

Figure 13. The power deficit at ONE when waked by (a) the LA at TKE_0, (b) the LA at TKE_100, and (c) the CA at TKE_100. The white
space reflects the simulation period. The color bar is broad to facilitate comparison with losses in Fig. 14.

larger reductions from external wakes occur during summer,
whereas smaller reductions occur during winter.

External wake-induced losses vary both diurnally and sea-
sonally. Larger power deficits occur more often during sum-
mer due to stable stratification (Figs. 10, 11a). Smaller power
deficits occur during winter (Fig. 13), with faster winds that
exceed rated wind speed and unstable conditions that erode
wakes faster. Larger power deficits correspond with stable
stratification in June and July. Conversely, smaller power
deficits occur with unstable stratification throughout Novem-
ber and December. These patterns occur because colder air
advects over warmer water in winter, which causes unsta-
ble conditions that erode wakes faster. Conversely, warmer
air advects over colder water during the summer, inducing
stable conditions that limit turbulent wake recovery. While
wake-induced losses vary somewhat across the diurnal cy-
cle, there is no discernible pattern. The ocean’s large heat
capacity suppresses daytime heating, which limits changes
in stratification and, by extension, the magnitude of changes
in wake losses.

3.3.2 Internal wake losses

Internal power deficits (Eq. 14) at ONE are at least 25 %
stronger than externally induced power deficits but expe-
rience similar variability with stability and TKE amount
(Fig. 14). Internal waking induces weaker deficits during

winter and stronger deficits during summer. As with exter-
nal wakes, a clear diurnal pattern fails to emerge. Yearlong
internal wakes from TKE_0 and TKE_100 induce power
losses of 29.2 % and 25.7 %, respectively. During the 4 stable
months only, the deficits increase to 36.9 % and 32.9 %, re-
spectively. Using different PBL schemes with similar turbine
spacing under steady-state idealized conditions, Rybchuk et
al. (2022) find similar internal losses to capacity factor, up to
31.6 %.

The average yearlong power deficits (Eq. 13) at ONE
considering internal wakes and external wakes from the
LA range between 38.2 % (TKE_0) and 34.1 % (TKE_100).
These results concur with wake-induced losses found by
Pryor et al. (2021) of 35.3 % among the LA, based on 11 pe-
riods of different flow scenarios spanning 5 d. Observations
of wake-induced power losses have large variability over the
year, ranging from as low as 5 % to as high as 40 % (Lee and
Fields, 2021). Overall, external wakes produce yearly aver-
aged power losses of 14.1 %, whereas internal wakes induce
larger losses of 27.4 %. Thus, we stress the importance of re-
solving region-specific and time-varying wakes for accurate
energy prediction estimates.

3.4 Annual energy production

Predictions of energy supply are critical for planning, op-
erations, and diversification of renewables. Without internal
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Figure 14. The percentage of power loss at ONE from internal wakes at (a) TKE_0 and (b) TKE_100.

or external wake effects, ONE would produce 11.61 TW h
and meet 10.02 % of New England’s average demand. An-
nual energy production (AEP) from ONE, considering just
internal wakes, reduces to 9.19 TW h (TKE_0) or 9.55 TW h
(TKE_100), which could meet 7.94 % to 8.24 % of New Eng-
land’s demand. Including both internal and external wakes
from the LA, ONE would produce 8.19 TW h (TKE_0) or
8.65 TW h (TKE_100), meeting 7.07 % to 7.47 % of demand.

Increasing the number of wind turbines increases the de-
mand fulfilled; AEP from the LA is 68.12 TW h (TKE_0)
or 70.9 TW h (TKE_100), supplying 58.82 % to 61.22 % of
New England’s demand. On an hourly basis, the LAs ful-
fill demand only 24.6 % (TKE_0) and 26.5 % (TKE_100)
of the time, highlighting the necessity for resolving accu-
rate wake losses across the OCS. Previous work (Livingston
and Lundquist, 2020) assuming a constant 20 % wake loss,
shown here to be underestimated, has suggested that 2000
turbines of 10 MW could meet New England’s demand 37 %
of the time. All in all, the LA, with 1418 turbines of 12 MW,
supplies 68 and 71 TW h yr−1, or 1.72 % (TKE_0) to 1.65 %
(TKE_100) of the nation’s energy supply.

3.5 Power variability by TKE amount

3.5.1 Temporal power variability

While differences in wake strength between TKE amounts
alter power production, wind speed exerts a larger influence.
Maximum power is produced during spring with the least
amount of power produced during summer (Fig. 15a) for
both TKE_0 and TKE_100 because spring features faster
wind speeds (Fig. 15b). Power production responds to hub-
height wind speeds (Fig. 15) more than stability conditions
(Figs. 10, 11). Reduced power production during summer

may be problematic as New England’s top-10 utility demand
days since 1997 have all occurred in July or August (NEISO,
2023).

Total power production varies slightly between TKE_100
and TKE_0. Due to weaker replenishment within the rotor-
swept area, TKE_0 wakes are stronger, so TKE_0 produces
less total power than TKE_100 (Fig. 15a). Over the year,
TKE_0 runs produce 96.2 % (ONE) and 96.1 % (LA) of the
power of TKE_100. This difference does not arise from ex-
treme outliers, as TKE_0 runs produce less power more fre-
quently, at 71.3 % (ONE) or 81.2 % (LA) of the time.

3.5.2 Power variability by wind speed

Differences in power production (TKE_100 − TKE_0) vary
by NWF hub-height wind speed (Fig. 16). These differences
are small at slow wind speeds because little momentum is
available for wake recovery and at faster wind speeds within
region 3 of the power curve (11–30 m s−1) where wind speed
changes do not affect power production (Fig. 2a). Differences
in wind speed within region 3 should have no effect on power
production and are caused by numerical noise propagating
through wind plant areas (Fig. F1). The largest differences in
power production occur in region 2 and around rated wind
speed where the power curve is steep (Figs. 2a, 16). Addi-
tionally, large differences in power production can occur in
specific meteorological conditions such as frontal propaga-
tion.

Comparison of power production between TKE amounts
by other meteorological variables lacked significant trends.
For example, we additionally analyzed differences in power
production by wind direction, following the hypothesis that
northerly wind directions could transport more turbulence
offshore because land has a higher roughness length than the
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Figure 15. (a) Total power production at ONE by TKE amount. TKE_100 power output is shown in orange and TKE_0 output in teal.
(b) Hub-height NWF wind speed at a point centered on the RIMA block. The dotted lines represent the daily average, dashed lines the 7 d
average, and solid lines the 30 d average.

Figure 16. The difference in power production (TKE_100-TKE_0)
at ONE as a function of wind speed. The colored contouring depicts
the density of scattered points per pixel. Wind speeds are obtained
every 10 m from a point centered on ONE at hub height.

ocean. TKE_100 runs may harness this mechanical turbu-
lence more for wake replenishment. Analysis of differences
in power production by PBL height also failed to show sig-
nificant patterns. We assumed that higher PBL heights indi-
cated a greater reservoir of turbulence from which TKE_100
runs could replenish the wake, resulting in greater power pro-
duction. Further analysis concluded by comparing power dif-

ferences with the aforementioned variables’ rates of change.
However, we reached the same conclusions, as higher den-
sities of scattered points existed around frequently occurring
conditions such as southwesterly wind directions.

Wake strength varies spatiotemporally between TKE_0
and TKE_100 runs. While the mean difference in wind speed
at hub height between TKE_100 and TKE_0 runs indicates
that TKE_0 produces stronger wakes, this averaging may ob-
scure the actual spatiotemporal variability. For example, a
wind plant may have greater TKE_100 wake wind speeds,
while its nearby neighbor has greater TKE_0 wake wind
speeds at the same point in time. Additionally, a specific wind
plant may not consistently produce stronger wakes under one
TKE setting. A wind plant may fluctuate between producing
stronger wakes in TKE_100 runs and TKE_0 runs through-
out time. This finding suggests that other boundary layer dy-
namics play a role in wake strength, and the variability of
power production must be explored.

We note that wind speed and numerical noise are not the
only contributors to power differences. One case study anal-
ysis shows that TKE_0 and TKE_100 separately produce
more power within respective 99th percentiles over a short
period of time in September (Fig. 17c). Investigation reveals
that a cold front propagated through the ONE wind plant
from the northwest to the southeast during this period. The
cold front is identified by a lenticular band of upward verti-
cal motion at the frontal head followed by turbulent vertical
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Figure 17. Propagation of a cold front through the ONE wind plant. (a) NWF vertical wind speed is shown as the colored contour with
upward vertical velocities in greens and downward vertical velocities in purples. (b) NWF potential temperature is shown with lower tem-
peratures in blues and higher temperatures in reds. In both (a) and (b), the black dots indicate wind turbine locations in ONE TKE_0 and
TKE_100. (c) The difference in power production between TKE_100 and TKE_0 is shown in MW, with positive values indicating that
TKE_100 produces more power.

motion (Fig. 17a) in addition to advection of lower potential
temperatures (Fig. 17c). As the cold front approaches, more
power is produced by the TKE_100 simulation and is within
the 99th percentile. When the frontal head first interacts
with Vineyard Wind, more power is produced by the TKE_0
simulation and is within the 99th percentile. Conversely,
TKE_100 produces more power following the frontal head.
Frontal propagation can induce Kelvin–Helmholtz instabili-
ties, the turbulence of which may aid wake recovery by verti-
cally mixing momentum (Jiang, 2021). Increased turbulence
in the TKE_100 simulation can harness more downward ver-
tical transport of momentum from Kelvin–Helmholtz insta-
bilities aft of the frontal head, increase wake replenishment,
and produce more power.

4 Conclusions

This modeling study assesses the variability of wake effects
across the mid-Atlantic OCS based on yearlong simulations,
including a first step towards uncertainty quantification and
approaches for distinguishing internal and external wake ef-
fects. In addition to a simulation without wind plants (NWF),
validated by comparison to floating lidar observations, three
wind plant layouts are explored, including a representative
wind plant alone (ONE), all lease areas (LA), and the lease
areas plus the call areas (CA). Modifying the added TKE
amount (TKE_0 or TKE_100) by turbines provides uncer-
tainty quantification in power production estimates.

The OCS is characterized by more frequent unstable strat-
ification during winter and stable stratification during sum-
mer (Bodini et al., 2019; Optis et al., 2020; Debnath et al.,
2021). In stable conditions, wakes are stronger and propa-
gate further downwind, (Fitch et al., 2013; Vanderwende et
al., 2016; Porté-Agel et al., 2020). In the worst-case sce-

nario where downwind wake recovery diminishes during sta-
ble stratification, mean wakes propagate 55 km downwind.
While wakes may not reach downwind clusters on average,
inter-cluster waking occurs intermittently. While TKE_0 pro-
duces stronger wakes than TKE_100, the downwind propa-
gation distances do not differ.

Reduced wake wind speeds, as compared to the NWF
simulation, affect power production. Yearly averaged wake
losses induce power deficits at ONE from 38.2 % (TKE_0)
to 34.1 % (TKE_100). This deficit comprises both internal
and external waking. External wakes induce yearly aver-
aged power losses of 14.7 % (TKE_0) or 13.4 % (TKE_100),
whereas wakes from the CA induce similar losses of 14.3 %
over 4 months. Using an alternative method, external wakes
induce losses of 8.97 % and 8.43 % for the LA at TKE_0
and TKE_100, respectively. Internal wakes at ONE pro-
mote larger power losses of 29.2 % (TKE_0) or 25.7 %
(TKE_100). Wake-induced power losses vary seasonally
with smaller diurnal variability. Larger power deficits occur
during summer, where frequent stable conditions limit wake
erosion. Although upwind clusters may generate strong ex-
ternal wakes among the LA, wind plant orientation with re-
spect to prevailing winds can reduce adverse impacts from
nearby neighbors. Ample distance for replenishment of ex-
ternal wakes by the CA moderates the negative effects. In-
ternal wake losses remain larger due to shorter distances
with limited wake recovery. Both external and internal wake-
induced losses grow in summer stably stratified conditions.
These losses similarly increase in strength for TKE_0 simu-
lations from inhibited recovery.

Resolving precise wake losses and AEP are crucial for
stakeholders and grid operators. In the absence of wakes,
ONE could supply 10.02 % of New England’s demand. Op-
erating alone, ONE’s supply reduces to 7.94 % (TKE_0) or
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8.24 % (TKE_100). Adding external wakes from the LA,
ONE’s annual supply lessens to 7.07 % (TKE_0) or 7.47 %
(TKE_100). Although wakes are stronger among the LA, the
greater number of turbines can meet 58.82 % (TKE_0) and
61.22 % (TKE_100) of New England’s demand, or roughly
1.72 % and 1.65 % of national demand. However, the LA
only satisfies demand about 25 % of the time on an hourly
basis. Overall, spring features maximum power production
with the fastest hub-height wind speeds. Wind speeds are
slower in summer, reducing power production during July
and August, which have featured New England’s top-10 util-
ity demand days since 1997 (NEISO, 2023).

Variable TKE amounts marginally impact power gener-
ation. TKE_0 simulations average 3.8 % less production
than TKE_100 throughout the year, as reduced turbulence
in TKE_0 limits momentum transport into the waked zone.
Although differences in power production are small, both
simulations exhibit large variability at short temporal peri-
ods. Improving WFP accuracy by accounting for wind shear
throughout the rotor-swept region (Redfern et al., 2019) and
dynamic air density may increase the variability in power
production further (Wu et al., 2022). Further, different sizes
of turbines may be installed in some of these regions, and the
size of the turbine can influence the impacts of the turbine
(Golbazi et al., 2022).

Future wind resource assessments may neglect differences
between TKE_0 and TKE_100 because the power produc-
tion offset is minor, although we identify a strong outlier dur-
ing a frontal passage when differences in power production
between TKE_100 and TKE_0 are large. While power pro-
duction differences are minor, effects on other atmospheric
variables may be more significant (Fig. A1). Variability may
be influenced by other meteorological conditions. Successive
analyses should consider yearlong CA simulations to iden-
tify the full range of external wake impacts. Although we
infer that the effects of CA wakes on ONE are small rela-
tive to LA wakes, yearlong estimates may show otherwise.
Notably, we find that internal wakes have larger impacts on
power production than those generated externally.

Appendix A

To assess the sensitivity of simulations to the amount of pa-
rameterized TKE, we conducted a set of 2 d test runs from
11 to 13 July 2017. This time period was chosen for its
predominance of southwesterly winds, which represent typ-
ical conditions across the OCS, and for the availability of
Air–Sea Interaction Tower lidar observations for wind pro-
file validation of the NWF simulations. Test runs consist of
0 % (TKE_0), 25 % (TKE_25), 50 % (TKE_50), and 100 %
(TKE_100) added TKE with the WFP.

Hub-height wind speeds vary by simulation type and
added TKE amount (Fig. A1a). Mean WFP wind speeds are
always slower than NWF wind speeds due to the momen-

tum sink introduced by wind turbines, by 2.9 m s−1. Larger
variations between wind speeds (Fig. A1a) correspond with
larger spreads in power output by TKE amount (Fig. A1c).
The sequencing of power production driven by TKE amount
remains consistent, namely that the differences progress from
TKE_0 to TKE_25, TKE_50, TKE_75, and TKE_100. Be-
cause power production totals for TKE_25 and TKE_50 are
typically bounded by the totals for TKE_0 and TKE_100,
production simulations incorporate TKE_0 and TKE_100
only to account for the full range of uncertainty throughout
a full yearlong period from 1 September 2019 to 1 Septem-
ber 2020.

Although subtle, several important meteorological quan-
tities from the model grid cell at the center of the RIMA
block vary by the added TKE amount. For example, wind
speeds are slower on 12 July between 12:00 and 16:00 UTC
(Fig. A1a). The wind speed reduction during this time pe-
riod causes a corresponding decrease in turbulent transport
of moisture. The mean difference in moisture fluxes through-
out the full period between TKE_100 and TKE_0 is 2.84×
10−6 kg m−2 s−1 (Fig. A1b). Note that the surface moisture
flux remains negative throughout the period. While maritime
moisture profiles typically exhibit a decrease in concentra-
tion with height, corresponding with a positive flux, mixing
from the turbines reduces the near-surface concentration and
reverses the gradient.

Heat flux exhibits large variability. The mean difference in
heat flux throughout the full period between TKE_100 and
TKE_0 is 3.61 W m−2 (Fig. A1d). The wind speed decrease
between 12:00 and 16:00 UTC reduces surface stresses and
turbulent transport of heat. The reduction in heat flux during
this time period causes 2 m temperatures to decrease and ex-
hibit less variability by TKE amount, with a mean difference
of 0.26 K between TKE_100 and TKE_0 (Fig. A1f).

The reduction in turbulent mixing lowers the PBL, regard-
less of TKE amount, to shallow heights between 30 to 80 m
at 13:00 UTC (Fig. A1e). The near-surface PBL height sup-
presses the small variations in turbulent mixing across test
runs and causes fluxes to equalize. PBL heights differ the
most by added TKE amount and may result from changes in
weighting between two separate height determination meth-
ods present in the MYNN physics driver (Fig. A1c).
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Figure A1. The effects of modifying the amount of turbulent kinetic energy (TKE) during test runs. Panels show (a) hub-height wind
speed, (b) surface moisture flux, (c) normalized power production, (d) surface heat flux, (e) planetary boundary layer (PBL) height, and
(f) 2 m temperature. Values are collected from a point centered on the RIMA block. Power production is the sum of all cells containing wind
turbines. TKE_100 is shown in orange, TKE_50 in blue, TKE_25 in gray, TKE_0 in black, and NWF in purple dashes.

https://doi.org/10.5194/wes-9-555-2024 Wind Energ. Sci., 9, 555–583, 2024



574 D. Rosencrans et al.: Seasonal variability of wake impacts on offshore wind plant power production

Appendix B

Stratification at the E05 and E06 lidars (Fig. B1) exhibits
similar seasonal variability to the RIMA block (Fig. 10).
The winter months feature predominant unstable stratifica-
tion caused by cold air advecting over a warm sea surface.
In the spring and early summer, stratification transitions to
more common stable conditions as warm air advects over a
cooler sea surface. Stratification is most commonly unstable
in November and stable in May.

Figure B1. Stability classification using the Obukhov length for the 1 September 2019 to 1 September 2020 period at the (a) E05 and
(b) E06 lidars from NWF. The tan crosshatches are neutral stratification, blue horizontal bars are stable stratification, and red vertical bars
are unstable stratification.
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Appendix C

Surface estimates of L may not represent stability aloft
(Fig. C1) and may overestimate unstable conditions. When
considering monthly averaged potential temperature profiles
through the rotor layer, only November and December ap-
pear unstably stratified. While September and October ap-
pear predominantly unstable based on surface estimates, po-
tential temperature gradients within the rotor-swept area sug-
gest slightly stable conditions, supporting inferences that off-
shore conditions are stable during late summer. Therefore,
our limited set of CA simulations focus on 1 September to
31 October 2019 and 1 July to 31 August 2020 for its pre-
sumed abundance of stable stratification.

Figure C1. Monthly averaged WRF-simulated potential temperature profiles at a point centered on the RIMA block. Horizontal gray lines
indicate the levels of the hub height (dashed) and the rotor-swept area (solid).
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Appendix D

Wakes in the simulations with CA show similar dependence
on stratification (Fig. D1). Note that we simulate the CA for
4 months only (1 September to 31 October 2019 and 1 July
to 31 August 2020) at one TKE level only (TKE_100) due to
computational costs. The maximum wake strength intensi-
fies from−1.6 to−3.2 m s−1 moving from unstable to stable
stratification (Fig. D1b, c).

Wake propagation distance for the call area simulation is
also affected by stratification. During the 4 months consid-
ered, unstable, stable, and neutral conditions occur 38.2 %,
53.4 %, and 8.3 % of the time, respectively. As such, there
is essentially an even split between the percentage of occur-
rence of unstable and stable conditions. In unstable condi-
tions, wakes from the two southernmost lease areas fail to
reach neighboring downwind clusters on average, and no
wakes stronger than this threshold reach the RIMA block
(Fig. D1e). In stable stratification, wakes from each clus-
ter reach downwind clusters, including the RIMA block
(Fig. D1f). Averaged over all 4 months, wakes between LA
and the CA along the New Jersey and New York bights af-
fect each other, but no wakes reach the RIMA block. Wakes
may still interact with downwind plants at individual times
and affect power production.

Figure D1. Average wake wind speed deficits among the call areas (a, d) for the combined 4-month period, 1 September to 31 October 2019
and 1 July to 31 August 2020, (b, e) during unstable stratification and (c, f) during stable stratification. All panels show 100 % added TKE.
Wake wind speed deficits are shown by the colored contour, and turbines are shown as black dots. The upper row is zoomed in to increase
granularity.
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Appendix E

Here, we characterize the (WFP-NWF) TKE differences by
maximum value and by spatial extent. The maximum average
TKE additions remain similar by stratification at TKE_100,
reaching 1.00, 1.01, and 1.00 m2 s−2 during unstable con-
ditions, stable conditions, and the full year, respectively
(Fig. E1a, c, e). The amount of added TKE is not homo-
geneous across the wind plants in TKE_100, as the greatest
contributions occur in grid cells containing more wind tur-
bines. Some TKE is introduced in TKE_0 due to wind speed
shear, although the amounts are over an order of magnitude
smaller. The maximum average TKE amounts for TKE_0 are
0.05, 0.03, and 0.03 m2 s−2 during unstable conditions, stable
conditions, and the full year, respectively. Being purely shear
induced, regions experiencing the most TKE in TKE_0 cor-
respond more with the maximum wake wind speed deficits
(Fig. 12b, d, f).

Figure E1. Average hub-height (WFP-NWF) TKE difference among the lease areas during (a, b) unstable stratification, (c, d) stable strati-
fication, and (e, f) the full 1 September 2019 to 1 September 2020 period. Panels show 100 % added TKE (a, c, e) or 0 % added TKE (b, d,
f). The TKE amount is shown by the colored contouring, and turbines are shown as the black dots.

We further characterize added TKE amounts by their spa-
tial extent. We report the area encompassed by added TKE
amounts greater than a threshold of 0.005 m2 s−2 because
a cutoff of 0 m2 s−2 includes noise throughout the domain
(Fig. F1), and the spatial extent is not realistic. In TKE_100,
the spatial extents are 10 724, 10 064, and 9608 km2 in un-
stable stratification, stable stratification, and for the full year,
respectively (Fig. E1a, c, e). In TKE_0, the spatial extents are
13 888, 10 724, and 11 332 km2 in unstable stratification, sta-
ble stratification, and for the full year, respectively (Fig. E1b,
d, f).
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Appendix F

Results can show evidence of numerical noise, which
emerges when simulations incorporate the WFP (Ancell et
al., 2018; Lauridsen and Ancell, 2018). In our simulations,
these brief periods of numerical noise emerge and decay,
often coincident with precipitation. While we expect differ-
ences in wake wind speed immediately downwind of power
plants, it is unlikely that these differences could advect to the
southeast corner of the domain, roughly 600 km southeast of
the RIMA block (Fig. F1a). If this numerical noise occurred
in grid cells with turbines, then this noise would introduce
error in power estimations.

We explored several approaches to mitigate the numeri-
cal noise, none of which succeeded. First, we increased the
floating-point accuracy of numerical calculations by enabling
double precision in WRF. Double precision limits the growth
of rounding error to smaller magnitudes (Ancell et al., 2018).
This attempt aimed to confine perturbations to smaller orders
of magnitude that take longer periods of time to become sub-
stantial. To prevent “runaway” error growth after long peri-
ods of time, we submit simulation restarts each month.

In observing a spatial correlation of numerical noise with
convective precipitation during test runs, we reran test sim-
ulations with a more complex microphysics scheme. The
Thompson microphysics scheme, used throughout, is dou-
ble moment with respect to cloud ice only. We substituted
the Morrison microphysics scheme, which is fully double
moment with respect to cloud droplets and rain, cloud ice,
snow, and graupel (Morrison et al., 2009). The use of Mor-
rison microphysics did not improve numerical noise, so its
computational cost could not be justified.

Next, we introduced a filter for shortwave numerical noise
by prohibiting upgradient diffusion. Doing so requires set-
ting the parameter diff_6th_opt to 2 in the namelist, as
certain combinations of advection and diffusion orders are
conducive to mitigating noise around heavy precipitation
(Kusaka et al., 2005). While Kusaka et al. (2005) found the
combination of fifth-order advection and sixth-order diffu-
sion to perform best, we had previously attempted this com-
bination because default advection in WRF is fifth order.
Thus, we attempted the next best recommendation – com-
bining sixth-order advection and diffusion. Again, this com-
bination did not improve results.

We made a final attempt at noise reduction by running an
ensemble of three members using a stochastic kinetic energy
backscatter scheme. Ensemble members contain seeds with
variable time steps that randomly inject kinetic energy into
grid cells (Berner, 2013). These stochastic supplements re-
plenish the kinetic energy sink from unresolvable subgrid-
scale processes. We followed recommendations to perturb
the stream function and potential temperature backscatter
rates by 1× 10−5 and 1× 10−6, respectively. Again, while
subtle differences emerged between the simulations, little
improvement was found.

We saw little improvement from the aforementioned pre-
processing efforts. Given this lack of improvement and a
need to conserve computational resources, we employed
averaging during postprocessing to alleviate the effects of
noise. Modifying averaging periods impacts the range of nu-
merical noise in the wind speed field (Fig. F1b). Noise oc-
curring in grid cells containing turbines could undermine
power estimation accuracy, and we observed noise occur-
ring in the southeastern portion of the domain. Subtrac-
tion of wind speeds between simulations with variable TKE
amounts should only show differences within the wake, and
such differences are a result of noise. Averaging periods pro-
vide greater relief. While 2 and 4 h averaging periods deliver
the best results, these temporal scales can hide important di-
urnal variability. Conversely, a 30 min averaging period can
improve results, but local extrema occasionally reach mag-
nitudes similar to the magnitudes of the raw noise. Thus,
hourly averaging can mitigate noise without masking im-
portant variability. As a final note, other researchers have
benefitted by employing grid nudging within this domain
above the PBL (Maryam Golbazi, personal communication,
September 2022).
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Figure F1. (a) The wind speed difference between TKE_100 and TKE_0 at the hub height from LA runs. Wind turbines are shown as black
dots. The blue contouring indicates TKE_100 produced faster wind speeds and vice versa. (b) Wind speeds obtained at the red circle in
(a) are shown as a time series. The raw difference in wind speeds and averaging periods are shown as different line colors in the time series.
The vertical gray line shows the time stamp of the map.
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Code and data availability. The data and files that support
this work are publicly available. The ERA5 boundary con-
ditions can be downloaded from the ECMWF Climate Data
Store at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et
al., 2023). Shapefiles including the bounding extents of the
lease and call areas are available at https://www.boem.gov/
renewable-energy/mapping-and-data/renewable-energy-gis-data
(Bureau of Ocean Energy Management, 2023). Individual turbine
coordinates and their power and thrust curves are provided at
https://doi.org/10.5281/zenodo.7374283 (Rosencrans, 2022).
WRF namelists for NWF and WFP simulations can be obtained
at https://doi.org/10.5281/zenodo.7374239 (Rosencrans, 2021).
The simulation output data will be available in HDF5 format at
https://doi.org/10.25984/1821404 (National Renewable Energy
Laboratory, 2020).
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Stansby, D., Streicher, O., Šumak, J., Swinbank, J. D., Taranu,
D. S., Tewary, N., Tremblay, G. R., de Val-Borro, M., Kooten,
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