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Abstract. Wind farm layout optimization is usually subjected to boundary constraints of irregular shapes. The
analytical expressions of these shapes are rarely available, and, consequently, it can be challenging to include
them in the mathematical formulation of the problem. This paper presents a new methodology to integrate multi-
ple disconnected and irregular domain boundaries in wind farm layout optimization problems. The method relies
on the analytical gradients of the distances between wind turbine locations and boundaries, which are represented
by polygons. This parameterized representation of boundary locations allows for a continuous optimization for-
mulation. A limitation of the method, if combined with gradient-based solvers, is that wind turbines are placed
within the nearest polygons when the optimization is started in order to satisfy the boundary constraints; thus the
allocation of wind turbines per polygon is highly dependent on the initial guess. To overcome this and improve
the quality of the solutions, two independent strategies are proposed. A case study is presented to demonstrate
the applicability of the method and the proposed strategies. In this study, a wind farm layout is optimized in
order to maximize the annual energy production (AEP) in a non-uniform wind resource site. The problem is
constrained by the minimum distance between wind turbines and five irregular polygon boundaries, defined as
inclusion zones. Initial guesses are used to instantiate the optimization problem, which is solved following three
independent approaches: (1) a baseline approach that uses a gradient-based solver; (2) approach 1 combined with
the relaxation of the boundaries, which allows for a better design space exploration; and (3) the application of
a heuristic algorithm, “smart-start”, prior to the gradient-based optimization, improving the allocation of wind
turbines within the inclusion polygons based on the potential wind resource and the available area. The results
show that the relaxation of boundaries combined with a gradient-based solver achieves on average + 10.2 % of
AEP over the baseline, whilst the smart-start algorithm, combined with a gradient-based solver, finds on average
+20.5 % of AEP with respect to the baseline and +9.4 % of AEP with respect to the relaxation strategy.
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1 Introduction

Wind farm layout design is usually subjected to geometric
constraints, which can be dictated by seabed conditions, wa-
ter depth, or local maritime routes in offshore projects, or
by land ownership, presence of other infrastructure, or ex-
istence of humid areas and waterways in onshore projects
(Dalla Longa et al., 2018). An ideal configuration would con-
sist of a single regular and convex polygon within which
all the wind turbines are placed. However, developers usu-
ally have to deal with multiple complex and non-connected
shapes that complicate the farm design phase.

When irregular, disconnected, and non-convex-shaped
polygons are involved, the wind farm layout optimization
framework becomes challenging, as it is not straightforward
to include analytical expressions of these areas in the prob-
lem formulation. Despite a lot of research work having been
done in the field of wind farm layout optimization, less atten-
tion has been given to the implementation of complex-shaped
boundaries. Mittal and Mitra (2019) pointed out the “gap to-
wards the development of methods that lead to high-quality
solutions while considering constraints such as forbidden ar-
eas”. Reddy (2021) discusses the lack of “a robust method for
modeling irregular, non-convex, and disconnected domains”.

Much of the prior work in optimizing wind farms with
irregular boundaries has focused on discrete parameteriza-
tion of the domain and polygon representation to handle the
constraints. Perez-Moreno et al. (2018) dealt with the pre-
liminary design of the turbine layout, electrical collection
system, and support structures following first a sequential
approach and then a multidisciplinary approach. For these
purposes, they divided the design space into squares to en-
able the optimization with a particle swarm optimization
(PSO) algorithm. González et al. (2017) compared two meta-
heuristic optimization algorithms (genetic algorithm and par-
ticle swarm optimization) to solve the layout optimization
problem considering realistic constraints for the concession
zone and the maximum area. For their work, they discretized
their domain, as an analytical expression for these con-
straints was not available. Chen and MacDonald (2014) in-
volved land ownership participation rates in the wind farm
layout optimization problem. They split their domain into
cells in order to account for the different land owners. Tao
et al. (2021) show an optimization example with two re-
striction zones (an ellipse and a regular convex polygon),
with straightforward analytical expressions due to the simple
shapes. The whole domain was later discretized before the
optimization was run, excluding the grid points that belonged
to the forbidden zones. Mittal and Mitra (2019) solved a
multi-objective wind farm optimization problem with re-
stricted areas within their domain by discretizing the area
into a uniform set of grids. Shakoor et al. (2016) approached
the problem using definite point selection, considering an ir-
regular polygon exclusion zone within a discretized domain.
Sorkhabi et al. (2018) present a continuous genetic algorithm

optimization approach, only discretizing the domain when
handling exclusion zone constraints.

A disadvantage of discretizing the domain is that there
is a trade-off between the quality of the solution and the
resolution of the grid. A thinner grid will lead to a higher-
quality solution, whilst it will also increase the computational
effort significantly (Mittal and Mitra, 2019; Masoudi and
Baneshi, 2022). Other strategies to integrate different bound-
aries include dividing the domain into polygons and/or ap-
plying penalty functions. The disadvantage of penalty meth-
ods is that they can result in turbines being moved in and
out of exclusion zones or regions of nearby turbines, lead-
ing to longer optimization runs. A penalty method would
require some sort of smoothing, which the Lagrange mul-
tiplier provides, avoiding these oscillations. Sorkhabi et al.
(2016) considered restricted areas defined by means of con-
vex polygon representation. The polygon vertices are joined
with the wind turbine positions, forming triangles. If the area
of the triangles is equal to the area of the polygon, the tur-
bine is located inside the polygon. Then, the constraints are
integrated within the optimization framework by means of
penalty functions. Feng et al. (2018) solved the annual en-
ergy production (AEP) maximization problem in complex
terrain with convex-shaped polygon boundary constraints.
Their method, however, cannot handle irregular non-convex
boundaries. Hou et al. (2016) developed a layout optimiza-
tion using particle swarm optimization (PSO) considering
two restriction zones in a construction sea area, correspond-
ing to an oil well and a gas pipe/marine traffic lane. The
implementation associated with the restriction areas used a
penalty function, which required a penalty factor value as-
sumption. Optimized solutions will, though, be sensitive to
the choice of the penalty factor parameter. Similarly, the
work done by Afanasyeva et al. (2018) considered exclu-
sion zones through the use of a penalty function. Wang et al.
(2015) present a genetic algorithm optimization approach
for wind farm layouts where exclusion zones are filtered
as a pre-processing step. Another approach was described
in Reddy (2021), where a solution for modeling irregular,
disconnected, complex, and non-convex polygons was pro-
posed. This methodology aims at simplifying complex do-
main boundaries and land constraints with the support vector
domain description (SVDD) technique. The SVDD is used to
convert the regions into a space where the complex domain
boundaries can be represented as a spherical boundary, with-
out compromising the accuracy of the optimization. This so-
lution is more advanced but also requires training the model
with a sufficient number of samples.

In this article, we propose a new methodology to integrate
multiple irregular, non-convex, and disconnected boundary
constraints into the wind farm layout optimization problem.
This method relies on polygon representation, given by the
vertices of the polygons. The distance from every wind tur-
bine to the polygons can be efficiently calculated by a set of
geometric formulas that determine the nearest boundary and
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the sign of the distance towards it. Based on the sign of this
distance, it is always possible to identify if the wind turbine
is inside or outside the considered polygon.

When this framework is used with gradient-based opti-
mization, the wind turbines are placed within one of the in-
clusion zones around them within the first iterations, since
the solver will try to satisfy all the constraints when the op-
timization is started. This means that the solution will be
highly dependent on the initial positions. Additionally, if our
inclusion zones consist of many polygons spread across the
design space, conventional gradient-based optimization us-
ing multiple random starts may not be an effective approach
to design wind farm layouts that fully utilize the available
wind resource.

We have contemplated two possible solutions to overcome
this challenge. The first solution is to introduce a term in
the boundary constraint formulation that relaxes the problem
by expanding or buffering the inclusion zone areas before
the optimization is started. The use of larger inclusion zones
means that more of the domain can be explored, and wind
turbines can be placed around areas with better resources.
During the optimization, the boundaries are “un-relaxed” lin-
early until they return to their true geometry. This is con-
trolled with two parameters that model the offset per itera-
tion and the number of optimization iterations in which the
un-relaxation is applied. The second solution is the applica-
tion of a heuristic algorithm, smart-start (Valotta Rodrigues
et al., 2024), which takes a discretized grid covering the do-
main as input, removes all points outside the inclusion zones,
and then iteratively adds turbines one by one. In each itera-
tion the wake deficit from already-added turbines is calcu-
lated, and the next turbine is placed at the position with the
highest power potential.

The presented framework has been implemented in TOP-
FARM, the Technical University of Denmark’s (DTU’s)
open-source software for wind farm optimization (Réthoré
et al., 2014; DTU Wind Energy Systems, 2022b). A case
study is presented, where the three introduced approaches are
followed to maximize the annual energy production (AEP)
of a wind farm in complex terrain with several irregularly
shaped and disconnected inclusion zones. In this study, a
gradient-based driver is combined with the relaxation of
boundaries and with the smart-start algorithm to demonstrate
the applicability of the method and how the aforementioned
challenge can be overcome. For the AEP calculation and the
wake modeling involved in the simulations, TOPFARM re-
lies on PyWake (Pedersen et al., 2019), another DTU open-
source Python library that offers fast AEP evaluation from a
range of engineering wake models. Recent works using TOP-
FARM (Ciavarra et al., 2022; Riva et al., 2020) and PyWake
(Rodrigues et al., 2022; Fischereit et al., 2021; Forsting et al.,
2021; Pedersen et al., 2021; Quick et al., 2023) can be found
in the literature.

The article is structured as follows: Sect. 2 describes the
mathematical principles and formulation of the method, in-

cluding the boundary relaxation; the idea behind smart-start;
and how the flow is modeled along this work. Section 3 in-
troduces the case study, describing in detail each of the ap-
proaches used and providing a relaxation study which was
used to decide the suitable parameters for the second ap-
proach. Section 4 presents the results and discussion. Finally,
Sect. 5 summarizes the conclusions and points towards future
work.

2 Methods

Given a set of wind turbines, I , we wish to maximize the an-
nual energy production (AEP) by finding the optimal layout
of a farm. Our problem is constrained by a minimum distance
between each pair of wind turbines and by several boundary
constraints given as a set of disconnected polygons that are
defined as inclusion or exclusion zones (i.e., the areas where
the wind turbines are allowed or not allowed to be placed, re-
spectively). Each polygon is formed by a number of bound-
ary edges. This optimization problem is mathematically for-
mulated as

max
x,y

AEP(x,y)

s.t.
√

(xi − xj )2+ (yi − yj )2 ≥ Smin, ∀i,j ∈ I : i 6= j

Ci ≥ 0, ∀i ∈ I

xmin < xi < xmax, ∀i ∈ I

ymin < yi < ymax, ∀i ∈ I, (1)

where x and y are the wind turbine coordinate vectors; xmin,
xmax, ymin, and ymax are the lower and upper limits for the
design variables; Smin is the minimum distance between tur-
bines; and the term Ci represents the signed distance from a
wind turbine i towards the nearest boundary edge from the
polygon set. In this context, signed distance means that if Ci
is positive, the wind turbine is inside an inclusion zone or
outside an exclusion zone, whereas if it is negative, the wind
turbine is inside an exclusion zone or outside an inclusion
zone. Although it might seem redundant to include design
variable limits due to the fact that the boundary constraint is
already acting as such, they are used in further sections to
describe the methodology.

2.1 Distance to nearest polygon

In the aforementioned optimization problem (Eq. 1), a set of
wind turbines and a set of polygons were given. The wind
turbine locations are defined by their coordinates, and the
polygons are defined by the coordinates of their vertices. The
polygons can be split into boundary edges. Hence, any pair
of adjacent vertices belonging to the same polygon forms a
boundary edge. For example, two adjacent vertices of a poly-
gon, with coordinates (x′k,y

′

k) and (x′k+1,y
′

k+1), respectively,
will form a boundary edge k, represented by a vector ek ,
whose components are defined as (x′k+1−x

′

k,y
′

k+1−y
′

k). The
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polygons follow a hierarchy that allows for the imposition of
an exclusion zone on top of an inclusion zone and vice versa.
If two or more of the same type of polygon overlap, these are
merged into a single polygon, where the interceptions be-
tween boundary edges form the new vertices.

The main idea behind the method is to identify the near-
est boundary edge from the wind turbine locations, calculate
the distance to the nearest point on the respective boundary
edge, and then compute the gradients of those distances with
respect to the turbine locations to indicate the path that will
lead them to the permitted areas. For this, a sequential ap-
proach is followed:

1. For each wind turbine, identify the nearest point on all
boundary edges.

2. Compute the signed distances between each wind tur-
bine and the identified nearest points, where positive
distances mean inside an inclusion zone or outside an
exclusion zone.

3. Identify the nearest edge (and polygon) by finding the
minimum of the previously calculated signed distances,
in absolute value.

4. Calculate gradients of the signed distance with respect
to the wind turbine positions.

In addition, for each boundary edge, we define a normal
unitary vector (a vector whose module is equal to the unit
of length) that points inside the inclusion zone polygons and
outside the exclusion zone polygons, as illustrated in Fig. 1.
The purpose of the normal vectors is to indicate the correct
side of the edge (where to place the turbines), and they are
used to calculate the sign of the distances.

In order to mathematically formulate the method, we will
demonstrate how to calculate the distance from a wind tur-
bine i to an inclusion zone polygon of N vertices. The wind
turbine location is defined by its coordinates (xi,yi), and the
polygon is defined by its vertex coordinates, (x′1,y

′

1), (x′2,y
′

2),
. . . (x′N−1,y

′

N−1), (x′N ,y
′

N ). The polygon can be split into
N boundary edges, e1, e2, . . . , eN . The last vector, eN , is
defined from the last vertex (x′N ,y

′

N ) to the first one (x′1,y
′

1),
closing the polygon. In addition, for every boundary edge, we
define the unitary normal vectors, n1, n2, . . . nN , that point
to the interior of the polygon, as it represents an inclusion
zone (see Fig. 2).

The first step is to identify the nearest point from the wind
turbine on all boundary edges. For this purpose, we define
aik as the vector from the first vertex of the boundary edge ek
to the wind turbine location, and we define bik as the vector
from the second vertex of the boundary edge ek to the wind
turbine location (notice that bik is equivalent to ai,k+1). Now
we can calculate ãik , which is the projection of aik into ek
(Eq. 2), and âik , which is the projection of aik into nk (Eq. 3):

ãik =
aik · ek

|ek|
(2)

âik = aik ·nk. (3)

Depending on the relative position of the wind turbine with
respect to the boundary edge ek , we can distinguish three
possibilities based on ãik: (1) if ãik is negative, the wind tur-
bine is closer to the first vertex of the edge ek; (2) if ãik is
positive and less than or equal to the length of the bound-
ary edge, the wind turbine is closer to an intermediate point
of the edge ek; and (3) if ãik is positive and larger than the
length of the boundary edge, the wind turbine is closer to the
second vertex of the edge ek . Figure 2 illustrates the different
scenarios.

Once the nearest point on each boundary edge has been
identified, the second step consists of computing the shortest
signed distance between the wind turbine and the boundary
edge. For case (2), this corresponds with the perpendicular
distance, âik . For cases (1) and (3), we need an additional
vertex “normal” vector, q1, q2, . . . , qN , to calculate the cor-
rect sign of the distance. This vector is defined as the average
of the normal unitary vectors of the adjacent boundary edges;
i.e., the vertex “normal”, qk , of the vertex (x′k,y

′

k) is calcu-
lated as

qk =
nk +nk−1

2
. (4)

The vector qk points to the “correct” side of the ver-
tex. This means that the sign of the projection aik on qk ,
σik = sign(aik · qk), is positive if the turbine is inside an in-
clusion zone and outside an exclusion zone and vice versa
if the projection is negative. To summarize, the signed dis-
tances Dik from all wind turbines i to all boundary edges k
of all inclusion- and exclusion-zone polygons are calculated
as

Dik =


|aik|σik, if ãik < 0

âik, if ãik ≥ 0 and ãik ≤ |ek|
|bik|σik, if ãik > |ek|

. (5)

Note, in the second case in Eq. (5), the sign is implicit in
âik .

Hereafter, we can proceed with the next step, which con-
sists of identifying the nearest boundary edge (of the nearest
polygon). This is done by

Ci =min
k

(|Dik|) · sign(Dik), (6)

which calculates a vector C, whose components represent
the distance between each turbine and their respective near-
est boundary edge. This vector is the term in the inequality
constraint in Eq. (1). The gradient of C will define the right
direction to go for every wind turbine to be placed within
an inclusion zone and outside exclusion zones to meet the
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Figure 1. Definition of the polygon depending on the inclusion or exclusion attribute. (a) Normal unitary vectors pointing inside the polygon,
representing an inclusion zone, (b) normal unitary vectors pointing outside the polygon, representing an exclusion zone.

Figure 2. (a) Wind turbine i is closer to the first vertex of the boundary edge ek (case 1). (b) Wind turbine i is closer to an intermediate
point of the boundary edge ek (case 2). (c) Wind turbine i is closer to the second vertex of the boundary edge ek (case 3). The red lines, ãik ,
correspond to the projection of aik on boundary ek , while the blue lines/vectors correspond to the shortest distance between turbine i and
the boundary edge ek .

boundary constraint. The analytical gradients of C with re-
spect to the wind turbine coordinates can be written as fol-
lows:

∂Ci

∂xi
=



xi−x
′
k√

(x′k−xi)
2
+(y′k−yi)

2
if ãik < 0

y′k−y
′

k+1√(
x′k+1−x

′
k

)2
+

(
y′k+1−y

′
k

)2
if ãik ≥ 0 and ãik ≤ |ek|

xi−x
′

k+1√(
x′k+1−xi

)2
+

(
y′k+1−yi

)2
if ãik > |ek|

(7)

∂Ci

∂yi
=



yi−y
′
k√

(y′k−y0)2
+(y′k−yi)

2
if ãik < 0

x′k+1−x
′
k√(

x′k+1−x
′
k

)2
+

(
y′k+1−y

′
k

)2
if ãik ≥ 0 and ãik ≤ |ek |

yi−y
′

k+1√(
x′k+1−xi

)2
+

(
y′k+1−yi

)2
if ãik > |ek |

. (8)

Note that ∂Ci
∂xj
= 0 when i 6= j and that, in Eqs. (7) and (8),

k is set as argmin
k

(|Dik|).

In general, the distances between the wind turbines and the
boundaries are continuous and differentiable but not contin-
uously differentiable. When the nearest edge with respect to
a wind turbine switches from one edge to another, the gradi-

ent will make a discontinuous jump, but this does not seem
to be an issue for the used solver (see details of the solver in
Sect. 3).

The gradient-based solver sequential least-squares pro-
gramming described by Kraft (1988), from now on SLSQP,
was used for the numerical experiments, as implemented in
the Python library, SciPy (Virtanen et al., 2020). The run-
ning time of the algorithm scales linearly with both the num-
ber of wind turbines and the number of boundary edges
(NWT ·Nedges).

2.2 Distance relaxation

The described methodology to include multiple polygons in
our optimization domain means that solvers, which seek to
obtain a feasible solution immediately after the optimization
is started, will try to satisfy the inequality constraint, Ci ≥ 0,
by placing all the wind turbines inside the nearest polygon.
Moreover, once a wind turbine is inside a polygon, it will not
be able to explore the rest of the design space as it would
violate the boundary constraint, and therefore the number of
wind turbines allocated in each polygon will depend on the
initial positions.
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A potential solution for this is to relax the problem by ex-
panding the boundary constraints for a certain number of it-
erations. This allows for a deeper exploration of the design
space at the beginning of the optimization and thus a more
suitable distribution of the wind turbines between the ex-
isting polygons. When the relaxation is applied, an initial
maximum offset is added up to the inclusion zone bound-
aries. Once the optimization is started, this maximum offset
is gradually removed (the problem is “un-relaxed”) at a con-
stant rate. The un-relaxation is ruled by a linear expression
that describes the relation between the relaxed distances,Rik ,
and the iteration number, γ :

Rik =

{
Dik + kr(γr− γ ), if γ < γr

Dik, if γ ≥ γr
, (9)

where the first parameter, kr, defines the added offset per it-
eration and the second parameter, γr, defines the number of
iterations during which the un-relaxation lasts. With this im-
plementation, the largest offset, kr ·γr, occurs at the beginning
of the optimization and is gradually reduced until the maxi-
mum number of iterations for relaxation, γr, is reached.

For a better understanding of the distance relaxation, its
application has been illustrated in Fig. 3. In the example, a
simple set of polygons representing five inclusion zones is
relaxed, applying an offset of 5 m per iteration (kr = 5) dur-
ing 160 iterations (γr = 160). The iteration number is given
by γ , illustrated in the title of each plot. In the first itera-
tion (γ = 1), the boundaries are relaxed with the maximum
offset, which is beyond the limits of our domain; thus the
relaxed polygons cannot be seen in the plot. The design vari-
ables are only limited by their respective upper and lower
bounds, meaning that the solver can freely move them within
the whole domain, illustrated by the dashed red line. When
γ = 100, the relaxed polygons start to gradually push the
wind turbines towards the inclusion zones as the optimiza-
tion progresses. The plots for γ = 130, 140, and 150 illus-
trate this process in which the relaxed boundaries are shrunk
(un-relaxed) until they reach their default shapes. Eventually,
for γ = 160, the un-relaxation ends, and all wind turbines
will be allocated inside a polygon.

When distance relaxation is applied, the nearest boundary
is determined as

Ci =min
k

(|Rik|) · sign(Rik), (10)

which is a vector of the nearest distances between each tur-
bine and the relaxed boundaries.

The distance relaxation allows for a better exploration of
the design space. It can also be applied to escape from the
local optimum or to allow transferring of wind turbines be-
tween polygons for a certain number of iterations.

2.3 Smart-start algorithm

Another method to solve the wind turbine allocation problem
is to discretize the domain and place the wind turbines in the
inclusion zone polygons before the optimization is launched.
The smart-start algorithm, implemented in PyWake as in Val-
otta Rodrigues et al. (2024), is meant to get a better initial
layout of a wind farm. A diagram depicting the rationale of
the algorithm is presented in Fig. 4. The idea is to sequen-
tially place the wind turbines one by one in the positions with
the best wind resource, taking wake effects of the previously
added wind turbines and boundary and spacing constraints
into account.

The algorithm takes a list of discretized potential wind tur-
bine locations, L, as input, and, after removing all locations
where the boundary constraints are violated, the main loop
starts. In each iteration the wind resource, including wake
effects from already-added wind turbines, is evaluated at all
points in L, and the next wind turbine is added at the location
that yields the highest AEP. This means that the reduction
in AEP of the previously added turbines is not considered.
Hence, the solution may not be optimal, but it implies a cru-
cial reduction in computational costs. After adding the next
wind turbine, all points where the spacing constraints are not
satisfied are removed from L, and the algorithm continues
until all wind turbines are added.

The algorithm has been extended with a randomness pa-
rameter r that allows it to put the next turbine at one of the
n best positions by random, where n=max(r · size(L),1).

The r parameter ranges between 0, which corresponds to
always picking the best position, and 1, which corresponds
to a completely random choice of points.

The performance of smart-start depends on the number of
potential locations (grid resolution): a very high resolution
grid will involve high computational effort, while a coarse
resolution might lead to inefficient wind turbine allocation.

2.4 Flow modeling

When a site has complex terrain, like mountains and val-
leys, the landscape creates changes in pressure that result in
changes in the local wind speed. This section explains how
the wind resource and the flow are modeled along the case
study. The wind farm is modeled using a flow map describing
the local wind conditions. The local directions and speeds are
dependent on the spatial location; the freestream wind speed,
U∞; the freestream wind direction, θ∞; and local velocity
deficits from wake losses. The local wind speed and direc-
tion can be expressed as

Uiud = U∞u · sid (11)
θid = θ∞d + tid, (12)

where the terms sid and tid represent the wind speedups and
turning, respectively, at a location i and for a freestream
direction d; Uiud represents the local wind speed for a
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Figure 3. The optimization boundary constraint is visualized for different optimization iterations when using the distance relaxation method
in a hypothetical problem with kr = 5 and γr = 160. The solid black lines denote inclusion zone boundaries; the dashed red lines show the
domain limits, defined by the upper and lower bounds of the design variables; and the dashed blue lines represent the relaxed boundaries,
which change depending on the iteration number γ . Each plot shows a different optimization iteration number.

Figure 4. Workflow visualization of the smart-start algorithm.
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freestream wind speed u, affected by the orography speedup
effects; and θid represents the local wind direction, affected
by the orography turning effects. Notice that the speedup
and turning are independent from the freestream wind speed.
The local wind speed has to include the deficits derived from
wind turbine interactions, 1uiud, which are imposed as

uiud = Uiud−1uiud. (13)

In this study, the objective function of the optimization is
the annual energy production or AEP. For each set of in-
flow conditions, the individual turbine powers are summed
according to the probability of (U∞u,θ∞d ),

AEP (x,y)= 8760
Nθ∑
d=1

Nu∑
u=1

Nwt∑
i=1

P (uiud)ρ(U∞u,θ∞d ), (14)

where ρ is the probability mass function; Nwt is the num-
ber of wind turbines; P is the power curve function; and uiud
is the local velocity, including wake effects, associated with
freestream direction θ∞d , wind speed U∞u, and turbine po-
sition (xi,yi).

The wake effects are approximated using the Bastankhah
Gaussian wake deficit model (Bastankhah and Porté-Agel,
2014). This model is derived from the mass and momentum
conservation and assumes a Gaussian distribution of the ve-
locity deficits in the wake, controlled by a single parameter
k∗ to model the expansion. The velocity deficit from wind
turbine j on wind turbine i is estimated by the expression
below:

1uijud =

Uiud

1−

√√√√1−
CT

8
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 , (15)

where k∗ is the expansion parameter (for this study, a value
of 0.032 was used); d0 is the rotor diameter of the wind tur-
bines; 1xijd and 1yijd are the upstream and crosswind dis-
tances between turbines i and j , respectively;1zH

ij is the hub
height difference between turbines i and j ; CT is the thrust
coefficient; and ε is the standard deviation of the Gaussian
profile, normalized with the rotor diameter, very close to the
upstream wind turbine, i.e., where 1xijd ≈ 0.

In this study, 1xijd is computed as the length of the line
that follows the terrain (i.e., has a constant height above
the ground) from the upstream to the downstream wind tur-
bine projected onto the downwind direction axis, 1yijd is the
straight crosswind distance (currently the method does not
consider the terrain variations in the crosswind direction),
and 1zH

ij is zero, as all the wind turbines have the same hub
height.

The resulting velocity deficit fields are calculated by
adding up the deficits from the upstream wind turbines us-
ing a squared sum wake superposition model,

1uiud =

√ ∑
∀j :1xijd>0

1u2
ijud , (16)

where the notation1xijd > 0 ensures that the velocity deficits
are only accounted for downstream distances.

The wind turbine model used for this work is based on the
Vestas V80-2.0, which has a rotor diameter of 80 m, a hub
height of 70 m, and a nominal power of 2 MW. The power
and thrust curves for this model are pre-defined in PyWake.

3 Application

In this section, we present a case study based on a fictitious
site, Parque Ficticio, with complex terrain. The site is fea-
tured by a non-uniform wind resource and a terrain elevation
map. The purpose of the study is to show a wind farm lay-
out optimization using gradient-based methods and demon-
strating the performance of the multi-polygon boundary con-
straint described in the prior section of this work. The results
from three different optimization approaches are compared
and assessed.

3.1 Optimization setup

A wind farm consisting of 12 wind turbines is optimized fol-
lowing the formulation described in Eq. (1), where the design
variables are the wind turbine locations and the constraints
comprise a minimum spacing of two rotor diameters (equiv-
alent to 160 m) between wind turbines and five irregular in-
clusion zone polygons (see Fig. 5). The AEP is calculated
as described in Sect. 2.4, considering local wind directions,
local wind speeds, and wake effects, as defined by Eqs. (11)–
(13).

3.2 Site description

Parque Ficticio is a fictitious wind farm site pre-defined in
PyWake, where the wind resource and terrain data are given
as a dataset whose coordinates are x (UTM easting projec-
tion), y (UTM northing projection), h (height), and wd (wind
direction sector). The wind resource is characterized by a
unique Weibull distribution per wind sector (12 sectors). The
dataset contains a gridded map of speedups and turning val-
ues that change with the sector. Note that, although the site
has a resolution of 12 wind sectors, the bin resolution for
the optimization is thinner, which means that wake losses
will be optimized with 1° precision despite the fact that the
frequency of certain inflow conditions is assumed to be the
same.

At the site, we have defined five potential inclusion zone
polygons, as seen in Fig. 5, where the wind turbines are al-
lowed to be installed. From the wind rose in Fig. 5, it can be
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Figure 5. Parque Ficticio site is considered in this study. The elevation is shown with colors in contours. The inclusion zones are shown in
thick dark lines. The illustrated wind rose shows the sector and wind speed frequency according to the freestream probabilities, which change
locally due to orographic effects.

observed that the site has dominant westerly winds. The lo-
cal winds are affected by the terrain effects, such as speedups
and turning.

3.3 Approaches to optimization of the layout

The wind farm is optimized following three independent
approaches. The initial positions of the wind turbines are
randomized using predetermined random number generator
seeds to ensure that the results are reproducible. Altogether,
50 seeds (from 1 to 50) were run for each of the three
approaches. For all approaches, the gradient-based solver
SLSQP was used. The discretized wind directions and wind
speeds for the optimizations were 1° and 1 ms−1 bins, re-
spectively. We set a limit of 500 iterations with a tolerance
for convergence of 10−6 on the objective function.

The optimizations were run in an HPC cluster (Technical
University of Denmark, 2019) to allow parallelization. Ev-
ery case was performed in an individual node composed of
2× 16 AMD EPYC 7351 2.9 GHz processors and 128 GB
RAM. The numerical computations were parallelized using
the full node capacity. A new Anaconda environment (ana,
2020) was created with the required Python libraries (see
“Code and data availability” for further information about
Git repositories and used commits). When performing AEP
computations, PyWake allows “chunkification”, which dis-
tributes the flow cases between the available resources in

batches of wind directions and wind speeds, resulting in a
reduction of the computational times. In our simulations, the
wind direction flow cases were divided into 32 wind direc-
tion chunks.

The different approaches for optimization using gradient-
based solvers and the implemented techniques are described
below:

– Approach 1 (SLSQP). The gradient-based solver
SLSQP is used for the optimization. The Jacobians
were calculated using automatic differentiation with the
Python library autograd (Maclaurin et al., 2015). This
same setup is used for the remaining approaches com-
bined with other optimization techniques.

– Approach 2 (relaxation+SLSQP). The distance relax-
ation as described in Sect. 2.2 is applied during the first
γr iterations of the optimization. This allows the solver
to freely move the wind turbines around the whole de-
sign space, leading to their better allocation between the
different inclusion zones. The values of kr and γr have
to be selected according to the size of the domain and
of the inclusion zone areas. Although there is not a rule
of thumb or any related heuristics for this purpose, gen-
eral guidance is that the more spread the inclusion zones
are, the larger the values of the parameters should be. A
relaxation study was done to select suitable values for
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the case study (see Sect. 3.4) resulting in kr = 100 and
γr = 100.

– Approach 3 (smart-start+SLSQP). The smart-start al-
gorithm is applied to achieve a better initial layout. This
involves all the initial positions being inside the inclu-
sion zones at the beginning of the optimization. A 10 %
randomization is used, which means that the positions
are subsequently selected randomly out of the best 10 %
of available points. For this randomization, the indi-
cated seeds are applied. The domain is discretized with
a grid of 100×100 points. After smart-start is executed,
SLSQP is used as in the other two approaches. No dis-
tance relaxation was applied for this case.

The idea behind using these different approaches is to
(1) demonstrate that the nearest distance method succeeds
in placing the wind turbines inside the inclusion zones in a
wind farm layout optimization problem; (2) demonstrate how
the distance relaxation is able to achieve higher-quality solu-
tions by avoiding local optimum caused by the discontinuity
of the boundaries; and (3) show the advantages of using the
smart-start algorithm to initialize the wind farm layout opti-
mization problem with multiple boundaries, as it efficiently
allocates the wind turbines between the inclusion zones.

3.4 Relaxation study

As described in Sect. 2.2, kr defines the offset per iteration,
and γr indicates the maximum number of iterations for re-
laxation. kr can also be seen as the “speed” of un-relaxation,
while γr can be seen as the “duration” of the relaxation. If
these parameters are too small, the relaxation will not be ef-
fective, as the extension of the allowed area is too small, or
there might not be enough iterations to explore the domain.
On the other hand, if one of these parameters is too large, the
optimization may converge before the boundaries are back to
their true shapes, involving the risk of reaching a constraint-
violating solution.

A parametric study was done in order to find a suitable
combination of values that would lead to the higher potential
yield for the case study. Four combinations of values for kr
and γr were chosen: combinations 1, 2, and 3 compare the
impact of different un-relaxation speeds for a fixed number
of iterations before the last 300 m is un-relaxed (from 300 m
on, the changing boundaries begin to push the wind turbines
towards the true boundaries). These combinations satisfy the
expression

γr =
300
kr
+ 100, (17)

which ensures 100 iterations of optimization before the un-
relaxation is applied to the last 300 m. In other words, the
solver has 100 iterations to distribute the wind turbines
within a sufficiently large area to find positions where the

Table 1. Failed seeds for the relaxation study.

Relaxation strategy Number of failed seeds Percentage (%)

kr = 2, γr = 250 12 24
kr = 5, γr = 160 6 12
kr = 100, γr = 100 3 6
kr = 2, γr = 100 1 2

wind resource is higher before the last part of the un-
relaxation happens. The selected kr values were 2, 5, and 100
(in the case of kr= 100, γr would be 103 to satisfy Eq. (17),
but it was rounded down to 100).

Combinations 3 and 4 compare the impact of different un-
relaxation speeds for fixed relaxation iterations with the idea
of exploring the impact of the relaxation maximum offset
(i.e., a low value against a high value of kr keeping a con-
stant γr). The selected values for combination 4 were kr = 2
and γr = 100, compared to combination 3 with kr = 100 and
γr = 100.

A total of 50 optimizations were run for each of the se-
lected combinations. Some of the seeds were filtered as they
resulted in constraint-violating solutions, as a local mini-
mum is found before the un-relaxation finishes and the solver
stops. More specifically, Table 1 shows the percentage of
seeds that failed to reach constraint-satisfying solutions. In
total, 17 out the 50 seeds failed in at least one of the com-
binations and were filtered out; thus the final sample for this
relaxation study contains 33 seeds that run successfully for
all combinations of relaxation parameters. Figure 6 shows
the AEP of the 33 runs during the optimization as a func-
tion of iteration number. The dashed lines in each plot indi-
cate the iteration where the boundaries return to their actual
shapes, and a different color is used for each seed. When the
optimizations are launched, it can be seen how the AEP in-
creases quickly due to the effect of relaxation. When the wind
turbines start to find positions that are close to the local opti-
mum, a plateau is formed for the curves (the plateau shape
can be observed more clearly for the first plot, for kr = 2
and γr = 250). Afterwards, when the relaxed boundaries get
closer to the default inclusion zone polygons, the slope of the
AEP curve becomes negative, as the turbines are forced to
leave those already-found sweet spots and are pushed inside
the smaller allowed areas. Depending on the value of kr, this
slope is more or less steep: notice that for the lower-left plot
(kr = 100 and γr = 100), this slope is almost vertical, as the
last 300 m of un-relaxation occurs in only 3 iterations (which
would be very similar to removing the boundary constraints
for the first 100 iterations of the optimization and activating
them afterwards).

Figure 7 shows the statistics from this study using violin
plots, where the mean and the first and third quantiles are
represented. There are two remarkable facts that can be in-
ferred from this plot: firstly, for combinations 1–3 (kr/γr cor-
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Figure 6. AEP convergence as a function of the iteration number for each of the studied relaxation combinations. The multicolored lines
correspond to the different seed numbers.

responding to 2/250, 5/160 and 100/100) the mean of com-
bination 3 with the fastest un-relaxation is slightly higher,
but all distributions are relatively similar. Based on this, we
can state that there is no clear benefit in slowing down the
un-relaxation; i.e., instantly activating the constraints after
100 iterations performs at least as well as a more gradual re-
laxation strategy. Secondly, from the last two combinations
(kr/γr corresponding to 100/100 and 2/100) we can conclude
that the number of iterations before relaxing the last 300 m
has an impact on the result, as for too small a kr, the maxi-
mum offset is not sufficiently large enough for the solver to
find good positions for the turbines before the boundaries are
back to their default shapes.

Based on this relaxation parametric study, it was decided
that kr = 100 and γr = 100 would be used as parameters for
the relaxation approach, as this combination gives slightly
higher AEP and fewer constraint-violating results.

4 Results

In this section, the results from the optimizations that were
run following the described approaches are presented. De-

Figure 7. Relaxation study statistical summary. The violin plots
illustrate the distribution of results from the 33 seeds. The black
bars indicate the first and the third quantiles of the sample. The
horizontal lines represent the means.
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Table 2. Failed seeds for the different approaches.

Optimization approach Number of failed seeds Percentage (%)

SLSQP 5 10
Relaxation+SLSQP 3 6
Smart-start+SLSQP 0 0

spite the fact that most of the optimizations converged suc-
cessfully, there were a few cases where they reached the
maximum number of iterations before convergence; these
were considered valid if all the wind turbines satisfied the
boundary and the distance constraints. On the other hand,
some seeds led to an infeasible solution for some of the ap-
proaches; in these cases, the seed was not considered for the
final results. In total, eight seeds had to be removed from the
results for this reason, as shown in Table 2. More specifically,
the next events were the reason for discarding them:

1. SLSQP showed constraint violations after reaching the
maximum number of iterations in seeds 9, 21, 22,
and 33. This means that the solver is not able to place
all the wind turbines within the inclusion zones while
complying with the spacing constraint at the same time.

2. In seeds 3 and 26, SLSQP+ relaxation converges be-
fore the boundaries are back to their true shape; i.e., the
optimization finishes in fewer iterations than the maxi-
mum number of iterations for relaxation, leading to an
unfeasible solution.

3. Approach 1 fails due to the incompatibility of inequal-
ity constraints before reaching the limit of iterations in
seed 29. This means that the solver is not able to place
all the wind turbines within the inclusion zones while
complying with the spacing constraint at the same time.
Also, it is not able to find new positions for the turbines
that are violating the constraints.

4. Approach 2 fails in seed 41, as SLSQP fails to find a
constraint-satisfying solution.

From the 42 remaining seeds, the first approach achieved
an average AEP value of 95.55 GWh, with a standard devia-
tion of 8.04 GWh. Approach 1 took an average of 207 itera-
tions to finish and an average time of 152 s. The convergence
of the different seeds is illustrated in Fig. 8.

With the second approach, an AEP average value of
105.3 GWh was yielded, with a standard deviation of
5.49 GWh. This involves an increase of +10.2 % of the AEP
compared to the first approach. Approach 2 took an average
of 303 iterations to finish and an average time of 180 s. The
convergence of the different seeds is illustrated in the center
plot of Fig. 8. Until iteration 100, the AEP increases signifi-
cantly, as the boundaries are relaxed and the solver can find
wind turbine positions in areas with higher resource; how-
ever, when the boundaries go back to their default shapes,

Figure 8. AEP plotted as a function of the iteration number of
each optimization approach examined. The multicolored lines cor-
respond to the different seed numbers.
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Figure 9. Violin plots depicting the distribution of AEP found
through the different optimization approaches using 42 random
starting locations.

some of the areas with good resource become restricted, and
the solver has to seek new ones inside the inclusion zones.
The abrupt decay in the AEP happens in a few iterations due
to the high speed of the relaxation, as was shown in the re-
laxation study (Sect. 3.4).

The third approach achieved an average AEP value of
115.17 GWh, with a standard deviation of 1.43 GWh. This
involves an increase of +20.53 % with respect to the first ap-
proach and +9.37 % with respect to the second approach.
This approach took an average of 149 iterations to fin-
ish and an average of 118 s, which includes the time re-
quired to compute smart-start (on average 3 s using a regular
grid of 100× 100, which corresponds to spacing each point
2.375× 10−1 rotor diameters in each direction, x and y). The
faster convergence with respect to the other approaches is
due to starting the optimization from feasible positions that
already provide a good AEP, from which the gradients can
find the local optimum easier.

Figure 9 shows a graphical summary of the statistics de-
scribed above. The approaches subsequently achieve a higher
AEP on average. The tail of the distribution for approach 1
is longer due to finding a local sub-optimum, but most of the
seeds tend to find an optimum around the mean. The stan-
dard deviation decreases remarkably when using the smart-
start algorithm, as many sub-optimal solutions are avoided.
These results demonstrate that the technical limitations of the
method can be overcome with the relaxation of boundaries,
and, moreover, the initialization of the layout with smart-start
provides better solutions than using random guesses all over
the domain. On top of that, smart-start converges faster to-
wards the solution, requiring on average 27 % to 35 % less
time when compared to the other approaches.

Figure 10 illustrates an example of the final layouts
achieved by one of the seeds (number 11), which is represen-
tative of an average result. The contours in the background
represent the mean wind speed at the hub height. The loca-

tions with higher resource in the map correspond to the ar-
eas with higher elevation, and, looking back to Fig. 5, it can
be recalled that the wind has majorly a westerly component,
which explains why the wind turbines tend to align in the ver-
tical direction. The legend in each of the plots indicates the
total AEP achieved by the layout, and the dotted red circles
represent the minimum spacing constraint.

At first glance, it can be noticed that the allocation of wind
turbines is better when the relaxation or smart-start is ap-
plied. In the layout achieved by approach 1 (left-hand plot
in Fig. 10), the discontinuities between different inclusion
zones increase the odds for the solver to become stuck in lo-
cal minimum, which results in the baseline approach often
failing to allocate the wind turbines in areas with higher re-
source. An instance of this is the four wind turbines in the
lower-left inclusion zone: despite the wind resource being
lower than in other areas, the solver opts to place the wind
turbines in that polygon as it was nearest to their initial po-
sitions, and, during the optimization, these wind turbines do
not leave the polygon, as it would violate the boundary con-
straint unless they manage to jump into another inclusion
zone.

The relaxation of boundaries skips this local optimal trap
temporarily and, as a result, achieves an improvement in the
farm AEP (middle plot in Fig. 10). It can be observed that
in the same inclusion zone (lower-left polygon) there are
three fewer wind turbines than for approach 1. The result
of this is a significantly higher yield, leading to an AEP of
107.15 GWh (+7.25 % with respect to approach 1).

The smart-start algorithm beats boundary discontinuity in
a different way: the wind turbines are placed one by one in
the positions with best resource, leading to an initial feasible
solution which, despite not allowing wind-turbine transfer-
ring between the inclusion zones, already provides a good
distribution of wind turbines within the available polygons.
In this particular case, it can be seen how approach 3 (right
plot in Fig. 10) allocates more wind turbines where the yield
potential is higher.

In general, the use of smart-start to find a better initial lay-
out before the optimization proved to achieve higher-quality
solutions; the relaxation applied during a number of itera-
tions when the optimization is started helps in getting higher
values of AEP when compared to the use of SLSQP alone.

5 Conclusions and future work

This article describes a new method to include multiple
boundary constraints represented by polygons in wind farm
layout optimization problems. The method relies on the near-
est distance from the wind turbine positions to the polygons.
The sign of the distance determines if the wind turbine is in-
side or outside of the polygon. A positive sign involves the
wind turbine being inside an inclusion zone or outside an
exclusion zone and vice versa for a negative sign. A new in-
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Figure 10. Final layouts, seed 11. The contour colors in the background indicate the mean wind speed over the site. The legend indicates the
AEP for each of the resulting layouts for this seed. Approaches 2 and 3 succeed in placing more wind turbines over the yellow areas, where
the mean wind speed is higher, leading to better solutions.

equality constraint is introduced in the optimization formu-
lation to force the wind turbines to stay within the desired
polygons.

Despite a limitation of this methodology being identified,
which relates to the correct allocation of wind turbines be-
tween polygons, two potential solutions are proposed: the
implemented boundary constraints can be relaxed during a
definite number of iterations to allow a better exploration of
the domain and consequently find a better allocation of tur-
bines; alternatively, a heuristic algorithm can provide a bet-
ter initial guess that saves computational time and achieves
higher-quality solutions.

To demonstrate the applicability of the method and the ef-
fectiveness of the proposed solutions to its limitation, a case
study was presented. A wind farm consisting of 12 wind
turbines at a site with non-uniform wind resource and ele-
vation was optimized using three different approaches: ap-
proach 1 consisted of using a gradient-based solver, while ap-
proaches 2 and 3 were subsequent combinations of the same
solver with the boundary relaxation and the smart-start al-
gorithms, respectively. For the numerical computations, the
open-source Python libraries developed by DTU Wind and
Energy Systems, TOPFARM and PyWake, were used.

The results show that the distance method successfully re-
spects the boundaries of the given irregularly shaped and dis-
connected polygons, although, for certain initial conditions,
incompatibility between the spacing and the boundary con-
straints might lead to an unfeasible solution. A parametric
study for the relaxation was carried out with four combina-
tions of parameters to decide the most suitable values that
would be used in the case study. This demonstrated that the
speed of relaxation does not have a significant impact on the
results, but there has to be enough time for the solver to place
the wind turbines around the areas with higher resource. In
general, the relaxation of boundaries proved helpful in find-

ing a better optimum layout and wind turbine distribution
between the inclusion zones. An average improvement of
+10.2 % in the AEP gain was achieved by approach 2 with
respect to the sole use of gradients to solve the optimization
problem. Moreover, the combination of heuristic optimiza-
tion methods such as the smart-start algorithm, with gradient-
based solvers followed by approach 3, reached even higher-
quality solutions while saving some computational time. The
average improvement of approach 3 with respect to the other
approaches was +20.53 % and 9.37 %, respectively.

In future work, the method should be tested under more
realistic scenarios, with a higher number of inclusion zone
polygons and wind turbines, which increase the computa-
tional cost substantially. We observe that the time taken by
SLSQP to handle constraints becomes significantly longer
around 10 000 constraints. Furthermore, the comparison of
the described approaches could be investigated using differ-
ent solvers.
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//gitlab.windenergy.dtu.dk/TOPFARM/PyWake, DTU Wind En-
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