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Abstract. Large-eddy simulations (LESs) are commonly considered too slow to serve as a practical wind farm
control model. Using coarser grid resolutions, this study examines the feasibility of LES for real-time, receding-
horizon control to optimize the overall energy extraction in wind farms. By varying the receding-horizon param-
eters (i.e. the optimization horizon and control update time) and spatiotemporal resolution of the LES control
models, we investigate the trade-off between computational speed and controller performance. The methodol-
ogy is validated on the TotalControl Reference Wind Power Plant using a fine-grid LES model as a wind farm
emulator. Analysis of the resulting power gains reveals that the performance of the controllers is primarily deter-
mined by the receding-horizon parameters, whereas the grid resolution has minor impact on the overall power
extraction. By leveraging these insights, we achieve near-parity between our LES-based controller and real-time
computational speed, while still maintaining competitive power gains up to 40 %.

1 Introduction

Turbine–wake interactions can significantly impact the ef-
ficiency of energy extraction when many turbines are clus-
tered together in large-scale wind farms. Standard control
strategies do not account for the wake interactions but max-
imize performance at the turbine level, resulting in signifi-
cant power deficits and increased loading in downstream re-
gions. In the last decade, much research has been done into
dynamic receding-horizon optimal control strategies to mit-
igate these effects, both through axial induction control and
wake redirection (see Meyers et al., 2022 for a recent review).
More recently, Goit and Meyers (2015), Goit et al. (2016)
and Munters and Meyers (2017, 2018b) have developed an
optimal control framework for wind farm power maximiza-
tion based on high-fidelity large-eddy simulations (LESs) of
the wind farm boundary layer. In their latest work combin-
ing overinduction and wake redirection control, Munters and
Meyers (2018b) report energy gains of up to 34 % for an
aligned 4×4 wind farm. Despite its accuracy, LES is usually
deemed impractical for real-time applications due to its high
computational cost. In that sense, the aforementioned opti-
mal control studies were intended as benchmarking studies,

aimed at exploring the potential of LES for power optimiza-
tion in wind farms.

To achieve real-time optimal control, one option is to re-
sort to models that are less computationally intensive (com-
pared to 3D LES). For instance, in some dynamic flow mod-
els, the vertical dimension of the flow is either disregarded
or approximated to cope with the computational cost of
3D wake dynamics (see, e.g., Soleimanzadeh et al., 2014;
Rott et al., 2017; Boersma et al., 2018). This results in a
2D LES-like model suitable for online wind farm control. In-
stead of LES, more simplified formulations of the governing
equations, such as the 2D dynamic wake meandering model
(Jonkman et al., 2017) or the Reynolds-averaged Navier–
Stokes equations (Iungo et al., 2015), can be employed to
accelerate the computations. In Shapiro et al. (2017), an
even simpler 1D wake model is proposed for closed-loop
receding-horizon control. However, these expeditious engi-
neering models potentially lack the necessary physical intri-
cacies inherent to 3D LES and may not capture the actual
turbulent wake dynamics.

The present paper is a first investigation on the feasibil-
ity of using LES as a real-time plant model for receding-
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horizon wind farm control. To overcome the challenge of
computational speed, this study aims to leverage the insights
from the earlier work of Bauweraerts and Meyers (2019). In
the context of turbulent flow forecasting in the atmospheric
boundary layer, they demonstrated that prediction errors only
slowly increase when coarsening the grid. By resorting to
coarser-grid formulations and incorporating an efficient spa-
tial parallelization, they were able to reduce LES wall times
up to a factor of 300 compared to simulated time. We envis-
age a similar approach, but focusing on LES-based receding-
horizon control. By varying the spatiotemporal grid resolu-
tion of the LES plant model, we investigate the trade-off
between computational speed and performance of the con-
troller. In view of the latter, we also study the influence of
the parameters of the receding-horizon framework, i.e. the
optimization horizon, the control update time and number
of optimization iterations. To take into account the compu-
tational times for the optimization and allow for a practical,
real-time control action, the framework from Munters and
Meyers (2017) is applied in a time-decoupled fashion where
the control signals are computed ahead of time (based on a
prediction of the future state; see, e.g., Grüne and Pannek,
2017). The proposed methodology is demonstrated on the
TotalControl Reference Wind Power Plant (TCRWP) (see,
e.g., Andersen et al., 2018), combining yaw and induction
control strategies.

In the context of wind farm modeling, the coarse LES
models envisioned in this work may not fully capture all
the relevant dynamics in the turbulent wakes. In general,
finer grids are required to accurately represent secondary
flow features such as (the breakdown of) tip vortices and
helical structures. For example, in the dynamic induction
control (DIC) strategy proposed by Munters and Meyers
(2018a), one of the main mechanism to enhance wake mix-
ing is the periodic shedding of vortex rings from front-row
turbines synchronized to the turbulent inflow. These vortex
rings cannot be accurately represented on a coarse resolu-
tion. More novel approaches, such as the helix approach,
also require finer grids to represent the helical structures in
the wakes, especially near the turbine rotor (Frederik et al.,
2020). However, for other phenomena that are mostly trig-
gered by large-scale motions in the flow, coarser grids may
suffice. Examples of the latter include the overall deflection
and gross behavior of the wakes and potentially also wake
meandering triggered by the time-varying inflow conditions
or incited by dynamically yawing the turbines (Meyers et al.,
2022).

The paper is organized as follows. In Sect. 2, we first sum-
marize some important aspect of the LES modeling and in-
troduce the time-decoupled receding-horizon framework, as
well as how this framework is adapted to incorporate the
coarsening strategy from Bauweraerts and Meyers (2019).
Next, the TCRWP test case and simulation setup are dis-
cussed in Sect. 3. In Sect. 4, we present the results and dis-
cuss the influence of the grid resolution and receding-horizon

parameters on the performance and computational time of
the LES-based controllers. Section 5 then leverages these in-
sights to design a competitive controller (in terms of power
gains) as close to real time as possible. Section 6 concludes
the paper and summarizes the main contributions.

2 Methodology

We first discuss the time-decoupled receding-horizon opti-
mal control framework in Sect. 2.1. Next, we describe the
wind farm optimization problem in Sect. 2.2 and highlight
some aspects of turbine modeling in Sect. 2.3. The opti-
mization method and gradient computation are discussed in
Sect. 2.4. Finally, the grid-coarsening strategy is elaborated
in Sect. 2.5.

2.1 Receding-horizon optimal control

Previous LES-based wind farm control studies (see, e.g.,
Goit and Meyers, 2015; Goit et al., 2016; Munters and
Meyers, 2017, 2018b) have adopted a simplified model-
predictive control (MPC) framework where the optimization
is performed on an accurate control model assuming per-
fect knowledge of the system state; see Fig. 1a. This control
loop was applied in a receding-horizon fashion (see Fig. 1b,
where time is divided into overlapping windows of length
TA. In each consecutive window, the controls ϕ were opti-
mized over a prediction horizon T through a series of fine-
grid forward and adjoint LES simulations and then applied to
the wind farm over a control update time TA (with TA < T ).
These controllers, however, are not realizable in practice, be-
cause full state information is not available and the fine-grid
LES control model is unfeasible due to its excessive com-
putational cost. Moreover, in their framework, the compu-
tational time to solve the optimization problems is ignored,
since controls are first computed and then applied to the same
time interval, which is not possible in real time.

To account for computational time and allow real-time
control, we propose a time-decoupled approach where con-
trols are computed with a predefined offset corresponding to
the control update time TA from previous studies. The time-
decoupled MPC loop, including state estimation, is shown
in Fig. 2a (Grüne and Pannek, 2017). For t ∈ [tk, tk + TA],
the estimator yields an estimate q̂(tk) of the instantaneous
flow at tk = kTA. The estimate is computed using lidar or
SCADA measurements h(q(t)) that were collected over the
past estimation window [tk − TSE, t

k
] and stored in the esti-

mation buffer (with h(·) the measurement function), assum-
ing moving horizon estimation with horizon TSE (note that
the MPC loop may differ on the estimation side when us-
ing other approaches such as a Kalman filter). Next, the pre-
dictor uses a flow model to propagate the estimate, yielding
a prediction q̂(tk + TA) of the future wind farm state. This
allows the optimizer to compute the optimal controls ahead
of time, resulting in ϕk+1(t) for t ∈ [0,T ] (with T the opti-
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Figure 1. MPC approach from earlier studies (Goit and Mey-
ers, 2015; Goit et al., 2016; Munters and Meyers, 2017, 2018b).
(a) Control loop. (b) Receding-horizon approach. In every window
i, the optimization stage is represented by a series of forward and
adjoint simulations, resulting in controls ϕi that are applied to the
farm over a control update time TA. Figures adapted from Munters
and Meyers (2018b).

mization horizon). This set of controls is then stored in the
actuator buffer. In the next window (t ∈ [tk+TA, tk+2TA]),
the subset φ(t)= ϕk+1(t−(k+1)TA) of controls correspond-
ing to that window is released by the buffer and applied to
the farm. In a real-time setting, the update time TA should
be long enough to compensate for the computational time
of estimation, prediction and optimization. Similar schemes
have been proposed in, e.g., Chen et al. (2000), Findeisen and
Allgöwer (2004) and Su et al. (2013) for low-dimensional
generic demonstration problems.

The time-decoupled control loop can be applied in a
receding-horizon framework. The sequence of real-time
computations versus the corresponding receding-horizon
computations (in simulated time) is outlined in Fig. 3. As de-
scribed above, the state estimate is typically generated based
on past flow measurements over some estimation horizon
TSE, whereas the optimization is performed over a time hori-
zon T with offset TA.

To reduce the computational time, as in Bauweraerts and
Meyers (2019), the prediction and optimization are per-
formed using a coarse-grid wind farm model. The actual
wind farm in Fig. 2a is represented by an emulator in the form
of fine-grid LES, to which the control action φ is applied. In
the present study, we assume perfect state knowledge and
hence omit the state estimator. Instead, we just introduce a
restriction operator to filter the exact wind farm state onto
the coarse prediction and optimization grids. Under this sim-

plification, the exact state (but restricted to the coarse grid)
is then propagated forward in time by TA in the predictor to
generate the prediction q̂(tk + TA) of the future wind farm
state. The restriction operator, used to map system feedback
from the fine LES grid to the coarser prediction and optimiza-
tion grid, is discussed in more detail in Sect. 2.5. The time-
decoupled control loop, omitting state estimation, is shown
in Fig. 2b. Note that this approach introduces two sources of
model mismatch between the coarse models and the fine-grid
emulator. Firstly, a restriction error arises from filtering the
LES data from the emulator to the coarser resolution of the
predictor and optimizer. Secondly, the predictor introduces a
prediction error that is inherent to time-decoupled MPC and
depends on the update time TA.

2.2 Wind farm optimization problem

In the receding-horizon approach, in every optimization win-
dow, the overall wind farm power is optimized over the opti-
mization horizon T . The optimization problem is formulated
as in Munters and Meyers (2018b):

minϕ(t),q(t)
0<t≤T

J (ϕ,q)=−

T∫
0

Nt∑
m=1

1
2
C′P,mV

3
mAmdt, (1)

s.t.
∂u

∂t
+ (u · ∇)u=−

∇p

ρ
−∇ · τ sgs

−

Nt∑
m=1

1
2
Ĉ′T,mV

2
mRm(x)e⊥,m in �× (0,T ], (2)

∇ ·u= 0 in �× (0,T ], (3)

τ
dĈ′T,m

dt
= C′T,m− Ĉ

′
T,m m= 1 . . .Nt in (0,T ], (4)

dθm
dt
= ωm m= 1 . . .Nt in (0,T ], (5)

C′T,min ≤ C
′
T,m ≤ C

′
T,max m= 1 . . .Nt in (0,T ], (6)

ωmin ≤ ωm ≤ ωmax m= 1 . . .Nt in (0,T ], (7)

u(x,0)= ûpred
0 in �. (8)

The flow through the wind farm is governed by the LES
equations (Eqs. 2–3), with u and p the velocity and pressure.
Subgrid scales are represented by the stress tensor τ sgs us-
ing a standard Smagorinsky model with constant coefficient
Cs = 0.14 including wall damping. For the discretization,
we employ a pseudo-spectral method in the streamwise and
spanwise direction and a fourth-order energy-conservative
finite-difference scheme in the vertical direction. For the
time stepping, we use an explicit fourth-order Runge–Kutta
scheme. Here, all four Runge–Kutta stages are stored on disc
(as opposed to the aforementioned LES studies that only
store the first stage). This results in a more accurate rep-
resentation of the gradients using the adjoint method (see
Sect. 2.4). In the vertical direction, a high Reynolds num-
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Figure 2. (a) Time-decoupled MPC assuming moving horizon estimation. In the window t ∈ [tk, tk+TA], a state estimate q̂(tk) is computed
based on past measurements h(q(t)) stored in the estimation buffer; controls are computed with offset TA based on a prediction q̂(tk+TA) of
the future state and buffered until they are applied in the next window t ∈ [tk+TA, tk+2TA]. (b) Time-decoupled MPC approach considered
in this work, assuming perfect state information. Controls and prediction are computed using coarse-grid LES; fine-grid LES serves as an
emulator for the actual farm.

ber wall stress boundary condition and symmetry bound-
ary condition are imposed on the bottom and top surface of
the domain respectively. All simulations are performed using
the in-house simulation code SP-Wind (for more informa-
tion, see, e.g., Goit and Meyers, 2015; Munters and Meyers,
2017, 2018b).

Each turbine m (= 1 . . .Nt ) is controlled by a time-
dependent thrust coefficient set point C′T,m and yaw rate ωm,
both subject to box constraints (Eqs. 6–7). Put together, they
constitute the vector of optimization variables,

ϕ(t)=
[
C′T,1(t), . . ., C′T,Nt (t),ω1(t), . . ., ωNt (t)

]
=
[
C′T(t),ω(t)

]
,

for 0< t ≤ T . To model the turbine response time, an ex-
ponential filter (Eq. 4) with time constant τ is applied
to the thrust coefficient set points, resulting in the time-
filtered disc-based thrust coefficients Ĉ′T(t) (Munters and
Meyers, 2017). The yaw rates control the turbine yaw
angles θ (t) through the yaw equation (Eq. 5). All to-
gether, this results in the vector of state variables q =

[u(x, t),p(x, t), Ĉ′T(t),θ (t)]. The disc-based thrust coeffi-
cients and yaw angles determine the thrust force exerted
on the flow and the power extracted by the turbine (see
Sect. 2.3). For a more detailed explanation on all the terms
and equations, see Goit and Meyers (2015) and Munters and
Meyers (2017, 2018b).

Note that controls are computed ahead of time in line with
the time-decoupled MPC loop from Sect. 2.1. In receding-

horizon interval k (for t ∈ [tk, tk + TA], see Fig. 3), the ex-
act state from the fine-grid emulator is first restricted to the
coarse grid, resulting in q̂(tk). Next, the prediction q̂(tk+TA)
is computed by propagating q̂(tk) over TA using the same
coarse-grid LES model described by Eqs. (2)–(7). This esti-
mate is used as initial condition ûpred

0 for the optimization;
see Eq. (8). Also note that the controls φ(t), which are actu-
ally applied to the wind farm emulator in the next time inter-
val (for t ∈ [tk+TA, tk+2TA]), only comprise the first part of
length TA from the optimal controls ϕk+1(t) (with TA ≤ T ).

2.3 Wind turbine modeling

For the turbine modeling, a standard non-rotating actu-
ator disc model is used. Based on actuator disc the-
ory, the turbines exert a force on the flow: fm =

−
1
2 Ĉ
′
T,mV

2
mRm(x)e⊥,m, where Rm is a smoothed footprint

of the rotor on the LES grid, e⊥,m the unit vector perpen-
dicular to the rotor plane and V m = M

Am

∫
�
Rmu · e⊥,mdx the

(corrected) disc-averaged velocity (with Am the rotor disc
area andM a correction factor defined below). The power ex-
tracted from turbine m is then given by Pm = 1

2C
′
p,mV

3
mAm,

where C′p,m denotes the disc-based power coefficient.
On present-day grid resolutions, power is typically over-

estimated due to the diffuse smearing of the rotor disc on the
simulation grid by the rotor footprint (Martínez-Tossas et al.,
2015; Shapiro et al., 2019). To account for this, Munters and
Meyers (2017, 2018b) have proposed to setC′p = aĈ

′
T, where
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Figure 3. Sequence of real-time computations (estimation, prediction and optimization) versus corresponding receding-horizon computa-
tions in simulated time, corresponding to the control loop from Fig. 2a.

a is selected based on fitting LES data to 1D momentum the-
ory. While linear scaling is effective on intermediate grid res-
olutions for unyawed turbines, its performance deteriorates
on coarser grids and for yawed turbines. This is illustrated in
Fig. 4a and b, where we show the empirical power coefficient
Cp = P/

(
1
2U

3
∞A

)
for the DTU 10 MW turbine for different

values of a at yaw angles θ = 0◦ and θ = 30◦, computed us-
ing LES with uniform inflow (U∞ = 8 m s−1) on a grid reso-
lution 1x =1y = 1.61z= 80 m (the coarsest resolution in
this work). We also show the effect of the correction from
Shapiro et al. (2019), which is expressed as a correction fac-
tor on the disc-averaged velocity Vm = 1

Am

∫
�

Rmu · e⊥,mdx.

In particular, the corrected disc-averaged velocity is given by

V m =M
shVm, with

Msh
=

(
1+

Ĉ′T,m

4
1
√

3π

1

R

)−1

(9)

the Shapiro factor, R the rotor radius and 1 the filter width
of the Gaussian filtering kernel. For comparison, the power
coefficient (for a = 1.0) on the reference resolution 1x =
1y = 21z= 13.33 m (the resolution of the emulator) is also
included, where we also applied the Shapiro factor to better
replicate 1D momentum theory.

In Fig. 4a, the correction a = 0.775 performs relatively
well compared to the reference. However, under yaw mis-
alignment of 30◦ in Fig. 4b, the same factor overestimates
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Figure 4. Empirical power coefficient versus disc-based thrust coefficient for different correction strategies at different yaw angles θ : linear
scaling C′P = aĈ

′
T and factor from Shapiro et al. (2019) in Eq. (9) for θ = 0◦ (a) and θ = 30◦ (b), and lookup table approach for θ = 0, 12.5

and 27.5◦ (c). For every simulation, uniform inflow velocity U∞ = 8 m s−1 is prescribed using a fringe region spanning the final 20 % of the
domain, with domain size Lx = 26.92D, Ly = 13.46D and Lz = 8.41D on the coarse grid 1x =1y = 1.61z= 80 m. In each plot, we
also show the empirical power coefficient (including Shapiro correction) at the reference resolution 1x =1y = 21z= 13.33 m.

power for higher thrust coefficients. The Shapiro correction
consistently underestimates power on the coarse grid. In an
optimal control setting, any mismatch between model and
reference will result in suboptimal thrust coefficients and
yaw angles. Therefore, we take a = 1 and propose a lookup
table approach to account for discrepancies in power pre-
diction on different grid resolutions. In particular, the disc-
averaged velocity on the coarse grids is corrected based on
a lookup value M that depends on the thrust coefficient and
the yaw angle:

V m =M
(
Ĉ′T,m,θm

)
Vm. (10)

The lookup table is constructed in such a way that, for uni-
form inflow, the corrected disc-averaged velocity (and con-
sequently the power output) on the coarse grids matches the
disc-averaged velocity from the reference for given (Ĉ′T,θ ).
This approach allows us to match power calculation on the
coarse grids arbitrarily well with a given reference turbine
(depending on the lookup table resolution in terms of Ĉ′T
and θ ). In the current work, we propose a lookup range
Ĉtable

T × θ table
= {0.0,0.5, . . ., 2.5,3.0}× {0,5, . . ., 35,40◦},

and we use bilinear interpolation on the lookup table to com-
pute the correction for given Ĉ′T and θ . The resulting lookup
tables are tabulated in Appendix A, where we also briefly
examine the performance of the lookup table approach for
turbulent inflow. The corrected power coefficient is shown in
Fig. 4c.

2.4 Optimization method and gradient computation

As in Munters and Meyers (2018b), the optimization prob-
lem is solved in a reduced fashion by explicitly substi-
tuting state equations (Eqs. 2–5) into the cost function,
i.e. by minimizing J̃ (ϕ)= J (ϕ,q(ϕ)) subject to box con-
straints (Eqs. 6–7). To solve the optimization problem,

we use the limited-memory Broyden–Fletcher–Goldfarb–
Shanno method with box constraints (L-BFGS-B). In each
iteration, this quasi-Newton method constructs a quadratic
approximation of the objective function, where the inverse
Hessian is approximated by the BFGS formula. A search
direction is then generated based on the minimum of the
quadratic model (Nocedal and Wright, 2006). We use a line
search method to determine a step length in the search di-
rection that satisfies the strong Wolfe conditions. In every
optimization window, this procedure results in a sequence of
function and gradient evaluations (see Fig. 3). To compen-
sate for the large-scale nature of the problems at hand, we
use the limited-memory version of BFGS that only stores
a limited number of correction pairs. We use the L-BFGS-
B Fortran library from Zhu et al. (1997) and Morales and
Nocedal (2011); for more information on the algorithm, the
reader is referred to Byrd et al. (1995).

In contrast to previous LES-based wind farm control stud-
ies (Goit and Meyers, 2015; Goit et al., 2016; Munters and
Meyers, 2017, 2018b) that relied on a continuous adjoint ap-
proach to compute gradients, we follow up on the work in
Yilmaz and Meyers (2019) by using a temporally discrete
adjoint method. In the continuous adjoint method, the ad-
joint equations are first derived based on the description of
the optimization problem in Eqs. (1)–(8) and subsequently
discretized and solved using LES similar to a forward sim-
ulation. Conversely, the discrete adjoint method first dis-
cretizes and linearizes the state equations and then formu-
lates the discrete adjoint of the linearized equations. Conse-
quently, the discrete adjoint method obtains the gradient of
the discretized cost functional, whereas the continuous ad-
joint method yields a discrete approximation of the gradient
of the continuous cost functional. In the limit of infinite grid
resolution, both methods are equivalent (Giles and Pierce,
2000).
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Below we directly formulate the temporally discrete ad-
joint Runge–Kutta 4 scheme, derived from a fourth-order
Runge–Kutta discretization of the state equations (Eqs. 2–
5) and cost function. More details on the discretization are
provided in Appendix B1. For the Navier–Stokes equations,
the thrust coefficient filter equation and the yaw equation,
this results in the following (where i and j subscripts denote
the Runge–Kutta stages, m is the turbine number, and n the
discrete time instant, i.e. tn = n1t):

ξni /1t =
(
−
(
∇uni

)T
+ (uni · ∇

))
ξ̂ni −∇π

n
i /ρ

−∇ · τ ∗sgs

(
uni , ξ̂

n
i

)
+

Nt∑
m=1

f ∗
n

m,i i = 1 . . .4, (11)

∇
2πni /ρ =∇ ·

[(
−
(
∇uni

)T
+
(
uni · ∇

))
ξ̂ni

−∇ · τ ∗sgs

(
uni , ξ̂

n
i

)
+

Nt∑
m=1

f ∗
n

m,i

]
i = 1 . . .4, (12)

ξn = ξn+1
+

4∑
i=1

ξni , (13)

σ nm,i/1t =
1
τ

(
σ̂ nm,i −

1
2
V
n2

m,i

(
biV

n

m,i − X̂
n
m,i

)
Am

−
1
2
Ĉ′nTmV

n

m,iV
n
m,i

∂M
(
Ĉ′nTm ,θ

n
m

)
∂Ĉ′T(

3biV
n

m,i − 2X̂nm,i
)
Am

)
i = 1 . . .4, (14)

σ nm = σ
n+1
m +

4∑
i=1

σ nm,i, (15)

ηnm,i/1t =−
1
2
Ĉ′nTmV

n

m,i∫
�

((
3biV

n

m,i − 2X̂nm,i
)
Muni −V

n

m,iξ
)

·
(
e||,mRm+ e⊥,mDm

)
dx
]
−

1
2
Ĉ′nTmV

n

m,i

V nm,i

∂M
(
Ĉ′nTm ,θ

n
m

)
∂θ

(
3biV

n

m,i − 2X̂nm,i
)
Am

i = 1 . . .4, (16)

ηnm = η
n+1
m +

4∑
i=1

ηnm,i, (17)

with aij and βi the Runge–Kutta coefficients. In these equa-
tions, ξn, πn, σ nm and ηnm are the adjoint state variables associ-
ated with un, pn, Ĉ

′n
T,m, and θnm, and ξni , πni , σ ni,m, and ηni,m for

i = 1 . . .4 are the corresponding adjoint Runge–Kutta stages.
Furthermore, ξ̂ni , σ̂ ni,m and η̂ni,m are auxiliary variables (see
Appendix B). As in Munters and Meyers (2018b), f ∗m de-
notes the adjoint turbine force, Xm is the disc-averaged ad-
joint velocity, e‖,m is the rotor-parallel unit vector and Dm is

the rotational rotor footprint. The temporally discrete adjoint
equations are derived in detail in Appendix B. For a detailed
definition of all terms related to the turbine modeling, see
Goit and Meyers (2015) and Munters and Meyers (2018b).
However, note that these studies only used the first forward
Runge–Kutta stage, whereas here all four (forward) Runge–
Kutta stages are used in the adjoint scheme, resulting in a
more accurate method.

Finally, the adjoint variables are used to compute the gra-
dients with respect to the thrust coefficient set points and yaw
rates:

∇ϕnmJ̃
N
=

 ∂J̃ N

∂CT
′n
,m

∂J̃ N

∂ωnm


=

−1t∑4
i=1

(
biσ

n+1
m +

∑i−1
j=1aijσ

n
m,i

)
−1t

∑4
i=1

(
biη

n+1
m +

∑i−1
j=1aijη

n
m,i

)  . (18)

Note that, as mentioned above, Eq. (18) is an exact expres-
sion for the gradient of the discretized objective function.
The discrete adjoint approach and gradient computation are
validated in Appendix B5.

2.5 Coarse-grid optimization and coarsening strategy

As discussed in Sect. 1, we investigate the influence of the
spatiotemporal grid resolution of the LES wind farm control
model on the overall power gain and computational speed.
To that end, as in Bauweraerts and Meyers (2019), we de-
fine three coarse grid resolutions for prediction and optimiza-
tion, as well as a fine reference grid for the wind farm em-
ulator. For the grid specifications, the reader is referred to
Sect. 3.1, where we discuss the case setup. Below, we dis-
cuss the coarsening strategy in view of the time-decoupled
MPC loop from Fig. 2b.

2.5.1 Coarse-grid prediction and control methodology

At the start of every window, feedback (i.e. the 3D flow field)
from the fine-grid wind farm emulator (the reference) is pro-
vided to the coarse predictor through a restriction operator
(see Fig. 2b). In view of computational time, we allow dif-
ferent domain sizes for the LES models in the coarse-grid
predictor and optimizer. In particular, for the predictor, we
propose an upstream domain length proportional to the total
prediction horizon T + TA, i.e. Lx,upstream = α(T + TA)U∞
(where α ≥ 1 is a safety factor). The predictor uses this do-
main to propagate the restricted reference field, which in
turn yields the initial condition for the optimization. For the
optimization, we take Lx,upstream = αT U∞. Thus, the ap-
proach is characterized by cropping and restricting the refer-
ence field to the prediction domain, and subsequently another
cropping from the prediction to the optimization domain,
as graphically illustrated in Fig. 5. The horizon-dependent
upstream domain lengths ensure that inflow never reaches
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the front-row turbines within the prediction and optimiza-
tion windows, rendering fringe regions and turbulent inflow
generation superfluous in the predictor and optimizer. The
fringe region from the fine-grid reference simulation is there-
fore excluded upon restriction, which, along with the smaller
domain sizes (for a given grid resolution), entails significant
computational speedups. We note that the lack of proper in-
flow may influence the optimized controls towards the end
of the optimization window. However, choosing an update
time TA < T should suffice to counter these effects. Also
note that, besides the horizon-dependent streamwise crop-
ping, we also allow for a spanwise and vertical cropping to
further accelerate prediction and optimization.

2.5.2 Restriction from reference to optimization
resolution

Given the pseudo-spectral discretization in SP-Wind, the ref-
erence flow field from the emulator must be transformed
from Fourier space into real space before applying the crop-
ping. The cropped reference velocity in real space, û

3
2 ,ref,

is then restricted to the coarser resolution used in the predic-
tor and optimizer using linear interpolation (superscript “ref”
denotes the reference):

û
3
2
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where û
3
2 denotes the restricted velocity (in real space) and

1xref, 1yref and 1zref denote the grid resolutions of the ref-
erence grid. Note that the restriction takes place in real space,
where the grid is a factor of 3/2 finer in the horizontal direc-
tions for de-aliasing using Orszag’s rule (hence the factors
of 3/2 in the equation above).

3 Case setup

This section provides a detailed description of the sim-
ulation cases and numerical setup that are used to eval-
uate the proposed wind farm controller. Throughout this
work, we consider the TotalControl Reference Wind Power
Plant (TCRWP) (Andersen et al., 2018) consisting of
32 DTU 10 MW turbines arranged in an 8× 4 aligned pat-
tern, as illustrated in Fig. 6. Turbines are separated by an

Table 1. Grid resolutions for the different coarseness levels.

Grid level i 0 1 2 Reference

Resolution x [m] 1xi 80 60 40 13.33
Resolution y [m] 1yi 80 60 40 13.33
Resolution z [m] 1zi 50 37.5 25 6.67
Resolution t [s] 1t i 2.5 2.5 2.0 0.5

intermediate spacing of 5D in streamwise and spanwise di-
rections, where D = 178.3 m is the rotor diameter and tur-
bines are placed at hub height zh = 119 m (based on the DTU
10 MW reference turbine, as reported in Bak et al., 2013).

3.1 Simulation setup

The grid resolutions for the numerical discretization on the
three coarseness levels and the reference are summarized
in Table 1. Since SP-Wind requires a constant integration
time step, T/1t should be an integer. Furthermore, we use
the same 1t i for all cases on grid level i. Therefore, the
time steps in Table 1 are selected as the largest possible
ones meeting these requirements and adhering to a Courant–
Friedrichs–Lewy (CFL) condition of 0.8. Note that based on
the CFL condition only, the time step on the coarsest grid lev-
els could in principle still be higher, hence speeding up the
computation. The latter case is investigated in Sect. 5, where
we design a controller that is as close to real time as possible.

For the fine-grid reference simulation in the wind farm
emulator, we take the simulation setup from Andersen et al.
(2018) and Sood and Meyers (2020), consisting of 1200×
1200× 225 grid cells and a simulation domain with di-
mensions Lx ×Ly ×Lz = 16× 16× 1.5 km3, where the fi-
nal 6.25 % of the domain in the streamwise direction is
used as a fringe region to impose the inflow conditions. The
spatial extent of the domain suffices to keep blockage ef-
fects negligible in the reference simulation. The simulations
are performed using a standard offshore roughness length
z0 = 2× 10−4 m, and the flow is driven by a pressure gra-
dient ∂xp∞/ρ = 5.2267× 10−5 m s−2 resulting in a friction
velocity uτ = 0.28 m s−1, which is a typical value in offshore
boundary layers.

Prior to the wind farm simulations, a pressure-driven pre-
cursor simulation with periodic boundary conditions was run
on the same (reference) domain to generate turbulent inflow.
With the roughness length and pressure gradient specified
above, this results in a freestream wind speed roughly equal
to 9.4 m s−1 at the turbine hub height. The precursor data
(with a detailed overview of the precursor simulation setup)
is publicly available in Munters et al. (2019). Using this pre-
cursor, the flow is then advanced through the wind farm for
a spin-up period of 60 min to account for startup transients.
Note that here turbines are modeled by non-rotating actua-
tor discs, and the turbine locations are shifted backwards in
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Figure 5. Coarsening strategy: the fine-grid reference field is cropped (removing the fringe region and retaining an upstream domain length
of αT U∞) and restricted to the coarser resolution for the optimization. The resulting field is used as initial condition for the optimization.

Table 2. Grid specifications and domain sizes for the different coarseness levels as a function of the optimization horizon T and control
update time TA for the optimizer and predictor. Domain sizes in spanwise and vertical directions are equal for all cases: Ly = 6.24 km and
Lz = 1.5 km. Number of grid cells in spanwise and vertical direction (N iy and N iz) are equal for the predictor and optimizer.

Optimization horizon T = 50 s Optimization horizon T = 250 s

Update time TA = 50 s TA = 50 s TA = 150 s TA = 250 s

Lx [km]: optimizer 9.6 11.52 11.52 11.52
predictor 10.56 12.48 13.44 14.4

Grid level i 0 1 2 0 1 2 0 1 2 0 1 2

N ix : optimizer 120 160 240 144 192 288 144 192 288 144 192 288
predictor 132 176 264 156 208 312 168 224 336 180 224 360

N iy : 78 104 156 78 104 156 78 104 156 78 104 156
N iz : 30 40 60 30 40 60 30 40 60 30 40 60

Optimization horizon T = 150 s Optimization horizon T = 350 s

Update time TA = 50 s TA = 150 s TA = 50 s TA = 150 s TA = 250 s TA = 350 s

Lx [km]: optimizer 10.56 10.56 12.48 12.48 12.48 12.48
predictor 11.52 12.48 13.44 14.4 15.36 15.36

Grid level i 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

N ix : optimizer 132 176 264 132 176 264 156 208 312 156 208 312 156 208 312 156 208 312
predictor 144 192 288 156 208 312 168 224 336 180 240 360 192 256 384 192 256 384

N iy : 78 104 156 78 104 156 78 104 156 78 104 156 78 104 156 78 104 156
N iz : 30 40 60 30 40 60 30 40 60 30 40 60 30 40 60 30 40 60

the streamwise direction in comparison to Sood and Mey-
ers (2020). The latter is required to accommodate the entire
flow field encompassed in the longest prediction windows
(see Sect. 2.5). The resulting flow field, depicted in Fig. 7,
is used as the starting point for the optimization. Figure 8
shows the initial flow field after restriction to the resolutions
of the coarse control models from Table 1.

As explained in Sect. 2.5, the upstream domain lengths for
the coarse models in the predictor and optimizer are chosen
proportional to the optimization horizon T and control up-
date time TA. In this work, we consider four different hori-
zons (see also Sect. 3.1.1): T ,TA ∈ {50,150,250,350}. The
corresponding domain sizes and grid specifications for each
combination of T and TA are summarized in Table 2 for
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Figure 6. Layout of the TotalControl Reference Wind Power Plant.
Axes in rotor diameter units, with D = 178.3 m. Figure adapted
from Andersen et al. (2018).

Table 3. Optimization horizons T and control update times TA.

Case 1 2 3 4 5 6 7 8 9 10

T [s] 350 250 150 50
TA [s] 350 250 150 50 250 150 50 150 50 50

both the predictor and optimizer. In all simulations, a high-
Reynolds number wall model is used at the bottom of the
domain with roughness length z0 = 2× 10−4 m, and the top
boundary is treated by a stress-free condition. For the predic-
tion and optimization, we use the same coarse grid resolu-
tions from Table 1 and omit the fringe region (see Sect. 2.5).

3.1.1 Receding-horizon optimal control setup

Wind farm operation is optimized over a total horizon of
Ttot = 30 min, which comprises just under three through
flows for the given wind farm (given a free-stream velocity
U∞ ≈ 9.4 m s−1). In the receding-horizon framework, tur-
bine controls are optimized over windows of horizon T with
offset TA (the control update time) corresponding to the pre-
diction horizon of the predictor. Table 3 summarizes the
different combinations of T and TA considered here. The
longest optimization window (T = 350 s) allows the opti-
mizer to account for wake interactions over three consecutive
rows. With every horizon reduction of 100 s in Table 3, the
optimizer looses control authority over one row of turbines in
the wakes. For T = 50 s, wakes cannot propagate to the next
row within the optimization window; case 10 may therefore
be considered as an “uncoordinated” control case. Note that
optimization and prediction horizons are limited due to the
natural divergence of trajectories in chaotic flows. In prac-
tice, for our setup, we find that gradients are still accurately
represented for T = 350 s (the longest optimization horizon
considered in this work; see also Appendix B5 for the gradi-
ent verification).

All cases are initialized from the same flow field depicted
in Fig. 7, which was generated by advancing the flow on the
reference grid using constant thrust coefficients for all tur-
bines (C′T = 2, no yawing ω = 0◦ s−1), until a statistically

Table 4. Specifications for the turbine control cases.

Case C′T,min C′T,max ωmax

[–] [–] [
◦ s−1
]

Reference (R) 2 2 0
Induction+ yaw (IY) 0.5 2 0.4
Steady yaw (S) 2 2 0

stationary state is achieved. As explained in Sect. 2.5, before
each optimization run, the current flow field is taken from
the reference simulation and restricted to the coarser predic-
tion grid and propagated over the control update time TA in
the predictor (Fig. 5). Turbine controls are then optimized
over the optimization horizon T , starting from initial guess
C′T = 2 and ω = 0◦ s−1 for all turbines, until a stopping cri-
terion is met. The convergence criterion used here is based on
the relative improvement of the objective function over the L-
BFGS-B iterations, i.e. (J k−1

−J k)/J k−1
≤ 5×10−6. The

optimized controls are then applied to the reference in the
next time window. Since the time-dependent controls are op-
timized on the temporal grid of the optimizer, the optimized
controls are first interpolated onto the finer temporal refer-
ence grid using a simple zero-order hold rule.

3.1.2 Turbine control cases

Three control scenarios are examined; see Table 4. First, we
define a steady reference case (R) where turbines operate
at Betz-optimal thrust coefficients C′T = 2, aligned with the
mean-flow direction (θ = 0◦ and ω = 0◦ s−1). Next, we con-
sider a combined induction and yaw control case (IY) with
a maximum yaw rate ωmax = 0.4◦ s−1. The induction control
part is restricted to the underinduction regime (i.e. C′T,max =

2) to avoid bias in the results due to the inherent inaccuracy
of the ADM in the overinduction regime. A response time
τ = 15 s is adopted for the time filtering of the thrust coef-
ficient set points. Finally, we also consider the steady yaw
control case from Sood and Meyers (2022), who used the re-
cursive wake merging methodology from Lanzilao and Mey-
ers (2022) on the Bastankhah wake model (Bastankhah and
Porté-Agel, 2016) in a basic optimization framework to de-
termine the yawing set points for the TCRWP, subject to a
maximum yawing angle of 30◦. For the steady yaw case here,
we simply take their set points and initialize the turbines us-
ing these set points at the start of the simulation.

4 Results and discussion

This section presents and discusses the results of the optimal
control cases. All simulations are conducted on the wICE su-
percomputing platform of the VSC (Vlaams Supercomputer
Centrum), using Ice Lake nodes containing two Intel Xeon
Platinum 8360Y CPUs (36 cores each).
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Figure 7. Snapshot of the initial condition for optimal control (on the reference resolution). Colors represent the instantaneous velocity
magnitude [m s−1]. The black dots represent wind turbine locations.

4.1 Allocation of resources

The focus of our study is to evaluate the performance of the
control models in relation to their computational cost. Com-
putational cost is measured in wall times, which depend on
the number of cores used and the spatial parallelization. For
the spatial parallelization, we employ a 2D domain decompo-
sition, similar to the method used in earlier studies involving
SP-Wind (see, e.g., Goit and Meyers, 2015; Goit et al., 2016;
Munters and Meyers, 2018b, 2017).

For each grid resolution, since the time integration in the
forward and adjoint simulations is the predominant contribu-
tion in the overall wall time, we select the number of compute
cores that minimizes the wall time per Runge–Kutta step.
Using a maximum of one whole compute node, these scal-
ing tests reveal an optimum of 30, 54 and 72 cores for grid
level 0, 1 and 2 respectively. Note that, for every simulation,
we reserve the full compute node and then allocate the opti-
mal number of cores using a “bunch” processor mapping to
distribute the cores evenly over both sockets of the Ice Lake
node.

4.2 Convergence behavior

Table 5 reports the average number of PDE evaluations
(i.e. sum of forward and adjoint simulations) per optimiza-
tion window required for formal convergence as specified by
the convergence criterion from Sect. 3.1.1. Figure 9 shows
the L-BFGS-B iterations versus the number of PDE evalua-
tions for the optimization window starting at t +TA = 750 s.
To maintain clarity, only cases 4, 7, 9 and 10 (for which
TA = 50 s) are depicted in the figure. As expected, the num-
ber of PDE evaluations increases with the optimization hori-
zon, as this increases the number of optimization variables. In
general, higher resolutions also require more function evalu-
ations.

4.3 Power gains versus computational time

Figure 10 shows the performance of the proposed controller
versus the computational cost for the three grid resolutions
from Table 1 and the different combinations of T and TA.
Error bars indicating the 95 % confidence intervals are also
depicted.

The performance of the controllers is measured in terms of
the power gains ηP and farm efficiency ηfarm:

ηP =
P farm

P
ref , ηfarm =

P farm

NtP
ref
R1

. (20)

The power gain compares the overall power extraction P farm

against the power P
ref

extracted by the Betz-optimal refer-
ence case. The farm efficiency evaluates performance against
a fictional farm where all turbines operate in the free-stream
flow. In that case, the overall power extraction is compared
against the average power P

ref
R1 extracted by a Betz-optimal,

front-row reference turbine. For the power computations, we
only consider turbine operation after tstartup = 300 s to take
into account the startup time of the controllers. Error bars on
ηP and ηfarm are computed starting from tstartup = 300 s using
block bootstrapping with window length 600 s.

Computational times are measured in terms of the real-
time factor

RT=
twall

TA
, (21)

where twall is the wall time per optimization run, averaged
over all optimization windows of the corresponding case. Er-
ror bars on the real-time factor are based on the deviations
of the wall times over the different optimization windows.
In the time-delayed MPC loop from Figs. 2b and 3, for real-
time operation, all computations for a given receding-horizon
window should be performed within a time interval of length
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Table 5. Number of PDE evaluations and L-BFGS-B iterations per optimization run, averaged over the windows, for the different grid
resolutions. The standard deviation on the number of PDE evaluations is also shown. The first window is excluded to account for the startup
of the controller.

Case 1 2 3 4 5 6 7 8 9 10

T [s] 350 250 150 50

TA [s] 350 250 150 50 250 150 50 150 50 50

level 0 27.6 26.3 22.7 23.8 19.3 17.8 17.9 10.2 11.0 8.1
L-BFGS-B iterations level 1 28.2 27.6 25.2 24.6 20.9 20.5 18.7 11.1 10.6 7.9

level 2 31.8 32.7 29.9 30.3 23.6 22.7 21.1 11.8 11.4 8.1

level 0 58.2 55.6 48.5 50.7 41.6 38.6 38.9 23.5 25.1 19.2
PDE evaluations level 1 59.4 57.9 53.4 52.2 44.7 43.9 40.5 25.2 24.2 18.9

level 2 66.6 68.4 62.8 63.7 50.1 48.5 45.3 26.6 25.9 19.1

level 0 4.1 6.0 4.5 5.9 3.2 4.2 3.6 4.0 4.3 1.3
Standard deviation level 1 3.8 5.9 4.7 6.2 6.0 5.3 4.2 4.2 4.1 1.4

level 2 3.8 4.6 5.5 7.2 4.0 3.6 4.9 4.4 4.7 0.8

TA (the control update time). In the present study, we only
consider the computational time for the optimization and
omit details of the state estimation. In practice, depending on
the method, estimation may take as long as the optimization
of the controls, such that RT< 0.5 is expected to be suffi-
ciently fast for real-time operation. Note that the flow pre-
diction subsequent to the state estimation (see Fig. 3) corre-
sponds to one forward simulation on the coarse grid; compu-
tational time for the prediction is hence negligible compared
to that of optimization (and possibly estimation).

4.3.1 Analysis of computational cost

First of all, as can be appreciated in Fig. 10, all real-time
factors are bigger than one, ranging from 1.79 to 270. Three
observations can be made: the real-time factor and hence the
computational cost of the optimization increases if (a) the
optimization horizon T increases, (b) the update time TA is
reduced or (c) the grid is refined. Case 10 on grid level 0
– with T = 50 s, TA = 50 s and the lowest number of grid
points of all simulations – is therefore the fastest and only a
factor of 1.79 (on average) slower than real time. Conversely,
case 0 on grid level 2 is the most challenging in terms of wall
time, with a real-time factor of 270. In terms of RT, Fig. 10
reveals that, in general, the relative order of the cases remains
unchanged when refining the grid.

4.3.2 Analysis of power gains and farm efficiency

The power gains from Fig. 10 are more clearly summarized
in Fig. 11. As can be expected for the fully aligned farm
layout, the farm efficiency for the uncontrolled Betz-optimal
reference case is relatively low at approximately 45 %. From
Figs. 10 and 11, it can be seen that all optimal control cases
improve on the uncontrolled reference, except for case 10
due to its short optimization horizon (T = 50 s, TA = 50 s).

The highest power gain is observed for case 4 (T = 350 s,
TA = 50 s) on grid level 1: ηP = 1.51. Two main trends can
be observed: (a) increasing the optimization horizon T in-
creases the power extraction and (b) decreasing the control
update time TA increases the power extraction.

Interestingly, the grid resolution has no clear impact on
the power gains. In some cases, refining the grid increases
the power extraction, and sometimes the power extraction
decreases. However, the performance gains and losses that
come from refining or coarsening the grid (for a given T and
TA) are only marginal compared to the effects of changing
T and TA and mostly fall within the bounds of the confi-
dence interval. Overall, the influence of the receding-horizon
parameters is hence much bigger than that of the grid resolu-
tion.

4.4 Yaw and induction characteristics

Figures 12 and 13 illustrate the time evolution of respectively
the filtered thrust coefficients Ĉ′T and yaw angles θ for the
eight turbines in column C1 (see Fig. 6) for optimal control
cases 1, 4, 5, 7, 8, 9 and 10 after optimization on grid level 0.
We only show results for column C1, since the observations
for the other turbine columns are similar. The thrust coeffi-
cients and yaw angles for the other grid levels are shown in
Appendix C, but the trends observed there are similar to the
ones for grid level 0. For comparison, the steady yaw angles
from Sood and Meyers (2022) are shown in Appendix D.

For cases 8–10, characterized by the shortest time hori-
zons T , wakes cannot propagate from one row of turbines to
the next row within the optimization window. In those cases,
power is therefore maximized at the level of individual tur-
bines: all turbines operate at the Betz limit Ĉ′T = 2 while os-
cillating around the flow-aligned yaw angle of 0◦. The mag-
nitude of the oscillations increases for downstream turbines
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Figure 8. Snapshot of the initial condition for optimal control on
the reference resolution and coarser optimization resolution from
Table 1. z slices are taken at hub height, and y slices are taken at
the location of the first column of turbines. Colors represent the
instantaneous velocity magnitude [m s−1]. The black dots represent
wind turbine locations. Grid resolutions are also indicated.

to account for the higher flow angles that exist in downstream
regions of the wind farm due to the unsteadiness in the local
flow. For these cases, the control update time TA has no im-
pact on the controls.

As the time horizon increases, significant yaw angles
emerge for upstream turbines, with even some quasi-static
yawing behavior for the cases with short update times. This is
particularly evident for case 4 (T = 350 s, TA = 50 s), where
front-row turbines are immediately redirected to a yaw an-
gle of ±30◦. Downstream turbine rows 2–4 exhibit similar
behavior but at lower misalignment angles and with more
complex oscillations in response to the local unsteadiness of
the flow. In contrast, the last few rows again operate around
the unyawed position. Note that the misalignment angles of
±30◦ for the front-row turbines match the value obtained us-
ing the static yaw controller from Sood and Meyers (2022).
However, the main difference compared to the steady yaw
case is the distinct yawing of downstream turbines (starting
in row 2 already), resulting in significant gains. Case 7 be-
haves similar to case 4 in terms of yawing, but the quasi-static
yawing is less pronounced due to the shorter optimization
horizon. Also note that transitions of the yaw angle between
−30 and 30◦, as observed for front-row turbines for case 4
and case 7, are propagated in the mean flow to downstream
turbines, as indicated by the red line in Fig. 13.

Increasing the control update time TA (see, e.g., case 1
and 5) eliminates the quasi-static yawing behavior observed
in the upstream turbines (as discussed above for case 4).
This is because the controller redirects yawed turbines to
the unyawed position at the end of the optimization win-
dow, as the corresponding wakes cannot propagate to the
next turbine row anymore, rendering yaw control disadvan-
tageous. This end-of-time effect is detrimental to the long-
term power extraction, since it is merely an artifact of the
finite optimization horizon. For case 4 (TA = 50 s, and anal-
ogously for case 7), the end-of-time effect is mitigated by
the shorter control update time (TA� T ). In contrast, for
case 1 (TA = 350 s), upstream turbines are steered towards
a yawed position at the start of every optimization window
but then redirected at the end of the window due to the end-
of-time effect. This process repeats for the consecutive win-
dows. Case 5 exhibits similar behavior, but the time spent in
the yawed position is shorter due to the shorter optimization
window (a larger portion of the windows is affected by the
end-of-time effect). Cases 2 and 3 and case 6 (not shown in
Figs. 12 and 13) display behavior similar to cases 1 and 5 re-
spectively, but the end-of-time effect is less pronounced due
to the shorter control update time.

Overall, yaw control emerges as the dominant control
mechanism for the TotalControl wind farm. Induction control
is only used for longer optimization horizons (T ≥ 250 s), re-
sulting in minor deviations from the Betz-optimal thrust co-
efficient. Interestingly, for cases 1, 4, 5 and 7 and for the
front-row turbines, it seems that the dips in CT for the up-
stream turbines roughly coincide with the zero-crossings of
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Figure 9. Cost function versus number of PDE evaluations for cases 4, 7, 9 and 10 (with TA = 50 s) on each grid level for the optimization
window starting at t + TA = 750 s. Circles mark L-BFGS-B iterations. For every grid level i, the cost function Ĵ i is scaled by Ĵ i

0 of the
first iteration.

the yaw angle of those turbines. This shows the connection
between yaw and induction control: for the given setup, yaw
control is the dominant control mechanism, and induction
control is used as an additional control mechanism when
there is no (instantaneous) yawing. Simulations (not shown
here) suggest that yaw control only (i.e. disabling induction
control) does not entail a significant performance reduction.

Note that the discussion in this section was limited to the
effect of the receding-horizon parameters on the thrust coef-
ficients and yaw angles. More general aspects of wind farm
control – the curtailing of power of front-row turbines in fa-
vor of downstream turbines, the typical absence of yawing
for downstream turbines, etc. – are similar to previous wind
farm control studies such as the ones in Munters and Meyers
(2017, 2018b); the reader is referred there for a more funda-
mental view on the physics of wind farm control.

4.5 Discussion

Figure 11 clearly shows that all optimal control cases out-
perform the Betz-optimal reference case in terms of power
gain, except case 10 (due to its short optimization horizon
T = 50 s). If the time horizon is long enough, i.e. T > 150 s
(cases 1–7), we also obtain significant improvements over the
steady yaw controller from Sood and Meyers (2022). This is
a non-trivial observation, given the coarseness of the control
models and the accompanying model mismatch compared to
the fine-grid reference, especially in the context of the time-
decoupled MPC loop including the prediction step. This sug-

gests that large-scale structures (in space and time) in the
wind farm boundary layer may already suffice to extract an
adequate control signal. Short-term evolutions of the bound-
ary layer are not accurately captured by the coarser control
models, resulting in only limited gains (for cases 8 and 9)
or even losses (case 10) compared to the Betz-optimal refer-
ence. Extending the time horizon allows the optimizer to tai-
lor the controls based on the large-scale spatiotemporal struc-
tures, which are described sufficiently accurately by the con-
trol model, hence resulting in significant improvements. It
must also be noted that increasing the horizon (either through
T or TA) increases the variability on the results, resulting in
larger error bars on the power gains (compare, e.g., the er-
ror bars of cases 1–4 to those of cases 8–10). Furthermore,
increasing TA entails performance losses not only due to the
end-of-time effect, but also due to the increased prediction
error in the predictor.

The substantial power gains compared to the steady yaw
controller from Sood and Meyers (2022) originate from the
dynamic yaw steering throughout the whole farm in response
to the turbulent inflow. As shown in Appendix D for the
framework of Sood and Meyers (2022), only front-row tur-
bines are effectively yawed to ±30◦, whereas we also ob-
serve significant yawing in the downstream regions of the
farm. On the one hand, for case 4 in particular, there is the
quasi-static wake steering – with occasional turnovers from
30 to −30◦ and vice versa depending on the inflow – that
persists downstream in turbine rows R2–R4/R5. On the other
hand, towards the end of the farm, we also observe dynamic
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Figure 10. Gain factor (left axis) and farm efficiency (right axis) versus real-time factor for the optimal control cases, including error bars.
The Betz-optimal reference case and steady yaw control case are also indicated.

yawing around a mean angle of approx. 0◦ to optimally align
the turbines to the turbulent inflow that has become increas-
ingly unsteady due to the superimposed wakes from the up-
stream turbines. This also entails a significant power gain that
cannot be captured with a steady yaw controller. Finally, we
note that the proposed LES-based controller is able to ac-
count for secondary steering effects that are not included in
the Bastankhah wake model that was used to optimize the
yaw set points in Sood and Meyers (2022).

Interestingly, refining the optimization resolution does not
significantly improve the results in terms of power gain and
can even be disadvantageous in some cases (at least in the
range of resolutions considered in this paper). This effect
may be attributed to the model mismatch: upon refining, the
controls are tuned to account for the additional small(er)-

scale variations, but these (incremental) adjustments are not
necessary optimal on the fine-grid reference. In Bauweraerts
and Meyers (2019) (in the context of turbulent forecasting), it
was shown that modeling errors even slightly decrease with
grid coarsening, due to the decreasing subgrid-scale errors
in the LES and the decreased effect of chaotic divergence
of solution trajectories on coarser grids. In other words, it
may be better to only optimize for the large scales than to
also take into account smaller scales that may be inaccurately
modeled. However, it must be noted that even the finest opti-
mization resolution (level 2) is still more than 3 times coarser
than the reference resolution. It is expected that further grid
refinements would eventually improve on the coarse-grid re-
sults, when the actual small-scale variations are sufficiently
accurately described by the control models. However, these
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Figure 11. Gain factor (left axis) and farm efficiency (right axis) for the optimal control cases, including error bars. Betz-optimal reference
case and steady yaw control case are also indicated (dotted lines).

Figure 12. Time evolution of filtered thrust coefficients Ĉ′T for turbine column C1 for different optimal control cases for grid level 0. For
cases 8–10 (not shown), the thrust coefficients do not deviate from the Betz-optimal value Ĉ′T = 2.

kinds of simulations would be prohibitive due to excessive
computational costs.

Finally, it must be noted that the coarse control models are
incapable of capturing all the turbulent dynamics governing
the optimal wind farm control problem. On the one hand,
it seems that they can accurately model large-scale motions
in the flow, such as the general deflection of the wake under
yawed conditions and the gross behavior of the wakes. On the

other hand, the shedding of vortex rings, which play a crucial
role in enhancing wake mixing when dynamically control-
ling turbine thrust (Munters and Meyers, 2018a), cannot be
represented on coarse grids. As such, the proposed method-
ology is less eligible for dynamic induction control, and yaw
control emerges as the dominant mechanism for coarse-grid
LES-based control, where in that case the gains mainly orig-
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Figure 13. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 0.

inate from dynamically steering away the wakes from down-
stream turbines, synchronized to the turbulent inflow.

5 Towards real-time optimal wind farm control

The discussion in Sect. 4.3 has revealed that, on the one hand,
the optimization horizon T needs to be long enough to take

into account wake interactions over subsequent turbine rows.
On the other hand, the control update time needs to be short
enough to discard end-of-time effects. Furthermore, it was
shown that refining the grid resolution significantly increases
the computational cost without a significant improvement in
the performance of the controller in terms of power gain. By
leveraging these insights, we now design a competitive (in
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terms of power gains) controller that is as close to real time
as possible.

5.1 Case setup

For the receding-horizon parameters, we propose T = 300 s
and TA = 120 s. An optimization horizon of T = 300 s al-
lows the controller to account for wake interactions during
the optimization. With TA = 120 s, the final 180 s of the op-
timization window are discarded, which is roughly the por-
tion of the window affected by end-of-time effects. Based
on the analysis in Sect. 4.3, longer update times are ex-
pected to reduce performance due to end-of-time effects. Al-
though further decreasing TA could potentially improve the
power gains by mitigating the model mismatch, the benefits
would be relatively insignificant compared to those that come
from addressing the end-of-time effect and would hence re-
sult in an undue increase in the real-time factor. Regard-
ing the convergence criteria, we consider three cases: case
(a) that uses the same convergence criterion as in Sect. 3.1.1
(i.e. (J k−1

−J k)/J k−1
≤ 5× 10−6), and cases (b) and (c)

that additionally impose a maximum number of optimization
iterations, respectively Nopt,max = 10 and Nopt,max = 5. Fur-
thermore, given the limited contribution of induction control
in the overall power gains, all thrust coefficients are kept con-
stant to the Betz-optimal value C′T = 2. By disabling induc-
tion control, the number of optimization variables decreases
by a factor of 2, which may potentially speed up the conver-
gence of the optimization problems.

To further minimize the real-time factor, simulations are
performed on the coarsest grid level (level 0). We use
the streamwise domain length from the cases with horizon
T = 250 s (see Table 2): Lx = 11.52 km. Earlier results (not
shown) suggest that this domain is still big enough to prevent
recycling of the wakes into the front-row turbines. Further-
more, in comparison to Table 2, we apply an additional crop-
ping of the optimization domain in the spanwise and vertical
directions to further reduce computational costs, resulting in
Ly = 4.16 km and Lz = 0.75 km. To keep a friction velocity
of uτ = 0.28 m s−1 for the new vertical dimension, the pres-
sure gradient is adjusted to ∂xp∞/ρ = 1.0453×10−4 m s−2.
For the time step, we take1t = 4 s, which is the coarsest time
step that still respects a CFL number of 0.8. The simulation
setup is summarized in Table 6.

5.2 Results and discussion

The results for cases (a), (b) and (c) are summarized in Ta-
ble 7. By tailoring the control model and through a sensi-
ble choice for the receding-horizon parameters as described
above, for case (c) we achieve a real-time factor of 1.33 with
only a minor decrease in power gain compared to cases (a)
and (b) (1.31 versus 1.39 and 1.38 respectively). Apparently,
just five L-BFGS-B iterations already suffice to extract an
adequate control action.

It is important to note that the setup used here was tailored
to the fully aligned TCRWP, and therefore the results may not
directly translate to other farm configurations. Nevertheless,
the observations suggest that using coarse-grid LES for real-
time wind farm control is a viable approach, if another order
of magnitude (factor of 10) in computational or algorithmic
speedup can be found (since, for practical wind farm con-
trol, the optimization process must be at least twice as fast
as real time to perform state estimation within the compu-
tational window). However, as CPU computing power con-
tinues to advance, and since this first investigation already
achieves near-real-time speed, a factor of 10 still remains
within reach. Further speedups may also be attained through
GPU-accelerated computing. Furthermore, it is worth men-
tioning that the SP-Wind code can also be enhanced. For
instance, a new version of the code is currently being de-
veloped that employs 3D domain decomposition for the spa-
tial parallelization (as opposed to the 2D domain decompo-
sition used in this work). This upgrade will be necessary to
handle even bigger optimization cases in real time. Very re-
cently; Janssens and Meyers (2023, In press) proposed a mul-
tiple shooting algorithm for large-scale optimal control cases,
such as the ones considered here. The additional speedup due
to the temporal parallelization in that case may potentially
narrow the gap towards achieving actual, practical wind farm
control in real time.

6 Conclusions

In the current paper, we investigated the influence of the
grid resolution of the LES-based control model and receding-
horizon parameters on the performance of the controller, both
in terms of power gain and computational cost. To that end,
we defined a set of optimal control cases with varying opti-
mization horizons and control update times, as well as a fine-
grid LES emulator model, applied to the TotalControl Refer-
ence Wind Power Plant. For each case, we defined three grid
resolutions for the LES-based control model and performed
a complete optimal control simulation on each of the grids.

Regarding the receding-horizon parameters, on the one
hand, the results indicate that the optimization horizon
should be long enough to take into account turbine–wake
interactions over subsequent turbine rows. In that case, up-
stream turbines are misaligned to steer away the wakes from
downstream turbines in a quasi-static way, resulting in sig-
nificant power gains compared to the uncontrolled reference
case and steady yaw control case. Downstream turbines are
yawed as well, but to a lesser extent and in a more com-
plex pattern, mostly in response to the local unsteadiness
of the flow. On the other hand, the control update times
should be short enough to mitigate end-of-time effects, i.e. to
discard controls near the end of the optimization window
that are affected by the finiteness of the optimization win-
dow. Taking this into account, optimal control case 4 (with
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Table 6. Case description for the case from Sect. 5.

Simulation setup Remarks

Space resolution [m3
] 1x×1y×1z 80× 80× 50 Grid level 0

Time resolution [s] 1t 4 Coarser compared to Table 1
Grid cells Nx ×Ny ×Nz 144× 52× 15
Domain size [km3

] Lx ×Ly ×Lz 11.52× 4.16× 0.75 Cropping in y and z direction compared to Table 2
Pressure gradient [m s−2

] ∂xp∞/ρ 1.045× 10−4 Changed due to cropping in z direction compared to Table 2

Receding-horizon parameters Remarks

Horizon [s] T 300
Update time [s] TA 120

– Case (a)
L-BFGS-B iterations Nopt,max 10 Case (b)

5 Case (c)

Table 7. Gain factor versus real-time factor for the optimal control cases. Error bars are also shown in the brackets.

Case (a) Case (b) Case (c)

Gain ηP 1.39 [0.09, 0.07] 1.38 [0.07, 0.05] 1.31 [0.04, 0.03]
Real-time factor 4.08 [0.14, 0.13] 2.33 [0.002, 0.002] 1.33 [0.001, 0.002]

T = 350 s and T = 50 s, i.e. the longest horizon and shortest
update time) consistently produces the highest power gains
– up to ηP = 1.51 on grid level 1. Furthermore, it must be
noted that all optimal control cases improve on the uncon-
trolled reference case in terms of power gain, except case
10 (T = 50 s, TA = 50 s) due to the short optimization hori-
zon. Moreover, cases 1–7 (where T ≥ 250 s) also outperform
a steady yaw control case that was optimized based on the
Bastankhah wake model combined with a recursive wake
merging method (see Sood and Meyers, 2022). Obviously,
increasing the optimization horizon and decreasing the con-
trol update time both increase the real-time factor.

Somewhat surprisingly, the grid resolution has no signif-
icant impact on the performance of the controllers, at least
not in the range of resolutions considered here. Sometimes
refining the grid resolution results in higher gains, whereas
sometimes the gains decrease. This may be attributed to the
existence of many local optima in the wind farm optimization
problem, as well as the model uncertainty, since the finest
grid in this work was still more than 3 times coarser than
the reference simulation. It is expected that finer grids (with
resolutions close to that of the reference) would eventually
improve on the coarse models investigated here, as soon as
the small scales are represented sufficiently accurately to take
them into account in the control action. However, optimiza-
tions on these kinds of resolution would be prohibitive due
to computational cost and outweigh the potential gains orig-
inating from the decreased model mismatch. It must also be
noted that we did not investigate the influence of the conver-
gence criterion; therefore, it is possible that somewhat better

results can be obtained on each of the grid levels by tweaking
the stopping criterion.

In terms of power gains, the coarse-grid control models
investigated in the current paper perform surprisingly well,
with gains up to and above 40 % if the time horizon is suf-
ficiently long and the update time sufficiently short. This is
a powerful result, given the model uncertainty due to the ad-
ditional prediction step in the time-delayed MPC loop. Re-
garding the complex physics underlying wind farm control,
the results suggest that the large-scale spatial and temporal
structures in the wind farm boundary layer (i.e. the ones that
are accurately represented by the coarse LES models) suffice
to extract an efficient yaw controller. From the viewpoint of
real-time LES-based optimal control, this means that high-
performance controllers can be obtained at only a fraction of
the computational cost by coarsening the grid resolution, po-
tentially bridging the gap between theoretical studies based
on LES and practical, real-time wind farm control. Via a
proper choice of the receding-horizon parameters and opti-
mal control domain, we achieved a gain of 31 % with a real-
time factor of 1.33, i.e. only 1.33 times slower than real time.
Even better control signals (in terms of the resulting power
gains) may be obtained through an enhanced wake mixing
by better exploiting dynamical induction control (Munters
and Meyers, 2018a) or via the helical wake structures origi-
nating from individual pitch control (Frederik et al., 2020).
However, this would require a much finer numerical grid,
which currently does not allow for a real-time implementa-
tion in LES.

It must be noted that, upon the restriction from the ac-
tual wind farm (the fine-grid LES wind farm model) to the
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coarse resolution of the prediction and control model by
the restriction operator, we still assume the entire flow field
from the reference simulation is available. In practice, this
is not the case; the flow field is only available in the form
of discrete measurements, for example, lidar measurements
or SCADA data. Consequently, for a practical controller, the
flow field must first be reconstructed from these measure-
ments in a state estimator, for example, using Kalman fil-
tering or 4D variational data assimilation (see, e.g., Bauw-
eraerts and Meyers, 2021). Future work should therefore fo-
cus on the design of an efficient state estimator tailored to
wind farm control, which can then be incorporated into the
LES-based wind farm control methodology proposed here.
As shown in previous work from Bauweraerts and Meyers
(2019), LES-based state estimation may potentially benefit
from grid coarsening as well. However, in that case, the ques-
tion still remains of whether combined LES-based state es-
timation and control can be fast enough for real-time appli-
cations, as well as how the additional reconstruction errors
originating from the state estimation will affect the perfor-
mance of the controllers. This would be the next step towards
actual, practical wind farm control.

We also admit that the considered test case (TCRWP) is
quite susceptible to high power gains due to the fully aligned
turbine configuration. Applying the proposed wind farm con-
troller to other wind farm layouts could be a topic for fu-
ture research, although it is expected that the controller will
still be able to produce competitive gains. To increase the
credibility of the proposed control strategy in general, an-
other interesting direction would be to use more accurate tur-
bine models in the wind farm emulator model (e.g., actuator-
sector models (ASMs) or actuator-line models (ALMs)), in-
stead of the very basic non-rotating, actuator-disc model used
here. In the first place, one could investigate the effect of
the additional model mismatch when using an ADM control
model in the coarse LES in combination with an ASM or
ALM reference model.

Appendix A: Lookup tables for power correction

This appendix lists the correction factorsM from Eq. (10) for
the disc-averaged velocity for different values of the thrust
coefficient Ĉ′T and yaw angle θ for the three grid resolu-
tions considered in the present paper. The corrections are
chosen in such a way that the corrected disc-averaged ve-
locity on the coarse grid equals the disc-averaged velocity on
the reference grid for a given thrust coefficient and yaw angle
for uniform inflow. The resulting lookup values are summa-
rized in Tabes A1–A3 for grid level 0, grid level 1 and grid
level 2 respectively. These tables are constructed based on
uniform inflow simulations with U∞ = 8 m s−1, prescribed
using a fringe region spanning the final 20 % of the simula-
tion domain. All simulations are conducted for a single DTU
10 MW reference turbine using the same domain size Lx ×
Ly×Lz = 26.92D× 13.46D× 8.41D, whereD = 178.3 m
is the rotor diameter. For the resolution of the reference, we
use1x×1y×1z= 13.33×13.33×6.67 m3 as prescribed by
Table 1. For a given Ĉ′T and θ , the corresponding correction
factor M is computed by (linearly) interpolating the lookup
tables.

Finally, we also briefly examine the performance of the
lookup table approach for turbulent inflow. To that end, as
an example, we take the setup of case 1 from Tables 2 and 3
on grid level 0. For Ĉ′T = 2.0 and θ = 0◦, Fig. A1 shows the
corrected (i.e. using the lookup table approach) and uncor-
rected power predictions on the coarse grids compared to the
fine-grid reference for a horizon of 300 s. With the lookup
table approach, the error on the average power prediction is
decreased by 7 %, i.e. from an overestimation of 21 % for the
uncorrected prediction to an underestimation of 14 % for the
corrected one.
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Table A1. Lookup table for grid level 0 (1x×1y×1z= 80×80×50 m3): correction factorM from Eq. (10) for different thrust coefficient
Ĉ′T and yaw angle θ .

Ĉ′T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9498 0.9020 0.8571 0.8147 0.7752 0.7385
5◦ 0.9499 0.9023 0.8576 0.8156 0.7763 0.7398

10◦ 0.9502 0.9037 0.8593 0.8180 0.7794 0.7434
15◦ 0.9508 0.9057 0.8620 0.8218 0.7843 0.7492

θ 20◦ 0.9516 0.9067 0.8654 0.8267 0.7906 0.7567
25◦ 0.9525 0.9102 0.8694 0.8323 0.7978 0.7655
30◦ 0.9536 0.9129 0.8734 0.8381 0.8057 0.7752
35◦ 0.9549 0.9158 0.8786 0.8440 0.8137 0.7852
40◦ 0.9563 0.9179 0.8838 0.8508 0.8222 0.7952

Table A2. Lookup table for grid level 1 (1x×1y×1z= 60×60×37.5 m3): correction factorM from Eq. (10) for different thrust coefficient
Ĉ′T and yaw angle θ .

Ĉ′T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9596 0.9205 0.8834 0.8468 0.8125 0.7803
5◦ 0.9597 0.9208 0.8834 0.8476 0.8136 0.7816

10◦ 0.9601 0.9217 0.8850 0.8500 0.8167 0.7852
15◦ 0.9606 0.9240 0.8874 0.8535 0.8213 0.7907

θ 20◦ 0.9612 0.9247 0.8904 0.8578 0.8269 0.7974
25◦ 0.9621 0.9281 0.8938 0.8627 0.8332 0.8051
30◦ 0.9630 0.9290 0.8974 0.8678 0.8398 0.8133
35◦ 0.9641 0.9313 0.9011 0.8730 0.8466 0.8217
40◦ 0.9652 0.9337 0.9048 0.8781 0.8532 0.8297

Table A3. Lookup table for grid level 2 (1x×1y×1z= 40×40×25 m3): correction factorM from Eq. (10) for different thrust coefficient
Ĉ′T and yaw angle θ .

Ĉ′T

0.5 1.0 1.5 2.0 2.5 3.0

0◦ 0.9709 0.9430 0.9141 0.8869 0.8606 0.8354
5◦ 0.9709 0.9423 0.9144 0.8873 0.8611 0.8360

10◦ 0.9711 0.9427 0.9152 0.8884 0.8625 0.8376
15◦ 0.9714 0.9434 0.9163 0.8902 0.8648 0.8403

θ 20◦ 0.9716 0.9455 0.9180 0.8926 0.8680 0.8440
25◦ 0.9723 0.9460 0.9194 0.8954 0.8718 0.8488
30◦ 0.9728 0.9481 0.9219 0.8985 0.8760 0.8543
35◦ 0.9734 0.9477 0.9241 0.9016 0.8802 0.8599
40◦ 0.9741 0.9491 0.9263 0.9048 0.8845 0.8772
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Figure A1. Power predictions for turbine column C1 without correction (blue) and using the lookup table approach (red) compared to the
fine-grid reference for Ĉ′T = 2.0 and θ = 0◦.

Appendix B: Derivation and verification of the
temporally discrete adjoint method and gradient

In this appendix, we formulate the temporally discrete ad-
joint method and derive Eq. (18) for the cost functional gradi-
ents. These gradients are also validated via finite differences.
The derivation and notation are similar to the one from Yil-
maz and Meyers (2019); differences are explicitly formulated
throughout the text.

B1 Discretization of the optimal control problem

The discrete adjoint method first discretizes and then lin-
earizes the state equations; next it formulates the discrete ad-
joint of the linear system (Giles and Pierce, 2000). Using an
explicit fourth-order Runge–Kutta discretization withN time
steps, the discretization of the optimization problem (Eqs. 1–
7) can symbolically be written as

minϕ,q J̃ N
=

N∑
n=1

In s.t. qni = q
n
+1t

4∑
j=1

aijY
(
qnj ,ϕ

n
)
i = 1 . . .4, (B1)

qn+1
= qn+1t

4∑
i=1

biY
(
qni ,ϕ

n
)
, (B2)

where qn = [un,pn, Ĉ
′n
T ,θ

n
] and ϕn = [C

′n
T ,ω

n
] are respec-

tively the state variables and controls at time instant tn =
n1t . In the Runge–Kutta stage equations, Y denotes the right
side of the governing equations consisting of the Navier–
Stokes equations, thrust coefficient filter equation and yaw

rate equation. In denotes the discretized objective functional.
Below, we continue the derivation for a general explicit
(j < i) fourth-order Runge–Kutta scheme; the simulations
in SP-Wind are carried out using classical Runge–Kutta 4,
for which the nonzero Butcher tableau coefficients are a21 =

a32 = 1/2, a43 = 1, b1 = b4 = 1/6 and b2 = b3 = 1/3.
As opposed to the basic first-order discretization from

Yilmaz and Meyers (2019), in this work the intermediate
Runge–Kutta stages are also used in the discretization of the
cost functional. In order to achieve this, the continuous cost
functional (Eq. 1), here symbolically written as

J̃ (ϕ,q(ϕ))=

T∫
0

J (ϕ,q(ϕ))dt,

is first rewritten in the form of an ordinary differential equa-
tion (ODE),

dJt (t)
dt
= J (ϕ(t),q(t)) Jt (0)= 0, (B3)

where J̃ (ϕ,q(ϕ))= Jt (T ). The ODE in Eq. (B3) is then dis-
cretized using Runge–Kutta 4, yielding a new expression for
the discretized cost function that is of fourth-order accuracy:

J̃ N
=

N∑
n=1

In =

N∑
n=1

(
1t

4∑
i=1

biJ
(
ϕn,qni

))
. (B4)

Note that compared to Yilmaz and Meyers (2019), the control
variables ϕn in the Runge–Kutta discretization in Eqs. (B1)–
(B2) are kept constant over the Runge–Kutta stages, since
(in practice) controls are kept constant over the control time
step (which we assume here is equal to the discretization time
step 1t).
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B2 Linearization of the state equation

Analogously to Yilmaz and Meyers (2019), the discretized
state equations in Eqs. (B1)–(B2) can be linearized, resulting
in a linear system for every time step n:

KnLn =Mn, (B5)
K=
−1 0 0 0 0 0
1 −1 0 0 0 0
1 a211tYq

(
qn1 ,ϕ

n
)

−1 0 0 0
1 a311tYq

(
qn1 ,ϕ

n
)

a321tYq
(
qn2 ,ϕ

n
)

−1 0 0
1 a411tYq

(
qn1 ,ϕ

n
)

a421tYq
(
qn2 ,ϕ

n
)

a431tYq
(
qn3 ,ϕ

n
)

−1 0
1 b11tYq

(
qn1 ,ϕ

n
)

b21tYq
(
qn2 ,ϕ

n
)

b31tYq
(
qn3 ,ϕ

n
)

b41tYq
(
qn4 ,ϕ

n
)

−1

 , (B6)

L=


δqn

δqn1
δqn2
δqn3
δqn4
δqn+1



M=−



0
0∑1

j=1a2j1tYϕ
(
qnj ,ϕ

n
)
δϕn∑2

j=1a3j1tYϕ
(
qnj ,ϕ

n
)
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j=1a4j1tYϕ
(
qnj ,ϕ

n
)
δϕn∑4

i=1bi1tYϕ
(
qni ,ϕ

n
)
δϕn


. (B7)

B3 Adjoint equations

Denote the adjoint vector for time step n by Nn
=(

q∗
n
q∗

n

1 q
∗
n

2 q
∗
n

3 q
∗
n

4 q
∗
n+1

)
, where q∗

n
= [ξn,πn,σ n,ηn] are

the adjoint variables associated with the state vector qn.
Again in the notation of Yilmaz and Meyers (2019), we de-
fine the adjoint variables as the solution of the adjoint equa-
tion:(
NnKn

)T
= Inq =

(
Inqn In

qn1
In
qn2

In
qn3

In
qn4

In
qn+1

)T
. (B8)

As opposed to Yilmaz and Meyers (2019), the partial deriva-
tives of the cost function (Eq. B4) with respect to the Runge–
Kutta stages are now nonzero (due to the more elaborate dis-
cretization):

Inqni
= bi1tJq

(
ϕn,qni

)
i = 1 . . .4, (B9)

Inqn = I
n
qn+1 = 0. (B10)

Based on Eq. (B8), the temporally discrete adjoint equations
become

q∗
n

i = bi1t
(

YTq
(
qni ,ϕ

n
)
q∗

n+1
− Jq

(
qni ,ϕ

n
))

+1t

4∑
j=i+1

ajiYTq
(
qni ,ϕ

n
)
q∗

n

j i = 1 . . .4, (B11)

q∗
n

= q∗
n+1
+

4∑
i=1

q∗
n

i . (B12)

These equations run backward in time, starting from ter-
minal conditions q∗

N
= IN

qN
= 0. Since each Runge–Kutta

stage contributes to the (discretized) cost function, the cost
function gradient Jq now appears as a source term in each
equation. Note that, structurally, the temporally discrete ad-
joint equations differ from the forward Runge–Kutta scheme,
since the method is not self-adjoint.

Due to the linearity of the adjoint equations, the stage
equations from Eq. (B12) can be rewritten as follows:

q∗
n

i =1tY
T
q

(
qni ,ϕ

n
)(
biq
∗
n+1
+

4∑
j=i+1

ajiq
∗
n

j

)
− bi1tJq

(
qni ,ϕ

)
i = 1 . . .4. (B13)

To ease the notation in the remainder of the derivation, we
introduce the auxiliary variable q̂∗

n

i = [ξ̂
n
i , π̂

n
i , σ̂

n
i , η̂

n
i ],

q̂∗
n

i = biq
∗
n+1
+

4∑
j=i+1

ajiq
∗
n

j i = 1 . . .4, (B14)

such that we arrive at the following adjoint equations,

q∗
n

i =1tY
T
q

(
qni ,ϕ

n
)
q̂∗

n

i − bi1tJq
(
qni ,ϕ

)
i = 1 . . .4, (B15)

which can be solved backwards, starting from i = 4.
For the wind farm power optimization problem at hand,

the adjoint Jacobians YTq and Jq are exactly equal to the ones
used in Munters and Meyers (2018b), where the continuous
adjoint approach was used. To apply the temporally discrete
adjoint equations to the wind farm control problem (Eqs. 1–
7), we can therefore recycle these expressions; however, here
we must also include the extra dependency of the lookup cor-
rection factor in Eq. (10) on the thrust coefficient and yaw
angle. As such, we arrive at the following temporally dis-
crete adjoint Runge–Kutta 4 scheme for the Navier–Stokes
equations (where here V and V denote the uncorrected and
corrected disc-averaged velocities; see Eq. 10):

ξni /1t =
(
−
(
∇uni

)T
+
(
uni · ∇

))
ξ̂ni −∇π

n
i

/
ρ

−∇ · τ ∗sgs

(
uni , ξ̂

n
i

)
+

Nt∑
m=1

f ∗
n

m,i i = 1 . . .4, (B16)

∇
2πni /ρ =∇ ·

[(
−
(
∇uni
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+
(
uni · ∇

))
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−∇ · τ ∗sgs

(
uni , ξ̂

n
i

)
+

Nt∑
m=1

f ∗
n

m,i

]
i = 1 . . .4, (B17)
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ξn = ξn+1
+

4∑
i=1

ξni , (B18)

where Eq. (B17) represents the Poisson equation ob-
tained from the time-discrete adjoint momentum equations
(Eq. B16) for the Runge–Kutta stages. The Poisson equation
is solved at every time step and for every stage using a direct
method. The adjoint wind farm force in Runge–Kutta stage i
in Eqs. (B16)–(B17) then becomes (with m the turbine num-
ber)

f ∗
n

m,i =
1
2
Ĉ′nTmM

(
Ĉ′nTm ,θ

n
m

)
V
n

m,i(
3biV

n

m,i − 2X̂nm,i
)
Rme

n
⊥,m i = 1 . . .4, (B19)

where X̂nm,i =
1
Am

∫
�
Rmξ̂

n
i · e

n
⊥,mdx denotes the disc-

averaged adjoint velocity based on ξ̂ni , and V
n

m,i denotes the
corrected disc-averaged forward velocity based on uni (see
Eq. 10).

Analogously, for the thrust coefficient filter and yaw rate
equations, we get (i and j subscripts denote Runge–Kutta
stages; m subscripts denote turbine numbers)
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σ nm = σ
n+1
m +

4∑
i=1

σ nm,i, (B21)

and
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Ĉ′nTmV

n

m,iV
n
m,i

∂M
(
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ηnm = η
n+1
m +

4∑
i=1

ηnm,i . (B23)

For a more detailed explanation on all the terms and equa-
tions, as well as the derivation of the adjoints, the reader is
referred to Goit and Meyers (2015) and Munters and Meyers
(2017, 2018b).

B4 Adjoint gradients

The total variation of the cost functional follows from the
chain rule

δJ̃ N
=

N∑
n=1

δIn =

N∑
n=1

(
Ln
)T
Inq + Iϕδϕ

n. (B24)

We can now plug in the adjoint equation (Eq. B8) and then
the linearization (Eq. B5), such that

δJ̃ N
=

N∑
n=1

δIn =

N∑
n=1

(
Ln
)T (Kn
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Nn
)T
+ Iϕδϕ
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+ Iϕδϕ

n. (B25)

The derived expression hence does not require the forward
sensitivity matrix L, which would otherwise have to be de-
termined for every control perturbation, making the compu-
tation very expensive. From Eq. (B25), we can derive the
gradient in any control direction. In practice, the L-BFGS-
B library needs the gradient for every control variable δϕn,
which amounts to

∂J̃ N

∂ϕn
=−1t

4∑
i=1
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i−1∑
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(
aijYTϕ

(
qnj ,ϕ
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+bi
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n+1
− Jϕ

(
qni ,ϕ

n
)))

. (B26)

Note that Eq. (B26) is the exact gradient of the discretized
objective function in Eq. (B2), which converges to the gradi-
ent of the continuous problem in the limit of 1t→ 0 (Giles
and Pierce, 2000).

Applied to the wind farm control problem (Eqs. 1–7), we
arrive at the following simplified expressions for the gradient
of the wind farm power objective function with respect to the
thrust coefficients and yaw rates (i subscripts denote Runge–
Kutta stages; m subscripts denote turbine numbers):

∇ϕnmJ̃
N
=

 ∂J̃ N

Ĉ′nTm
∂J̃ N

∂ωnm
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m +
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j=1aijη

n
m,i

)  . (B27)

B5 Gradient verification

In this section, Eq. (B27) for the gradient of the objec-
tive function, resulting from the temporally discrete adjoint
method, is validated via finite differences. For the gradi-
ent verification, we consider the same numerical setup from
Sect. 3.1. Via finite differences, the Gateaux derivative of the
objective function in the direction δϕ is approximated as(
∇J̃ N ,δϕ

)
≈

J̃ N (ϕ+αδϕ)− J̃ N (ϕ)
α

, (B28)
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where we set α = 10−6. To limit computational costs, we
only examine the gradients for turbines R1C1 and R8C4 (re-
spectively front and last row in Fig. 6) for a control horizon
T = 350 s (the longest horizon considered in this work) and
for a limited amount of time instants. The baseline controls,
resulting adjoint gradients and finite-difference verification
are shown in Fig. B1.

Figure B1. Baseline controls for which the gradient is computed
and adjoint gradients versus finite-difference verification.

Appendix C: Yaw and induction characteristics

Figures C1–C4 display the time evolution of the optimized
filtered thrust coefficients Ĉ′T and yaw angles θ for the eight
turbines in column C1 for respectively grid level 1 and grid
level 2. As in Sect. 4.4 for grid level 0, only the turbines
in column C1 are shown for cases 1, 4, 5, 7, 8, 9 and 10.
Regarding the influence of the receding-horizon parameters,
the conclusions are similar to those for grid level 0. Note that
for level 1 and level 2, the dips in Ĉ′T are more prominent
than for grid level 0 in Sect. 4.4. However, in each of the
cases, yaw control remains the dominant control mechanism.
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Figure C1. Time evolution of filtered thrust coefficients Ĉ′T for turbine column C1 for different optimal control cases for grid level 1.
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Figure C2. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 1.
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Figure C3. Time evolution of filtered thrust coefficients Ĉ′T for turbine column C1 for different optimal control cases for grid level 2.
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Figure C4. Time evolution of yaw angles θ for turbine column C1 for different optimal control cases for grid level 2.

https://doi.org/10.5194/wes-9-65-2024 Wind Energ. Sci., 9, 65–95, 2024



94 N. Janssens and J. Meyers: Towards real-time optimal control of wind farms using large-eddy simulations

Appendix D: Steady yaw angles from Sood and
Meyers (2022)

The steady yaw angles from Sood and Meyers (2022) for
the TotalControl Reference Wind Power Plant are shown in
Fig.. D1. In their framework, only front-row turbines are sig-
nificantly yawed to ±30◦, whereas all other (downstream)
turbines remain mostly unyawed. For a comparison with the
yaw angles obtained by the proposed LES-based controller,
see Sect. 4.5.

Figure D1. Steady yaw angles [◦] from Sood and Meyers (2022)
for the TotalControl Reference Wind Power Plant. Axes in rotor
diameter units, with D = 178.3 m. Figure adapted from Andersen
et al. (2018).
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