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Abstract. In contrast to the multitude of models in the literature for the calculation of rolling contact fatigue in
rotating bearings, literature on oscillating bearings is sparse. This work summarizes the available literature on
rolling contact fatigue in oscillating bearings. Publications which present various theoretical models are summa-
rized and discussed. A number of errors and misunderstandings are highlighted, information gaps are filled, and
common threads between publications are established. Recommendations are given for using the various models
for any oscillating bearing in any industrial application. The applicability of these approaches to pitch and yaw
bearings of wind turbines is discussed in detail.

1 Introduction

While most bearings in industrial applications rotate, there
are some notable ones which are required to oscillate. These
include bearings in helicopter rotor blade hinges (Tawresey
and Shugarts, 1964; Rumbarger and Jones, 1968), Cardan
joints (Breslau and Schlecht, 2020), offshore cranes (Wöll
et al., 2018), and blade and yaw bearings in wind turbines,
shown in Fig. 1. Blade bearings turn (pitch) the blade around
its longitudinal axis to change the blade’s angle of attack.
Their movements in modern wind turbines mostly consist
of small (typically1 ϕ < 10°, often as small as ϕ < 1°; see
Stammler et al., 2020) oscillations with the occasional 90°
movement to bring the turbine to a halt. Similarly, yaw bear-
ings rotate the turbine to face into the wind. Their movements
are typically fewer and, depending on the site and the yaw
system design, longer (< 10° during power production but
potentially more while idling). Yaw movements do not tend
to become as low (ϕ < 1°) as pitch angles (Wenske, 2022).

Rolling contact fatigue is a possible failure mechanism of
bearings. It is caused by the fact that, even under a constant
external load, movement of the bearing (rotation or oscilla-

1See Fig. 3 for amplitude definition.

tion) causes movement of the rolling bodies (balls or rollers)
relative to the bearing rings. If the rolling bodies transmit
load to the raceway, their movement leads to stress cycles,
because every location of the raceway changes from a loaded
state while it is in contact with a rolling body to an unloaded
one while it is not (see Fig. 6, left-hand side, for a typical
case in a rotating bearing). The resulting stress amplitudes
can, over time, cause fatigue damage on the raceways or, less
frequently, the rolling bodies. The driving stress for rolling
contact fatigue is typically considered to be shear stress. Fa-
tigue can be initiated from shear stress below the surface
of the raceway (subsurface fatigue) and from shear stress at
its surface (surface fatigue) (Lundberg and Palmgren, 1947;
Ioannides et al., 1999; Harris and Kotzalas, 2007; Zaretsky,
2013).

Rolling bearings under oscillatory movements are com-
monly associated with wear damage to the raceways and
rolling bodies (Grebe, 2017; Stammler, 2020; Behnke and
Schleich, 2023; FVA, 2022b; de La Presilla et al., 2023).
Small oscillation amplitudes are generally seen to be a risk
factor for wear, particularly in grease-lubricated bearings
(Behnke and Schleich, 2023; Stammler, 2020; Grebe, 2017;
FVA, 2022b). However, wear can also be prevented by a
number of measures (Schwack, 2020; Wandel et al., 2022),
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Figure 1. Wind turbine pitch bearing (green, also called blade bear-
ing) and yaw bearing (blue). © Fraunhofer IWES, Jens Meier.

and it is definitely possible for rolling contact fatigue to oc-
cur without wear2 even for oscillating amplitudes as low as
θ = 1° (ϕ = 2°). Rolling contact fatigue, on the other hand,
is always a possible failure mechanism even in a properly
designed bearing (Sadeghi et al., 2009), except for very low
loads (Ioannides et al., 1999), at which there is dispute about
its occurrence (Zaretsky, 2010). In many cases, such as large
oscillation amplitudes or the use of oil lubrication, wear is
unlikely to occur and, thus, rolling contact fatigue becomes
a more important focus. Moreover, depending on its severity,
wear in itself does not necessarily cause a complete failure of
the bearing, but it can also accelerate rolling contact fatigue
(FVA, 2022a, b). Engineers should therefore consider both
wear and rolling contact fatigue as possible failure mecha-
nisms. This paper reviews calculation approaches to deter-
mining the rolling contact fatigue life of oscillating bearings.
There are a number of approaches for rolling contact fatigue
life calculation in the literature (see Sadeghi et al., 2009, and
Tallian, 1992, for an overview), but they are mostly intended
for rotating applications. While any of these could in prin-
ciple be changed to be used in oscillating applications, this
paper collates all approaches that have explicitly been devel-
oped for oscillating bearings in general or that are concerned
with specific bearings which oscillate, such as pitch bearings.

As part of the introduction, phenomena which are present
in oscillating bearings but not in rotating ones are discussed
in Sect. 1.1. An overview of calculation approaches is given
in Sect. 2. It includes three different commonly used ISO-
based factors (Harris, Rumbarger, and Houpert), all of which
have been designed for oscillations with a constant ampli-
tude, and a number of other approaches described in the lit-

2This is discussed in Sect. 3 of this review. The references for
which this statement applies use oil lubrication.

erature. Section 3 gives an overview of experimental results,
and Sect. 4 then discusses when to apply these methods, with
an example explaining their applicability to pitch and yaw
bearings, which oscillate with a varying amplitude.

1.1 Operational conditions of oscillating bearings

Most operating conditions of oscillating bearings are simi-
lar to those of rotating bearings, and much has been written
about these conditions. Similarities include the load distribu-
tion among the rolling elements, which tends to spread as
a function of the radial and axial load (Harris and Kotza-
las, 2007) and the bending moment, if present. Individual
rolling elements experience point or line contacts, originally
described by Hertz for balls (Hertz, 1882) and later described
by other methods for rollers (Reusner, 1977; de Mul et al.,
1986), resulting in contact pressures on the inner and outer
ring that tend to be different. The raceways experience cyclic
loading, which can cause rolling contact fatigue, often as-
sumed to be caused by shear stress in particular (Lundberg
and Palmgren, 1947; Harris and Kotzalas, 2007). In both
oscillating and rotating bearings, there can be grease and
oil lubrication present (Hamrock et al., 2004), raceway sur-
face quality and lubrication contamination affect the bearing
(Ioannides et al., 1999), and so on.

Since this review focuses on oscillating bearings, some
differences between rotating and oscillating bearings are,
however, worth pointing out. One main difference is sim-
ply the travel that a bearing performs when it oscillates as
compared to when it rotates: for an oscillation as depicted
in Fig. 3, an oscillation arc A is covered. This is typically
smaller than the 360° covered during a rotation. Therefore,
the life of an oscillating bearing, if measured in oscillations,
tends to be bigger than that of an otherwise identical bearing
that rotates, measured in revolutions.

One commonly discussed difference is the fact that, for
small oscillation angles, only a part of the raceway is ever
loaded, while the remaining part is always unloaded. For the
bearings depicted in Fig. 4, the bearing on the left side only
sees cyclic loading on selected locations of its ring, whereas
the bearing on the right side sees loading all over its ring,
which is distributed unevenly. In Fig. 2, the blue oscillation
pattern (stochastic) causes the entire ring to experience an
uneven number of load cycles, depicted in the right of the
figure. The red pattern on the other hand only leads to stress
cycles in selected locations, exactly like the left part of Fig. 4.
All of the aforementioned cases are fundamentally different
from a rotating bearing, in which for both the inner and outer
ring every location of a ring experiences the same amount of
stress cycles if the bearing is rotated for long enough.

Although the stress cycles are evenly distributed on each
ring of a rotating bearing, the load is not. It is typically as-
sumed to be constant with respect to one ring, the so-called
stationary ring, while the other one rotates relative to it. If
the load distribution is uneven, such as the load distribution
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Figure 2. Load cycles resulting from oscillation and stochastic movement in a bearing with Z = 15 rolling elements.

shown in the top of Fig. 5, this causes the stationary ring to
always experience its highest load in the same location. The
rotating ring, on the other hand, will have all of its circum-
ferential locations see stress cycles as shown in the bottom
of Fig. 5, with only a time shift between the loading of each
circumferential location of that rotating ring. For an oscil-
lating bearing, the stationary ring is loaded similarly (identi-
cal, if one ignores the fact that there is a discrete amount of
rolling elements), but the rotating ring is loaded differently
over time: all of its circumferential positions can experience
a very different stress cycle history as shown in Fig. 5 for a
small and large oscillation amplitude θ .

From a viewpoint of rolling contact fatigue, it is also note-
worthy that the stress cycles experienced by the raceway are
not identical in an oscillating and a rotating bearing. For a
rotating bearing, the left of Fig. 6 shows the typical type
of shear stress loading history as assumed in the literature
(Lundberg and Palmgren, 1947; Harris and Kotzalas, 2007).
The center figure shows that at reversal points of the oscil-
lation, the amplitude of the shear stress can be lower than in
a rotating bearing (blue case), and, thereafter, the sign of the
shear stress cycle flips (red case). For small oscillations, the
right part of Fig. 6 shows that the oscillation amplitude of a
rotating bearing may even never be reached.

Aside from these effects that concern the stress cycle his-
tory and its distribution over the circumferential locations of
the inner and outer ring, lubrication is well known to behave
differently in an oscillating bearing as compared to a rotating
one, causing a time- and movement-dependent film thickness
(Venner and Hagmeijer, 2008). As discussed above, this can
cause wear if the lubricant film thickness is bad enough, but

even if no wear occurs, a different lubricant film thickness
than in a rotating bearing may be present.

2 Existing calculation approaches

There are a number of publications on the issue of rolling
contact fatigue in oscillating bearings. Most of them are
based on ISO (ISO, 2007, 2008b, 2021, 2008a) or closely
related to the model used for ISO. These publications are
summarized in Sect. 2.1. Several approaches that have lit-
tle relation to ISO and its foundations have also been pro-
posed and are discussed in Sect. 2.2. Some of the ISO-related
methods are intended for constant oscillation amplitudes as
depicted red in Fig. 2, where an oscillation with a constant
amplitude about a position of 0° is shown3, while some other
ISO-related methods and all non-ISO-related methods are in-
tended for arbitrary movement as depicted in blue in Fig. 2.

2.1 ISO-related approaches

Fundamentally, rolling contact fatigue in oscillating applica-
tions is caused by a rolling element repeatedly rolling over
locations on a raceway, as is the case in rotating applications.
For this reason, many researchers have sought to adapt the
well-known ISO approach for rolling contact fatigue calcu-
lation to oscillating applications. All of these approaches are

3Rolling contact fatigue is driven by relative movement of one
of the rings to the other, which means that the mean position of
the oscillations in Fig. 2 only moves the position where load cycles
occur on the raceway but has no effect on the life of the bearing. The
critical difference between the blue and red lines is their relative
movement, not their absolute position.
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hence characterized by the fact that they are based on Lund-
berg and Palmgren (1947), who proposed that

ln
1
S
∝
τ c0N

e

zh0
V, (1)

where S is the survival probability, τ0 is the maximum or-
thogonal shear stress and z0 is its depth under the raceway
surface at which τ0 occurs, N is the number of load cy-
cles (rollovers), and V is the loaded volume (Lundberg and
Palmgren, 1947, 1952; Harris and Kotzalas, 2007; Zaretsky,
2013).

Lundberg and Palmgren used Eq. (1) to derive their well-
known life equation L10,rev = (C/P )p, with dynamic load
rating C and dynamic equivalent load P , which remains
the basis for ISO 281 (ISO, 2007) and ISO/TS 16281 (ISO,
2008b) as well as countless other publications. They assumed
the bearings to be rotating. L10,rev then gives the number
of millions of revolutions at which 10 % of bearings are
expected to suffer the first visible raceway damage4, also
called “basic rating life”. In principle, their derivation can
be adapted for use in oscillating movement as well. This sec-
tion discusses publications which either apply or derive such
adaptations of the original Lundberg–Palmgren approach, or
approaches very similar to it but also based on Eq. (1). Most
of these approaches derive corrective factors aosc that are in-
tended to be applied to a life measured in revolutions and
convert it into a life measured in oscillations, i.e.,

L10,osc = aoscL10,rev, (2)

where L10,osc is the life measured in oscillations and
L10,rev is the life in revolutions. This equation applies to
all so-called “oscillation factors” in this paper. For small
oscillation amplitudes, aosc typically becomes very large,
with aosc commonly (but not always) being in the range of
1 . . . 1000. All factors a in this paper are instances of aosc as
shown in Eq. (2).

There are two common definitions of an oscillation am-
plitude; this paper mainly uses θ as defined in Fig. 3. Some
equations are also given in terms of the double amplitude ϕ if
there are differences compared to the equation in terms of θ .

2.1.1 Harris: traveled distance

The Harris factor5 is given in various editions of Rolling
Bearing Analysis by Harris (Harris, 2001; Harris and Kotza-

4ISO 281 (ISO, 2007) also includes the rolling element damage
in this definition; strictly speaking this is not included in the deriva-
tion by Lundberg and Palmgren (1947), but ISO included it in the
definition of life, presumably because it rarely occurs anyway.

5This approach has also been referred to as “Harris 1” in some
publications (Schwack et al., 2016; Schmelter, 2011; FVA, 2021;
Wöll et al., 2018) to distinguish it from the Rumbarger effect (see
Sect. 2.1.2), which they falsely attribute to Harris, thus denoting it
“Harris 2”.

Figure 3. One oscillation covering arc A= 4θ (= 2ϕ) with oscilla-
tion amplitude θ (and double amplitude ϕ) as defined in this paper.

las, 2007). It considers the effect whereby an oscillating bear-
ing will, depending on the oscillation amplitude, experience
a different number of stress cycles on the rings than a rotat-
ing bearing. The factor can be interpreted as a conversion of
traveled distance into an equivalent number of rotations. For
the angle definition in Fig. 3, the total traveled arc A during
one oscillation amounts to A= 4θ (= 2ϕ). The Harris factor
is then simply

aHarris =
360°
A
=

90°
θ

(
=

180°
ϕ

)
. (3)

Thus, taking an exemplary bearing that oscillates with an
amplitude of θ = 10° and that, if it were rotating, would have
a life of L10,rev = 1 million revolutions and applying Eqs. (2)
and (3) gives a life of L10,osc =

90°
10°L10,rev = 9 million oscil-

lations according to the Harris factor. This is because it will
execute an arc of A= 40° per oscillation, which is consid-
ered as one-ninth of a rotation by the Harris factor.

Several references (e.g., IEC 61400-1:2019, 2019) rec-
ommend the use of a so-called load revolution distribu-
tion (LRD) or load duration distribution (LDD) for rotating
bearings. LRDs sum the number of revolutions at a given
load. It is possible to use this approach for oscillating bear-
ings, too, if oscillations are summed and equated to one rev-
olution for every 360° of movement. Doing so is in principle
identical to using the Harris factor, if the Harris factor is used
to sum up movement independently at each of the same load
cases. For a constant rotational speed, LDDs are identical to
LRDs; for varying speeds they are merely an approximation.

The Harris factor can be seen as a simplification that ne-
glects various effects which may occur in oscillating bearings
as opposed to rolling ones. In particular, it does not take ac-
count of the fact that the load distribution on the moving ring
over time is different in an oscillating bearing, a fact orig-
inally taken into account by Houpert (1999), nor that only
part of the raceway may be loaded6, originally described by

6More generally, it does not take into account that there may
be a difference in the number of stress cycles for different circum-
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Rumbarger and Jones (1968). A combination and correction
of some of the errors in the two aforementioned approaches
has been proposed by Breslau and Schlecht (2020) as well
as by Houpert and Menck (2021). These approaches are dis-
cussed in the following sections.

2.1.2 Rumbarger: partially loaded volume

The Rumbarger effect7 was originally introduced by Rum-
barger and Jones (1968) as early as 1968. This original pub-
lication, which has been described as “complex and im-
practicable” (Breslau and Schlecht, 2020), was then simpli-
fied in Rumbarger (2003) and NREL DG03 (Harris et al.,
2009), but without a derivation of the simplified approach8.
Each of these publications introduces an adjusted load rat-
ing9 Cosc for oscillating bearings, and using this in Losc =

(Cosc/P )p gives the life in oscillations. It is possible to in-
troduce an oscillation factor10 aosc that produces identical
results to the adjusted load rating Cosc; see Appendix A or
Wöll et al. (2018). In Appendix A of this paper, the authors
include a derivation of the simplified approach and in Ap-
pendix B a discussion of inaccuracies and assumptions con-
tained therein.

Aside from the effects also considered by Harris, the Rum-
barger effect is based on the assumption that for small os-
cillation amplitudes, only a part of the raceway may ever be
loaded. The loaded volume V of Eq. (1) and its load cyclesN
are then adjusted accordingly, depending on the given oscil-

ferential locations of the rings, as shown in Fig. 2, right. However,
Rumbarger only considered differences caused by the fact that some
parts of the raceway are unloaded in their publications.

7This approach has also been referred to as Harris 2 in some
publications (Schwack et al., 2016; Schmelter, 2011; FVA, 2021;
Wöll et al., 2018) due to Harris’s authorship of the NREL DG03
(Harris et al., 2009). Since the earliest publications of this approach
in the literature are by Rumbarger, and since Rumbarger was a co-
author of NREL DG03, they are credited with the idea here.

8Breslau and Schlecht (2020) give a more appropriate treatment
of this effect by introducing the factor aosc,2 with their Eq. (19),
which does not contain the simplifications taken by Rumbarger in
their simplified approach. This equation was rearranged (without
simplifications, but to obtain a less cluttered equation) by Houpert
and Menck (2021) into a corrective factor called fθ_crit_i,o in their
Eq. (45), here used for the recommended approach. Although Rum-
barger uses an adjusted load rating while the other authors use cor-
rective factors, all of these approaches attempt to consider the same
effect. The differences arise only because of simplifications in Rum-
barger’s derivation, see Appendices A and B.

9The adjusted load rating is called Cosc in Rumbarger and Jones
(1968), Cao and Cro for axial and radial bearings in Rumbarger
(2003), and Ca,osc in Harris et al. (2009).

10The oscillation factor is called aprt in Appendix A and
aosc_nHa2 in Wöll et al. (2018).

Figure 4. Rumbarger effect: stressed volume on the inner ring as a
function of inner ring angle θ relative to θcrit = θcrit,i, for θ < θcrit
and θ > θcrit. The yellow volume is stressed twice per oscillation
cycle (see Fig. 3), and the red volume is stressed four times per
oscillation cycle. The black volume is never stressed. Only stress
cycles for the inner ring are shown.

lation amplitude11. Rumbarger does so by defining the an-
gle θcrit (ϕcrit) as

θcrit =
360°

Z(1± γ )
,

(
ϕcrit =

720°
Z(1± γ )

)
, (4)

where the minus (−) sign refers to the outer raceway and the
plus (+) sign to the inner raceway, and γ is a common auxil-
iary factor used in rolling-bearing calculations related to the
geometry of the bearing12. θcrit is the oscillation amplitude
required to move a rolling element from its initial location
on a raceway to that of the next rolling element. Figure 4
shows stressed volumes above and below the critical angle
on an inner raceway. The Rumbarger factor as recommended
by the authors of this paper is given by13 (see Table A1 for e)

aRumbarger =

{ (
θ
θcrit

)1−1/e
· aHarris for θ < θcrit,

aHarris for θ ≥ θcrit

. (5)

For θ < θcrit, only part of the raceway volume is loaded
during operation. For this case, Rumbarger (2003) and Harris
et al. (2009) give a load rating that is derived in Appendix A.
This derivation makes some simplifications, and Appendix B
shows the errors that occur when using Rumbarger’s deriva-
tion. If applied correctly, the factor (or load rating) should
shorten the life of a bearing as compared to Harris14, though

11The Harris factor, see Eq. (3), does not consider that only part
of the raceway is loaded for small oscillation angles. Since it merely
adjusts the standard (rotation-based) calculation approach by the ef-
fect of the difference in traveled distance, it implicitly assumes the
same loaded volume as in a rotating bearing.

12It is defined as γ = D cosα
dm

, where D refers to the rolling-body
(ball or roller) diameter; dm gives the so-called pitch diameter, i.e.,
the mean of the inner and outer raceway diameters; and α is the
contact angle, where α = 0° is a purely radial bearing and α = 90°
is a purely axial one.

13Equation (5) is identical in terms of ϕ.
14In contrast to the Harris effect, with the Rumbarger effect two

competing effects ultimately cause a reduction in life. The loaded
volume is lower, which increases life; but the load cycles on that
small volume which is loaded are higher, thereby decreasing life.
The second effect is stronger and reduces the overall life of the bear-
ing; see Eq. (A3).
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the simplified factor (or load rating) sometimes increases the
life for no other reason than the simplifications made in its
derivation. The form of Eq. (5) is thus based on Appendix A
without any simplifications. Note that since θcrit differs be-
tween the inner and outer races so does aRumbarger. Ampli-
tude θcrit of the outer raceway may be used if a more conser-
vative estimate for the entire bearing is desired15.

For values of θ ≥ θcrit, the simplified approach published
in Rumbarger (2003) and Harris et al. (2009) is identical to
using the Harris factor. This, too, is merely an approximation:
strictly speaking, the life of an unevenly stressed volume (as
illustrated in Fig. 4, right-hand side) is not the same as that
of an evenly stressed volume which occurs in a rotating bear-
ing16 (identical to an oscillating bearing with θ = θcrit) if the
total movement of both bearings is the same. Appendix C
proposes an extension of the Rumbarger factor for such situ-
ations but also concludes that the difference in the factor as
compared to aHarris is almost negligible in most cases. The
factor chosen for Eq. (5) thus follows the above-mentioned
publications.

The Rumbarger effect does not consider the effects of an
uneven load zone on the moving ring, which are covered by
Houpert. Moreover, it assumes that no slippage of the rolling-
element set occurs, which would move load cycles to occur
on different positions of the ring circumference. For a prop-
erly installed bearing, Rumbarger and Jones (1968) demon-
strated that this assumption can hold true.

2.1.3 Houpert: load zone effects on the moving ring

The Houpert effect was originally covered by Houpert
(1999), with a small error in its derivation. This was cor-
rected by Breslau and Schlecht (2020) as well as Houpert
and Menck (2021)17. Aside from the effects also considered

15Since the traveled distance of a rolling-element contact in the
rolling direction x is identical on the inner and outer raceways but
the outer raceway’s circumference is longer than the inner raceway’s
circumference for contact angles α 6= 90°, the Rumbarger effect is
relatively more detrimental to the outer race: it creates a larger devi-
ation from the loaded volume of a rotating bearing than on the inner
ring.

16This follows from Eq. (1), where the volume V has exponent 1
and the stress cycles N have exponent e 6= 1.

17The two approaches are not completely identical but very sim-
ilar: Breslau and Schlecht (2020) employ a thorough calculation of
the effect only for oscillation amplitudes θ > θcrit; see Sect. 2.1.2.
For a circumferentially loaded ring with oscillating motion, they
thus introduce the load integrals called Jθa,ψ and Jθa in their
Eqs. (32) and (33). Houpert and Menck (2021) derive an equivalent
load called Qeq(ψ) in their Eq. (35). This term differs from that
derived by Breslau and Schlecht (2020) because they (Breslau and
Schlecht) use a calculation approach resembling that of Lundberg
and Palmgren (1947) and ISO (2007), whereas Houpert and Menck
(2021) use an approach close to that used by Dominik (1984). The
approach used by Dominik is very similar to that of Lundberg and
Palmgren but uses different sets of equations. These two approaches

Figure 5. Houpert effect: load history of an exemplary element as
a function of movement relative to load zone. Small θ are similar to
no movement; large θ are similar to rotation.

by Harris, the Houpert effect considers that the stress cycle
history of the moving ring will be different for an oscillating
bearing than for a rotating one. This is illustrated in Fig. 5 for
an exemplary element on the moving ring.

In the standard life calculation as pioneered by Lundberg
and Palmgren (1947) or used in ISO 281 (ISO, 2007), the
load zone is assumed to be constant relative to one ring
(called the stationary ring, typically the outer ring). From
the viewpoint of Houpert’s considerations, movement of the
other ring (rotating or oscillating, typically the inner ring)
then does not change the load distribution of the stationary
ring’s raceway. This ring is loaded identically for rotating or
oscillating operation. Thus, aHarris gives the correct life of the
stationary ring according to Houpert’s derivation.

ultimately give almost identical results if similar empirical expo-
nents (see Table A1) are used, but details differ; hence, the deriva-
tion by Houpert and Menck (2021) includes a term called H that
cancels out, whereas that by Breslau and Schlecht (2020) does not.
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For the moving ring, however, the Houpert effect predicts
a different value to aHarris. Since Harris merely adjusts the
standard (rotation-based) calculation approach by the effect
of the difference in traveled distance, they implicitly assume
that the effect of the load zone is the same as that in a rotat-
ing bearing18. Thus, aHarris implicitly assumes an element as
depicted in blue in Fig. 5 moves through the entire load zone
once for each 360° of movement19. However, in reality this
only applies for oscillations where θ = i ·180° (ϕ = i ·360°),
i = 1, 2, 3 . . . , because for these values of θ each element will
move around the entire raceway 2·θ = i ·360 times per oscil-
lation (ϕ = i · 360 times per oscillation). For very small os-
cillations θ→ 0° (ϕ→ 0°), on the other hand, the elements
increasingly converge toward the stress cycle history seen in
a stationary ring20; see Fig. 5. The Houpert factor is generally
at or in between the following extreme cases:

aHoupert =
aHarris for θ = i · 180 with i = 1, 2, 3, . . .

or purely axial load(ε→∞)
aHarris in a bearing with both rings for θ→ 0
stationary relative to load∗

. (6)

∗ Both rings being stationary relative to load slightly reduces
the life as compared to standard calculations (in which one
ring is assumed to be rotating) because it increases the equiv-
alent load of the ring which would otherwise be assumed to
rotate. It does not affect the factor aHarris.

In between these extreme cases, detailed calculations have
to be performed, curve fits of which can be found in Houpert
and Menck (2021). They depend on a value ε, a measure
of the load zone size21. If applied correctly, the Houpert

18This is also assumed by Rumbarger, who uses the same equiv-
alent load for an oscillating ring as for a rotating one in Rumbarger
and Jones (1968) and also in Rumbarger (2003); see Appendix A.

19360° of movement consists, for example, of nine oscillations
with θ = 10°.

20In Houpert’s model the stress cycle history of an oscillating
ring converges, for small oscillations, against that of a stationary
ring in both a rotating and an oscillating bearing. These two cases (a
stationary ring in a rotating and an oscillating bearing) can be con-
sidered identical here because Houpert’s effect alone, unlike Rum-
barger’s, does not consider that there are a discrete number of rolling
elements in the bearing for the circumferential distribution of load
cycles. Rather, they assume all circumferential locations experience
the same number of stress cycles (with differences in load cycle
magnitude only), as is common in a rotating bearing, and integrate
over a continuous load distribution around the circumference. This
is standard practice for the life calculation of typical rotating bear-
ings and as such also employed in ISO 281.

21Common formulae for ε in the literature tend to be based on
small bearings where the rings can be assumed to be stiff. For bear-
ings with large deflection of the rings, based on, e.g., FE simula-
tions, different formulae for ε must be used to approximate it; see
Houpert and Menck (2021). For multi-row bearings, each row’s ε
must be determined independently. Either the life of each row is
then calculated independently and combined into a total bearing life
or the lowest ε value is taken as a conservative measure.

factor will either be identical to aHarris in the above given
cases or shorten the life of the bearing in all other cases22.
The Houpert effect is most noticeable for narrow load zones
(small ε) and small oscillation angles θ . Houpert and Menck
(2021) find deviations which differ by up to 22 % from those
given by the Harris factor for very narrow load zones and
small oscillation amplitudes using ISO exponents (see Ta-
ble A1) and larger deviations of up to 52 % using exponents
given by Dominik (1984). This is due to Dominik using a
higher Weibull slope of e = 1.5. Houpert and Menck (2021)
give curve fits to calculate the Houpert factor23 for ball and
roller bearings. If ISO/TS 16281 (ISO, 2008b) is used for the
life calculation, the extreme case of small theta (θ→ 0) can
be taken into account by assuming both rings are stationary
relative to the load and using aHarris.

Strictly speaking, the Houpert effect is not independent of
the Rumbarger effect, but for its derivations in Breslau and
Schlecht (2020) and Houpert and Menck (2021) it is assumed
to be.

2.1.4 Other ISO-related approaches and further
literature

The above three factors have been covered in a number of
publications24, and Breslau and Schlecht (2020) and Houpert
and Menck (2021) present the most up-to-date models which
include them. Besides the above given publications, there are
a number of additional approaches and applications of the
above methods. Since all of the above cases are intended for
constant oscillation amplitudes, some alternative approaches
have been developed which are also intended to be usable for

22It shortens the life in all other cases because, from a viewpoint
of rolling contact fatigue, the even distribution of loads over time
that is present on a rotating ring is the best-case scenario for damage
accumulation of a ring. Any oscillation that deviates from this load-
ing causes increasingly more concentrated damage accumulation on
selected locations of the ring. Concentrated loading (as present, for
instance, on the stationary ring in a typical bearing in most indus-
trial applications) causes a higher equivalent load and thus a lower
life, if all else is equal, than the loading of a ring that rotates rela-
tive to the load (Lundberg and Palmgren, 1947; ISO, 2008b). Note
that the Houpert effect is, however, expressed through a factor here
rather than by changing the equivalent load.

23The reference calls the Houpert factor aosc_... and includes in
it a corrective factor for the Rumbarger effect, denoted fθ_crit. If
only the Houpert factor is desired, fθ_crit = 1 can be used for the
equations in the reference.

24A comprehensive list including all publications with relation to
the factors, to the best knowledge of the authors, includes the factors
are derived in Rumbarger and Jones (1968), Houpert (1999), Rum-
barger (2003), Harris et al. (2009), Breslau and Schlecht (2020), and
Houpert and Menck (2021), and they are used or discussed in some
form in Schmelter (2011), Schwack et al. (2016), Münzing (2017),
Wöll et al. (2018), FVA (2021), Menck (2023), and Hwang (2023).
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stochastic movement, which leads to different load cycles25

on the bearing rings as depicted in Fig. 2 (blue).
Menck (2023) generalized the Lundberg–Palmgren

method to a discrete model (the Finite Segment Method)
that can be applied to arbitrary movement. The model
applies Eq. (1) to segments of a bearing. The movement
of the balls relative to the inner and outer rings for each
discrete simulation point is analyzed for potential stress
cycles on the respective rings. For each stress cycle N ,
the variables τ0, z0, and V in Eq. (1) are then directly
evaluated, and the corresponding damage according to the
Palmgren–Miner hypothesis is calculated. The individual
survival probabilities of all segments can then be combined
into raceway lives, which can be combined into a total
bearing life. The model thus encompasses previous use cases
and includes the Rumbarger and Houpert effect but can also
be used for arbitrary movement and load histories. Menck
(2023) shows the model to produce effectively identical
results to ISO 281 for simple use cases which are defined
by assumptions identical to those of Lundberg and Palmgren
(1947) and reproduces results of oscillating bearings from
Houpert and Menck (2021) but also applies the model to a
rotor blade bearing of a wind turbine.

Hai et al. (2012) propose a generalization of ISO 281
specifically for slewing bearings. They divide the bearing
into several segments in a similar way to Menck (2023), but
unlike Menck’s, their segment width depends directly on the
oscillation amplitude. They also make a number of simplifi-
cations not made by ISO 281 or Menck26. Their model can
be used for individual operating conditions with either ro-
tation or a constant oscillation amplitude; however, several
conditions with different amplitudes may also be combined
using equivalent loads and equivalent oscillation amplitudes
for the segments. They compare their results to an exemplary
calculation of NREL DG03 and conclude that their some-
what similar results validate the method. The simplifications
make it impossible to establish whether their method is actu-
ally more accurate than simply using the oscillation factors
given above.

25The term “load cycles” is used here synonymously with
“rollovers”. Load cycles in Fig. 2 were determined by using the
inner ring angle θi as depicted on the left-hand side of Fig. 2 (outer
ring assumed stationary) to calculate the movement of the cage
θc = 0.5·θi·(1−γ ). This was then used to obtain relative cage move-
ment on the inner ring θrel,i = θi−θc. A change in θrel,i is then con-
sidered a load cycle on the respective position where it occurred.

26Because their approach is intended for slewing bearings, they
assume the contact ellipse dimensions a and b as well as z0 to be
identical on the inner and outer rings; they approximate z0 ≈ 0.5b
and τ0 ≈ 0.25Pmax, which is only completely correct for roller
bearings but not ball bearings; they assume the cage moves at half
the speed of the rotating ring, which is only true if a purely axial
contact of α = 90° is present; and they assume the critical angle to
be identical for the inner and outer rings, using θcrit = 360°/Z for
both rings.

Schwack et al. (2016) do not present a new model but com-
pare factors from Harris, Houpert, and Rumbarger. They also
include an approach denoted “ISO”, which is identical to that
of Harris. Having published in 2016, the authors also use
the erroneous model of Houpert (1999) that was later cor-
rected (see Sect. 2.1.3). Moreover, their application of the
Houpert factor is not recommended for double-row bearings
with large structural deformation27. Their evaluation of the
Rumbarger factor28 results in a longer life than using the Har-
ris factor29. As explained in Sect. 2.1.2, this increase only oc-
curs because of simplifications in the derivations performed
by Rumbarger but for no physical reason, since the effects
considered should shorten the life, not prolong it. The rela-
tively large deviations from aHarris shown in Schwack et al.
(2016) are therefore both due to inaccuracies in the factors
that were used.

Wöll et al. (2018) present a “numerical approach” to cal-
culate the life of a bearing subjected to arbitrary time se-
ries. Their model evaluates the life of the whole30 bearing
at every discrete time step of the simulation and then calcu-
lates the inferred damage according to Palmgren–Miner for
every time step, based on the movement that occurred. The
model is shown to be identical to a bin count using the Harris
factor, see Sect. 2.1.1, for simple sinusoidal movements31.
For a stochastic time series, their numerical approach pro-
duces a shorter life than either Harris’s32, Rumbarger’s33, or
Houpert’s approaches applied to a bin count. Because Wöll
et al. (2018) published in 2018, they still use the erroneous
Houpert factor from 1999 rather than more recent results (see
Sect. 2.1.3); hence, they obtain a longer life with the Houpert
factor even though there is no physical reason for such an

27The publication in question uses a single ε value for a large
four-point slewing bearing that is based on deformations in finite
element (FE) simulations. The purpose of ε in Houpert’s approach
lies in its ability to describe the load zone of a race. Thus, each
inner-outer raceway pair should get an ε value for a proper calcula-
tion, as each of them may have a different load zone. Moreover, de-
termining ε based on deformations that occur in FE simulations can
be misleading for large slewing bearings, since they tend to have a
lot of structural deformation, but common equations given for ε are
mostly based on assumptions of rigid races. Various suggestions for
the derivation of ε, including ones for large slewing bearings, can
be found in Houpert and Menck (2021).

28The approach is called Harris 2 in the reference.
29The approach is called Harris 1 in the reference.
30The fact that Wöll et al. (2018) use the whole bearing life is the

critical difference to Menck’s Finite Segment Method, see Menck
(2023), Sect. 2.2.

31Even though they only show equivalence for sinusoidal move-
ments, one can conclude that their numerical approach is equivalent
to usage of the Harris factor for any type of movement if one eval-
uates the life and the corresponding movement of the bearing as
shown in Sect. 2.1.6 with each time step used as a bin and if one
uses only the Harris factor.

32The approach is called Harris 1 in the reference.
33The approach is called Harris 2 in the reference.
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increase. Furthermore, they compare a bin count using the
approaches of Harris, Rumbarger, and Houpert and obtain
results that are higher than those of the numerical approach
with all three bin count approaches including Harris, and they
conclude that using these bin counts “overestimates the life-
time for non-sinusoidal loads and speeds”. It is not possible
to assess the accuracy of this statement because their model
is based on the life of the whole bearing and thus also in-
cludes simplifications as pointed out by Sect. 2.2 of Menck
(2023). They also produce a simple method to calculate an
equivalent load for oscillating loads, but it fails to take local
effects into account as accurately as Menck (2023).

2.1.5 Further effects during oscillation

Further effects occur during oscillation which are not consid-
ered by any of the above approaches.

When a rolling element passes completely over a posi-
tion on the raceway, the orthogonal shear stress below the
surface changes from maximum (+τ0) to minimum (−τ0)
(Lundberg and Palmgren, 1947; Harris and Kotzalas, 2007).
This is the typical stress cycle assumed in all ISO-based ap-
proaches mentioned here; it is depicted in Fig. 6 on the left.
This stress cycle history behaves different in oscillating bear-
ings: for raceway positions close to the reversal points of the
oscillation, the direction of the load cycles changes; this phe-
nomenon is depicted in Fig. 6 (oscillation, red case). The
shear stress of the volume close to the reversal points does
not fully span from +τ0 to −τ0 but is stopped prematurely;
this too is depicted in Fig. 6 (oscillation, blue case). Simi-
larly, for oscillations with small amplitudes, the stress range
does not extend to the maximum and minimum of a pass-
ing contact in rotation; see Fig. 6 (small oscillation). None of
these effects is considered in the ISO-based approaches (all
approaches covered in Sect. 2.1) named herein.

Lubricant film quality is well known to have a significant
impact on rolling contact fatigue life (Ioannides et al., 1999;
Harris and Kotzalas, 2007). The thickness of the lubricant
film is affected by oscillation and may even become so poor
that wear rather than fatigue becomes the dominant damage
mechanism. Numerous studies investigate wear phenomena
in oscillating bearings; for a review, see de La Presilla et al.
(2023). As far as the authors are aware, there are no sim-
ple models to estimate the thickness of the lubrication film
as a function of the oscillation and thus determine its po-
tential effects on rolling contact fatigue. Most bearings are
grease-lubricated (Lugt, 2009), including most pitch and yaw
bearings (Becker, 2011; Wenske, 2022). Grease consists of,
among other things, thickener and base oil (Lugt, 2009). Film
thickness estimation would likely become even more chal-
lenging with grease lubrication due to the effect of the thick-
ener. Therefore, the effect of lubrication is mostly ignored in
all models for rolling contact fatigue calculation in oscillat-
ing bearings of which the authors are aware. This statement

also applies for the non-ISO-based approaches discussed in
Sect. 2.2.

2.1.6 Binning for oscillating bearings

Life calculations often need to be performed for operating
conditions that vary over time. As argued in Sect. 2 of Menck
(2023), the most accurate way to calculate the rolling con-
tact fatigue life of a bearing under varying operating condi-
tions according to the assumptions in Eq. (1) made by ISO-
related approaches is to use the Finite Segment Method ac-
cording to Menck (2023). This is because the Finite Segment
Method considers local load changes rather than summing
global, location-independent bearing damage over time. For
most users, it will, however, be simpler to remain closer to
existing approaches that are based on C and P and do not re-
quire a more detailed calculation approach with local damage
calculation. Doing so for oscillating bearings necessitates the
use of bins representing similar operating conditions in com-
bination with oscillation factors (Harris, Houpert, or Rum-
barger). This is the most commonly recommended approach,
a version of which is also found, e.g., in the NREL DG03
(Harris et al., 2009). Using bins is merely an approxima-
tion when compared to a proper application of Eq. (1) (see
Menck, 2023). It is an approximation since the aforemen-
tioned factors have all been developed for constant oscilla-
tion amplitudes around the same mean position, and they
all assume there is a constant load acting on the bearing as
it moves, along with a number of other assumptions made
by Lundberg and Palmgren (1947), resulting in the life of a
whole bearing, a process in which local information is lost.

To apply oscillation factors, movement such as depicted
in the stochastical case of Fig. 2 must be translated into bins
of oscillations. Typically, variable load is taken into account
in fatigue calculations by using rainflow counting (ASTM,
2017) for classical fatigue of structural components. Rain-
flow counting is also used for the bearing movement (as op-
posed to the load) for the life calculation of pitch bearings
in NREL DG0334, Menck et al. (2020), and Keller and Guo
(2022).35 Performing a rainflow count will provide the bins
required for further calculations.

34This is misspelled as “rainbow cycle” in the reference.
35For damage mechanisms like wear, where the order of move-

ment is important, Stammler et al. (2018) recommend range-pair
counting. In fatigue calculations, rainflow counting is more useful
because it can fully represent the effect of a large movement (or
load cycle) that is interrupted by many small ones. However, this
effect is only noticeable in rolling contact fatigue calculations if
the Houpert effect is considered. Otherwise a range-pair count will
produce a very similar result to a rainflow count. This is because
oscillation cycles of the moving ring in rolling contact fatigue are
different from a load cycle: the load cycles are caused by the rolling
elements rolling over the raceway and are thus very local phenom-
ena that are seldom interrupted.
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Figure 6. Left: load cycle as assumed by all ISO-based approaches; other examples: further types of load cycles not considered in ISO.

The load acting on the bearing is irregular and must be
simplified into a single equivalent load Pm for each bin of
the cycle count. Ideally, to this end, the equivalent load Pi
per time step i is determined, and the equivalent load over
the bin Pm is determined from all time steps i = 1 . . . n in
the bin as per

Pm =

(
N1P

p

1 +N2P
p

2 + . . . +NnP
p
n

N1+N2+ . . . +Nn

)1/p

. (7)

The value Ni = ni ·1ti here represents the distance cov-
ered in the condition i (measured in degrees or revolu-
tions) and can be calculated from the speed ni and the
time ti in that condition36. The exponent p is given in Ta-
ble A1. The approach in Eq. (7) is not specific to oscilla-
tion and can similarly be found in various bearing manufac-
turer catalogs and basic machine element text books (Roloff
et al., 1987; Decker, 1995; Haberhauer and Bodenstein,
2001; Liebherr-Components AG, 2017; Schaeffler Technolo-
gies AG & Co. KG, 2019).

If it is not possible to determine Pi for each time step, po-
tentially due to the calculation being too costly, it is possible
to apply Eq. (7) to the force and moment components con-
tributing to P (including radial force, axial force, and bend-
ing moment) and then determine Pm from a suitable func-
tion37 based on their values.

Using the Pm values of each bin, it is now possible to cal-
culate the life of each bin Lrev = (C/Pm)p. The life in oscil-
lations Losc according to Eq. (2), using the appropriate factor
as determined on the basis of Sect. 4, can be determined too.

All of the bins b = 1 . . . B obtained are then typically com-
bined into one final life using the Palmgren–Miner hypothe-

36Strictly speaking, this equation only applies for a constant load
direction, but it can be used as an approximation with some varia-
tions in the load direction, too, as proposed here. The same applies
for Eq. (8). This increases the uncertainty surrounding the calcula-
tion result somewhat, which is explored in Sect. 4.4.

37Functions for bearings with only radial and axial load compo-
nents can be found in ISO 281 (ISO, 2007). Examples of a function
for pitch bearings can be found in Harris et al. (2009); Menck et al.
(2020), where the latter publication is to be preferred.

sis (see also Zaretsky, 1997; Kenworthy et al., 2024) accord-
ing to

L=
1

φ1
L1
+

φ2
L2
+ . . . +

φB
LB

, (8)

where L1, . . . ,LB denote the life in bin b. This may be either
the life in oscillations, revolutions, or time. Typically, the life
would be in oscillations if oscillation factors have been used,
but it may be converted to time or revolutions. L denotes the
total combined life of all operating conditions. The variable φ
gives the proportion of oscillations, revolutions, or time per-
formed in that bin. It is calculated according to

φb =
sb

s1+ s2+ . . . + sB
, (9)

where variables s1, s2, . . . , sb, . . . , sB are the oscillations,
time, or revolutions that occurred while in that bin but must
have the same unit as the lives in Eq. (8). It follows that
φ1+φ2+ . . . +φB = 1.

It is worth noting that binning is solely used to reduce the
number of data points from real-life data or a simulation. Us-
ing modern computers, if there is no hardware-specific ne-
cessity to reduce the number of data points, it is possible to
use each single step taken from, e.g., an aeroelastic wind tur-
bine simulation or some other data set and treat it as a sepa-
rate bin to which Eq. (8) is directly applied rather than pro-
cessing the steps into a reduced number of bins. From the
perspective of a proper application of the Palmgren–Miner
rule to a whole bearing, usage of each single step is the most
accurate approach. It is thus both easier and less error-prone,
as well as more accurate than binning beforehand. In order
to account for oscillation effects, it would then be required to
consider the larger oscillation cycle (amplitude) that a spe-
cific step is part of and adjust its life based on that, where the
step will typically make up a fraction of the complete oscil-
lation.

2.2 Non-ISO-related approaches

A number of alternative approaches have been developed
in recent years, particularly with a focus on blade bearings.
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Many of these approaches rely on S–N curves that can be
determined without testing a complete bearing.

Lopez et al. (2019) propose a model for a blade bearing
that uses the movement of the bearing as a basis and com-
putes the multiaxial stress state at the subsurface of the race-
way. Loads are obtained from FE simulations using blade
root loads from multibody simulations. They apply various
multiaxial fatigue criteria and compare the results. They find
that IPC (individual pitch control) control strategies signifi-
cantly increase the damage inflicted on a bearing compared
to CPC (collective pitch control) due to the increased move-
ment. The lives calculated with the different fatigue criteria
are also sometimes very different from each other.

Leupold et al. (2021) segment a bearing and use a reduced
finite element model in a multibody simulation to determine
the stress on each segment. Using bearing movement from
time series they obtain the number and magnitude of stress
cycles for each segment. Individual loads are combined using
the Palmgren–Miner hypothesis. Unlike almost all literature
on rolling contact fatigue, their model is based on Hertzian
normal contact pressure rather than subsurface shear stress.
However, they note that “fatigue criteria such as Fatemi–
Socie (Fatemi and Socie, 1989) or Dang Van (Dang Van
et al., 1989) could also be applied” in subsequent work. They
obtain empirical values of the cycles to failure used for the
Palmgren–Miner hypothesis from a test of a full-sized blade
bearing38 and an assumed slope of the S–N curve from the
literature. Further, they note that “a large number of tests are
necessary for reliable results” but that “currently, not enough
tests have been carried out to determine a reliable service
life” with their model.

Hwang and Poll (2022) propose an approach that is then
further detailed in Hwang (2023). The approach is based on
one circumferential position of the inner bearing ring referred
to as “small stressed volume” (SSV). The stress cycle history
of different layers below the race at the SSV is analyzed in
detail based on the behavior of the inner ring and the load
distribution of the bearing. Residual stresses are optionally
included in the calculation. For all load cycles that occur, the
Palmgren–Miner hypothesis is applied to layers at the SSV.
The layer with the lowest survival probability is used to cal-
culate the life of the bearing. To consider the effect of loaded
volume, Hwang proposes a simplified method to estimate the
loaded volume in the specimens on which their S–N curves
are based and the loaded volume in the bearing, as well as to
correct the bearing life based on this estimation. The model
is applied to rotating and oscillating bearings under constant
operating conditions. Hwang (2023) further outlines a pro-
posed application of their model to rotor blade bearings that
is not carried out in detail.

Escalero et al. (2023) propose a method for the proba-
bilistic prediction of rolling contact fatigue in multiple-row

38Presumably a bearing of the same type as used for the calcula-
tion, though this is not specified in the reference.

ball bearings subject to arbitrary load and movement histo-
ries. They use a three-dimensionally discretized model of the
raceway in which each finite element’s individual stress cy-
cle history over time is analyzed using a rainflow count. They
use orthogonal shear stress as the governing parameter but
note other criteria may be included in the future. The failure
probability of the individual elements is determined based on
S–N curves obtained from rotating bending specimens and
by applying scale factors because of size differences between
the specimen and the elements, as well as because of the con-
version from normal to shear stress. All individual element
failure probabilities are combined using the Weibull weakest
link principle (Weibull, 1939). The authors demonstrate their
method for a reference case in which a blade bearing was
tested (see Sect. 3).

3 Experimental validation

Despite the large number of theoretical models discussed
above, there are only a few published experimental results
of fatigue tests on oscillating bearings.

Tawresey and Shugarts (1964) tested approximately 750
oil-lubricated bearings under oscillating conditions closely
duplicating those encountered in helicopter rotor blade
hinges but failed to produce a logical explanation of their
results (Rumbarger and Jones, 1968). Rumbarger and Jones
(1968) therefore reanalyzed 388 of these bearings compris-
ing 13 test series of identically sized, caged needle-roller
bearings and derived a life calculation approach based on the
Lundberg–Palmgren theory; see Sect. 2.1.2. They conclude
that “the theory of Lundberg and Palmgren is [. . . ] favorably
compared with the life tests” and derive an experimental load
rating C that is shown to be within the bounds defined by the
relevant standards at the time (then ASA and AFBMA, to-
day ANSI and ABMA) when adjusted for oscillating motion
according to Sect. 2.1.2. Further, they specifically conclude
that “the life varied inversely to the fourth power of the radial
load”, thus giving p = 4, which is identical to the load-life
exponent of Lundberg and Palmgren (1952) for the case of
pure line contact; see also Table A1. For the 13 test series,
they derive Weibull slopes ranging from e = 1.13 to 3.55,
with a mean value of e = 2.04. This is higher than the value
of Lundberg and Palmgren (1952) and ISO 281 (ISO, 2007),
see Table A1, but they also note that “the wide variation
in the values of the Weibull slope are well known”, since
different bearing tests routinely produce different Weibull
slopes, including even the test data of Lundberg and Palm-
gren (1952) on which the values of ISO are based; and they
note that the higher Weibull slope may be a product of using
more modern steels than those used by Lundberg and Palm-
gren (1952). Despite the tests going as low as an amplitude
of θ = 1° (ϕ = 2°), none of the bearings show evidence of
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wear39, but the failed bearings presented “varying degrees of
flaking breakout or spalling which is characteristic of failure
in rolling contact bearings subjected to rotation”.

FVA (2021) use oil-lubricated cylindrical roller bearings
for fatigue tests. They obtain rolling contact fatigue for os-
cillation amplitudes40 as low as θ = 1° (ϕ = 2°). The final
number of fatigue results is too low to compare them against
theoretical calculations, but they conclude that “at least for
selected amplitudes, the existing calculation approaches [re-
ferring to ISO-based approaches] deliver conservative results
compared to the experimentally determined lives”.

Münzing (2017) tests seven ball screws with θ = θcrit. The
lubricant is an aviation grease type Aeroshell 33 MS. The test
duration is equivalent to the L10 of the ball screws, which
Münzing determines based on the simplified version of the
Rumbarger factor found in NREL DG03 (Harris et al., 2009),
see Sect. 2.1.2, which they modify41 to be equal to 1 for
θ ≥ 90° (ϕ ≥ 180°). Five out of seven show initial damage
on the raceways. As the standard DIN 631 for ball screws
defines a minimum size for surface damage to be considered
as fatigue damage and this size is not reached, they are as-
sessed as having passed according to the standard.

Escalero et al. (2023) propose an approach discussed in
Sect. 2.2. They compare their results to the test of a single
blade bearing under axial load but obtain no correlation. The
failure onset in the bearing could not be established exactly
as failure already had progressed significantly once it was
opened.

Hwang (2023) applies their model to rotating cylindri-
cal roller bearings and angular contact ball bearings as well
as four-point bearings. They compare their results to tests
of 200 radial cylindrical roller bearings (NU 1006, 55 mm
outer diameter) and several double-row four-point bearings
of 2.4 m diameter. The model deviates from their experimen-

39A common value to compare wear tests on different bearings is
the x/(2b) ratio (Schwack, 2020). Low values of x/(2b) are often
used to indicate wear potential (de La Presilla et al., 2023). Using
the data given in the reference, the authors determined this test to
correspond to x/(2b)≈ 5.

40The given amplitude equals x/(2b)= 1.
41The application of the Rumbarger factor in the reference takes

place by changing the equivalent load P as done in other references
(see Sect. 2.1.2), but their application, including their changes, is
equivalent to that described here. The modification to aRumbarger =
1 for large amplitudes is presumably the result of a misunderstand-
ing: Münzing claims the NREL DG03 to state that for oscillation
amplitudes of θ > 90° (ϕ > 180°), the influence of the oscillatory
movement can be neglected and the life of a continually rotating
bearing can be used for an oscillating one. This is not stated in
NREL DG03 though; rather, it implies that the life of a rotating
bearing and that of an oscillating one are identical in the case of
θ = 90° (ϕ = 180°) only but not for amplitudes exceeding this value
(see Harris et al., 2009: “The total stressed volume and number of
stress repetitions per cycle are identical to a bearing in continuous
rotation when [ϕ] = 180°”).

tal results by a factor of about 2 to 10, giving a lower estimate
than observed in the tests.

4 Use of the approaches

This section contains recommendations for selection of a
rolling contact fatigue life calculation approach. Section 4.1
contains a number of general recommendations, Sect. 4.2
and 4.3 discuss some simple illustrative examples, and
Sect. 4.4 and 4.5 detail possible uses for a pitch and yaw
bearing in a wind turbine.

4.1 Recommendations for use

A flowchart of when to use which rolling contact fatigue life
calculation approach, based on the underlying modeled phys-
ical principles, is given in Fig. 7. Theoretically, the condi-
tions in the flowchart must hold all the time. Practically, it
will be sufficient if they hold most of the time. Dashed ar-
rows represent mathematical approximations, which are con-
sidered less accurate than exact calculations. For the ISO-
related approaches, recommendations are given according to
the underlying physical phenomena considered in the deriva-
tions as described in this paper. The recommendations herein
may therefore deviate from those given by the respective au-
thors. For the non-ISO-related approaches, recommendations
generally follow the respective authors since they rely on less
widely acknowledged approaches and may therefore be sub-
ject to the more individual interpretation of the respective au-
thors. Further comparisons between the approaches are given
in Table 1.

Generally, the start of the flowchart is given by the “Start”
box. If bins are used (see Sect. 2.1.6), the “Start bins” box
can be used for an approximation. In this case, the condition
θ ≥ θcrit applies if all circumferential positions of the ring
experience some stress cycles over all bins42.

For general users seeking to apply a life calculation, ISO-
related approaches are preferred to non-ISO-related ones due
to their simplicity and the fact that there is much more em-
pirical basis underlying them. In the event of an invariant
load direction and oscillation amplitude θ , various methods
are shown in the figure. Among the ISO-related ones, that by
Menck can be considered to be most accurate; however, it is
also complicated to apply. A less accurate (i.e., an approxi-
mated) but simpler method will be most useful for most read-
ers. Among the approximated ISO-related methods for an in-

42Since the use of bins represents an approximation, there is no
more precise wording than “some stress cycles” for this issue. See,
e.g., Fig. 2, blue, for an example for which θ ≥ θcrit even though
individual oscillation amplitudes may be below θcrit. Note that the
position of the rolling elements with respect to the rings is required
for this assessment, not the position of the inner ring, θi. The posi-
tion of the rolling elements with respect to a stationary outer ring is
given by θc = 0.5 · θi · (1− γ ); the position of the rolling elements
with respect to a moving inner ring is then given by θi− θc.
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Figure 7. Flowchart to find the simplest applicable life calculation approach for a given oscillating bearing.

Table 1. Comparison of different life calculation approaches.

Approach Based on bearing Considers Considers Considers Stress criterion Experimental
tests or small partial load volume whole race validation
specimen S–N cycles effect volume
curves (see Fig. 6)

ISO-based bearing no yes yes τ0 ok but incomplete
Leupold et al. (2021) bearing yes unclear yes normal stress P , pot. more not available
Lopez et al. (2019) S–N yes unclear yes various not available
iKonPro S–N yes yes yes τ0, pot. more limited data
Hwang S–N no partially no (only SSV) various some deviations

variant load direction and θ , “Bins with Palmgren–Miner” is
the recommended approach due to its wide use in many ar-
eas. Among the non-ISO-related methods, Table 1 gives an
overview of advantages and disadvantages of each method.
Since only users with very specific aims will refer to these
methods, it is up to readers to make their own decision as to
which of these methods, if any, to use.

None of the ISO-related approaches predicts huge devi-
ations from aHarris for regular operating conditions. For a
rough estimate, if the desired life is well below that calcu-
lated with the Harris approach, it is very likely to pass with
the other ISO-related approaches, too. For a more precise cal-
culation, narrow load zones or small oscillation angles be-
low θcrit will produce the largest deviations from the Harris
factor.

For the Rumbarger effect, based on Sect. 2.1.2 and Ap-
pendix A, the flowchart recommends combining this effect
with the Houpert effect for non purely-axial loads (i.e., ra-
dial and moment loads). This deviates from Rumbarger and

Jones (1968), where the Rumbarger effect is used without
consideration of the Houpert effect for radial bearings, and
Harris et al. (2009), where the Rumbarger effect is used with-
out consideration of the Houpert effect for moment loads, but
this recommendation is based on the fact that particularly for
these cases which represent relatively small load zones ε, the
Houpert effect is to be taken into account43.

The flowchart considers the numerical approach of Wöll
et al. (2018) and Hai et al. (2012) to be approximations. Al-
though Wöll et al. (2018) use the approach for a series of
stochastic movements and load directions, they also note “the

43This may seemingly contradict the conclusions in Sect. 3,
which state that Rumbarger and Jones (1968) already find their
results to be consistent with standards despite not considering the
Houpert effect. For a radial load giving ε = 0.5 and small oscilla-
tion amplitudes, Houpert and Menck (2021) predict a life reduction
of about 10 %, which would still put Rumbarger and Jones’ results
within the range of the standards at the time. This statement there-
fore does not contradict Rumbarger and Jones’ conclusions.
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numerical approach lacks the capability of taking sophisti-
cated distinctions into account, as [Rumbarger]44 does with
the critical angle distinction and Houpert does with compar-
ing the oscillation amplitude to the load zone size”. The rea-
son their method cannot consider these local effects is due
to the global application of the Palmgren–Miner hypothesis;
see Menck et al. (2022), Sect. 2.2. Menck’s Finite Segment
Method can be seen as a more accurate (but more difficult to
implement) version of Wöll’s numerical approach that con-
siders local effects also seen with Houpert and Rumbarger.
Wöll’s numerical approach is also effectively identical to a
bin count, listed below it in the flowchart. Hai et al. (2012)
is listed as an approximation due to the reasons set out in
Sect. 2.1.

As noted in Appendix C, the Rumbarger effect actually
applies even for oscillation amplitudes θ > θcrit, but since its
effect is so small at these amplitudes the effect at larger am-
plitudes is not considered in Fig. 7.

Some approaches are derived in different sources. The
authors recommend using the following sources: the Har-
ris factor is given in Sect. 2.1.1. The Houpert factor is best
considered according to the model of Breslau and Schlecht
(2020) or Houpert and Menck (2021). The latter reference
includes curve fits for ease of use. Older references may be
erroneous. The Rumbarger effect is best calculated accord-
ing to Eq. (5) or Breslau and Schlecht (2020) or Houpert and
Menck (2021); see also Sect. 2.1.2. Older references may be
oversimplified. A combination of the Houpert factor and the
Rumbarger factor is best performed according to Breslau and
Schlecht (2020) and Houpert and Menck (2021). All other
approaches in the flowchart are best performed according to
the publications of their respective authors.

4.2 Application to a Cardan joint bearing

An exemplary Cardan joint connects two shafts whose axes
are inclined to each other. The shafts rotate, causing the
Cardan joint bearing to oscillate with a constant oscilla-
tion amplitude of θ = 5°. The exemplary bearing is a radial
bearing with contact angle α = 0°. It contains Z = 15 balls
with a diameter of D = 10 mm and has a pitch diameter of
dm = 60 mm. The critical amplitude according to Eq. (4) is
then θcrit,o = 28.8° and θcrit,i = 20.6° for the outer and inner
raceways, respectively. The load zone is made up of a purely
radial load that is constant with respect to the outer ring. Half
the circumference is loaded, giving ε = 0.5, and inner and
outer ring osculation are identical.

In the context of Fig. 7, both the load direction and θ are
thus time invariant. There is no purely axial load, and θ ≥
θcrit does not apply. A combination of the Houpert and Rum-
barger factors can thus be used by multiplying them as shown
in Houpert and Menck (2021), using the Rumbarger factor
for the outer race to be conservative. Alternatively, the ap-

44The approach is called Harris 2 in the reference.

proach given by Breslau and Schlecht (2020), who discussed
Cardan joint bearings in their paper in more detail, may be
used. Furthermore, the other approaches in the top right of
Fig. 7 may also be used since they apply to general time-
series-based data and thus also apply to simpler data.

The Harris factor for this bearing is aHarris = 18 accord-
ing to Eq. (3). The Rumbarger factor according to Eq. (5) is
aRumbarger = 15.1 if the outer ring is assumed to be conser-
vative; it would be 15.6 for the inner ring. A combination of
the Rumbarger and Houpert effect is calculated according to
Houpert and Menck (2021) as45 aosc = 14.2. This final value
is recommended here because it accounts for both relevant
effects that occur in the bearing described above. It is smaller
than the Harris factor alone and also smaller than the Rum-
barger factor alone, since the effects of both Rumbarger and
Harris decrease life.

4.3 Application to a crane slewing bearing

An exemplary crane slewing bearing is located at the bot-
tom of a crane which is exclusively used to perform oscil-
lation amplitudes of θ = 90° to unload a ship. It is an ax-
ial bearing with α = 90°. The critical amplitude according
to Eq. (4) is θcrit = 8° for both inner and outer rings. The
load is mostly an axial load with only a slight tilting mo-
ment component. According to Fig. 7, the load direction is
then invariant, and so is the oscillation amplitude θ . The load
is (approximately) purely axial, and θ > θcrit. Therefore, the
Harris factor applies for this bearing. For the amplitude of
θ = 90°, aHarris = 1.

The Rumbarger factor according to Eq. (5) would be equal
to aHarris due to θ > θcrit. The Houpert factor according to
Eq. (6) is approximately aHoupert ≈ aHarris due to the mostly
axial load giving a large ε� 1. This is why it is valid to
simply use aHarris for the given case.

If θ were time invariant, it would also be possible to use
the Harris factor and combine different bins using the gener-
alized mean in Eq. (7). Again, more complicated approaches
in the top right of the flowchart would also apply.

4.4 Application to rotor blade bearings

A number of publications include rolling contact fatigue cal-
culations for rotor blade bearings, some ISO-related46 (see
Harris et al., 2009; Schwack et al., 2016; Menck et al., 2020;

45The Houpert factor was calculated using Eqs. (45), (46), (48),
and (49) of Houpert and Menck (2021) using the bearing data stated
in the above text. Variables fθ_crit_i and fθ_crit_o in the aforemen-
tioned equations account for the Rumbarger effect.

46Among the ISO-related publications it is worth noting that
NREL DG03 (Harris et al., 2009) is the most common guideline for
blade bearing life calculation, and Schwack et al. (2016), Menck
et al. (2020), Keller and Guo (2022), and Rezaei et al. (2023) are
all, at least in part, based on it; only Menck (2023) is not. The pub-
lications have not been included in Sect. 2.1 if they merely apply
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Figure 8. Comparison of the different approaches in Table 2 with
the Harris factor and additional effects for oscillation considered.

Keller and Guo, 2022; Menck, 2023; and Rezaei et al., 2023)
and some not (see Lopez et al., 2019; Leupold et al., 2021;
Escalero et al., 2023; and Hwang, 2023). The non-ISO-based
methods are, as stated in Sect. 4, best applied according to the
respective publications given above, though many of these
publications are relatively short and likely not sufficient for
an end user to actually copy their technique and apply to an
actual bearing. Moreover, according to Sect. 3, the experi-
mental validation for these models is still lacking. Therefore,
this section will focus on ISO-based approaches, which re-
main the most common life calculation methods for rolling
contact fatigue.

Rotor blade bearings typically experience pitch amplitudes
as in the stochastic case depicted in Fig. 2: their oscilla-
tion amplitude is irregular, as are the loads acting on the
blade in five degrees of freedom. Moreover, the load direc-
tion changes due to the blade weight bending moment as the
blade rotates and the blade aerodynamic bending moment
that varies with the turbine operating conditions (Menck
et al., 2020). Therefore, according to Fig. 7, the Finite Seg-
ment Method (Menck, 2023) would be the most appropriate
ISO-based method for an engineer to use. However, some
simplified approaches exist, too. These include the methods
by Wöll et al. (2018) and Hai et al. (2012), as well as the
approach most often chosen by users, a bin count. Using a
bin count is likely the most user-friendly and well known of
the approaches. Section 2.1.6 details how to do a bin count
and therefore represents the first step required for calculating
the life of a pitch bearing, and this step is described in detail
below.

At this point we assume bins to be present where ideally no
binning is performed but each time step of the simulation is
used as an individual bin (see Sect. 2.1.6). Prior to the appli-
cation of Eq. (8), the lives Lb of each bin must be calculated

the DG03 but present no new methods or findings relevant to this
review.

using an approach which takes the oscillation into consider-
ation. To this end it is useful to refer to Fig. 7. Although both
the load direction and pitch angle θ are time invariant, they
have to be considered to be approximately constant in order
to use oscillation factors, hence the start at “Start bins”. The
loads are not purely axial, but the oscillation of the bearing –
over the entire operating time of the turbine – is large enough
to have rolling elements cover the entirety of the raceway at
one point or another47, 48. That is to say there is no area that
is never stressed, giving θ > θcrit. The Houpert factor is there-
fore a useful factor to employ, whereas the Rumbarger factor
is not, since each segment of the raceway will see rolling el-
ements pass by fairly regularly.49

Using ISO/TS 16281, there are two different equivalent
loads: Qei for the inner ring and Qee for the outer ring.
For each of these rings, users must decide whether the ring
is rotating or stationary relative to the load. Since rotor
blade bearings mostly perform small oscillations below ap-
proximately 20° of amplitude, an alternative to using the
Houpert factor is to use the equivalent load of a stationary
ring for both rings in combination with the Harris factor (see
Sect. 2.1.3). This is equivalent to the worst-case scenario of
the Houpert factor and is almost identical to it at small oscil-
lation amplitudes.

Figure 8 shows different approaches to calculate the life of
a rotor blade bearing using data from aeroelastic simulations.
Table 2 summarizes the approaches. The five approaches are
ordered with increasing accuracy to the right of the figure,
where “increasing accuracy” means that the Palmgren–Miner
hypothesis is applied as accurately as possible. All of them
are closely related to ISO and therefore to Eq. (1). The first
three approaches (name containing “bins”) all pre-process
the time series data into bins based on the bearing move-
ment and load data acting in a given time step. The fourth

47Individual pitch cycles may cover only a small portion of the
raceway, but this only causes deviations as large as those given by
the Rumbarger factor if this behavior continues for the bulk duration
of operation along the same mean position with the same amplitude,
which is not the case in a typical pitch bearing.

48The entirety of the raceway is covered by rolling elements if
for the largest amplitude θmax done by the bearing, θmax ≥ θcrit
is true. Since all pitch bearings perform 90° movements (Burton
et al., 2011) (corresponding to θ = 45°), this is achieved in virtu-
ally all pitch bearings: due to the rolling-element diameter being
small compared to the pitch diameter (Wenske, 2022), pitch bear-
ings commonly have close to Z = 100 and more rolling elements
and small values of γ . This means that for a four-point bearing
as used in Menck et al. (2020), θcrit,i = 2.48° and θcrit,o = 2.42°,
values which are easily exceeded by a pitch controller even with-
out taking the 90° movement into account (Bossanyi et al., 2013;
Bartschat et al., 2023).

49Note that this recommendation is in contrast to the current ver-
sion of NREL DG03, which uses the Rumbarger effect only (by
modifying the load rating – equivalent to using a factor as discussed
in Sect. 2.1.2).
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Table 2. Different approaches to calculate the life of a rotor blade bearing.

Denomination Details

Coarse bins 1080 bins with the upper load level per bin used for P
Fine bins 151 200 bins with the upper load level per bin used for P (implementation of Menck et al., 2020)
Fine bins, Pm Identical to “fine bins” but using generalized mean loads Pm of each bin according to Eq. (7)
Stepwise Creates one individual bin per simulation time step
Finite Segment Method Sums damage from individual rollovers on individual locations of the rings (implementation of Menck, 2023)

approach (stepwise) uses each individual time step of the
simulation as a separate bin. The fifth method (Finite Seg-
ment Method) does not use binning but directly calculates
damage based on the number of rollovers occurring in seg-
ments of the ring. This is the most accurate method and can
be used as a reference for the others. Results for the first
four methods have been obtained using ISO/TS 16281 for
the equivalent load. All results are displayed using the Har-
ris factor, if applicable (that is, if bins were used in some
form), assuming one ring to be rotating in ISO/TS 16281 and
using a more accurate method for oscillation, which means
that both rings have been calculated as stationary according
to ISO/TS 16281 in combination with the Harris factor. The
Finite Segment Method automatically includes effects of os-
cillation and cannot be used with the Harris factor.

The first three approaches shown in Fig. 8 involve pre-
processing into bins. It can be seen that some of their results
deviate more and some deviate less from the Finite Segment
Method. These results are heavily dependent on details of
the pre-processing used for the data, and the results shown
here are not representative for other potential types of pre-
processing. The fact that the “coarse bins” simulation using
an oscillation correction is so close to the Finite Segment
Method is thus likely accidental and not because this partic-
ular approach is particularly representative of a more correct
method.

Comparing the life L10,stepwise of the stepwise calcula-
tion where one ring is assumed to be stationary and one
is assumed to be rotating (Harris factor/LRD) to the re-
sults L10,FSM of the more accurate Finite Segment Method,
one can see that

L10,FSM = 0.86 ·L10,stepwise. (10)

This is roughly in line with using the Houpert factor or as-
suming both rings to be stationary, which gives a result which
is only slightly higher (see Fig. 8, stepwise, oscillation cor-
rection). The result of the Finite Segment Method is slightly
lower because it first sums local damage over the entire
span of the simulation before determining the global bearing
life. Therefore, load concentrations on individual segments
and bearing rings are considered more accurately than with
the other methods50. For calculations performed with ISO-

50The result of the Finite Segment Method may thus also by influ-
enced slightly by the Rumbarger effect, i.e., an uneven distribution

related approaches using binning of data in some form, where
one ring is assumed to be stationary and one is assumed to be
rotating51, it is therefore reasonable to expect a life which is
10 % to 15 % longer than that obtained with more advanced
methods. Further deviations that are caused by binning of the
data and other forms of pre-processing are impossible to pre-
dict, and therefore a stepwise calculation is preferable.

4.5 Application to yaw bearings

For yaw bearings, the oscillation behavior is highly site de-
pendent. Any wind direction history can be calculated using
the Finite Segment Method or the other approaches high-
lighted with thick borders in Fig. 7. For the design of a
wind turbine, yawing movements are seldom simulated, apart
from a few design load cases (Wenske, 2022). Rather, con-
stant offsets from an optimal yawing position are simulated
and assumed to be present for a certain amount of operat-
ing time. Yaw movement is then assumed to be distributed
among these simulated cases. Since detailed time series will
typically not be available, binning will often be necessary in
order to calculate the life, though detailed time series would
be preferable, if available.

Though the behavior is highly dependent on both the site
of the turbine as well as the design of the yaw system, some
general statements can be made. Firstly, even at sites with
only one main wind direction, it is likely that this wind di-
rection will vary by a few degrees. Secondly, the yaw mis-
alignment that triggers a yaw movement is dependent on the
yaw system design. Yaw misalignments of 3 to 8° are com-
mon, realistic values (Wenske, 2022). Finally, the design of
large-scale yaw bearings, like that of pitch bearings, usually
includes a large number of rolling elements in excess of 50

of rollovers along the circumference, although the effect is much
less than would be predicted by the Rumbarger factor if applied di-
rectly to the individual pitch cycles. It also captures potential load
concentrations on individual raceways because the life of the race-
ways is determined from their individual segments, therefore in-
cluding a load history for the raceways too, whereas with the other
methods the raceway life is included in a bearing life which is then
used for the Palmgren–Miner hypothesis, leading to a loss of infor-
mation.

51This is the standard assumption in virtually all typical rolling
contact fatigue life calculations including ISO 281 (Lundberg and
Palmgren, 1947; Harris and Kotzalas, 2007; ISO, 2021).
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or even 100 and more per row52, giving small critical an-
gles θcrit. It is thus unlikely that any yaw bearing will be oper-
ated in a manner whereby during the entire operating history
of the bearing the loads are truly concentrated only on parts
of the raceway, since that would require yaw movements to
be consistently smaller than θcrit despite fluctuations in the
wind direction and possible slippage of the rolling-element
set. The Rumbarger effect is thus unlikely to be relevant for
yaw bearings in the field.

Regarding the Houpert effect, the wind direction is im-
portant. Unlike for typical bearings, the rotating (oscillating)
ring is the one that will always be loaded in one primary posi-
tion since it is consistently moved toward the wind. The sta-
tionary ring, on the other hand, can experience very concen-
trated loads in one position (in the case of a site with only one
main wind direction) or it can even experience loads spread
evenly over its circumference (on sites with no clear main
wind direction, where the wind can come from any direc-
tion). In the first case (one main wind direction only), similar
to pitch bearings, both rings experience a high concentration
of loads in one spot. It is thus recommended that the Houpert
effect is considered, ideally by using the equivalent load for
a stationary ring, for the calculation of both Qei and Qee if
ISO/TS 16281 is used. Otherwise, the Houpert effect can be
taken into account by using the publications mentioned in
Sect. 4.1. Assuming one main wind direction is the more con-
servative assumption and should be the approach to choose
in case of doubt. Since yaw bearings, like pitch bearings, are
strongly affected by a tilting moment, each of their raceways
is commonly loaded around half of its circumference (Chen
and Wen, 2012; Schwack et al., 2016; Menck et al., 2020;
Graßmann et al., 2023), corresponding to a load zone pa-
rameter (see Sect. 2.1.3) of ε = 0.4 . . . 0.6. With this value
of ε, a life which is around 10 % shorter than that obtained
with the Harris factor is to be expected for small oscillation
amplitudes (Houpert and Menck, 2021). If the main wind di-
rection is truly evenly spread over all compass directions, it
is permissible to use the equivalent load of a ring that rotates
relative to the load for the outer ring, approximately equiva-
lent to simply using the Harris factor for the entire bearing53.

52See footnote 48.
53In this example, the behavior of a typical bearing is flipped on

its head. Typical bearings in most industrial applications experience
concentrated loading on the stationary ring, since it is stationary
with respect to the load. The rotating ring, on the other hand, sees
loads all over its circumference (see Fig. 5, “rotation”: all elements
on a rotating ring are loaded like the example one, only with a time
shift.). In a yaw bearing in which the wind comes evenly from all
directions eventually during the turbine lifespan (for example, 25 %
of operational time coming from north, 25 % from south, 25 % from
south and 25 % from west), the outer ring is loaded in all positions
at some point and thus experiences similar damage accumulation
over its circumference as a rotating ring in a typical bearing. This
is a very theoretical example to illustrate potential influences of the
Houpert effect; in most cases, it will be easier to simply assume

5 Current challenges and critical future work

While there are a number of different approaches for the cal-
culation of rolling contact fatigue in oscillating bearings, the
validation of these models is lacking to a large extent. Among
the ISO-related approaches, some experimental results sug-
gest that the predictions may be accurate, as discussed in this
paper. One can also argue that the ISO-related approaches,
being based on the widely accepted standard ISO 281, are
partially validated by the rotating bearings which were used
to validate the standard in itself.

For regular operating conditions, the ISO-related ap-
proaches do not differ by a huge margin. Validation of one
approach therefore also increases the likelihood that another
of the ISO-related ones is accurate. Potential attempts to vali-
date these bearings can focus on the different phenomena that
are covered by the Houpert and the Rumbarger effect to vali-
date them independently of each other, but as they are based
on the same foundation, these validations (if successful) will
have a positive effect on each other, too.

A number of publications have shown deviations of rotat-
ing bearing lives from the ISO standard (Harris and Kotzalas,
2007; Londhe et al., 2015). A validation of the ISO-related
models in this paper should therefore take into account that
they are relative values. Any bearings used for oscillating
tests should ideally also be used for rotating tests in other-
wise identical or similar conditions, to ensure that potential
deviations from the results shown in this review are not sim-
ply due to the bearings themselves lasting longer than sug-
gested by the standard but actually due to the relative factors
given here being inaccurate.

All of the models – ISO-related and non-ISO-related alike
– completely neglect the influence of lubrication. This is
probably the grossest simplification and the biggest uncer-
tainty underlying all models discussed in this review. Lubri-
cation is a complicated topic that is often simplified. Even for
regular bearings, over 90 % of bearings are grease-lubricated
(Lugt, 2009), but for the life calculation the grease behavior
is mostly approximated using base oil properties even though
grease is well known to behave differently (Lugt, 2012). For
oscillating applications, due to the movement-dependent lu-
brication film (Venner and Hagmeijer, 2008), this issue be-
comes much more complex than for rotating bearings, hence
why all models in this review simply neglect the topic com-
pletely.

While this review and many publications before it (Har-
ris et al., 2009; Schwack et al., 2016; Menck, 2023) applied
ISO-related methods to large slewing bearings, there have
been publications suggesting (without evidence) that the ISO
standard does not apply for pitch and yaw bearings (Potočnik
et al., 2010; Lopez et al., 2019). Whether or not this is the
case is another topic worth researching. The non-ISO-related

concentrated loading as discussed above, which is the more conser-
vative case.

https://doi.org/10.5194/wes-9-777-2024 Wind Energ. Sci., 9, 777–798, 2024



794 O. Menck and M. Stammler: Review of rolling contact fatigue life calculation for oscillating bearings

methods in this review present an alternative approach to life
calculation for people who distrust the ISO standard, but the
evidence proving their aptitude is, to date, lacking to a much
greater extent that of the ISO-related models. While it is pos-
sible that large oscillating slewing bearings behave differ-
ently than suggested in this review, it is also an option to
introduce corrective factors or change load rating and equiv-
alent load in order to perform a standard calculation for large
oscillating slewing bearings nonetheless.

6 Conclusions

This work has given an overview of the literature on rolling
contact fatigue calculation for oscillating bearings. Many ap-
proaches are based on ISO, tend to be user friendly, and are
often applied in the literature. Most of these approaches have
been proposed and used in the literature without an expla-
nation as to when they apply. The aim of this paper was to
explain when which approach can be applied. It is worth not-
ing that many older publications, particularly for the Rum-
barger effect and the Houpert effect, include errors or sim-
plifications, and hence more recent publications, including
this one, are to be preferred as a source. When applied cor-
rectly according to more recent literature and for standard
operating cases, the deviations between Harris, Rumbarger,
and Houpert as well as other ISO-based approaches are typ-
ically not huge. This also applies to the operating conditions
of pitch and yaw bearings. The large deviations obtained with
alternative approaches to the Harris factor that are seen in
some publications are often due to errors or simplifications.
All ISO-based approaches shorten the calculated life com-
pared to the Harris factor (or are identical to it) if applied
correctly. This is because all ISO-based approaches that de-
viate from Harris do so because they either incorporate the
Houpert or Rumbarger effect, or both, and both of these ef-
fects cause either the same life or a reduction in life com-
pared to the Harris factor if applied correctly. Currently pub-
lished ISO-based calculation approaches that increase life
compared to the Harris factor are erroneous, potentially due
to being overly simplified. Some phenomena described in
this paper that have not yet been analyzed in the literature
could slightly increase lives even for ISO-based methods.

Aside from these commonly used factors, a number of
alternative approaches have been discussed. These include
some ISO-related ones and some approaches that deviate sig-
nificantly from ISO. Many of these alternative approaches,
including ISO-related and non-ISO-related ones, have been
designed particularly for rotor blade bearings.

The experimental validation of all models in the literature
is relatively poor. Some experimental results from the ISO-
based approaches compared well with the calculated life,
suggesting that the predictions of ISO-based methods may
be relatively close to the actual life, while validations of the
alternative approaches are mostly lacking.

This work may help engineers identify which approach to
use for the rolling contact fatigue life calculation for a given
oscillating bearing. It has been written with a particular focus
on wind turbine slewing bearings but may also be used as a
reference for any other oscillating bearings in other industrial
sectors.

Appendix A: Derivation of the Rumbarger factor

Lundberg and Palmgren (1947) state, using Eq. (1) and
knowing that N = uL,

ln
1
S
∝
τ c

0 (uL)e

zh0
V, (A1)

where τ0 is the maximum shear stress and z0 its depth under
the raceway, V is the loaded volume, and u gives the stress
cycles per million oscillations or revolutions L. For a con-
stant survival probability S, it follows that

L∝

(
zh0
τ c

0V

)1/e

u−1. (A2)

Comparing two identical bearings under identical τ0 and
z0, one oscillating and one rotating, for θ < θcrit, where
Vosc/Vrot = θ/θcrit we obtain

aprt =
Losc

Lrot
=
urot

uosc

(
θ

θcrit

)−1/e

. (A3)

This is equivalent to Eq. (18) given by Breslau and Schlecht
(2020). In their Eq. (19), using θcrit from Eq. (4), they then
go on to derive54

aprt i,o =
Z(1± γ )

4

[
θZ(1± γ )

360°

]−1/e

, (A4)

with the minus (−) sign referring to the outer and the plus (+)
sign to the inner raceway. Using aHarris from Eq. (3), this can
be rewritten as done by Houpert and Menck (2021):

aprt i,o =

(
θ

θcrit i,o

)1−1/e

aHarris. (A5)

Both Rumbarger and the NREL DG03 (co-authored by Rum-
barger) use a different amplitude definition than in this paper,
defined by ϕ = 2θ . Equation (A4) then becomes

aprt i,o =
Z(1± γ )

4

[
ϕZ(1± γ )

720°

]−1/e

= (1± γ )1−1/e4−1+1/e︸ ︷︷ ︸
fRum

Z1−1/e
[ ϕ

180°

]−1/e
. (A6)

54Equations here are adjusted to use degrees rather than radians
as done in the reference.
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Table A1. Exponents c, e, h, and p according to ISO.

c e h p

Point contact 31/3 10/9 7/3 3
(ball bearings)

Line contact 31/3 9/8 7/3 4 or 10/3∗

(roller bearings)

∗ Exponent p = 4 follows from the given c, e, and h and is consequently
used by Rumbarger (2003) and Breslau and Schlecht (2020) in their
derivations. Nonetheless, ISO 281 uses p = 10/3 in calculating

L=
(
C
P

)p
. This is explained in Lundberg and Palmgren (1952) and ISO

(2021), which argue for the choice of p = 10/3 because in some load
cases line contact within roller bearings may turn into point contact.
Thus, p = 4 for detailed calculations of rolling contact fatigue where line
contact is sure to take place, and p = 10/3 for calculations by general
users applying (C/P )p .

The factor fRum is introduced here to include the terms
(1± γ ) and 4−1+1/e, both of which Rumbarger assumes to
be approximately 1. Thus, Rumbarger obtains fRum ≈ 1. In
order to keep track of the error introduced by this assump-
tion, fRum will be retained in the following equations.

Rumbarger does not adjust life by using a factor but by
changing the load rating. A factor can be converted to an
equivalent load rating using

L10,prt = aprt

(
C

P

)p
=

(
a

1/p
prt C

P

)p
=

(
CRum

P

)p
, (A7)

with Eq. (A6) used for the adjusted Rumbarger load rating,

CRum = a
1/p
prt C =

(
fRumZ

1−1/e
[ ϕ

180°

]−1/e
)1/p

C. (A8)

Equation (A8) is identical to the load ratings given in
Rumbarger (2003) and Harris et al. (2009) when assuming
fRum = 1 and using the parameters given in Table A1.

The error can simply be corrected by using either Eq. (A8)
or Eq. (A6) separately for each raceway (see Breslau and
Schlecht, 2020) and without assuming fRum = 1.

Appendix B: Error of the Rumbarger factor for
θ < θcrit

By assuming (1±γ )≈ 1, Rumbarger effectively neglects the
difference between inner and outer races and obtains an equa-
tion which can be used for the entire bearing. The assumption
4−1+1/e

≈ 1, on the other hand, is an unnecessary simplifica-
tion that leads to errors, as will be seen in the following.

B1 Error on one raceway

The error of Rumbarger’s assumptions for one single race-
way can be easily calculated by comparing the life L10,prt
from Eq. (A7) that, correctly, assumes fRum 6= 1 to that
which approximates fRum = 1 as done by Rumbarger.

Figure B1.
L10,prt(fRum=1)
L10,prt(fRum 6=1) for the inner and outer ring with point

and line contact.

L10,prt (fRum = 1)
L10,prt (fRum 6= 1)

=
1

fRum
(B1)

Values of 1/fRum for point and line contact as well as differ-
ent values of γ are depicted in Fig. B1. One can see thatCRum
consistently overestimates the actual life, up to 23 % for
γ = 0.35 on a roller bearing’s outer ring. The error is dom-
inated by Rumbarger’s neglect of the factor 4−1+1/e, which
is 0.87 for point contact and 0.86 for line contact. Simply as-
suming γ = 0 thus causes an error of roughly 15 % to 17 %.
Further differences are caused by neglecting (1± γ )1−1/e,
which appears reasonable for very large bearings (γ → 0)
but less so for smaller ones (γ � 0).

B2 Error for the entire bearing

For the entire bearing, the matter is more complex. Adjusted
lives Lprt i = aprt iLi of the inner ring and Lprt o = aprt oLo
of the outer one can be combined via

Lprt =
(
L−eprt i+L

−e
prt o

)−1/e
. (B2)

For an axial bearing with γ = 0 giving aprt i = aprt o and
Li = Lo this can be simplified into

Lprt = 2−1/eaprt iLi. (B3)

The relative difference between assuming fRum = 1
and fRum 6= 1 is then again given by Lprt(fRum =

1)/Lprt(fRum 6= 1)= 1/fRum, thus giving the same de-
viations as Fig. B1 for γ = 0. If γ 6= 0, the errors will
deviate depending on the specific bearing design.

Appendix C: Extension of the Rumbarger effect for
unevenly loaded volume with θ > θcrit

For the operational scenario shown in Fig. 4 on the right-
hand side, the volume may be separated into volumes ψ1
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and ψ2, each experiencing one or two stress cycles per half
oscillation, with ψ1+ψ2 = 360°/Z. The corresponding os-
cillation amplitudes are given by θψ1 + θψ2 = θcrit, where
θψ2 = θ − θcrit. Equation (A4) may then be used separately
for each of the individual volumes to obtain Lψ1 = aprt,ψ1L

and the overlapping volume ψ2 experiencing twice as many
cycles, giving Lψ2 =

1
2aprt,ψ2L. These can be combined via

Lψ1+ψ2 =

(
L−eψ1
+L−eψ2

)−1/e

=

(
a−eprt,ψ1

+

(
1
2
aprt,ψ2

)−e)−1/e

︸ ︷︷ ︸
aprt,ψ1+ψ2

L. (C1)

This allows for the analysis of the Rumbarger effect for oscil-
lations θ > θcrit with overlapping volumes. Figure C1 shows
an exemplary calculation of aprt,ψ1+ψ2 for a 7220 type bear-
ing normalized to the Harris factor. The result of aprt,ψ1+ψ2

can be seen to be almost identical to aHarris.

Figure C1. aprt,α+β/aHarris for the inner ring of a 7220 type bear-
ing for θ > θcrit.
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