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Abstract. Wind direction variability significantly affects the performance and lifetime of wind turbines and
wind farms. Accurately modelling wind direction variability and understanding the effects of yaw misalignment
are critical towards designing better wind turbine yaw and wind farm flow controllers. This review focuses on
control-oriented modelling of wind direction variability, which is an approach that aims to capture the dynamics
of wind direction variability for improving controller performance over a complete set of farm flow scenar-
ios, performing iterative controller development and/or achieving real-time closed-loop model-based feedback
control. The review covers various modelling techniques, including large eddy simulations (LESs), data-driven
empirical models, and machine learning models, as well as different approaches to data collection and pre-
processing. The review also discusses the different challenges in modelling wind direction variability, such as
data quality and availability, model uncertainty, and the trade-off between accuracy and computational cost. The
review concludes with a discussion of the critical challenges which need to be overcome in control-oriented
modelling of wind direction variability, including the use of both high- and low-fidelity models.

1 Introduction

Present-day large-scale wind farms contain arrays of ever-
increasing numbers of multi-megawatt turbines, with total
capacities on the order of gigawatts. The largest wind farm
project in the world, under construction in Gansu Province,
China, will contain around 7000 turbines and is planned
to have a capacity of 20 GW over an approximate area of
500 km2. The continued increase in the size of wind farms as
well as in the size of wind turbines themselves has resulted
in greater interactions between turbines and their surround-
ing flow fields. These interactions are driven by both large-
scale atmospheric effects, such as topographically generated
weather systems, and more local effects, such as those due to
terrain and the wakes of other turbines (Meyers et al., 2022).
These complex interactions within the wind farm result in
high levels of wind farm performance uncertainty that can

lead to under-performance, threatening the viability of wind
power to meet the expectations of future renewable energy
targets (Haupt et al., 2017).

Active yaw control (yawing the turbine rotor to face
against the incoming wind) and wind farm flow control (us-
ing control systems to reduce wake effects on downstream
turbines) has motivated research into wind direction variabil-
ity by the wind energy community. General wind field vari-
ability is present in Gaussian wind fields simulated via the
turbulence models recommended by IEC 61400-1, the Mann
and Kaimal models (Yassin et al., 2023). Direction variation
in these models is seen through the argument of the resul-
tant velocity vector of the lateral and longitudinal compo-
nents. Although useful for fatigue load calculations, research
has tended to focus solely on the high-frequency wind field
content approximated by these models at turbine locations
(Dong et al., 2021). Therefore, there is limited understand-
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ing of the physical and statistical nature of wind direction
variation on length scales and timescales important for yaw
and wind farm flow control (on the order of metres to kilome-
tres and seconds to minutes). Furthermore, the behaviour of
wind turbines and wind farms under realistic wind direction
variation remains understudied (Shapiro et al., 2022).

This review presents the current understanding of wind
direction variability in the context of control-oriented mod-
elling of wind turbines and wind farms in a manner suitable
to a wide audience. In doing so, essential gaps in the litera-
ture are highlighted and areas in need of further research are
made clear. The review is motivated partly by the fact that
persistent significant unintentional yaw misalignment (yaw
error) of horizontal axis wind turbines (HAWTs) with re-
spect to the inflow direction, of more than 10°, is common
on many wind farms (Annoni et al., 2019a). The adoption of
wind farm flow control also entails a similar degree of in-
tentional yaw misalignment (Simley et al., 2020b). Whether
intentional or not, this degree of persistent misalignment re-
sults in a conservative decrease in annual energy production
(AEP) of more than ≈ 3% of the individual turbine (Peder-
sen et al., 2008), with a corresponding knock-on effect to the
levelised cost of energy (LCOE) of wind power. AEP aside,
there are also the implications of asymmetric loading through
turbine components, which could cause increased operation
and maintenance costs, further increasing the LCOE (Bartl
et al., 2018). Research is ongoing as to the full extent of yaw
misalignment on turbine performance, and a lack of consen-
sus prevails in the literature. However, there are obvious per-
formance implications.

The review begins in Sect. 2, where the physical drivers of
wind field variability at different length scales and timescales
are presented and discussed. Section 3 then outlines the var-
ious physical and statistical models used to understand wind
direction variability across wind farms over the length scales
and timescales relevant for yaw and wind farm flow control.
Next, Sect. 4 gives an overview of the performance impli-
cations of yaw misalignment, both in terms of power and
loads. The review then moves on to the topic of control, start-
ing with Sect. 5, which details conventional yaw controllers
and their associated errors and uncertainties. This is followed
by Sect. 6, where methods that augment the control system
to improve sensor quality and reliability including methods
which utilise machine learning are described. Section 7 then
explores two wind farm control methods affected by wind di-
rection variability, namely wake steering control and collec-
tive yaw control. Finally, in Sect. 8, the critical challenges of
control-oriented modelling of wind direction variability are
summarised and, in Sect. 9, the conclusions are drawn.

2 Physics of direction variability

Early research towards understanding dynamic wind direc-
tion behaviour began in the field of atmospheric science.

Researchers were focused on understanding and predicting
the dispersion of pollutants in the atmosphere (Davies and
Thomson, 1999). It was found that wind direction variability
came in either the form of gradual meandering of the wind
vector (Kristensen et al., 1981; Hanna, 1983; Etling, 1990)
or frequent sudden changes in direction (Mahrt, 2008). The
behaviour was also found to be very closely related to con-
current meteorological and physical conditions, such as the
ambient wind speed, the atmospheric stability, local topogra-
phy, pressure, and turbulent motion (Kau et al., 1982). In the
wind energy community, wind direction is often treated as a
categorical variable (Simley et al., 2020a) or as a conditional
variable for direction-dependent coefficient estimation (Fei-
jóo and Villanueva, 2017). In reality, wind direction is a con-
tinuous variable with a strong auto-correlation structure (Vin-
cent, 2010), where slight changes can have significant effects
on wind farm performance (Porté-Agel et al., 2013). Under-
standing how wind direction varies over the relevant length
scales and timescales for yaw and wind farm flow control is
therefore essential to quantifying performance and achieving
control objectives.

Firstly, Sect. 2.1 gives an overview of the physical pro-
cesses which cause general inflow variability at wind farms
and provides a brief introduction to important terminology
from atmospheric science. Next, in Sect. 2.2, some of the rel-
evant processes in the study of wind direction variability are
highlighted and the modelling of these processes is further
explored.

2.1 Physical processes

Wind farms experience an array of weather phenomena, re-
sulting in fluctuations in the wind field at different spatial and
temporal scales. A subset of meteorological processes and
where they fall on the length scale and timescale are shown
in Fig. 1.

The largest scale, the synoptic scale, covers atmospheric
changes at horizontal length scales on the order of 1000 km
and above and timescales of approximately 1 month. The
dominant influence on the development of phenomena at the
synoptic scale arises from the Coriolis acceleration affect-
ing the movement of air masses (Coleman and Law, 2015).
Synoptic-scale processes are mostly relevant for long-term
wind energy resource assessment studies (Spera, 1994).

The next largest scale is the mesoscale. Mesoscale meteo-
rology is the study of atmospheric phenomena characterised
by horizontal scales on the order of 1 to 1000 km. Timescales
at this level cover less than a day to several weeks. The
phenomena often of most interest encompass thunderstorms,
fronts, and topography/terrain-driven weather systems such
as mountain waves (Coleman and Law, 2015). Mesoscale
processes influence the location choice and long-term oper-
ation of wind farms and drive smaller-scale processes which
can affect wind farm performance directly (Spera, 1994).
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Figure 1. Scales of atmospheric motion and example phenomena.

Lastly, the microscale encapsulates atmospheric phenom-
ena on the smallest scales. These phenomena generally oc-
cur over timescales of seconds to minutes and length scales
on the order of 1 km or less. This scale focuses on individ-
ual thunderstorms, clouds, and local turbulence arising from
structures like buildings and obstacles such as individual hills
(Coleman and Law, 2015). Microscale processes affect the
everyday operating environment of wind farms. They pro-
duce inflow variability on timescales similar to the controller
response time, which can have a significant impact on per-
formance if not properly accounted for by the yaw or wind
farm flow control system (Haupt et al., 2015).

Many of the microscale processes that occur are so tran-
sient in nature that the deterministic description and forecast-
ing of each individual deviation from the general flow of the
fluid (eddy) is almost impossible. As a result, there are three
primary areas of research regarding the characterisation of
eddies (Stull, 1988):

– Stochastic methods deal with the empirical average sta-
tistical properties of the eddies; these are often studied
through simulations using Reynolds-averaged Navier–
Stokes (RANS) equations (Sect. 3).

– Similarity theory describes the apparent common be-
haviour of many empirically observed phenomena,
when transformed to the relevant scale. Similarity the-
ory has been applied to wind farm flow data to deter-
mine inputs to RANS equations (Breedt et al., 2018).

– Phenomenological classifications inform a partially
deterministic approach towards the larger-sized eddy

structures; these are often studied through large eddy
simulation (LES) (Sect. 3).

2.2 Wind direction variability

The variability of the wind direction depends highly on the
inverse of the wind speed and the stability conditions of the
atmospheric boundary layer (ABL). The ABL is the lowest
part of the Earth’s atmosphere, which directly interacts with
the Earth’s surface. The height of the ABL depends on var-
ious factors such as weather conditions and the time of day.
The behaviour of the ABL is often described through its sta-
bility condition, which is categorised by three main cases:
highly turbulent (unstable), nearly laminar and intermittent
(stable), or a combination of the two (neutral) (Meyers et al.,
2022).

On both the microscale and mesoscale, different sets of
dynamics can dominate depending on the ABL conditions,
which can have significant effects on wind direction variabil-
ity and wind farm performance (Meyers et al., 2022). In an
unstable atmosphere, microscale convective processes are of
most importance in determining the variability of the wind
direction (Vincent et al., 2010). This variability is well un-
derstood through ABL similarity theory of turbulence (Hans
and Jhon, 1984). On the contrary, in a stable atmosphere,
larger mesoscale processes are able to exist, such as iner-
tial oscillations, low-level jets, gravity waves, and Kelvin–
Helmholtz instability, which tend to dominate the variability
(Stull, 1988).

Application of traditional similarity theory under stable
conditions predicts a reduction in direction variations as sta-
bility increases. However, as a consequence of low-frequency

https://doi.org/10.5194/wes-9-841-2024 Wind Energ. Sci., 9, 841–867, 2024



844 S. Dallas et al.: Control-oriented modelling of wind direction variability

meanders (Hanna, 1983), this was shown to fail for averag-
ing times of more than 10 min (Davies and Thomson, 1999).
Low-frequency meandering has been attributed to boundary-
layer motion and larger mesoscale effects (Hanna, 1983).
Low-frequency meanders have been found to exist over all
types of terrain including the open ocean. Various formu-
las for estimating such effects have been proposed (Hanna,
1983, 1990; Joffre and Laurila, 1988).

In addition to slow meandering motion, the wind is known
to abruptly change direction as well. The underlying mechan-
ics of sudden local wind direction changes remain poorly
understood, but potential factors include steepening gravity
waves, density currents, pulses of drainage flow, and nu-
merous other more complex phenomena that are difficult to
model and predict (Mahrt, 2011).

Another crucial aspect is the correlation between wind
direction variability and the inverse of wind speed (Joffre
and Laurila, 1988; Davies and Thomson, 1999). On aver-
age, wind direction variability tends to be higher for unstable
conditions at a given wind speed. However, very low wind
speeds occur more commonly in stable conditions. As a re-
sult, the wind direction variability is generally much larger at
night because of the relatively shallow and stable nocturnal
boundary layer (Mahrt, 2011). During the late night is also
when wind veer (the rotation of wind direction with height)
is especially pronounced as a result of Coriolis forces on the
nocturnal boundary layer (Porté-Agel et al., 2020).

The inverse relationship between wind direction variabil-
ity and wind speed has been successfully modelled and gen-
eralised (Joffre and Laurila, 1988; Hanna, 1990). The models
help account for wind direction variability with increasing
height and between different atmospheric stability classes
(Mahrt, 2011). These generalised models have limited appli-
cation in wind farm flow modelling, since they tend to focus
on regimes with very low wind speeds (and therefore high
wind direction variability) when most turbines would not be
operating.

Finally, terrain effects are also known to impact wind di-
rection variability. In mesoscale simulations, direction vari-
ability was found to be greater in complex terrain compared
to smoother terrain over small averaging times (on the order
of minutes) and showed high sensitivity to the grid points
selected to represent the on-ground conditions (Jiménez and
Dudhia, 2013). Nevertheless, this distinction becomes indis-
cernible for averaging periods of more than 10 min. There-
fore, local complex terrain predominantly induces wind di-
rection variability on the order of minutes or less. Although
not sustained, these variations could still have a significant
effect on turbine performance if their magnitude is large
enough and they last long enough to trigger a control re-
sponse (see Sect. 5 for more details on the yaw control sys-
tem) (Mahrt, 2011).

2.3 Discussion of physics of direction variability

The overall drivers of wind direction variability at wind
farms are a combination of large-scale effects at the synop-
tic or mesoscale and local effects at the microscale (Vincent,
2010). Over longer time periods of several hours (in both
stable and unstable conditions), synoptic and mesoscale ed-
dies are the main contributors to wind direction variability
(Davies and Thomson, 1999). Certain variation occurs reg-
ularly and follows predictable patterns, such as that arising
from diurnal and seasonal cycles. Other variations are more
sporadic, driven by large-scale weather systems that can in-
duce abrupt changes in wind speed and direction (Haupt
et al., 2019). On the other hand, at the microscale, aspects
such as atmospheric stability, terrain effects, and wake ef-
fects are the main drivers of variability.

Each of the drivers of wind direction variability exists
on different length scales and timescales, meaning that the
statistical properties of wind direction measurements con-
stantly change. Even on very long timescales, climate change
ensures that there is no timescale on which the measure-
ments can definitely be considered stationary, meaning that
the associated data have means, variances, and co-variances
that constantly change over time (Vincent, 2010). Non-
stationarity makes it difficult to use physical phenomena as
indicators to inform and adjust the parameters of the control
system. However, atmospheric stability-dependent readjust-
ment time of yaw control parameters has been tested (Cortina
et al., 2017).

Fundamentally, there may not be one single direction as-
sociated with the wind flowing into large wind farms, espe-
cially for those surrounded by complex terrain (Quick et al.,
2020). The challenge therefore is to understand how wind
direction measurements need to be first filtered and condi-
tioned, before optimisation for control objectives can occur
(Hau, 2013). The degree of filtering and conditioning needed
will in general depend on other factors such as the concur-
rent wind speed and atmospheric stability, alongside other
site-specific factors like topography, terrain, and the specifi-
cations of the yaw system itself.

3 Wind farm flow models

Wind farm flow models are mathematical, statistical, and/or
computational models used to simulate and analyse the be-
haviour of wind flow within wind farms. Many different
flow models exist that take into account various different
global and/or local effects; however, they have traditionally
been developed by various research communities in isolation
(Sanz Rodrigo et al., 2017). Recently, attempts have been
made to bridge the gaps, especially between the fields of at-
mospheric physics, statistics, and fluid dynamics, where col-
laboration is motivated by the need for realistic inflow condi-
tions in high-fidelity wind farm flow studies (Chatterjee et al.,
2018).
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One question is whether or not a sufficient picture of the
relevant physics can be captured by wind farm flow mod-
els, such that they can be used for controller testing and
validation in a reliable, accurate, and cost-effective man-
ner. Recent developments in LES models with concurrent
mesoscale precursor simulations would allow for such tests
to be performed, although still at considerable computational
expense. Thus, the amount of computational resource re-
quired to achieve useful results using these LES models is
out of reach to the majority of the researcher community.

Section 3.1 discusses physical models that have incorpo-
rated realistic dynamic wind direction changes as input and
briefly describes how they work. Section 3.2 then follows
with discussion of the statistical tools and models that have
been applied to the study of wind direction variability over
the relevant length scales and timescales.

3.1 Physical models

Physical models used in wind farm flow simulations fall into
one of three broad categories: high-fidelity large eddy simu-
lations (LES), medium-fidelity dynamic models, or reduced-
order (engineering) models.

– High-fidelity LES models are the most accurate but still
computationally feasible microscale farm flow simula-
tion tools available. Instead of prohibitively expensive
direct numerical simulation of the Navier–Stokes equa-
tions of fluid dynamics, LES works by filtering out the
smallest length scales of the Navier–Stokes equations
(the smallest eddies). Generally, LES is used to simulate
statistically stationary behaviour of wind farms. How-
ever, realistic dynamic wind direction variation can be
included by coupling LES with mesoscale forcings that
prescribe the wind farm inflow through precursor simu-
lation methods (Sect. 3.1.2) (Munters et al., 2016).

– Medium-fidelity dynamical models can be employed
to predict the available power and/or flow fields in a
wind farm (Boersma, 2019). These equations often use
models based on the Reynolds-averaged Navier–Stokes
(RANS) equations, which, unlike LES, represent only
the mean fluid flow. RANS models mostly consider
steady-state behaviour, but models can be adapted to
analyse preset changes in wind farm conditions over
space and time, such as continuous sweeps across in-
flow directions (Kheirabadi and Nagamune, 2021).

– Reduced-order or engineering models can provide in-
formation on important wind farm dynamics with lim-
ited computational complexity (Boersma, 2019), which
give typical run times on the order of seconds to min-
utes, useful for iterative controller design. However,
these models are valid for only specific atmospheric
conditions, do not contain any true turbulent eddy struc-
ture, and have limited accuracy (Schreiber et al., 2020).

LES models are the highest-fidelity models available and
have been used successfully for testing new wind farm flow
controllers (Storey et al., 2016; Gebraad et al., 2016). The
quality of these models is constantly being improved by val-
idation against and assimilation of field test data, as well
as recent attempts to couple them with mesoscale precursor
models (Munters et al., 2016; Chatterjee et al., 2018; Stieren
et al., 2021). However, the grid points needed to resolve a de-
veloped stratified wake with LES is on the order of 1×1011,
according to conservative estimates (Li et al., 2022). Hence,
the computational cost is prohibitively expensive for most
controller design purposes, not to mention the cost associ-
ated with the wind turbine aero-elastic models required to
gain a complete picture (Larsen et al., 2017). Therefore, LES
is not suitable for most control-oriented modelling applica-
tions. Instead, LES often serves as a proof-of-concept tool
for new control methods or as validation models for lower-
order surrogate models (Meyers et al., 2022).

The best available models for understanding the effects of
wind direction variability are coupled mesoscale–microscale
LES models. Although, again, these models are unsuitable
for most control-oriented modelling applications, they are
able to simulate farm-wide realistic dynamic changes in in-
flow direction and have provided valuable insights. There-
fore, Sect. 3.1.1 and 3.1.2 describe in more detail mesoscale,
microscale, and coupled models and introduce examples
from the literature.

3.1.1 Mesoscale and microscale models

Mesoscale models of wind farms include physical param-
eterisations to model the outer flow phenomena by includ-
ing energy transform models, surface layer models, land use
models, physical parameterisation, boundary layer parame-
terisations, and more. By incorporating suitable initial and
boundary conditions derived from global models, these mod-
els effectively capture the dynamic processes of the ABL
(Haupt et al., 2019). These important dynamics are often
excluded from or only roughly approximated in more lo-
cal LES (microscale) models. Furthermore, mesoscale mod-
els are non-hydrostatic and model water-related processes in
the atmosphere, both rare features of microscale models. Al-
though realistic wind direction variability can be captured
using mesoscale models (Draxl et al., 2021), the maximum
spatial and temporal resolution of these models is too large to
allow them to accurately investigate intra-wind farm effects
caused by dynamic wind direction changes (Carvalho et al.,
2012; Jiménez and Dudhia, 2013). However, they are useful
in studying general wind farm flow effects such as inter-wind
farm wakes and the development of wind farm boundary lay-
ers.

In contrast to mesoscale models, microscale LES models
have the ability to capture the flow around objects at much
higher resolution, allowing modelling of terrain details and
flow around turbine blades (Haupt et al., 2020). These mod-
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els are also able to resolve fine-scale turbulence and explic-
itly resolve aero-elastic interactions with the wind turbines.
Microscale LES models, therefore, are essential towards de-
veloping new optimal yaw and wind farm flow control strate-
gies (Fleming et al., 2014a, 2015). However, up to now the
emphasis has been on small-scale turbulence modelling and
scenarios where the farm flow is constrained towards steady-
state conditions (Calaf et al., 2010; Wu and Porté-Agel, 2011;
Goit et al., 2016). While these simulations have offered valu-
able insights into the interaction of wind farms and the ABL
under steady-state conditions, the influence of large-scale ef-
fects on wind farm performance, especially dynamic wind
direction changes, has mostly been ignored (Stieren et al.,
2021).

3.1.2 Coupled models

There have been efforts to accurately couple mesoscale mod-
els to microscale LES (Muñoz-Esparza et al., 2014; Muñoz-
Esparza and Kosović, 2018; Haupt et al., 2020), which is
particularly important to accurately represent non-stationary
meteorological conditions or changes of atmospheric stabil-
ity at wind farms, especially those driven by the diurnal cy-
cle (Haupt et al., 2020). For coupled simulations, Coriolis
effects are included, which means large changes in wind di-
rection with height in the ABL can be simulated (Haupt et al.,
2017). Therefore, in order to represent a wider range of im-
portant meteorological phenomena that affect wind farm per-
formance, mesoscale information needs to be embedded in
microscale models (Draxl et al., 2021).

Realistic inflow conditions from mesoscale forcing can
be included in microscale LES by nesting the LES within
a mesoscale numerical weather prediction (NWP) simula-
tion domain. The output of the NWP acts as a precursor to
the LES simulation, providing both the initial and bound-
ary conditions. Examples include coupling LES to mesoscale
models like the Weather Research and Forecasting (WRF)
model (Talbot et al., 2012; Mirocha et al., 2014; Schalkwijk
et al., 2015). Biases in wind speed and direction in nested
mesoscale simulations have been shown to be passed on to
the LES simulations, which in general are unable to fully
correct for these biases (Talbot et al., 2012). However, the
wind field is reasonably well simulated by the WRF model,
especially in wind regimes where there is a very dominant
sector (Carvalho et al., 2012), and can be improved with ap-
propriate data assimilation techniques (Haupt et al., 2017).

The goal of accounting for realistic dynamic wind direc-
tion or even sweeps over a range of predetermined wind
directions in LES is challenging and demands significant
computational resource. To this end, a concurrent precursor
method in which the horizontally periodic mesoscale precur-
sor domain was rotated was first proposed by Munters et al.
(2016). Following up on this work, Chatterjee et al. (2018)
proposed a modified version of the concurrent method that
only rotated the inflow velocity vector instead of the entire

precursor domain. Data from cup and vane anemometer were
used to generate realistic neutral ABL inflow data to the mod-
ified model to compare the predicted wake effects with on-
site light detection and ranging (lidar) measurements of the
wakes (Chatterjee et al., 2018). The approach has since been
developed further by Stieren et al. (2021) to make use of a
dynamically changing non-inertial rotating reference frame,
which was able to accurately reproduce realistic pseudo-
random wind direction and power spectrum at each turbine
using low-pass-filtered wind farm field measurements as in-
puts.

The coupled LES models provide greater understanding of
how dynamic wind direction changes can significantly im-
pact wind farm performance. As an example, simulations of
a regularly spaced wind farm array demonstrated a consid-
erably steeper decline in power output at the minimum farm
power inflow angle, θmin (the wind direction at which lowest
wind farm power output occurs), during a dynamic wind di-
rection sweep compared to what was predicted through a se-
ries of static simulations at various but constant inflow direc-
tions (Munters et al., 2016; Stieren et al., 2021). The drop in
power was explained by the high-velocity wind speed chan-
nels which exist between turbines. The flow in these channels
was much stronger during static simulations at θmin com-
pared to simulations which considered a sweep over direc-
tions, where channel flow is disrupted by the inflow angle, es-
pecially between turbines further downstream (Stieren et al.,
2021). The effect was less pronounced for low wind direc-
tion rotation rates, since the channel flow had enough time
to speed up and allow the dispersal of energy from the chan-
nels into the waked region (Munters et al., 2016). This effect
also produced a spike in wind farm power at wind farm flow
angles far away from θmin. It also was shown to cause a site-
specific hysteresis effect, detected as a positive or negative
shift in the value of θmin of the wind farm (Munters et al.,
2016; Stieren et al., 2021).

3.2 Statistical models

Statistical models are useful as inputs to wind farm simu-
lations in order to account for and accurately reflect uncer-
tainty in the inflow conditions. Since wind direction is fun-
damentally non-stationary, this necessitates simplifying as-
sumptions and approximations about the statistical nature of
wind direction time series so they can be more easily mod-
elled. In general, there is a relative lack of research focus-
ing on the statistics of wind direction as opposed to wind
speed (Jiménez and Dudhia, 2013), especially in the con-
text of wind farm flow, which seems to be a product of the
challenges associated with the statistical treatment of circu-
lar variables like wind direction (Mardia et al., 2000). Often
in studies, the longitudinal and latitudinal components of the
wind vector are shown instead of the wind direction, which
avoids the difficulties associated with summary statistics of
circular data (Haupt et al., 2017).
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Therefore, one critical question is how to treat the circular
wind direction variable. In contrast to linear statistics, there
are often different ways to calculate summary statistics of
circular data, such as the sample mean for instance, which in
most cases give different results. Therefore, careful consid-
eration of the appropriate circular statistics is needed, before
making any calculations (Farrugia and Micallef, 2017).

3.2.1 Circular statistics

Circular statistics deal with data that have a circular or direc-
tional nature, where the values need to be measured in terms
of a circular scale. In contrast to traditional linear statistics,
where values can be measured with respect to the real num-
ber line, circular statistics take into account the wrapping of
the variable, where any value beyond the maximum or min-
imum are wrapped back on the scale, creating distributions
that exist on the circle rather than the real number line. Wind
direction provides a good example of a circular variable. It
is 2π periodic and can be mapped to a circular scale where
an arbitrary zero direction and manner of rotation are defined
(Jammalamadaka and SenGupta, 2001). Conventionally, the
zero direction is set as north and then angles are measured
clockwise from north.

The periodicity of circular variables, the arbitrariness of
the zero position and manner of rotation, and the absence of
absolute magnitude altogether mean that directional analysis
of circular data is substantially different from standard lin-
ear statistical analysis. Circular statistical methods need to
be invariant with respect to the choice of the zero direction
and sense of rotation; as a consequence, many typical linear
techniques and measures are not applicable. Therefore com-
monly used summary statistics, such as the mean and vari-
ance, as well as simple mathematical operations like subtrac-
tion and addition, need to be redefined so they make sense in
the context of circular statistics (Jammalamadaka and Sen-
Gupta, 2001).

The circular mean θC and circular variance vC of a sample
ofN circular variables {θi}Ni=1 can be obtained in a variety of
ways. The easiest to visualise is the vectorial method, which
begins by representing the circular data as a set of unit vec-
tors in the complex plane {zi}Ni=1, where zi = eiθi . The circu-
lar mean is then calculated as the argument of the resultant
vector zR after summation of the unit vectors:

θC = arg

(
1
N

N∑
i=1

zi

)
= arg

(zR

N

)
. (1)

Figure 2 illustrates calculation of the circular mean of two
different sets of circular variables. Note that for wind data,
calculation of the circular mean can also be weighted by the
corresponding wind speed Vi in order to capture more in-
formation about the wind field. Once the resultant vector zR
is obtained, the circular variance vC can then be calculated

Figure 2. Examples of circular variables represented as unit vec-
tors in the complex plane {zi}3i=1 and resultant vectors zR indicated
by dashed lines. The circular mean is the argument of the resultant
vector in each case. Illustration adapted from Cremers and Klugkist
(2018).

according to

vC = 1−R, (2)

where R =
∣∣∣zR

N

∣∣∣ and 0≤ R ≤ 1. Since the length of the re-

sultant vector R decreases as the spread of the data around
the circle, 1−R increases with the spread and therefore pro-
vides a robust measure of the variance (Fisher, 1995). One
limitation of this approach is that vC is bounded between 0
and 1, which makes it difficult to interpret in the same way
as variance in the linear sense is interpreted.

If the data are known to lie within a narrow range of values
(which is almost guaranteed for wind direction time series
on the order of tens of minutes), the use of linear statistics to
calculate the mean and variance as well as other summary
statistics becomes valid1 (Rott et al., 2018). Before linear
summary statistics can be calculated, the minimum angular
distance 1(θ1,θ2) needs to be defined. This quantity gives
the signed value of the least angular distance between two
angles (represented here by θ1,θ2 ∈ [0,2π )), once the zero
direction and sense of rotation have been defined. There ex-
ist different examples in the literature of how to calculate this
quantity. The first 1Farr(θ1,θ2) comes from Farrugia et al.
(2009), where the authors start by defining the absolute min-
imum angular distance as

|1Farr (θ1,θ2) | : =min((|θ2− θ1|) mod 2π,2π

− (|θ2− θ1|mod 2π )) . (3)

1Otherwise, if the data set contains values which are more than
π rad rotation away from the mean, calculating variance in the lin-
ear sense is not well defined since it is unclear what the distance
between the mean and those furthest away values should be.
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The minimum angular distance is then determined by consid-
ering a series of cases concerning the relative position of each
angle on the circle and assigning a sign to the absolute value
accordingly. However, this approach does not account for all
cases and therefore is incomplete. A complete and succinct
definition is given in Rott et al. (2018), where the minimum
angular distance 1Rott(θ1,θ2) ∈ [−π,π ) is simply given by

1Rott (θ1,θ2) := ((θ2− θ1+π ) mod 2π )−π, (4)

from which the absolute value can easily be determined if
necessary.

The minimum angular distance is used to compute the ex-
pected values of linear summary statistics such as the stan-
dard deviation and the variance (Yamartino, 1984; Farrugia
et al., 2009). The linear variance σ 2

θ can be computed accord-
ing to

σ 2
θ =

1
N

∑
i

1(θL,θi)2, (5)

where 1(θL,θi) is the distance from the linear mean θL to
the angle θi , according to the chosen measure of the min-
imum angular distance. The standard deviation of wind di-
rection σθ is of particular interest to researchers since it is
related to the lateral turbulence intensity iv through the equa-
tion tan(σθ )= iv in stable atmospheric conditions (Hanna,
1983).

3.2.2 Short-term statistical models

In order to quantify variability for robust wake steering con-
trol, where upstream turbines operate with an intentional yaw
misalignment to deflect their wakes away from those down-
stream (Simley et al., 2021), statistics of 5 min wind direction
time series have been studied from 1 s wind vane met mast
data (Rott et al., 2018). The measurement data were split
into 5 min time series, mapped to a linear scale, and com-
pared with a fitted normal distribution both visually, using
histograms and quantile–quantile plots, and numerically, us-
ing a Kolmogorov–Smirnov test. The comparison was done
to verify the hypothesis that the measurement data can be ap-
proximated statistically by a normal distribution within 5 min
segments. It was found that 70.58 % of the measurements
passed the test for a significance level of 5 %. Based on these
findings, it was concluded that in the majority of cases, the
variability of 5 min wind direction time series can be ade-
quately approximated by a normal distribution. It was also
verified that wind direction variability is strongly correlated
with atmospheric stability classes, as discussed in Sect. 2,
which included stable, neutral, and unstable conditions (Rott
et al., 2018).

Similarly, it has also been shown that a normal distribu-
tion provided a good fit to the measured wind direction vari-
ations over a longer 10 min time period at Horns Rev (Gau-
mond et al., 2014). The wind direction measurements were

recorded using a sonic anemometer mounted on a met mast
with a sampling rate of 12 Hz at a height of 50 m (Peña
and Hahmann, 2012). The assumption that the wind direc-
tion time series was normally distributed over the consid-
ered sampling times meant that the yaw errors at each tur-
bine could be assumed to be normally distributed as well,
which allowed power performance to be more accurately cal-
culated. Hence, the accuracy of three separate wake models
was evaluated against data from the Horns Rev wind farm
while taking into account uncertainty in the wind direction
measurements.

Alternative data-driven methods for modelling and gener-
ating realistic short-term wind field time series samples have
also been described (Bossanyi, 2018; Simley et al., 2020a;
Van Der Hoek et al., 2021). Bossanyi (2018) started from
single-point measured data, which were 10 min averages of
wind speed, direction, and standard deviation from a met
mast. To preserve the correct 10 min statistics, smooth time
series were fitted to the points and synthetic turbulence was
then added. While the wind field included all three compo-
nents of turbulence, the lateral component was zero mean;
therefore dynamic changes in inflow wind direction were
subsequently added from the smoothed met mast data.

Alternatively, both Simley et al. (2020a) and Van
Der Hoek et al. (2021) modelled the wind direction by gener-
ating different stochastic time series which represented either
the slowly varying mean wind direction across the wind farm
or the purely turbulent high-frequency component with zero
mean. The time series were produced by simulating a ran-
dom time series with a normal distribution, derived from the
power spectra of both low-frequency and turbulent wind di-
rection components extracted from met mast measurements
and LES. This method resulted in time series where the low-
frequency wind direction components were completely cor-
related at each turbine, whereas the high-frequency compo-
nents were completed uncorrelated.

Strong assumptions are made by these data-driven models,
especially in how wind direction changes propagate through
the farm. However, data-driven methods are designed to
minimise computation requirements and act only as a start-
ing point to be iterated and refined upon. Other, more gen-
eral wind field generation techniques are also available and
widely used, such as the Mann spectral model (Mann, 1998)
or the Veers method (Veers, 1988). However, these methods
focus mostly on modelling stationary processes and the high-
frequency content of the wind field.

3.3 Discussion of wind farm flow models

Mesoscale–microscale coupled LES models have the po-
tential to validate a controller’s effectiveness under realistic
wind direction variability before more detailed field tests are
carried out (Sect. 3.1.2). However, the computing power re-
quired by current models makes them prohibitively expen-
sive and time-consuming to deploy, especially for complex
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Figure 3. Positive yaw misalignment on a horizontal axis wind tur-
bine, which is defined as a counter-clockwise rotation of the nacelle
away from the hub height wind direction viewed from above. Illus-
tration adapted from Fleming et al. (2016).

control optimisation (Munters et al., 2016; Stieren et al.,
2021).

Ideally, software would allow many multiple 5 to 10 min
wind farm flow simulations to test controller effectiveness
under dynamic wind changes, enough to achieve statisti-
cal significance. Although current data-driven methods make
strong assumptions about wind direction, especially in terms
of normality of time series and their spatial and temporal
coherence, the short-term statistical treatment of the wind
direction variable presented in Sect. 3.2 provides a starting
point for a data-driven, computationally less expensive ap-
proach to the problem.

4 Performance under yaw misalignment

Yaw misalignment (or equivalently yaw error), denoted γE ,
refers to any misalignment between the nacelle position
θnacelle and the hub height wind direction θwind. Figure 3
shows the top down view of a turbine with positive yaw mis-
alignment. The misalignment can be calculated according to

γE =1Rott(θnacelle,θwind), (6)

where θnacelle and θwind may each be either time-averaged or
instantaneous, depending on the application.

There are two classes of yaw misalignment: intentional,
because of the actions of a wake steering controller (or sim-
ply because of the necessarily slow actuation of the yaw sys-
tem), or unintentional, because of systematic measurement
bias or other errors in the wind turbine measurement equip-
ment.

This section starts by providing motivation for the topic
through the physical laws that govern horizontal axis wind
turbines. Section 4.1 covers the first-order relationship be-
tween power and yaw misalignment of the wind turbine.
Then, Sect. 4.2 gives a brief overview of the current under-
standing of the effects of yaw misalignment on turbine loads.

4.1 Power

From the continuity equation of fluid mechanics, the flow of

an air mass
dm
dt

is a function of air density ρ, surface area
(in this case the rotor swept area) Ar, and free stream flow
velocity U∞. Ignoring the effects of wind sheer and veer, it
is estimated that the velocity is independent of location on

the rotor swept area, meaning that
dm
dt

through the rotor can
be defined as

dm
dt
= ρArU∞. (7)

The instantaneous kinetic power of the wind available at the
rotor, Pw, is

Pw =
1
2

dm
dt
U2

wind =
1
2
ρArU

3
∞. (8)

A wind turbine exerts a thrust force F on the wind flowing
through the rotor that corresponds to the amount of energy
extracted from the flow each second:

F =
1
2
CT(β,λ,γE)ρArU

2
wind, (9)

where Uwind is the free-stream wind velocity after taking into
account induction effects, and CT(β,λ,γE) is the dimension-
less thrust force coefficient, which is a function of the blade
pitch β, tip-speed ratio λ, and yaw misalignment γE . The
tip-speed ratio is defined as the ratio of the tangential speed
at the blade tip to free-stream wind velocity:

λ=
ωR

U∞
, (10)

where R is the radius and ω is the rotational speed. The tip-
speed ratio is proportional to the rotor speed, which is typ-
ically controlled via the generator torque or by pitching the
turbine blades to alter the lift forces on them (Boersma et al.,
2017). The power in the wind across a circular cross section
was given in Eq. (8), but not all of this power can be extracted
by a wind turbine. The wind power that can be extracted by
a turbine is given by

P =
1
2
Cp(β,λ,γE)ρArU

3
wind, (11)

where Cp(β,λ,γE) is the dimensionless power coefficient
(Boersma et al., 2017).
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The theoretically maximum available power at any given
wind speed occurs when the rotor axis is aligned to the inflow
wind direction. If the rotor axis of a turbine is not aligned
with the inflow, the wind speed perpendicular to the rotor
plane is reduced to

UγE = Uwind cos(γE), (12)

where γE is the yaw misalignment of the turbine. Hence, ne-
glecting changes in aerodynamic behaviour from misaligned
rotors, the maximum amount of power that can be extracted
by a turbine operating with a yaw error γE is

Pmax =
1
2
ρArU

3
windcos3(γE)Cp. (13)

Thus, the extractable power is theoretically reduced by a fac-
tor of cos3(γE). In reality, experimental results have shown
that power extraction under yaw error behaves according to
the more general empirical equation:

Pmax =
1
2
ρArU

3
windcosα(γE)Cp, (14)

where the term cosα(γE) is referred to as the power reduction
factor (PRF). The α term has been estimated both experimen-
tally and theoretically in several different studies, which are
discussed in Sect. 4.1.1.

4.1.1 Power reduction factor

Experiments carried out using a rotating wind turbine model
in a wind tunnel with turbulent inflow generated by a static
grid found that the empirical value of the power reduction
factor mostly agreed with the expected value, i.e. α ≈ 3
(Krogstad and Adaramola, 2012). A similar set-up with low-
and high-turbulence uniform inflow and sheared inflow con-
dition also found that α ≈ 3 (Bartl et al., 2018). However,
other experimental results have often shown that the cube
law overestimates the power loss (Kragh and Hansen, 2015).
An overview of past research and their findings is shown in
Table 1.

In addition to the empirical observations outlined in Ta-
ble 1, Howland et al. (2020) developed a model from first
principles, using blade element momentum (BEM) theory
to show how there exists a non-linear relationship between
power output and yaw misalignment, affected by both the at-
mospheric conditions and the wind turbine control system.
The data collected to test their model showed α = 2 for dif-
ferent original equipment manufacturer (OEM) turbines at a
specific site. It was concluded that the ability of the first prin-
ciples model to accurately predict performance was much
greater than the simple cosine cubed power law, since the
expected power will in all cases be model- and site-specific.
Additionally, Heck et al. (2023) used a similar first princi-
ples approach to understand how not only the power, but the
induction, thrust, and near-wake velocity deficit changed in

relation to yaw misalignment. This approach showed that in-
duction decreases as a function of yaw misalignment, which
explains the less than expected value of α observed in various
studies (Table 1).

4.2 Loads

Fatigue loading occurs when a load is repeatedly applied and
removed from a material, i.e. when the loading is cyclic. For
wind turbines, cyclic loads usually occur as the blade ro-
tates through a wind field, leading to what is called once-
per-revolution (1P) loads on the blade and 3P loads on the
tower and drivetrain (Kragh and Fleming, 2012). The effects
of yaw misalignment on turbine component and structural
fatigue loads as well as lifespan changes are somewhat of an
open question (Bartl et al., 2018).

A misaligned inflow produces periodic loads because the
aerodynamics of the blade change with its azimuthal position
θ . The advancing and retreating action of the blade with re-
spect to the crosswind flow creates a change in the angle of
attack, leading to changes in the lift, drag, and thrust forces
(Heck et al., 2023). The changes in thrust force combine to
create a moment on the rotor in the tilt direction. Figure 4
shows a free body diagram of a blade element before and
after applying a positive yaw misalignment. As the blade
passes through θ = 0 and θ = π , the effect of the misalign-
ment is at a minimum since it is cancelled by the blade posi-
tion, whereas the effect is maximal at θ = π/2 and θ = 3π/2.
Additional periodic loading occurs because of a slowdown in
the turbine’s wake on one side compared to the other, which
results in increased forces on the blade during that portion of
the rotation (Zalkind and Pao, 2016).

Damage equivalent load (DEL) is the single equivalent
load at some fixed frequency that produces the same amount
of damage as the actual loading history. The distribution of
DELs and extreme loads under yaw misalignment for var-
ious degrees of yaw misalignment have been found to be
rather complex but correlated with the rotor and blade de-
sign as well as the ambient wind conditions (Damiani et al.,
2018). These load distributions were measured for a fully in-
strumented wind turbine and compared to predictions from
an aero-elastic model, where it was found that the model
predicted the distributions well (Damiani et al., 2018). Mod-
elling deficiencies in other aero-elastic models and complex
unsteady-flow phenomena during yaw were also revealed by
comparison of load characteristics on a misaligned model
turbine rotor to various computational approaches (Schepers
et al., 2014).

More recently, it was shown that the DELs are not dis-
tributed symmetrically around the zero misalignment angle
on the turbine’s main bearings (Cardaun et al., 2019). In fact,
it was found that top-down rotation of the rotor clockwise
with respect to the inflow lead to smaller loads in general.
This effect has since been attributed to the rotor tilt, which, at
γE = 0, results in a minor increase in the effective wind speed
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Table 1. Selected details of past research and findings for the power reduction factor cosα(γE).

Turbine model α value Paper

Scale model ≈ 3 Krogstad and Adaramola (2012); Bartl et al. (2018)
Scale model ≈ 2 Medici (2005)
NREL 5 MW LES model 1.88 Gebraad et al. (2014)
Scale model ≈ 1.7870 Schreiber et al. (2017)
Scale model, LES model ≈ 1.43, ≈ 1.43 Draper et al. (2018)
Envision 4 MW turbine, LES model ≈ 1.86, ≈ 1.73 Fleming et al. (2017)
Various OEM models ≈ 2 Howland et al. (2020)

Figure 4. Blade element dynamics under normal and yawed conditions, γ̂z = γz sin(θ ) and Uyawed = Uwind cos(γ̂z), where γz is the local
yaw misalignment at radial position r and azimuthal position θ . Illustration adapted from Howland et al. (2020).

on one side of the rotor while reducing it slightly on the other
side (Hart et al., 2022). Similarly, the yaw moments on mis-
aligned rotors were observed to increase approximately lin-
early with increasing degrees of yaw misalignment, but again
the moments were not completely symmetrically distributed
around the zero misalignment angle (Bartl et al., 2018).

It has been argued that the effects of yaw misalignment
can be balanced by wind shear, such that there exists a
turbulence-intensity-dependent optimal non-zero yaw mis-
alignment angle which minimises blade loads (Kragh and
Hansen, 2014; Damiani et al., 2018). However, the reduction
in blade loads at this angle was shown to be accompanied by
an increase in load fluctuations for other components, such as
the drivetrain and tower (Kragh and Hansen, 2014; Zalkind
and Pao, 2016).

4.3 Discussion of performance under yaw misalignment

The performance effects due to misalignment between the
rotor and the inflow wind direction are complex and depen-

dent on a number of factors including the turbine model and
the ambient wind conditions.

Levels of yaw misalignment greater than 10° are not an
uncommon occurrence according to the literature (Pedersen
et al., 2008, 2011; Kragh and Fleming, 2012; Annoni et al.,
2019a). Figure 5 highlights typical mean and maximal mis-
alignment angles as well as power losses expected at differ-
ent values of power reduction factor. From Fig. 5, it can be
seen that commonly found levels of yaw misalignment in the
literature can cause anywhere from an ≈ 1.5% to ≈ 4.5%
decrease in AEP.

Yaw misalignment also causes asymmetric loading
through the blades and rotor, leading to increased wear and
tear on the components of the turbine, reducing their lifespan,
and increasing maintenance costs, with knock-on effects on
LCOE (Sect. 4.2). Although the blade loads under yaw mis-
alignment have been well described and verified in multi-
ple studies, more understanding of the aerodynamics of yaw
misalignment is still required, including differences between
positive and negative misalignment angles, as well as how the
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Figure 5. Power loss against misalignment for different power re-
duction factors with typical mean and maximal yaw misalignment
values indicated from data presented by Annoni et al. (2019a).

rotor is affected by both vertical and horizontal variations in
direction (Howland et al., 2020).

The first-order approximation of yaw-misaligned rotor dy-
namics (Fig. 4) provides a good starting point in understand-
ing site- and atmosphere-specific effects of yaw misalign-
ment on power and loads (Howland et al., 2020). Then, if
these dynamics are integrated into aero-elastic turbine sim-
ulations, control-oriented models could be developed with
these dynamics in place, resulting in better understanding of
the efficacy of control actions to minimise the deleterious ef-
fects of yaw misalignment.

5 Conventional yaw control

The rotational movement of the wind turbine rotor around
the axis of the turbine tower is the yaw of the turbine (Kragh
et al., 2013b). Yaw controllers are designed to align the wind
turbine rotor axis with the hub height wind direction as best
as possible while balancing the constraints of the system
(Meyers et al., 2022). As discussed in Sect. 4, the wind tur-
bine’s yaw system can have significant effects on overall
wind turbine performance in terms of both power and loads.

It is important to note that the control architecture of com-
mercial wind turbines is often proprietary and dependent on
the manufacturer, and so information on the operation of con-
ventional wind turbine yaw systems is only available to a lim-
ited extent in the literature. The discussions in this section,
therefore, may not be true for all wind turbines, but they do
serve as motivation for further discussions on alternatives to
conventional yaw systems.

This section begins by describing the architecture of con-
ventional yaw control systems in Sect. 5.1. Then, the com-
mon errors and uncertainties associated with conventional
wind direction measurement instruments are discussed in
Sect. 5.2 and 5.3 respectively.

5.1 Architecture

The majority of modern utility-scale horizontal axis wind tur-
bines use an active yaw drive mechanism to face the tur-
bine into the wind. An estimate of current wind direction
is the first step in most yaw systems. Traditionally, a wind
vane on top of the nacelle measures the wind direction at
a point behind the rotor plane. The wind direction signal
is usually measured at high frequency by the wind vane
(Bossanyi, 2019). The wind direction signal is then passed
through a heavy low-pass filter, which smooths out the short-
term variations, makes the resulting signal more representa-
tive of rotor-averaged variations, and ensures the yaw system
depends only on the relatively low-frequency changes in the
wind direction. As an example, a first-order low-pass filter
with a −3 dB cut-off frequency of 2 mHz was applied to the
input wind direction in computational fluid dynamics (CFD)
simulations of yaw control (Gebraad et al., 2016). The fil-
tered signal is then compared with the nacelle orientation to
obtain a measure of yaw misalignment. An example of typi-
cal conventional yaw control architecture is shown in Fig. 6
(Chen et al., 2020).

In addition to low-pass filtering, a hysteresis dead band,
effectively a buffer zone where no control action is taken,
is introduced to prevent frequent yaw manoeuvres and avoid
dangerous gyroscopic forces. This avoids what is known as
“yaw hunting”, where the yaw controller tries to follow the
time-varying wind direction too closely without allowing for
an amount of variability and uncertainty in the signal. If the
turbine were to yaw at such a high rate, this would have neg-
ative consequences on the lifetime of the yaw system as well
as the loads on other components. Most large turbines yaw
at rates of less than 1° s−1 (Pao and Johnson, 2009), and
the controller is typically only activated when the yaw error
measured by the wind vane exceeds some threshold (Spencer
et al., 2013). An example from the literature comes from the
baseline controller from the pre-design phase of the Dutch
Offshore Wind Energy Converter (DOWEC) 6 MW turbine
(Kooijman et al., 2003). This controller used a 30 s moving
average of the wind direction to monitor yaw misalignment.
The controller activated yaw actuators when the yaw error
reached 5° with a yaw rate of 0.3° s−1 until the 2 s moving
average of yaw error was less than 0.5° (Storey et al., 2016).

Due to the constraints described, the yaw system is in
standstill most of the time (Kim and Dalhoff, 2014). It is
typical for the yaw angle to remain constant for about 5 to
10 min before the yaw control corrects for the changes in
wind direction and reduces the yaw misalignment (Rott et al.,
2018). The contrast between the slowly reacting yaw systems
of modern utility-scale wind turbines and the variability of
the wind direction signal is a product of the trade-off between
minimising yaw duty and yaw hunting while at the same in-
stance maximising turbine performance.
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Figure 6. Schematic of a typical conventional yaw system. The yaw duty sensor measures cable rotation θcable to ensure the rotation remains
within safe limits. Illustration adapted from Chen et al. (2020).

5.2 Measurement errors

Wind vanes or sonic anemometers positioned atop the na-
celle within the disturbed flow region behind the rotor are of-
ten used to measure the apparent hub height wind direction
(Kragh et al., 2013a). On-site met masts are sometimes also
available to provide measurements; however, it is more con-
venient in general to use measurements from instruments on
the turbines themselves. Each turbine control system can pro-
vide a hub height wind direction estimate by comparing the
measured nacelle position against the input low-pass-filtered
yaw misalignment signal, which all relies heavily on cor-
rect calibration of the instrumentation (Bossanyi and Ruisi,
2021).

Measurements taken by sensors positioned behind the ro-
tor on the nacelle, within the disturbed flow, have been shown
to be significantly affected by flow distortions caused by the
rotor (Kragh and Fleming, 2012). CFD simulations of the
flow distortions around the nacelle revealed a strong sen-
sitivity of the wind direction measurement to the position
of the sensor on the nacelle (Zahle and Sørensen, 2011).
It was revealed that the nacelle flow angles exhibited sub-
stantial variations with height above the nacelle surface. The
CFD simulations showed that the flow was primarily gov-
erned by unsteady vortex shedding from the cylindrical part
of the blades connected with the rotor hub interacting with
the root vortices from each of the blades, resulting in the cre-
ation of significant velocity gradients. The effect of flow dis-
tortion has also been shown in field studies. Nacelle-mounted
sensors showed significant dependence of flow distortion on
both yaw and tilt angles with yaw error of up to 10° when
operating in a tilted inflow (Zahle and Sørensen, 2011). Ad-
ditionally, analysis of operational data from a V80 2 MW on-
shore turbine revealed below-rated mean yaw errors of 10°
(Pedersen et al., 2008, 2011), whereas separate analysis of
the CART3 600 kW research turbine showed rotor speed-
dependent mean yaw errors of 5 to 15° (Kragh et al., 2013a).

Further inaccuracies can be introduced purely from the
way the yaw control system is set up and operated. Firstly,
for the Horns Rev I wind farm, analysis of operational data
showed the yaw signals to be mostly wrong when turbines

were not operating (Draxl, 2012). Upon restart, with the tur-
bine yawed at a random angle, it took time for the sensor
to be oriented correctly again, resulting in a period of in-
accurate data (Draxl, 2012). Secondly, complications com-
mon to many wind turbines were introduced by the turbines’
own cables, which had to be disentangled after too much ro-
tation around the yaw axis, meaning the turbine had to be
rotated back and then re-adjusted against the other sensors
again (Draxl, 2012). Lastly, an EU project (UpWind) found
that the wind vane signals of both onshore and offshore tur-
bines were often not correctly calibrated, with neighbouring
turbines measuring substantial differences in yaw alignment
(Eecen et al., 2011).

Biases in turbine wind direction signal can be corrected
once they have been identified. For example, a speed-
dependent linear regression correction scheme, based on em-
pirical data, was applied to a yaw controller input signal
(Kragh et al., 2013a). With the correction applied, the new
yaw control architecture was able to reduce yaw errors com-
pared to the baseline controller. However, the relatively short
amount of data available meant the findings could not be
properly substantiated and precluded any additional conclu-
sions about load reductions.

5.3 Measurement uncertainty

An important issue highlighted, especially in wake steering
research, is the wind direction uncertainty present in data sets
(Gaumond et al., 2014; Rott et al., 2018; Simley et al., 2020a;
Campagnolo et al., 2020). This uncertainty is guaranteed due
to the stochastic behaviour of the wind. The uncertainty can
also be exaggerated through standard methods of time aver-
aging as well as from spatial interpolation, as a result of the
natural variability of the wind direction and the distance from
the reference location to where the measurement is taken.

Operational data sets are often binned by wind direction
sectors in order to simplify the calculation of other important
variables, mainly power production. However, the accuracy
of wind farm flow models was found to heavily depend on
the width of the wind direction sectors used for binning the
simulation results (Gaumond et al., 2014). Hence, over nar-
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row wind direction sectors, differences between the power
outputs predicted by wind farm flow simulations and real
wind farm power output data sets are potentially caused by
the large wind direction uncertainty in the data sets, and not
because of modelling deficiencies (Gaumond et al., 2014).
As a result, there is now a recognition of the need to incorpo-
rate uncertainty into wind farm flow models to produce better
and more robust controllers.

In order to quantify uncertainty in wake models and to de-
sign better wake steering controllers, the distribution of high-
frequency wind direction measurements within 5 min (Rott
et al., 2018) or 10 min (Gaumond et al., 2014) windows was
approximated using a Gaussian probability density function.
By quantifying uncertainty, deficiencies in wake modelling
were identified and inflow-specific adaptations to wake steer-
ing controllers were explored.

Similar approaches inspired by the Gaussian distribution
approximation of the wind direction have also been devel-
oped. For example, the yaw position uncertainty was in-
cluded in wake steering set-point calculations alongside the
wind direction uncertainty as a joint Gaussian distribution
where the sums of the variance of each equalled the variance
of the yaw error (Simley et al., 2020a). Another approach
used polynomial chaos expansion to account for uncertain-
ties while optimising for wake steering set points, which in-
cluded a Laplace distribution for the yaw misalignment and
a Gaussian distribution for the wind direction measurement
(Quick et al., 2020). The polynomial expansion approach re-
vealed that uncertainty in the wind direction measurement
had one of the largest impacts on the set-point optimisation
results, highlighting the importance of understanding wind
direction variability for both yaw and wake steering control.

5.4 Discussion of conventional yaw control

Control based on conventional sensing methods mainly suf-
fers from two factors. The first is the significant noise, uncer-
tainty, and outliers in the inputted wind direction measure-
ment. These problems have been found to be due to a mixture
of the placement of the sensing equipment, the inadequacies
of standard measurement instruments, and the intrinsic com-
plexity of the wind direction variable (Kragh and Fleming,
2012; Kragh et al., 2013a). Secondly, the slow actuation of
the yaw system, although necessary to avoid negative gyro-
scopic forces, results in turbines operating misaligned most
of the time (Mikkelsen et al., 2010). The misalignment can
be significant, especially when a wind direction change hap-
pens rapidly and abruptly before the yaw system has time to
respond.

Control parameters of conventional systems are often
determined through a trial-and-error approach (Bossanyi,
2019), which in many cases is sub-optimal and prone to the
proliferation of bias (Mikkelsen et al., 2010) (Sect. 5.2). In
most cases, biases can be identified and corrected using sim-
ple detection and correction algorithms (Kragh et al., 2013a).

The uncertainties, however, are less easily handled, espe-
cially those arising from natural variation in the wind direc-
tion. One proposed solution is to use an optimisation under
uncertainty methodology for robust control, which entails the
incorporation of the uncertainties into the calculation of con-
trol parameters and set points (Sect. 5.3).

6 Alternative yaw control

Research to improve yaw control has focused on alternative
sensing or data-processing methods that provide more accu-
rate inputs to the control system and/or provide a preview
of wind direction changes before they occur at the turbine.
Alternatives can be broadly categorised by how their input
signal is obtained: measurement-free, inferred, forecasted,
based on improved measurement equipment, or estimated. It
is important to note that some of these methods can be com-
plementary to each other. For instance, estimation techniques
can be used to further enhance control based on remote sens-
ing. The categories are described as follows:

– Measurement-free yaw control originates from early
wind turbine design, which was limited by the tech-
nology of the time. It has since been investigated as
a means to avoid the reliance on potentially erroneous
measurements of the wind direction (Farret et al., 2001;
Xin et al., 2012; Karakasis et al., 2016). The suggested
mechanism of this set of controllers is to directly search
for the maximum power point without a wind direction
input signal. For example, Karakasis et al. (2016) used
the difference between optimal rotor speed and actual
rotor speed to track the real-time performance of tur-
bines and adjusted the yaw set-point accordingly.

– Inferred signal based yaw control is where measure-
ments of other closely related variables are used to in-
fer the wind direction and yaw misalignment angle. For
example, an estimation of the yaw misalignment in the
below rated domain can be calculated from an inverted
function of wind power and wind speed (Tsioumas
et al., 2017), or from the rotor angular speed (Karami
et al., 2021), and then incorporated into the control sys-
tem with the appropriate architecture. Nacelle-mounted
anemometer wind speed measurements are less affected
than the wind vane by flow distortions caused by the
rotor and are easier to correct for than wind direction
measurements at the same location (Smith et al., 2002).
Therefore, the measurement errors and uncertainties as-
sociated with wind vane measurements discussed in
Sect. 5 can mostly be avoided without the need for ad-
ditional sensing equipment.

– Forecasting for yaw control is where very short-term
predictions (on the order of minutes) of wind direc-
tion are calculated to allow the yaw system to pre-
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emptively react to a forecasted change in wind direction
(Sect. 6.1).

– Yaw control with additional or alternative sensing could
replace or augment nacelle-mounted wind vanes. The
most popular alternatives are remote sensors based on
lidar and hypersonic (sodar) technologies (Barthelmie
et al., 2016) (Sect. 6.2).

– Enhanced signal estimation for yaw control involves
families of both parametric and non-parametric meth-
ods of communication based spatial filtering, bias cor-
rection, and/or error detection. Some of these methods
work by updating the parameters of physics-based mod-
els to obtain farm-wide direction estimates, whereas
others are purely stats based (Sect. 6.3).

Since the latter three methods directly address the han-
dling of the wind direction signal (forecasting, improved
measurement, and estimation), they are discussed in more de-
tail. Firstly, wind direction forecasting for both yaw control
and also for more general purposes is discussed in Sect. 6.1.
Next, in Sect. 6.2, improved measurement methods are dis-
cussed that reduce uncertainty in the wind direction signal.
Finally, in Sect. 6.3, an outline of wind direction estimation
techniques that can improve the quality of wind direction sig-
nals without any additional or improved sensing equipment
is given.

6.1 Wind direction forecasting

Since the statistical properties of the wind field evolve with
time (Sect. 2), the forecasting of wind direction is an espe-
cially complex task (Hirata et al., 2008). Non-stationarity
necessitates the use of non-parametric methods and adap-
tive spectral analysis to produce accurate forecasts min-
utes ahead. The use of very short-term wind direction fore-
casts for control purposes is motivated by the preview ef-
fect, where information about incoming changes to the flow
field can be used to pre-emptively carry out a desired con-
trol action. Theoretically, accurate short-term forecasts could
improve turbine yaw performance by reducing the time de-
lay between changes in direction and activation of the yaw
system. This is especially attractive in a yaw control setting
where response time is limited greatly by the slowness of the
yaw actuators.

There are four general categories of methods for forecast-
ing wind direction:

– Persistence methods assume that the wind direction at
time t is the same as at time t +1t . Unsurprisingly, the
performance of this method is comparable to physical
and parametric methods only for extremely short-term
forecasts (Hirata et al., 2008; El-Fouly et al., 2008). This
approach is the most naive and is only used as a baseline
comparison.

– Machine learning (ML) and statistical methods have
been used several times to forecast the wind direction
variable for wind energy applications. The simplest are
regression models (linear or piecewise linear) (How-
land et al., 2022a), Kalman filters (Song et al., 2018),
and time series models which include various auto-
regressive predictors (Erdem and Shi, 2011; Song et al.,
2017). The complex nature of wind direction time series
presents challenges when applying these techniques.
Parametric-based forecasters, in particular, tend to be
susceptible to bias (Kim, 2003), and although they are
easy to implement, most of these methods are linear,
while wind direction time series are non-linear in nature
(Chitsazan et al., 2019).

– Numerical weather prediction (NWP) refers to any
physics-based approach in meteorological forecasting.
NWP models tend to be general-purpose models that
can be used for a wide variety of applications includ-
ing wind direction forecasting. In general, the resolu-
tion of NWP models is too coarse to be useful for
most wind energy applications. However, one study has
demonstrated the performance of an extremely high-
resolution numerical weather prediction model (Chan
and Hon, 2016). A maximum resolution of 200 m was
achieved, but it required numerous meteorological in-
struments and large amounts of processing power, mak-
ing it poorly suited for yaw or wake steering control-
oriented applications.

– Hybrid methods make use of mixed models from ei-
ther statistics or NWP alongside artificial-intelligence-
based methods to improve forecasting. For example,
gradient-boosting tree ML algorithms were combined
with feature engineering techniques to extract the max-
imum forecasting information from a NWP grid (An-
drade and Bessa, 2017). Another example used a cir-
cular regression-based approach, which was developed
alongside a Bayesian averaging method for bias cor-
rection of the forecasts obtained by NWP models (Bao
et al., 2010).

Methods from machine learning and statistics are the most
useful for control purposes since they can be implemented at
a local level and in real time, allowing for adaptive adjust-
ments over extremely short time intervals. Therefore, they
are discussed further in Sect. 6.1.1.

6.1.1 Forecasting with machine learning and statistics

Several wind direction forecasting methods based on ma-
chine learning for yaw or wake steering control have been
investigated, including an auto-regressive integrated moving
average (ARIMA) model approach paired with a Kalman fil-
ter (KF) (Song et al., 2017). ARIMA models are well-suited
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for capturing short-term correlations and have been used ex-
tensively in a diverse mix of forecasting applications (Fisher
and Lee, 1994; Bivona et al., 2011). In general, however, the
ARIMA model by itself is unable to adjust its parameters ef-
fectively as new time-series information becomes available.
To solve the adjustment problem, the ARIMA model was
combined with a Kalman filter (KF), which assimilates new
data and updates the model’s parameters systematically (Su
et al., 2014; Song et al., 2018). The ARIMA–KF model was
able to predict the one step ahead 10 s mean wind direction
with a mean absolute error (MAE) of 0.92° over a 4 h vali-
dation window after assimilating 20 h of training data. When
incorporated into yaw control, the new system was able to re-
cover 1 %–2 % of lost power due to yaw misalignment com-
pared to a baseline conventional controller.

A simple linear-regression-based method was also used to
forecast the wind direction during periods of mean wind di-
rection transitions to produce inputs to various wake steer-
ing controllers (Howland et al., 2022a). The linear regres-
sion approach resulted in an MAE of 1.3° after a time
horizon of 30 min during transition periods compared to an
MAE of 1.9° when the low-pass-filtered wind direction sig-
nal was used. More complex forecasting methods from ma-
chine learning have also been explored, including four dif-
ferent data-mining algorithm prediction approaches (Ouyang
et al., 2017). Support vector machines, neural networks, ran-
dom forests, and gradient-boosted regression trees were each
trained and tested on a year’s worth of wind direction data
at 10 min intervals, and the input data were transformed into
cosine and sine components Although it was found that the
methods based on random forests and neural networks per-
formed best at predicting the 10 min ahead sine and cosine
components of the wind direction, performance improve-
ments by integration of forecasts into the yaw system were
not demonstrated.

6.2 Improved sensing equipment

Various different solutions have been suggested which use
advanced sensing equipment to improve the wind direction
input signal to the yaw control system. One way is to aug-
ment or replace the wind vane with a lidar system mounted
on the nacelle, on the ground, or on the rotating spinner of the
turbine to detect the undisturbed wind in front of the turbine
over the entire rotor (Mikkelsen et al., 2013; Simley et al.,
2014; Fleming et al., 2014b; Scholbrock et al., 2016). By in-
stalling a spinner anemometer in front of the rotor, the mea-
surements are likely to be less influenced by rotor-induced
flow distortions, offering advantages over measurements ob-
tained from a sensor placed behind the rotor (Kragh et al.,
2013a). Simulations demonstrated that a spinner-mounted
continuous wave lidar can estimate yaw misalignment with
a median precision below 4° (Kragh et al., 2011). In field
tests, good correlation was found between estimates of yaw
error determined using a spinner-mounted lidar and those es-

timated based on met mast data (Kragh et al., 2013b). Fur-
ther field tests also demonstrated how a nacelle-mounted li-
dar can correct measurements from a nacelle-mounted wind
vane, resulting in increased yaw alignment and significantly
improved power capture compared to the uncorrected base-
line case (Fleming et al., 2014b).

Similar to forecasting techniques, lidar and other remote
sensing methods can allow for further performance gains by
providing wind field preview information to the yaw control
system. A lidar capable of providing preview wind direction
information for the next 60 s, harnessed using conventional
model predictive control (MPC) in the yaw system, could
yield an 8 % increase in power production and potentially
lead to reductions in fatigue loads during instances of ex-
treme wind direction changes (Spencer et al., 2013). Like-
wise, the performance of a yaw control system with access
to preview information from forward-facing lidar coupled
with a long–short-term memory neural network was tested
against a conventional yaw control system in simulations
(Chen et al., 2020). It was found that incorporating preview
information could increase power capture by up to 3.5 %, re-
duce yaw travel by up to 5.3 %, and reduce yaw events by up
to 3.9 %.

Other advanced measurement technologies similar to lidar
have also been tested, namely radar and sodar. For example,
a spinner anemometer consisting of three sodar sensors per-
formed well in field tests (Pedersen et al., 2008), although
it is unclear if such devices are commercially available yet.
Other improvement techniques involve the use of additional
conventional measurement equipment placed strategically
around the wind farm in order to better characterise the in-
flow (Chen et al., 2022).

6.3 Wind direction estimation

As discussed in Sect. 2, the wind direction can vary greatly
spatially and temporally due to variable meteorological con-
ditions, local topography, and wake effects. Therefore, on top
of the possible misalignment biases on local direction mea-
surements discussed in Sect. 5.2, the direction is often dif-
ferent at different locations in the wind farm. Hence, in a lot
of cases, even in the presence of enough sensors and/or ad-
vanced sensors, it is still difficult, if not impossible, to get an
accurate global picture of wind direction. Under these con-
ditions, distributed wind direction estimation techniques can
be considered.

The earliest example explicitly for control purposes was
presented by Doekemeijer et al. (2018). A non-linear Kalman
filter was used to assimilate data and update the parameters
of a medium-fidelity physical wind farm flow model with the
objective of achieving real-time closed-loop wake steering
control. However, only high-frequency changes in wind di-
rection were accounted for by the model, such that a constant
mean value was assumed over the entire simulation time in-
terval. In order to address lower-frequency changes in wind
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direction, Sinner et al. (2020) used a simpler polynomial-
based Kalman filter and updated the parameters of the model
through the assimilation of SCADA data. The major benefit
of this approach is the ability to provide smooth wind direc-
tion estimates, even in the case of faulty individual turbine
sensors, while only using measurements already collected at
the wind turbines.

Non-parametric methods have also been developed to es-
timate the wind direction. In the work by Annoni et al.
(2019a), comparisons were made between different non-
parametric approaches for estimating the wind direction at
turbine locations. The most accurate of these methods in
terms of MAE was a distributed consensus-based optimi-
sation approach. This approach was shown in simulations
to reliably estimate the wind direction across a wind farm
even when faults and/or biases were introduced in the wind
vane signals. The MAE of the consensus-based approach was
2.99° compared to 3.78° for the best averaging-based ap-
proach, weighted averaging, and 8.41° when using the sen-
sors alone. Additionally, Bossanyi (2019) also investigated
weighted averaging methods for improving wind direction
estimates. Short 30 min wind farm simulations showed that
these methods improved yaw control performance and by ex-
tension wind farm power production compared to using only
the turbine’s wind vane signal (Bossanyi, 2019).

More recently, Van Der Hoek et al. (2021) applied Gaus-
sian process (GP) regression to the problem of wind direction
estimation. GP regression is a non-parametric Bayesian ap-
proach to regression (Rasmussen, 2003), which can be used
not only to estimate the wind direction at any point within the
wind farm, but also for bias detection and correction. Thus,
the GP approach provided a balance between the qualities of
the parametric and non-parametric methods previously de-
scribed. Van Der Hoek et al. (2021) found that a simple GP
model with a squared exponential kernel was able to filter
the high-frequency component of artificially generated wind
direction data and reproduce the known low-frequency wind
direction variation at turbine locations better than standard
low-pass filtering. However, there was no discussion around
the choice of kernel to calculate the covariance or interpre-
tation of model hyper-parameters, both of which needed fur-
ther exploration to improve the model’s accuracy.

It is important to point out that in order to test these esti-
mation techniques, in most cases it was necessary to generate
an artificial “true” wind direction signal as input to the simu-
lations (Sect. 3.2). This entailed making strong assumptions
about the “true” wind direction, which limits how applica-
ble the results of this section are to real-world conditions.
Nonetheless, these methods provide an indication of how to
best generate realistic and dynamic wind direction changes
which could serve as inputs to control-oriented models.

6.4 Discussion of alternative yaw control

Errors in measurement of the wind direction at each turbine
can be reduced through a variety of alternative and novel
methods. The reduction in errors results in overall perfor-
mance improvements, often without any adaptation or aug-
mentations to the turbines themselves and with minimal al-
teration to the control architecture.

Forecasting methods, for example, have harnessed the pre-
view effect to pre-emptively yaw: reducing misalignment er-
rors and improving wake steering controllers (Howland et al.,
2022a) (Sect. 6.1). Similarly, remote sensing equipment such
as lidar systems has been shown to improve performance
through the same effect by measuring the incoming wind
some distance in front of the turbine while also improving
wind direction sensing in general (Sect. 6.2). However, re-
mote sensing technology comes with the added costs of the
equipment itself, the expertise needed to operate them effec-
tively, and uncertainties in how much turbine performance
can be improved by their use (Spencer et al., 2013). There-
fore, the relative size and cost of the wind farm needs to be
taken into account before making any decisions, since any
improvements in performance and reduction in loads may not
be substantial enough to justify the extra costs.

Estimation methods such as spatial filtering have been
shown in limited simulation scenarios to reduce signal uncer-
tainty and boost overall yaw controller performance without
any changes to the actuators or sensing equipment (Bossanyi,
2019; Annoni et al., 2019a; Van Der Hoek et al., 2021)
(Sect. 6.3). Spatial filtering can also make use of the preview
effect in downstream turbines by passing information from
turbines further upstream (Bossanyi, 2019).

Although these results are all promising, it is fundamen-
tally difficult to rigorously characterise the effectiveness of
wind direction forecasters, sensors, and estimators, particu-
larly due to the difficulties in generating “true” wind direc-
tion signals to compare them against. Indirect indicators like
power production can be used instead. However, these will in
general be much more sensitive to the wind speed rather than
the wind direction; hence caution needs to be taken when
setting benchmarks.

7 Wind farm flow control

Wind farm control (WFC) considers the entire wind farm as
a control system, with individual turbines acting as agents
in a network, helping to achieve farm-level objectives (Sin-
ner et al., 2021). Wind farm flow control (WFFC) is a sub-
field of WFC where the control objective is achieved through
manipulation of the intra-wind farm flow. Two promising
developments in the area of WFFC are wake steering con-
trol and communication-based spatial filtering, which aims
to enhance the accuracy and reliability of information used
by turbine- and farm-level controllers by combining together
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wind field measurements gathered from individual turbines
(Sinner et al., 2021).

This section briefly introduces examples of both wake
steering control, in Sect. 7.1, and communication-based spa-
tial filtering for yaw control (designated as collective yaw
control), in Sect. 7.2. The examples represent a small sub-
set of available control methods but are chosen as they are
designed to handle wind direction input variability directly.

7.1 Wake steering control

Wake steering control provides an example of WFFC sensi-
tive to wind direction changes. Although it can be achieved
through various methods, this section focuses on the most
popular method found in the literature: the use of static yaw
misalignment of upstream turbines. Similar to the objectives
of yaw control, in wake steering control, the goal is to bal-
ance yawing frequently enough to maintain power maximi-
sation while avoiding overuse of the yawing components
(Houck, 2022). Contrary to the objectives of yaw control,
however, upstream turbines are operated with an intentional
yaw misalignment to redirect their wakes away from down-
stream turbines, therefore mitigating potentially substantial
power losses caused by wake effects (Howland et al., 2019).
Wake steering controllers have been shown to result in farm-
wide power performance gains in both simulations and field
experiments (Howland et al., 2022b). Results from one field
experiment revealed power production gains of up to 14%
for a downstream turbine over a 10° wind direction sector
(Fleming et al., 2019); however, the total farm-wide power
gains (or in some cases losses) from wake steering control
are sensitive to atmospheric conditions, local terrain, and the
specific turbine model (Annoni et al., 2018b; Fleming et al.,
2019).

Commercial wake steering controllers are available; an ex-
ample is the Wake Adapt™ software offered by Siemens
Gamesa (Energy, 2022), but the details of their operation are
mostly proprietary. Because of this privacy, there is limited
information available on how the software works in general.
In the literature, wake steering controllers solve a dynamic
optimisation problem at the wind farm level in order to iden-
tify optimal yaw set points that manipulate the wind field in
such a way that power losses are minimised (Kheirabadi and
Nagamune, 2019). These set points are then tracked by wind
turbine level controllers.

Most wake steering controllers in the literature are de-
signed such that the yaw set points are optimised under sta-
tionary or steady inflow conditions. This has changed re-
cently by the incorporation of wind field variability into al-
ready established model-based yaw set-point optimisation
methods. For example, a steady-state wake model was en-
hanced by including yaw system deviations from set-point
values in the corresponding wake steering yaw set-point cal-
culations (Quick et al., 2017). This optimisation approach
has since been taken a step further such that the set-point

calculations were formulated as optimisation under dynamic
wind direction uncertainty, as opposed to static and deter-
ministic inflow (Rott et al., 2018). Furthermore, methods for
set-point optimisation under uncertainty, with special con-
sideration of wake model parameter uncertainty, resulted in
demonstrable improvements for open-loop and closed-loop
wake steering control (Howland, 2021).

7.1.1 Graph and cluster view

A simplification of wind farm flow, particularly in regard to
control of the turbines whose wakes interact, is the graph
or cluster view of the wind farm. The graph view is an ab-
straction of the wind farm as a collection of cells, nodes
(turbines), and edge weights between nodes, which change
depending on the incoming wind direction and wake effects.
The cluster view similarly groups turbines which are coupled
through their wakes. Clusters are defined such that the per-
formance of the turbines in each cluster is only significantly
affected by the operation of the other turbines in the same
cluster.

Examples of graph-based and cluster-based approaches
are those developed by Starke et al. (2021) and by Bernar-
doni et al. (2022) respectively. The graph-based model pro-
posed by Starke et al. (2021) employed edge weights based
on inter-turbine wake interaction intensity and time delays to
simulate how the effects of wind direction changes propagate
through the wind farm. The graph-based approach employed
a Gaussian wake model to calculate velocity deficits and the
wake profile (Shapiro et al., 2019). In contrast, the cluster-
based approach of Bernardoni et al. (2022) was model-free
and used only power data to identify wind direction changes
and turbines coupled through wake interactions.

Both types of approaches can lead to efficiency improve-
ments in a distributed control setting and reduce some of the
computational challenges associated with real-time control
applications, as only the relationships between selected tur-
bines are considered rather than the whole farm or velocity
field (Bay et al., 2018; Annoni et al., 2018a, 2019b; Bernar-
doni et al., 2020). An advantage of the graph-based approach
over standard wind farm flow modelling approaches is that
it can be integrated with a dynamic wind farm flow model
which accounts for changes to wind direction through a time-
dependent change in the graph structure. This overcomes the
difficulty and computational expense of implementing a dy-
namic wind change in models that have a fixed domain of-
ten with a fixed mean wind direction, such as LES, RANS,
or data-driven models trained for a single-inlet condition
(Shapiro et al., 2022).

Both the graph- and cluster-based approaches provide sim-
plifications for identifying and responding to changes in
power output due to changes in wind direction. However,
these simplifications are significant and have not been thor-
oughly validated yet. For example, calculating the correct
weightings in the graph-based approach relies on knowing
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the real wind dynamics, which in turn would ideally need
LES or similar to validate. Likewise, the model-free cluster-
based approach relies solely on power data correlated over
time windows on the order of tens of minutes, which intro-
duces limitations on how accurately interacting turbines can
be identified and how quickly changes in wind direction are
detected. To a greater or lesser extent, both approaches are
only able to capture mean wind field effects across the wind
farm, which limits their ability to quantify uncertainty in their
results as well as for use in a robust control framework.

7.2 Collective yaw control

Collective yaw control can be achieved through the use of
appropriate consensus algorithms for estimating wind condi-
tions at different wind farm locations (Sect. 6.3). The sharing
of data among turbines not only reduces signal noise via spa-
tial filtering (Sinner et al., 2021), but it can also help to iden-
tify and correct any faults or bias in individual turbine mea-
surements (Annoni et al., 2019a; Van Der Hoek et al., 2021),
which not only confers greater control robustness but also
extra redundancy against equipment failures. The reduction
in noise and error terms through consensus methods means
they can be used to improve yaw and wake steering controller
performance through collective yaw control. Table 2 outlines
past research and selected findings.

The ability of collective yaw control to improve perfor-
mance was first demonstrated by Bossanyi (2019) and then
by Sinner et al. (2021). The most simple wind direction es-
timation technique, based on averages weighted by distance
from nearby turbines, was investigated in both studies. It was
found that power production can be improved over short sim-
ulation periods compared to the use of conventional control
methods by up to 0.5 % in the case of yaw control alone and
4.7 % when combined with wake steering control.

It was also highlighted by Bossanyi (2019) how some tur-
bines in the wind farm can benefit from preview information
from the turbines situated further upstream. During 30 min
simulations, the slowly reacting yaw system was able to pre-
emptively activate in anticipation of a change in direction.
This effect was found to increase power production while
also reducing both the total yaw travel and the total number
of yaw events significantly (yaw duty, Table 2).

An alternative method based on a simple GP regression
method introduced in Sect. 6.3 was investigated by Van
Der Hoek et al. (2021). It was found that unnecessary wind
turbine yaw activity was reduced by ≈ 20% through the use
of an online version of the GP regression method incorpo-
rated into a collective yaw control system where the GP
model was updated every 10 min with new measurements.
However, the online model created less accurate predictions
over time, indicating more sensitivity to the input data than
the offline model and a need for greater refinement of the
methodology.

7.3 Discussion of wind farm flow control

The performance of wind turbines clustered together in a
farm is inextricably coupled with the farm flow conditions,
especially the inflow wind direction. Therefore, wind farm
flow control solutions that aim to regulate wind farm per-
formance need to consider wind direction variability to be
effective (Starke et al., 2021).

First of all, the use of robust control solutions that account
for the uncertainties in input wind direction signals in their
calculations has been shown to alleviate some of the prob-
lems associated with wind direction variability and bring
about improvements in wake steering control (Rott et al.,
2018; Quick et al., 2020) (Sect. 7.1). More understanding of
the uncertainty bounds on control system inputs is needed
in order to better evaluate the benefits and limitations of any
given control approach (Shapiro et al., 2022).

Secondly, accurate wind direction measurement and esti-
mation are critical for the implementation of successful wind
farm and turbine controllers. Collective yaw control has been
shown to offer slight improvements in power productions
alongside substantial reductions in yaw activation (Bossanyi,
2019; Van Der Hoek et al., 2021) (Sect. 7.2). However, ben-
efits were only seen in simple simulated scenarios over short
time intervals; therefore, more investigation is necessary.

8 Discussion

Wind farms are routinely subjected to changing wind direc-
tions, yet the effect on wind farms under realistic wind di-
rection changes remains understudied (Shapiro et al., 2022).
Accounting for the dynamic effect of these changes in high-
fidelity wind farm flow models has been shown to improve
power output estimates (Munters et al., 2016) and result in
more effective yaw and wake steering controllers compared
to approaches that assume a static wind direction (Rott et al.,
2018; Simley et al., 2020a).

Testing and validation of new control systems in simula-
tions is essential before deployment in real-world wind farms
and relies on the use of wind farm flow models. These mod-
els need to make simplifying assumptions about the full flow
field and neglect most or at least some of the variability
present in real-world conditions. These necessary assump-
tions have led to wind direction variability being mostly over-
looked when it comes to assessing overall wind farm perfor-
mance.

As discussed, most of the control-oriented modelling of
wind direction up to the present has only been analysed
over short time periods, in limited atmospheric conditions,
and with a focus purely on the objective of power gain and
not overall performance improvements. Ultimately, research
needs to assess the true impact of wind direction on wind
farm performance, specifically the impact on LCOE. Hence,
Sect. 8.1 introduces the critical challenges to be solved for
this objective to be achieved.
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Table 2. Selected details of past research. CYC – collective yaw control, WSC – wake steering control. Note that n/a stands for not applicable.

Software used Control method Consensus method Power Yaw duty Identifies Paper
gain reduction yaw bias

LongSim CYC Weighted average ≈ 0.2% ≈ 24% No Bossanyi (2019)
FLORIS Version 2.1.1 CYC, CYC +WSC Weighted average 0.5%, 4.7% 46.1%, 17.0% No Sinner et al. (2021)
Custom in-house CYC Gaussian processes n/a ≈ 20% Yes Van Der Hoek et al. (2021)
Custom in-house CYC Distributed optimisation n/a n/a Yes Annoni et al. (2019a)

8.1 Critical challenges

From the literature, three critical technical challenges in
control-oriented wind direction research can be identified:

1. Improved measurement of wind direction. Reliable and
comprehensive wind direction data need to be obtained
for model testing and validation along with agreement
on standards of how wind direction should be measured
and conditioned before use, particularly in relation to
flow distortions, atmospheric stability, and height above
the surface. Measurement campaigns to produce large
data sets for this specific purpose are imperative.

2. Modelling realistic wind direction spatial and temporal
variability with reasonable accuracy and computational
cost. Creation of validated and tested statistical and/or
physical models that cover the full envelope of opera-
tional conditions are necessary to perform less compu-
tationally intensive data-driven wind farm flow simula-
tions. Complementary to this, there is a parallel need
for continued development of high-fidelity meso-scale
coupled LES models to analyse the important physical
drivers of variability in more detail, as well as to bet-
ter understand the interactions between wind direction
variability and wind turbine wakes.

3. Development of a detailed scientific understanding of
performance effects of wind direction variability and
yaw misalignment on wind turbines and wind farms. Ex-
tensive measurement campaigns are required to record
turbine loads and power production data coupled with
wind direction and yaw misalignment data. First and
foremost, these measurements would allow for a proper
scientific understanding of cause and effect. Only then
can better control-oriented models be designed and
evaluated for prediction of power production and loads
under yaw misalignment, which in turn can inform con-
troller synthesis.

Addressing these challenges requires interdisciplinary re-
search efforts that combine expertise from meteorology, con-
trol engineering, data science, and wind energy systems.
Whilst the three critical challenges outlined above must be
accomplished, there is a further critical dissemination chal-
lenge of embedding wind direction models within turbine
and farm flow control research, with respect to both design
and testing. The first steps in this process are the following:

– knowledge exchange and guidance for researchers in
adjacent research areas as to the importance of wind di-
rection modelling

– making wind direction models freely available and us-
able by researchers within other areas.

Tackling these challenges will have an important positive im-
pact on wind turbine and farm modelling, design, and opera-
tional analysis. It will contribute to improve performance and
reliability and, ultimately, help to reduce the LCOE of wind
energy.

9 Conclusions

Wind direction variability plays a critical role in the oper-
ation and performance of wind farms. It is inherently non-
linear and non-stationary due to complex atmospheric pro-
cesses and the turbulent nature of wind flows. Additionally,
wind direction varies both spatially and temporally, making
it challenging to develop models that capture all of these ef-
fects at once. Site-specific conditions, such as wake and ter-
rain effects, can also play a substantial role in wind farm per-
formance.

The direction of the inflow relative to the rotor plane af-
fects the aerodynamics of wind turbines in complex and un-
clear ways, which has implication for overall performance in
terms of both power and loading. Incorporating such effects
into wind farm flow models is important for controller design
and testing. Wind farms are routinely subjected to chang-
ing wind directions, sometimes extreme changes, that need
to be taken into account in wind farm flow control solutions
that aim to regulate wind farm performance (Starke et al.,
2021). However, the uncertainty in wind direction measure-
ments makes the assessment and implementation of control
solutions more challenging, since accurate representations of
cause-and-effect relationships for control purposes are diffi-
cult. The challenge is compounded by the fact that the be-
haviour of wind turbines and wind farm flow under realistic
wind direction changes remains understudied (Shapiro et al.,
2022).

The design of the yaw control system needs to incorpo-
rate important aspects of both physical analysis and statisti-
cal analysis, such that it can optimise the turbine’s operation
while minimising the LCOE. The critical challenges associ-
ated with achieving this optimisation can be separated into
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three broad categories: improved measurements of wind di-
rection, realistic dynamic wind direction modelling, and farm
and turbine performance effects of wind direction variability
yaw misalignment.

As wind energy plays an increasingly important role in
global energy production, the development of accurate and
versatile control-oriented models will ensure the continued
performance, reliability, efficiency, and competitiveness of
wind energy in the years to come.
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