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Abstract. Maps showing the mean wind speed only give an inaccurate indication of the quality of locations
for future wind power developments. Calculating the capacity factor and plotting that on a map gives a better
indication of the expected mean power output, but the outcome depends on the turbine choice. In this article,
we introduce a general step-by-step method for improved visualisation of potential wind power locations. First,
the mentioned dependency on turbine choice is compensated for by putting the expected mean power output
in relation to the expected mean power output of all other wind parks of the region. This relative capacity
factor results in comprehensive wind resource maps and can be plotted for the situation today and also for a
future scenario. Since the expected income of a potential wind park is the product of mean power output and
mean market value, looking at the relative capacity factor only does not give the full picture. The mean market
value is influenced by the merit order effect that is mainly driven by covariance with other wind parks and the
capacity factor’s relation to production at low-wind moments. A market value factor is introduced that captures
the expected mean market value relative to other wind parks, based on a simplified power market model. Finally
the Renewable Energy Complementarity (RECom) index is defined, combining the relative capacity factor and
market value factor into a single index, resulting in RECom maps. This map can comprehensively show the

revenue potential of different locations for potential future wind power developments.

1 Introduction

The Energiewende (energy transition), with its shift from
fossil-fuel-based electric power sources to weather-driven
sources, leads to increasing total variance of the generation
fleet’s power output (or more correctly the available power
output). This variance is problematic for the power system,
as it makes the mandatory match between generation and
load more complicated (Hodge et al., 2020). There are sev-
eral means to cope with increasing power production vari-
ance, such as electric energy storage or load flexibility from
hydrogen electrolysis. These measures can compensate for
the variance, and they will be essential for any sustainable

power system. However, it is advantageous from a power-
system-balancing perspective if total variance can be kept
low, reducing the need for such countermeasures and keeping
balancing cost lower.

Spatial diversification can help to reduce or limit vari-
ance (instead of compensating for it). This approach is gain-
ing increasing importance for the siting of renewable energy
sources, and it is an effective countermeasure to limit the in-
creasing variance of the power output from weather-driven
renewable energy sources such as wind power (Vrana et al.,
2023). It can be imagined as a geographical low-pass filter
on the wind resource fluctuations, limiting the impact of lo-
cal weather phenomena, such as a storm.
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The European Green Deal and the European Commis-
sion’s dedicated offshore renewable energy strategy envision
more than 300 GW of offshore wind parks in Europe (Euro-
pean Commission, 2020). A large share of it is co-located in a
rather small area: the southern North Sea. The offshore wind
power developments in Europe are an example of poor spatial
diversification. Such a geographical concentration increases
total variance of the wind power generation fleet, with all the
negative side effects.

When looking further into the future, it will become im-
portant to spread wind power development better in space.
This can be driven either politically by strategic selection of
wind development areas in a dispersed manner (internation-
ally) or economically by investors who actively seek to avoid
co-location with too many existing wind parks for improv-
ing potential market revenues. To support this needed spatial
diversification, a new comprehensive visualisation tool has
been developed: Renewable Energy Complementarity (RE-
Com) maps. The tool is described in this article.

RECom maps combine information about the energy re-
source at a given location and the expected market value of
power capacity installed in this location, resulting in an in-
dicative revenue potential. The cost for wind power develop-
ments at these locations (depending e.g. on water depth and
distance to shore) is, however, not included; the RECom only
addresses revenues, not costs.

Somewhat similar approaches exist that map wind power
according to estimated levelised cost of energy (Martinez
and Iglesias, 2022; Sgrensen et al., 2021). Although highly
relevant, such mapping does not capture the fact that wind
power impacts the power prices, generally reducing its mar-
ket value with growing wind power shares (Hirth, 2013). An
interesting example of mapping based on market value has
been made for photovoltaics (PV) in Switzerland (Dujardin
et al., 2022), but there the focus is on altitude effects and not
geographical distribution.

We show RECom maps applied to an example of offshore
wind power, but the methodology is not wind-power-specific
and can likely be used for solar power or for mixes of differ-
ent weather-driven renewable energy sources.

Here, we have chosen to focus on offshore wind as a sin-
gle parameter to keep the message clear and because it is a
particularly important factor in the North Sea region. Adding
more parameters could give a more accurate estimation of
future market values but at the cost of introducing more as-
sumptions and uncertainties, obscuring the main message of
the article. The main point of the article is to provide a gen-
eral method for visualising the quality of locations for future
wind power development without relying on market mod-
elling. To be useful in this way, it needs to rely on as few as-
sumptions and input parameters as possible. To be clear, such
a visualisation tool is certainly not an alternative to detailed
energy system modelling and market analysis but a useful
supplement for the general discourse surrounding the energy
transition.
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Figure 1. Wind park power curve I.
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Figure 2. Geographical resolution.

2 Data and assumptions

This section describes the data used for estimating wind
power resources in the North Sea and assumptions regarding
future deployment of offshore wind parks.

2.1 Wind speed time series

To estimate future wind power time series for arbitrary loca-
tions in the North Sea area, we use numerical weather model
data for historical years. This is a common approach. In our
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Figure 3. Assumed wind power capacity in the North Sea.

case, we have obtained wind speed data at a 100 m height
for the 5-year period from 2018 to 2022 from the MERRA-2
dataset (Molod et al., 2015), using the convenient Renew-
ables.ninja (Pfenninger and Staffell, 2023) interface.

2.2 Wind power

Wind speed time series have been converted to wind power
per installed capacity by applying a power curve I represen-
tative of a large wind park:

pi(t) =Tvi(®)]. ey

This power curve has been obtained by a simple Gaussian
filter with standard deviation of o = 0.2 applied to a single
wind turbine power curve (Staffell and Green, 2014; Staffell
and Pfenninger, 2016); see Fig. 1. This is done automatically
by Renewables.ninja.

The Gaussian filtering method to obtain wind park power
curves is a simplification that does not include wake effects,
and the estimated capacity factors are therefore high. How-
ever, for the present study we consider this approach suffi-
cient, especially since this upward bias is compensated for
later on (see Sect. 3.3) and because we are considering a fu-
ture wind power scenario where wake losses comprise only
one of many uncertainties.

In reality, a wind park power curve is influenced by several
factors (e.g. the choice of the wind turbine type and wind tur-
bine spacing). As these influencing parameters are selected
according to the wind resource, the wind park power curve
depends on the related wind resource. These considerations
are, however, not accounted for in the approach presented
here, and for simplicity a single power curve has been used
for all cases.

The assumed hub height for wind speeds, the implicit wind
shear assumption, the rough geographical resolution and the
simple wind power curve are all simplifications/assumptions
that create certain biases in the calculations. However, as the
final results are concerned with relative comparisons of dif-
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ferent locations, uniform biases will tend to drop out and
therefore be less important for the maps.

2.3 Geographical resolution

The wind speed and wind power time series were generated
for a latitude—longitude lattice at 1.0° intervals in the lati-
tude direction and 1.5° intervals in the longitude direction.
This is indicated by the black dots in Fig. 2, using a Lam-
bert equal-area projection. Boxes around these points have
been defined for grouping wind power capacity. Only off-
shore wind power within these boxes is considered in the
present study. With this lattice, the data boxes are approxi-
mately square at the southern rim of the studied area (50° N).
Since longitude lines are closer farther north, the boxes grad-
ually become more rectangular with smaller areas. This does
not affect the results in any significant way. Subsequent anal-
yses are all based on this geographical resolution. It is clear
from Fig. 2 that the resolution is crude, especially in the
coastal areas where the wind changes a lot more in space
than far offshore.

2.4 Wind power deployment scenarios

To plot a RECom map, it is necessary to know the main pa-
rameters of all wind parks in the considered region. This can
be either the real situation, as it is today, or a future scenario,
as applied in this article.

Assumptions for the total offshore wind power capacity
per country have been based on ENTSO-E Ten-Year Net-
work Development Plan (TYNDP) 2022 “distributed energy”’
storyline assumptions (ENTSO-E, 2022), except for Norway,
where the new target of 30 GW wind capacity by 2040 is con-
sidered instead.

The geographical distribution of the wind power capacity
has been obtained using public information available via the
European Marine Observation and Data Network (EMOD-
net) (2023) database. This database is a synthesis of national
data and includes wind park polygons representing existing
and planned wind parks and in most cases their (assumed)
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power capacity. Wind parks in early planning often lack in-
formation about expected power capacity.

Using these data sources, the wind deployment scenarios
for 2025, 2030, 2035 and 2040 have been determined accord-
ing to the following principles (see Fig. 3):

1. In cases where the Emodnet data indicate too high a ca-
pacity for a country, wind parks are (randomly) included
until the target capacity is reached.

2. In cases where the Emodnet data indicate too low a ca-
pacity for a country, the missing capacity is added to
planned wind park areas that have an unspecified ca-
pacity in the dataset.

3. For 2040, some wind park locations are added manu-
ally in line with tentative plans for the various coun-
tries (Arup, 2022; Rijkswaterstaat, 2022).

4. Finally, capacity is scaled up or down so that the sum
per country matches the country target for the specific
year.

5. For 2035, the averages of 2030 and 2040 target capaci-
ties were assumed.

3 Wind resource maps

The state of the art to assess the suitability of locations for
wind power developments is to draw wind speed maps, often
called a wind atlases.

3.1 Mean wind speed

It is common to use maps that show the mean wind speed for
the goal of assessing good locations for potential new wind
parks (Hasager et al., 2006). Such a plot is shown in Fig. 4.
This map relies on nothing but the mean wind speeds at a
given height (Eq. 2) based on data taken from the sources
mentioned in Sect. 2.1.

v; = mean (v; (1)) (2)

3.1.1  Room for improvement

Mean wind speed is indeed a valid indicator for the quality
of a site for wind park developments, but it does not give
the full picture, as the relationship between wind power and
wind speed is highly non-linear. This can be best shown with
an unrealistic example:

— Site A has 6 months of 25ms~! and 6 months of
Oms™!.

— Site B has 12 months of 12.5ms™!.
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Figure 4. Mean wind speed at hub height [m s~

Both sites have identical mean wind speeds and will ap-
pear the same on such a mean wind speed map. However, the
energy output of a wind park at site A will be significantly
lower than for site B. This phenomenon is not accounted for
when using mean wind speed maps. It is therefore better to
plot capacity factor maps, as explained in the following sec-
tion.

3.2 Capacity factor

A better indicator of wind power potential is the expected
capacity factor p;, i.e. the mean power output per installed
capacity:

P; = mean(p;(¢)) = mean(I'[v;(1)]). 3

In addition to data for wind speeds, this step requires as-
sumptions about the power curve (Sect. 2.2). It gives a better
indication of the quality of sites for potential wind parks than
the mean wind speed.

3.2.1 Room for improvement

Using the capacity factor is already an improvement com-
pared to the mean wind speed map, as it gives a more accu-
rate indication of the expected energy output of a wind park.
However, there is still a problem: the result depends on the
power curve I'(v) used. It is not clear if a capacity factor cal-
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culated to a specific value (e.g. 45 %) indicates a good site or
a bad site.

— If a power curve with large rotor is used (low specific
power), 45 % might not be very good.

— For another power curve with a smaller rotor (high spe-
cific power), 45 % might actually be quite good.

3.3 Relative capacity factor

We define the relative capacity factor, which compares the
expected capacity factor (under given assumptions) to the
mean capacity factor for the considered region (under the
same assumptions). This manages to correct, to some level,
for various biases introduced by the assumptions needed for
the computation, regarding not only the choice of power
curve but also other factors as mentioned above. Capacity
factor maps may change a lot depending on assumptions,
whereas relative capacity factor maps change significantly
less, adding robustness to the approach. This enables the
comparison of various capacity factor maps that might have
been plotted with, for example, different individual power
curves. The relative capacity factor also needs to be intro-
duced in order to normalise the capacity factor at a value of
1 for the later inclusion of the market value impact.

First, we write the expression for the normalised aggre-
gated wind power output, which is used as the baseline:

1 P
Potal() = =— > Py() =Y =——T[ou(0)]. )
total wew weWw {total

W denotes all wind parks and f’tota] = ZWEWISW is the to-
tal installed capacity, as given by the assumed deployment
scenario (Sect. 2.4). Here we consider only offshore wind
parks, but this could readily be generalised to include on-
shore wind parks. Now we define the relative capacity factor
ﬁlr.el as the capacity factor of location i divided by the mean

capacity factor of all considered wind parks:

ﬁfelz Di _ mean (p; (1)) ~
! ﬁtotal mean (Ptotal (t))

&)

The relative capacity factor ﬁ?ﬂ has a baseline value of 1.
It is a meaningful quantity to plot on a map (see Fig. 5) as a
measure of the wind resource, where the outcome is less de-
pendent on the specific choice of the wind turbine, the spac-
ing between wind turbines, details on wake consideration,
etc. It simply shows how the wind resource is distributed with
a neutral index that is on average equal to 1.

3.3.1 Room for improvement

Even though the shown wind power map nicely indicates
how much power can be expected to be harvested at given

https://doi.org/10.5194/wes-9-919-2024

Figure 5. Relative capacity factor ﬁ;el (2040) — the dotted line in-
dicates a baseline value of 1.

locations, it lacks an indication of the revenue that can be ex-
pected from that generated power. Wind power that is gener-
ated simultaneously with many other wind parks will be val-
ued less on the electricity market. It is therefore not enough
to only look at the wind resource for identifying good lo-
cations for potential new wind parks. It is important to also
look at the placement of other wind parks and the covariance
between wind parks.

4 Covariance of wind power

Even though the relative capacity factor map provides a good
overview of which location will likely provide a good power
output, it does not say anything about which location will
provide good revenue on the electricity market.

Due to the merit order effect (Sensfufl et al., 2008;
Antweiler and Muesgens, 2021; Ketterer, 2014), it can be ex-
pected that wind power output that comes at time when many
other wind parks provide high output as well will achieve low
value on the market. It can also be expected that wind power
output that comes at times when the other wind parks can-
not produce electric power will be valued more highly on the
market. A suitable mathematical concept to assess these phe-
nomena is the covariance.

Wind Energ. Sci., 9, 919-932, 2024
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4.1 Covariance

The covariance between two time series X and Y is defined
as the mean value of the product of their deviation from their
respective mean values; i.e.

Cov(X,Y)=mean ((X(1) — X)(Y (1) - Y)). (6)

The variance of a time series X (¢) is its covariance with
itself, and the standard deviation oy is the square root of the
variance; i.e.

0% = Var(X) = Cov(X, X). @)

The correlation coefficient is the covariance normalised by
the standard deviations and will always have values in the
interval from —1 to 1:
Cov(X,Y)

0x0y

Corr(X,Y) = (3)
For the variance of a sum of independent variables, the
following general expression holds:

Var(X + Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y). )

Covariance is a mathematical operation that is very use-
ful for spatial planning of renewable energy. Often correla-
tion coefficients are discussed for such purposes, but that has
disadvantages as they only indicate the similarity of the fluc-
tuations of the weather between two locations and no infor-
mation about the amplitude of the fluctuations. Covariance
includes both and is therefore more appropriate for assessing
potential sites.

An example is two nuclear power stations giving an al-
most flat output profile, with tiny but identical fluctuations.
Is that correlated? Yes. Is it a problem? No. The tiny fluc-
tuations might be highly correlated, but that does not matter
because they are so small. In this case correlation is high, but
covariance is low.

4.2 Covariance of normalised power time series

Let us introduce some simplifying notation. We express
power time series in terms of capacity and normalised power
output, Py(t) = Py - px(t). Furthermore, we write

o (px(1)) = oy, (10)
Var (p(1)) = 0> = var,, (11)
Corr (px(1), py(1)) = corry y, (12)
Cov (px(1), py(1)) = covy,y. (13)

4.3 Relative covariance

For a candidate new wind park (indicated with the index “i”’)
and the entire wind power fleet (indicated with the index “to-

tal”), we define the relative standard deviation ol.rel with a
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baseline value of 1, similarly to the relative capacity factor
ﬁlfel defined in Eq. (5):
o= T~ (14)

Ototal

We also define the relative covariance covlr.e] with a base-
line value of 1:
rel _ COVitotal

rel
CoV;” = ——— =0; - COIT; total - (15)
Variotal

The relative covariance consists of two terms. The first
term, al.rel, is generally larger than zero because aggregation
effects lead to a generally lower variability in the entire wind
power fleet as compared to individual wind parks. However,
there is no mathematical necessity for it to always be larger
than 1. At sites with very low wind speeds, values lower than
1 occur. The second term, corr; (otal, 1S by definition limited
to be at most equal to 1.

The product of these two terms, covfe , can therefore be-
come both larger and smaller than 1. It gives an indication of
the quality of a site for potential wind parks with regards to
the covariance of the wind power output of that site with the
output of the complete wind power fleet.

The relative covariance can be interpreted as the ratio of
how much the overall variance increases when adding a new
wind park of infinitesimal capacity at a specific location i
compared to scaling up total capacity by the same amount.
To see this, consider an infinitesimal capacity increase, §p,
and the resulting increase in overall variance, §). If we add
a new wind park i, we obtain

1

8Vi = Var(Proga1 + pidp) — Var(Prota), (16)
= (8p)*Var(p;) +28p ProwiCov(pi, Protal)- (17)
N——— —
—0

Here, we have suppressed the time dependence, p; = p;(t),

Puotal = Prowt(t) and Proa = P progal(1) and used Eg. (9).
Similarly, if we scale up existing capacity by the same

amount, §p, we obtain
8Vscale = Var(Potal + Protaidp) — Var(Pogal), (18)
= (8p)*Var(protal) + 28 P CoV(protal, Protal). (19)
—_———

—0

Since 8p is infinitesimal, the (8p)> terms disappear, and we
can conclude that the ratio is indeed the relative covariance
from Eq. (15):

Vi COViotal
Svscale

covel, (20)
Variotal

Now we can summarise what different values of the rela-
tive covariance for a new wind park at location i imply:

https://doi.org/10.5194/wes-9-919-2024
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- covlr-el > 1 gives more total variance increase than a
flat scale-up of the existing wind power fleet (§V; >
8Vscale), Which is the worst case.

- covf.el = 1 gives the same total variance increase as scal-
ing up the existing wind power fleet (§V; = §Vscale),
which is the baseline case.

-0< cov§el < 1 gives less total variance increase than a
flat scale-up of the existing wind power fleet (0 < §V; <
8Vscale), Which is good and possibly the best realistic
case.

- covi® =0 does not correlate with the existing wind
power fleet and therefore does not influence total vari-
ance (§V; =0).

- cov?el < 0 anti-correlates with the existing wind power
fleet and reduces total variance (§V; < 0), which is the

theoretical best case.

4.4 Covariance equivalent installed capacities

Based on the relative covariance, an expression for the co-
variance equivalent installed capacity can be formulated:

P = Progar - coviel. 1)

The covariance equivalent installed capacity has the unit
watts (W), which is suitable for understanding and commu-
nication. On the contrary, it should be noted that the variance
and covariance have the unit watts squared (W2), which is
somewhat non-intuitive and difficult to interpret. However,
it remains challenging to understand what the covariance
equivalent installed capacity exactly means. It can be inter-
preted in the following way.

The covariance equivalent installed capacity with full cor-
relation with i and the same variance as i has the same co-
variance with i as the total existing wind power fleet.

The covariance equivalent installed capacity gives an indi-
cation of how correlated a potential wind park at location
i is with the wind power fleet. It shows how much wind

https://doi.org/10.5194/wes-9-919-2024

(c) 2035 (d) 2040

power will fluctuate “synchronised” with the potential new
wind park. Even though complicated, it might be perceived
as easier to understand than covariance. It can also be used
to show how crowded the southern North Sea will become in
the future; see Fig. 6. It is a nice way to “compress” all the
individual wind parks in Fig. 3, achieving a simpler graphi-
cal representation of the influence of the existing wind power
fleet.

In Fig. 6, we show the covariance equivalent installed ca-
pacity maps for all the four scenario time steps. The plots
nicely illustrate how the situation gets worse over time as
more wind power capacity is added.

However, the covariance equivalent installed capacities
shown do not directly indicate good or bad sites for new wind
parks. A value of 50 GW might be bad in 2025, but it is good
in 2040, as the levels then are generally much higher.

4.5 Implications for wind power maps

Adding a new wind park in the yellow area of Fig. 6d, which
will reach high power output mostly at times when a large
part of the North Sea wind power fleet is doing exactly the
same, might not be a good idea. Even if the wind resources
in that area are good, as shown in Fig. 5, the produced power
will likely achieve a reduced value on the electricity market.
It is therefore not sufficient to look at relative capacity factors
as in Fig. 5 for determining good locations for future wind
power developments. Another type of map is needed that ac-
counts for both the wind resource and the complementarity
with other wind parks. This is introduced in the following
section.

5 RECom maps

In this section, we develop Renewable Energy Complemen-
tarity (RECom) maps, which aims to address the drawbacks
for normal wind resource maps and which accounts for co-
variance with existing wind parks.

Wind Energ. Sci., 9, 919-932, 2024
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5.1 Complementarity factor

Now, based on the relative covariance cov?el in Eq. (15), the
complementarity factor is defined:

®; :1+ﬂ<1 —cov{.el> ~ 1. (22)
N ——’

~1

A map displaying the complementarity factor is shown in
Fig. 7. The complementarity factor has a baseline value of 1
and contains the same information as the relative covariance
cov?el, but it is expressed in a format which corresponds well
with the relative capacity factor ﬂel from Eq. (5) (shown in

Fig. 5), as it shares the following properties:
— Higher values indicate better sites.
— Average sites score a value of 1.

The parameter § is a positive number and represents the
weighting of how much higher ®; an uncorrelated produc-
tion profile achieves compared to a fully correlated produc-
tion profile. There is no correct quantification of §; it is sim-
ply a choice. We chose to operate with 8 = 0.5. The sensitiv-
ity towards the choice of 8 is elaborated on in Sect. 6.4.

The complementarity factor ®; gives an indication of the
value of wind power, as it accounts for covariance and the
fact that uncorrelated wind power is worth more than cor-
related wind power. It does however not give the full pic-
ture regarding the value of wind power. One central aspect is
missing: the fact that higher capacity factors result in higher
average wind power values, as the additional energy capture

Wind Energ. Sci., 9, 919-932, 2024

(compared to a site with a low capacity factor) happens dur-
ing low-wind hours. This additional production is therefore
worth more on average than the baseline production during
high-wind hours. To capture this relevant phenomenon, the
market value factor is introduced.

5.2 Market value factor

Let us try to define a quantity that is an indicator of market
value. The obtained income from a wind park depends on the
capacity factor and the market price. Wind power has low
marginal costs, so more wind power generally means lower
prices. For simplicity, let us consider the price y to be a lin-
ear function of the total wind power output pia(¢) with a
negative slope:

YO =5 = 2 (Protal () — Progal) - 23)

total
Here, a bar denotes a mean value. The parameters have been
chosen such that at mean wind power, piotal(t) = Piotal, WE
get y(¢) =y. And if there is no wind power, pia(?) =0, we
get y(t) = ¥(1 + ). So the « parameter indicates how much
higher the price is when there is no wind compared to mean
wind.

With this assumption, we can compute an expression for
the capture price, i.e. the mean value of the electricity price
weighted according to energy production. For wind park i,
this is

D (131‘ pi Y) 1
— —mean(p;y)

Vi= T
D (Pipi> Pi

oy — — >
= ———mean ((pi —Pi)(Protal — ptotal)) +y
PiProtal
lofi

o

= (1- a2 2 corty i ) 7. 24)
Protal Pi

where we have simplified the notation by omitting the time

dependence, p; = pi(t), Piotal = Protal(t) and y = y(r). For
the total wind power fleet, we similarly obtain

2
U —_—
Viou = =——mean (porary) = (1 - =52 )3. 25)
total Ptotal

We define the market value factor \I/}i“ as the ratio of these:

. V: Covl_rel
‘P}‘“=—’=1+ﬂ(1— _’1>~1- (26)
Viotal §e
———
~1
Here, ﬁfel = ﬁiial and B is a positive number defined

through ﬁ =1- a% and is given by the characteristics
total
of the power market and the total wind power fleet.
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The parameter § represents the expected value increase in
an uncorrelated production profile compared to a fully cor-
related production profile. It corresponds nicely with the pa-
rameter B from the complementarity factor ®; in Eq. (22) in
the previous subsection. The choice of the parameter § has a
significant influence, although there is no correct way to de-
termine it, as the future behaviour of the electric power mar-
ket depends on many uncertainties. The sensitivity towards
the choice of § is elaborated on in Sect. 6.4.

The market value factor \Ililin has a baseline value of 1. It
is similar to the complementary factor ®; but with the differ-

ence that the factor cov;® lis replaced by a modification

,rel ,
that precisely addresses the missing aspect of ®; identified
above.

For the data we use in this article, oiotal = 0.22, Piora1 =
0.53 and a value g = 0.5 therefore corresponds to o = 1.9.

Remember that covrel = COIT; tota] * o“”l From Eq. (26), it
can be seen that if corr; tora1 = O, then \IJh“ =1+8>1.1f
COIT; otal > 0, then \Ilhn decreases for larger values of orel
This is natural, as more variability correlated with ex1st-
ing variability is bad. In the case of negative correlation
COIT; total < 0, \Ifgi“ increases for larger values of al.rel. In that
case, larger variance improves the complementarity. For a

“typical” wind park location, \Illm 1; for bad locations, it
will be less than 1, and for good locations, it will be larger
than 1.

It should be noted that the calculation of the market value
factor is based on a strongly simplified and idealised linear
market model, which cannot fully represent the complexity
of the power market price-setting mechanisms. It only cap-
tures the general trend and cannot include non-linearities of
the merit order curve and other relevant phenomena. The
influence of the electricity transmission network is not in-
cluded, leaving out grid congestion and power market price
zones that can have significant influence on the revenues.
Such simplification was assessed to be necessary to realise
a simple index, where the main aspect to capture was the
general trend. National legislation can also influence the rev-
enue potential for a wind park (e.g. though support schemes
and renewable energy policies), but such phenomena are not
accounted for here.

5.3 Exponential extrapolation

To represent the relation between wind power output and
electricity market revenue, a simplified linear relation was
used; see Eq. (23). This linear assumption is advantageous,
as it enables the derivation of comprehensive equations such
as Eq. (26). But in contrary to its satisfactory microscopic
characteristics, the linear assumption does not have accept-
able macroscopic characteristics.

The relative covariance cov;® can in theory be any real
number, leading to \Illm potentlally being any real number.
Negative values of \IJI"‘ however, do not make sense as the

rel
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Figure 8. Linear vs. exponential function.
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Figure 9. Market value factor ;" (2040) (8 = 0.5).

value of the ability to harvest energy from the wind cannot
become negative. In the worst case, the value can converge
towards zero if there is an abundance of available power in
the system, resulting in high levels of curtailment.

To assure that the market value factor \p}in remains posi-
tive for all possible input, it is therefore necessary to select
another function (other than linear) with acceptable global
behaviour. This function would need the following proper-
ties:

— converges towards zero for large positive input,
— diverges towards infinity for large negative input,

— behaves similar to the previously used linear function in
the realistic range for wind power data.

Recall that the Taylor expansion of the exponential func-
tion is

:32
eﬁ(l—x) =14+801-x)+% (1 —x)2 27
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Figure 10. Relative capacity factor, market value factor and RECom index (2040) (8 = 0.5).

Equation (26) is therefore the first-order Taylor expansion

rel
of the exponential function e~ for x = ¢
approximation of it if x ~ 1. This exponential function has
the desired properties, including the same value and same
derivative in the baseline point x = 1. We therefore introduce

the exponential version of the value function:

and a good

rel
o3F)
WP = AT A (28)

It behaves similarly at the baseline point but ensures ac-
ceptable global behaviour (staying always positive). The re-
lation between the linear function and exponential function
is shown in Fig. 8.

The resulting market value factor in its exponential form
is plotted in Fig. 9.

5.4 RECom index

Based on the relative capacity factor ﬁfel and the market

value factor \l/te *P the RECom 2; index is defined as the fol-
lowing product:

covrel
Q=P P =P e\ T~ (29)
—_——

~1 ~1
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Figure 11. Market value factor ¥; (8 = 0.5).

7 Ccov,
Recall that p*! = P and covie! = varllu;tiﬂ :
otal

The RECom 1ndex is plotted in F1g 10. It gives an indica-
tion of how good a site is for wind power developments and
accounts for

— the wind resources,
— the covariance with all other wind parks,

— the advantage of production in low-wind hours.
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Figure 12. RECom index 2; for different years (8 = 0.5).

An average wind park has an index value of 1. Higher ca-
pacity factors result in higher index values. Less covariance
with the wind power fleet will also result in higher values.

— An RECom index larger than 1 indicates good sites.
— An RECom index smaller than 1 indicates bad sites.

The RECom index is the quantity we have been seeking,
and we propose to use this as a basis for maps that visualise
the quality of potential wind power sites and the benefits of
spatial diversification.

6 Sensitivities

In this section, we discuss the sensitivity of the RECom map
towards several influencing parameters.

6.1 Linear vs. exponential

The conversion of the linear value function in Eq. (26) to the
exponential value function in Eq. (28) modifies the outcome
in the follow way:

— values larger than 1 (green/blue) are amplified,

— values lower than 1 (orange/red) are damped.

The influence of the exponential formulation can be con-
cluded from Fig. 8. A comparison is shown in Fig. 11.

As the data considered are rather close to the baseline point

rel
(Cﬁ\:e"l ~ 1), the influence is limited. The results are therefore

not distorted in an unacceptable way by the conversion. It
should also be remembered that there is no reason to con-
sider the linear formulation as the correct reference, as the
real dependency between power output and capture price is
more complex than both the linear and the exponential func-
tions.

https://doi.org/10.5194/wes-9-919-2024

(c) 2035 (d) 2040

6.2 Sensitivity towards the scenario

The RECom index depends for a large part on the scenario
and the wind parks considered. It is therefore clear that it will
change over time as more and more wind parks are deployed.
This development over time is shown in Fig. 12.

It can be observed that the dotted line, which represents
; = 1 and separates good and bad locations, moves north-
wards with time. This is due to wind parks in the southern
North Sea suffering from increasing covariance equivalent
installed capacities, as shown in Fig. 6. It is, however, notice-
able that the changes over time in Fig. 12 are significantly
smaller than in Fig. 6. This is good as it gives the RECom
map some level or robustness when faced with changes in
the scenario (which will always be somewhat uncertain re-
garding the future). It is therefore a good measure for the
suitability of sites for potential wind parks in the future.

6.3 Sensitivity towards the sampling rate

Hourly data were used for this study. Figure 13 shows the
RECom maps of the same data after resampling to lower res-
olutions.

Again, we observe good robustness, as the changes are
limited. Only in the extreme case of converting to weekly
data do significant changes occur. It can be concluded that
the performance of the RECom index does not highly depend
on high-resolution data.

6.4 Sensitivity towards parameter 3

The most influential parameter is 8, which represents the de-
pendency of the power price on the aggregated wind power
output, as explained in Sect. 5.2. This means that the 8 pa-
rameter can be thought of as a tuning parameter that weights
the importance of producing power when other wind parks
do not (covariance). Figure 14 shows RECom maps with dif-
ferent values of §.
Comparing the different maps shows the following:

Wind Energ. Sci., 9, 919-932, 2024
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Figure 14. RECom index 2040 with different values of the § parameter.

— For g =0, the RECom index becomes the same as the
relative capacity factor, €;(8 =0) =ﬁ§el, and corre-
sponds to a situation where the value of the wind power
from a wind park is independent of wind power else-

where; i.e. the covariance is considered irrelevant.

— For large values of 8, the RECom index is dominated by
the market value factor, and the 2; = 1 line approaches
the W;™P = 1 line as seen in Fig. 9 (for ¥; the location
of this line is independent of 8). This we can see already
in Fig. 14d. The values away from the unity line are
nevertheless very different.

Our choice of B =0.5 is somewhat arbitrary but gives a
situation where the relative capacity factor E"l and the mar-
ket value factor \Ilf *P have a similar range of values around
1.0 and as such represent a similar weighting of those factors
in the overall RECom map.

In reality, the most appropriate choice for 8 depends on
the power market situation, which again depends on the sce-
nario year and its assumptions. A better understanding of
wind power capture prices in future energy systems would
help in choosing a value for . This could be obtained from
detailed energy system modelling and analysis. In general, it
can be stated that

Wind Energ. Sci., 9, 919-932, 2024

— B increases with increasing shares of weather-driven
sources in the energy system,

— B decreases with increasing load flexibility in the energy
system (e.g. hydrogen electrolysis).

It is, however, not within the scope of this article to per-
form detailed analysis of future energy system scenarios to
determine B. The purpose of the RECom maps is to provide
a simple way to illustrate wind power value without the need
for energy system modelling. Apart from the 8 parameter,
the maps only depend on the wind power deployment sce-
nario without the need for any energy system modelling.

7 Conclusions

The RECom index and the related RECom maps are useful
tools to support spatial diversification by visualising the need
and potential for it. They give a comprehensive indication of
the expected revenue of potential wind park locations. Com-
pared to the well-known wind resource maps, which display
the mean wind speed, RECom maps add significant value, as
they include more highly relevant information. Their simple
and comprehensive nature is intended to visualise the matter
also for people, such as politicians and the general popula-
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T. K. Vrana and H. G. Svendsen: Renewable Energy Complementarity (RECom) maps 931

tion, who are not familiar with many of the underlying prin-
ciples.

The RECom index is lower in areas with a lot of wind
parks due to the high covariance and resulting lower expected
wind power market value. The reality might even exaggerate
this, as co-location with other wind parks might depress mar-
ket value due to not only the merit order effect but also the
power output. Areas with a lot of wind parks might be con-
fronted with lower capacity factors (lower than expected) due
to wake and blockage effects of nearby wind parks. These
wave and blockage effects have, however, not yet been in-
cluded in the RECom index in its current form.

Even though RECom maps can show a lot more than a
mean wind speed map can, one must be careful to be aware
of its limitations. A few of these limitations are listed here:

The calculation is based on a strongly simplified and
idealised linear market model, which cannot fully rep-
resent the complexity of the power market price-setting
mechanisms.

— The choice of the parameter 8 has a significant influ-
ence, although there is no correct way to determine it,
as the future behaviour of the electric power market de-
pends on many uncertainties.

— The electricity transmission network is not included,
leaving out grid congestion and power market price
zones that can have significant influence on revenues.

— The mean electricity price differs between countries and
price zones, and the parameter 8 might differ as well.

— National legislation can influence the revenue potential,
but renewable energy policies and support schemes are
not accounted for here.

It is obvious that a market value estimation based on a very
simple model never will show the full picture. However, it
is not meaningful to get distracted by comparing the simple
RECom index with a complex and time-consuming power
market study of a future scenario. Instead, the RECom index
and the related RECom maps need to be compared to mean
wind speed maps, where the RECom index adds significant
value.

RECom maps only show the benefits of having a wind
park at a given location and not the cost of establishing a
wind park there. For finding suitable locations, cost drivers
such as water depth and distance to shore need to be con-
sidered as well. These considerations will, to some extent,
counteract the benefits of the “good” locations identified by
the RECom map, which tend to lay far offshore in deeper
waters. This is to be addressed in future work.

Another aspect to be addressed in future work is the con-
version of wind data into power output data, which at the
moment is performed in a simplified way. It is to be inves-
tigated how accuracy can be improved without adding too
much complexity to calculation of the RECom index.

https://doi.org/10.5194/wes-9-919-2024

The focus of this article is on wind power, but the method-
ology is not wind-power-specific and can likely be used for
solar power. An adaptation of the RECom index for mixes
of different weather-driven renewable energy sources will be
considered in future work.
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