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Abstract

In this work, a method for the stability analysis of wind turbines is described. A system
identification technique, formulated for handling stochastic disturbances, is used to iden-
tify a periodic reduced order model from suitable recorded time histories of the system.
Afterwards, such reduced model is analyzed according to Floquet theory.5

The formulation is model-independent, in the sense that it does not require knowledge
of the equations of motion of the periodic system being analyzed, and it is applicable to an
arbitrary number of blades and to any configuration of the machine. In addition, as wind
turbulence can be viewed as a stochastic disturbance, the method is also applicable to real
wind turbines operating in the field.10

The characteristics of the new method are verified first with a simplified analytical model,
and then using a high-fidelity multibody model of a multi-MW wind turbine. Results are
compared with those obtained by the well known operational modal analysis approach.

1 Introduction

Stability analysis can help address very practical issues, such as assessing the proximity15

of flutter boundaries, identifying low-damped modes, understanding the vibratory content
of a machine, evaluating the effectiveness of control strategies for enhancing modal damp-
ing, detecting incipient failures, and many others. For linear time-invariant (LTI) systems,
the stability analysis is a well understood problem, and several methods are available (e.g.
Hauer et al., 1990; Hansen M. O. L. et al., 2006; Murtagh and Basu, 2007). However, it20

is unfortunately not possible to ignore the periodic nature of wind turbines (Eggleston and
Stoddard, 1987; Manwell et al., 2009). In fact, blades experience different wind conditions
in their travel around the rotor disk, as for example due to shears and wind misalignment, so
that the aerodynamic-induced damping and stiffness vary cyclically. Furthermore, the blade
structural stiffness also varies periodically under the effects of its own weight, while cou-25

plings among tower and blades depend on the azimuthal position of the rotor. Additionally,
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the use of individual pitch control (IPC) may introduce yet a further source of periodicity in
the system dynamics. The design of future very large wind turbines, principally for the ex-
ploitation of off-shore wind resources, will stress even further the importance of a rigourous
treatment of the periodic nature of the system when studying its stability. In fact, the sys-
tem dynamics will be complicated by the hydro-elastic characteristics of the submerged5

–possibly floating– structure, including the excitation of periodic waves.
One popular approach to the stability analysis of rotors in general and of wind turbines in

particular (see Hansen, 2004; Skjoldan and Hansen, 2011), is to use the multi-blade coor-
dinate (MBC) transformation of Coleman and Feingold (1958). Given the dynamical system
equations of motion, this periodic transformation expresses the model rotating degrees of10

freedom into a new set of coordinates, achieving this way a significant reduction, but in
general not an exact cancellation, of the periodic content of the state matrix. The remaining
periodicity is typically removed by averaging, and the resulting LTI model is finally analyzed
using standard time-invariant techniques.

In principle, there are at least three issues connected with any Coleman-based stability15

analysis approach:

– First, the level of approximation implied by the averaging of the remaining periodicity is
difficult to assess and quantify a priori. In fact, to the authors’ knowledge, there is yet
no theoretical proof that the periodicity that remains after application of the Coleman
transformation is small in general, nor that this approach amounts to some consistent20

and bounded approximation of a rigorous Floquet analysis. Given the widespread
use of the Coleman transformation, and its general excellent behavior, such a proof
remains a goal very worth pursuing but, as of today, yet unattained.

– Second, the Coleman transformation unfortunately exists only for a number of blades
greater or equal than three. Although this is the most common wind turbine configura-25

tion nowadays, a revival of the two-bladed concept is possible.

– Third, codes implementing the Coleman transformation require access to the lin-
earized equations of motion of the system. As a consequence, any addition to a
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simulation code has an impact on the associated stability analysis tool, resulting in
extra software maintenance work.

Other possible approaches to the stability analysis of rotors have been formulated in the
frequency domain. For example, the estimation of power spectra along with modal frequen-
cies and damping ratios of an operating wind turbine has been addressed by Avendaño-5

Valencia and Fassois (2014). That paper considered several parametric and non-parametric
methods and their application to experimental data, including the periodic autoregressive
(PAR) model. In addition, periodic autoregressive moving average (PARMA) models have
been considered by Avendaño-Valencia and Fassois (2013). Two subspace algorithms for
periodic systems have been presented by Skjoldan and Bauchau (2011) and Mevel et al.10

(2014), one being used for numerically generated time series, and the other for experimen-
tally measured ones.

The operational modal analysis (OMA) has been extended to the periodic case (Allen
et al., 2011b), by using the concept of harmonic transfer function (HTF). In that paper, the
simple peak-picking method was used for extracting relevant properties from the spectra,15

while more specialized fitting algorithms were proposed by Allen et al. (2011a). Subsequent
applications and developments can be found in Shifei and Allen (2014, 2012). Although the
method is general, the estimation of the quantities of interest for a stability analysis from
noisy spectra remains a somewhat delicate operation, as it will be shown later on in the
following pages.20

In the authors’ opinion, there are two desirable goals in the stability analysis of wind
turbines that still need further investigation in order to be fully attained:

– First, one would like to account with complete rigor for the periodicity of such systems,
without introducing approximations of unknown effects.

– Second, one would like to formulate the analysis so that it is system-independent.25

System independence is here intended to mean that a method can be applied to
wind turbine models of arbitrary complexity and topology (e.g. any number of blades,
horizontal or vertical axis, etc.), and also to real wind turbines operating in the field.
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To answer these needs, Bottasso and Cacciola (2015) proposed a periodic stability anal-
ysis formulated in terms of input-output discrete-time responses. Such time histories could
come from “virtual” experiments performed on a given model, from simplified ones to the
more advanced contemporary comprehensive multibody-based aero-hydro-servo-elastic
models. Using that approach, a reduced periodic auto-regressive with exogenous input5

(PARX) model is first identified from a recorded response of the system, and then used for
conducting a stability analysis according to Floquet theory. On the practical side, this im-
plies that the analysis respects the periodic nature of the problem, and that one can easily
replace the model with a different one, without having to modify or adjust in any way the
stability analysis procedure.10

Although this approach attains the two goals outlined above, one of its limits is that it
can not be used with measurements obtained on a real wind turbine operating in the field,
since the effects of wind turbulence are not considered within the PARX model structure.
To address this issue, the same approach was extended to account for the presence of
turbulence (Bottasso et al., 2014). Using this new technique, one first identifies a periodic15

autoregressive moving average with exogenous input (PARMAX) model, whose stability
is then analyzed according to Floquet. That paper showed only one example related to
the first blade edge-wise mode of a wind turbine rotor. Goal of the present paper is to
expand and formulate in detail the PARMAX-based method originally proposed by Bottasso
et al. (2014). A second goal of this paper is to compare the PARMAX method with the20

periodic operational modal analysis (POMA) (see Allen et al., 2011a), which is taken here
to represent the accepted state-of-the-art for the stability analysis of wind turbines operating
in turbulent wind conditions.

The article is organized according to the following plan. The problem of the identification
of PARMAX models is addressed in Sect. 2. Here, a newly developed algorithm that has25

its basis on the prediction error method (PEM) is formulated, with particular emphasis on
the guaranteed stability of the PARMAX predictor. Section 3 is devoted to POMA theory.
After reviewing the concept of HTFs, the treatment proceeds by discussing the method
and its use for conducting periodic stability analyses. As the authors are not aware of a
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reference collecting together all useful background information on Floquet theory and the
signal analysis tools needed for POMA, this material is synthetically reviewed in Appendix A,
to ease reading. The accuracy of the PARX and POMA identification techniques is then
compared against an exact reference in Sect. 4. To this purpose, first a nonlinear wind
turbine analytical model is developed. Then, the stability of its linearized version is studied5

according to Floquet theory, providing a reference ground truth used for comparing PARX
and POMA. The equations of such analytical model are derived in Appendix B. In Sect. 5, a
procedure to obtain the Campbell diagram of a rotor with the PARMAX method is described.
PARMAX and POMA techniques are then used to identify the first low-damped modes of
a high-fidelity wind turbine model, operating in the partial load region in turbulent winds.10

Conclusions and recommendations are then given in the final section of the paper.

2 The PARMAX model

2.1 Modeling of wind turbine behavior in turbulent wind conditions using the
PARMAX sequence

Bottasso and Cacciola (2015) showed that the relevant dynamics of a wind turbine output15

can be accurately captured by a PARX sequence. Stability is then verified by applying Flo-
quet theory to the PARX reduced model. The resulting process is model-independent and
fully compliant with the periodic nature of the problem. However, the use of PARX models
must be restricted to systems subjected to deterministic inputs, as their structure does not
consider the presence of process noise, such as for example atmospheric turbulence. As a20

step towards the application of this periodic stability analysis concept to real wind turbines,
a PARMAX sequence is considered here.

In accordance with Bottasso and Cacciola (2015), the deterministic behavior of a wind
turbine measured output z can be modeled with a PARX sequence as

A(q;k)z(k) = B(q;k)ut(k), (1)25

6



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

where k is the time index and q the back-shift operator, such that z(k)q−i = z(k− i). The
autoregressive and exogenous parts are defined respectively by polynomials A(q;k) and
B(q;k) as

A(q;k) = 1−
Na∑
i=1

ai(k)q−i, (2a)

B(q;k) =

Nb∑
j=0

bi(k)q−i, (2b)5

both being characterized by periodic coefficients ai(k) = ai(k+K) and bj(k) = bj(k+K),
where Na and Nb indicate the order of the AR- and X-part, respectively, while K is the
period of the system. Finally, ut is the input, assumed here to be the turbulent wind.

The stochastic nature of the turbulent wind field violates the assumption of a deterministic
and fully measurable input ut. To account for this, the actual wind is viewed as a sum of two10

distinct contributions: a mean wind u(k) and a turbulence-induced perturbation δut(k). As
the spectrum of the atmospheric turbulence is far from being constant, δut(k) is modeled
by means of a shape filter F(q;k) such that

ut(k) = u(k) +F(q;k)e(k), (3)

where e(k) is a zero-mean, white and Gaussian noise, with periodic variance σ(k)2.15

Inserting Eq. (3) into (1), the following is derived

A(q;k)z(k) = B(q;k)u(k) +G(q;k)e(k), (4)

where C(q;k) = B(q;k)F(q;k). Equation (4) is a PARMAX model whose MA-part is repre-
sented by polynomial G(q;k), defined as

G(q;k) = 1 +

Ng∑
i=1

gw(k)q−i, (5)20

7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

where gw(k) = gw(k+K) are the MA periodic coefficients andNg the MA order. The overall
order of the system is defined as n= max(Na, Nb, Ng). The resulting PARMAX sequence
is then

z(k) =
Na∑
i=1

ai(k)z(k− i) +

Nb∑
j=0

bj(k)u(k− j) +

Ng∑
w=1

gw(k)e(k−w) + e(k). (6)

2.2 State space representation of PARMAX sequences5

In order to perform a stability analysis according to Floquet theory (cf. Bottasso and Cacci-
ola (2015) and the review reported in Appendix A), it is necessary to realize the PARMAX
sequence (6) into an equivalent state space representation. To this end, consider a linear
discrete-time system with time-varying coefficients in observable canonical form

x(k+ 1) =A(k)x(k) +B(k)u(k) +E(k)e(k), (7a)10

y(k) =C(k)x(k) +D(k)u(k) +F (k)e(k), (7b)

where x(k) = (x1(k), . . . ,xn(k))T , while the system matrices are given by

[
A(k) B(k) E(k)

C(k) D(k) F (k)

]
=



0 0 · · · 0 αn(k) βn(k) γn(k)
1 0 · · · 0 αn−1(k) βn−1(k) γn−1(k)
0 1 · · · 0 αn−2(k) βn−2(k) γn−2(k)
...

. . . . . .
...

...
...

...
0 0 · · · 1 α1(k) β1(k) γ1(k)

0 0 · · · 0 1 β0(k) 1


. (8)

8
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Including the presence of the MA-part, the input-output sequence of system (7) can be
derived as

y(k) =
n∑
i=1

αi(k−i)y(k−i) +
n∑
i=1

(
βi(k−i)−β0(k−i)αi(k−i)

)
u(k−i) +β0u(k)

+
n∑
i=1

(
γi(k−i)−αi(k−i)

)
e(k−i) + e(k). (9)5

Comparing Eq. (6) with Eq. (9), the following equivalence relations are obtained

αi(k) = ai(k+ i) ∀i= (1, . . . ,Na), (10a)

β0(k) = b0(k), (10b)

βi(k) = bi(k+i) + ai(k+i)b0(k) ∀i= (1, . . . ,Nb), (10c)

γi(k) = gi(k+ i) + ai(k+ i) ∀i= (1, . . . ,Ng), (10d)10

which readily give the state space system matrices. Once these are known, stability is
assessed according to Floquet theory as described in Appendix A.

2.3 Identification through the prediction error method

In the present context, a single-input single-output (SISO) PARMAX model must be iden-
tified from a sequence of N measurements. Among the plethora of existing estimation15

methods, which may range from time to frequency domain or from optimization-based to
subspace algorithms, the PEM (Bittanti et al., 1994) is chosen here. This method has been
frequently used for rotating systems, such as rotorcraft vehicles and wind turbines. For ex-
ample, the periodic equation-error method was used for identifying a reduced order model
of a helicopter rotor by Bertogalli et al. (1999), whereas Bottasso and Cacciola (2015) pro-20

posed a periodic output-error method for the identification of reduced wind turbine models.
The estimation problem, formalized according to the PEM, is the one of finding the peri-

odic coefficients ai(k), bj(k) and gw(k) that minimize cost function J defined as the mean
9
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value of the square of the prediction error, i.e.

J =
1

N

N∑
k=1

ε2(k). (11)

Here ε(k) = z(k)− ẑ(k|k−1) is the prediction error at time instant k, being ẑ(k|k−1) (here-
after more concisely written as ẑ(k)) the optimal one-step-ahead prediction of z(k) based
on knowledge of all data until time step k− 1. According to Bittanti and De Nicolao (1993)5

and Ljung (1999), the optimal one-step-ahead predictor of process (6) is

ẑ(k) =−
n∑
i=1

gi(k)ẑ(k− i) +
n∑
j=1

(aj(k) + gj(k))z(k− i) +
n∑

w=1

bi(k)u(k− i). (12)

As previously argued, the presence of the MA part in the PARMAX model allows for a
more adequate characterization of the process noise term, at the cost of a more complex
estimation procedure. In fact, the optimal predictor of the PARMAX process expressed by10

Eq. (12) is nonlinear in the parameters, as any ẑ(k) is a function of its previous values
ẑ(k−w), which in turn depend on the parameters. Consequently, the minimization of cost
function (11) involves an iterative optimization. If the MA part in Eqs. (6,12) is neglected, a
PARX sequence is obtained and the estimation problem reduces to the so-called equation
error approach (Bottasso and Cacciola, 2015; Bottasso et al., 2014).15

Moreover, it is easy to verify that predictor (12) is by itself a PARX dynamic system, in
which the autoregressive part is described by coefficients −gw(k), whereas coefficients
aj(k) +gj(k) and bj(k) define two X parts with inputs z(k) and u(k), respectively. This fact
is not surprising, since it often happens that the poles of the predictor coincide with the
zeros of the system to be predicted. As a consequence, it may happen that, during the op-20

timization, coefficients gw define an unstable predictor, jeopardizing the entire identification
process (see Bittanti and De Nicolao, 1993).

In the literature there are basically two methods to enforce the stability of the MA part.
The first is a heuristic approach in which the coefficients gw(k) are perturbed (for example

10
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halved) repeatedly until the achievement of a stable predictor. This method actually corre-
sponds to a re-initialization of the parameters with unpredictable effects on the convergence
of the estimation. The second approach is based on the computation of a new predictor,
with different coefficients gw but the same autocorrelation of the unstable one. For the time-
invariant case, this new canonical model can be obtained using Bauer’s algorithm (Sayed5

and Kailath, 2001), whereas for the periodic case by solving a suitable periodic Riccati
equation (Bittanti and De Nicolao, 1993) or through the multivariate Rissanen factoriza-
tion (Bittanti et al., 1991; Rissanen , 1973).

In this work, an alternative and original method is proposed. The stability of the predictor
is enforced by a nonlinear constraint within the estimation process, and the resulting con-10

strained optimization is performed by an interior-point algorithm (cf. Byrd et al., 2000, 1999;
Waltz et al., 2006). The estimation problem is then reformulated as

p= arg min
p

J(ε(k); p), (13a)

s.t.: |P(p)|< 1, (13b)

where p is the vector of the unknown coefficients and P(p) are the characteristic multipliers15

of the PARMAX predictor.
The characteristic multipliers that constrain the estimation problem can be computed from

the autoregressive part of Eq. (12), i.e. ŷ(k) =
∑

w−gw(k)ŷ(k−w), which can be realized
into state space form according to Eqs. (7–10), leading to the following dynamic matrix

N(k) =


0 0 · · · 0 −gNg(k+Ng)
1 0 · · · 0 −gNg−1(k+Ng − 1)
0 1 · · · 0 −gNg−2(k+Ng − 2)
...

. . . . . .
...

...
0 0 · · · 1 −g(k+ 1)

 . (14)20

11
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The periodic coefficients ai(k), bj(k) and cw(k) are approximated by using truncated Fourier
expansions, i.e.

ai(k)=ai0+

NFa∑
l=1

(
acil cos(lψ(k)) + asil sin(lψ(k))

)
, (15a)

bj(k)=bj0+

NFb∑
m=1

(
bcjmcos(mψ(k))+bsjmsin(mψ(k))

)
, (15b)

gw(k)=gw0+

NFg∑
r=1

(
gcwr

cos(rψ(k))+gswr
sin(rψ(k))

)
, (15c)5

where ψ(k) is the rotor azimuth. The unknown amplitudes of such expansions are collected
in the vector of parameters p

p= (. . . , ai0, a
c
il
, asil , . . . , bj0, b

c
jm , b

s
jm , . . . ,gw0, g

c
wr
, gswr

, . . .)T , (16)

where i= (1, . . . , Na), j = (1, . . . , Nb), w = (1, . . . , Ng), l = (1, . . . , NFa),m= (1, . . . , NFb
)

and r = (1, . . . , NFg), being NFa , NFb
, NFg the number of Fourier harmonics of the periodic10

coefficients for the AR-, X- and MA-parts, respectively.
Due to the nonlinear behavior of the predictor, the possible presence of multiple local

minima has to be taken into account. A suitable starting point for the nonlinear problem
can be selected by fitting at first the recorded data with simpler models such as ARMAX or
PARX (Bittanti et al., 1991), or by using a recursive extended least-squares algorithm (Avendaño-15

Valencia and Fassois, 2013; Spiridonakos and Fassois, 2009). In the present work, conver-
gence to the global minimum is ensured by performing several optimization trials from a
randomly chosen set of initial conditions.

12
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3 Theory of periodic operational modal analysis

The OMA is an output-only system identification technique, which has been widely used to
conduct modal analyses of different mechanical systems. Recently, a special attention has
been devoted in the literature to the application of OMA in the field of wind energy (Carne
and James, 2010), and to the related underlying hypotheses (Chauhan et al., 2009; Tch-5

erniak et al., 2010). An output-only technique specifically tailored for time periodic systems
was developed by Allen et al. (2011b). This technique, named periodic OMA (POMA), ex-
ploits the particular behavior of an LTP system in the frequency domain, as described by
the HTF (see Sect. A2 for details). In the present paper, POMA will be briefly reviewed and
then compared to the PARMAX-based stability analysis proposed here.10

Consider a strictly proper periodic system and the exponentially modulated periodic
(EMP) expansions of its input and output, noted respectively U and Y , as described in
Sect. A2. The input-output behavior of the system can be analyzed through the HTF G as

U(s) = G(s)Y(s), (17)

with s ∈ C, and G(s) defined according to Eq. (A44). Projecting (17) onto the imaginary15

axis, each element of the EMP expansion of Y and U can be computed as the Fourier
transform of frequency shifted copies of y(t) and u(t) as

yk(ω) =

∞∫
−∞

y(t)e(iω+ikΩ)tdt, (18a)

uk(ω) =

∞∫
−∞

u(t)e(iω+ikΩ)tdt. (18b)

As reported in Wereley (1991) and briefly reviewed in Allen et al. (2011b), the input-output20

behavior in the frequency domain can be expressed as

Y (ω) =G(ω)U(ω), (19)
13

anon
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where

Y (ω) =
(
· · · y−1(ω) y0(ω) y1(ω) · · ·

)T
, (20a)

U(ω) =
(
· · · u−1(ω) u0(ω) u1(ω) · · ·

)T
. (20b)

Accordingly, the harmonic frequency response function (HFRF) G(ω) is given by

G(ω) =
Ns∑
j=1

∞∑
w=−∞

Cj,wB
T
j,w

iω− (ηj + iwΩ)
, (21)5

where Cj,w and Cj,w are defined in Eq. (A45) and Eq. (A46) of Sect. A2.
The power spectrum of the output, noted SY Y (ω), can be written in terms of the HFRF

G(ω) and the power spectrum of the input SUU (ω) as

SY Y (ω) =G(ω)SUU (ω)G(ω)H , (22)

where (·)H denotes the complex-conjugate transpose. Inserting now Eq. (21) into Eq. (22),10

the following expression is derived

SY Y (ω) =
Ns∑
j=1

∞∑
w=−∞

Ns∑
p=1

∞∑
q=−∞

Cj,wW (ω)j,w,p,qC
H
p,q(

iω−(ηj+iwΩ)
)(
iω−(ηp+iqΩ)

)H , (23)

where W j,w,r,t =Bj,rSUUB
H
w,t. Equation (23) can be simplified first by considering a flat

expanded input power spectrum W j,r(ω) =Bj,rSUUB
H
j,r, at least in the band of interest

of a specific mode, and secondly by assuming that all modes of the system are “suitably15

separated”.
The first requirement was analyzed extensively for wind turbine problems in Tcherniak et

al. (2010). There the authors pointed out that the extended input spectrum could be signifi-
cantly colored, a problem that requires particular care with simplified output-only methods.

14
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The second requirement deserves special attention as well. In fact, not only is the sepa-
ration of the principal harmonics of two modes required, but it is also necessary that all
super-harmonics with significant participation are well-separated. For rotary wing systems,
this requirement has to be considered carefully especially when looking at the whirling
modes, as the principal harmonics of backward and forward modes are typically separated5

by about 2Ω. This typically creates a crisscrossing of modes in the frequency-rotor speed
plane, leading to frequent frequency encounters.

If such conditions are verified, the extended input spectrum W loses its dependency on
ω, and the contribution of mode ηp + iqΩ on mode ηj + iwΩ can be neglected when p 6= j
and q 6= w. Hence, Eq. (23) is simplified to10

SY Y (ω)≈
Ns∑
j=1

+∞∑
w=−∞

Cj,wW j,wC
H
j,w(

iω−(ηj+iwΩ)
)(
iω−(ηj+iwΩ)

)H . (24)

From Eq. (24) one can notice that the peak related to any super-hamonic of a given mode
can be viewed as the peak of a linear time-invariant mode. Accordingly, one is allowed to use
a standard LTI frequency domain identification technique (e.g. peak-picking, curve-fitting)
to compute frequencies, damping factors and modal shapes from the measured spectra.15

Moreover, neglecting again the contribution of overlapping modes, one can also estimate
the participation by evaluating the power spectra at the peak frequency, since

Cj,wC
H
j,w ∝ SY Y (ωj +wΩ). (25)
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Expressing the product Cj,wC
H
j,w one gets

Cj,wC
H
j,w=



. . .
...

...
...

...
· · · cj−2c

∗
j−1

cj−1c
∗
j 0

cj0c
∗
j 1
· · ·

· · · cj−1c
∗
j−1

cj0c
∗
j 0

cj1c
∗
j 1
· · ·

· · · cj0c
∗
j−1

cj1c
∗
j 0

cj2c
∗
j 1
· · ·

...
...

...
...

. . .


, (26)

being (·)∗ the complex conjugate. From Eq. (26), one could envision several criteria for
extracting the participation factors for each harmonic belonging to the j-th mode. The sim-
plest one is to compute the central column of the HTF and to pick the amplitudes of the5

spectra at the frequency of interest. The participation factors are then extracted according
to Eq. (A27), reported in Sect. A1, as

φyj n =
|cjn|∑
n|cjn|

=
|cjn||c

∗
j 0
|∑

n|cjn||c∗j 0
|

=
|cjnc

∗
j 0
|∑

n|cjnc∗j 0
|
. (27)

One can also perform multiple estimations of the participation factors by looking again at
the central column of SY Y . In fact, from Eq. (26), it appears that the amplitudes picked from10

the `th column at frequency ωj+wΩ are equivalent to those picked from the central column
at ωj + (w+ `)Ω. This means also that computing the central column could be sufficient for
having an estimation of frequencies, damping and participation factors, as already noticed
in Shifei and Allen (2012).

The POMA technique can be then summarized as follows:15

– Compute the Fourier transforms of the frequency shifted copies of the recorded output
y(t), yk(ω) = FFT

(
y(t)e−ikΩt

)
, and collect them in vector Y (ω) = (. . . , yk(ω), . . .)T .
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– Compute the autospectrum SY Y (ω) using a standard frequency domain analysis
method; in the present paper the method of Welch was employed for this purpose.

– Extract from each peak present in SY Y (ω) the related natural frequency and damping
factors using any standard LTI frequency domain estimation tool (Allen and Ginsberg,
2006). In this paper the straightforward peak-picking method was used, as also done5

by Allen et al. (2011b).

– Reconstruct the Fourier coefficients cjn , and in turn the participation factors, by eval-
uating the spectrum in correspondence to each peak.

It is possible to restrict the analysis to the right-half plane just by noticing that

yn(−ω) = y∗−n(ω). (28)10

Equation (28) is particularly useful for identifying the Fourier coefficients from the peaks of
the “reflected super-harmonics”, since according to Eq. (28) one can demonstrate that

cjn
∣∣
correctpeak

= c∗j−n

∣∣∣
reflectedpeak

. (29)

3.1 Application of periodic operational modal analysis to the Mathieu oscillator

As the actual use of POMA and the correct interpretation of all peaks is not a straightfor-15

ward exercise in general, a simple Mathieu oscillator is analyzed here in preparation to the
application of this method to the wind turbine problems studied later on. The dynamics of a
Mathieu oscillator is governed by the following equations(
ẋ
ẍ

)
=

[
0 1

−ω2
0 −ω2

1 cos(Ωt) −2ξω0

](
x
ẋ

)
, (30a)

y =
[

1 0
]( x

ẋ

)
. (30b)20
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The parameters in Eq. (30) were set, following Allen et al. (2011b), as ω2
0 = 1, ω2

1 = 0.4,
ξ = 0.04 and Ω = 0.8. The system was numerically integrated from x(0) = (1000,0)T , and
studied by means of POMA. The results were then compared with those obtained by the
full-Floquet theory described in Sect. A1.

Figure 1 shows the power spectra of the central column of SY Y , yk(ω)yH0 (ω) for k =5

−4, . . . ,4. The fundamental peak (i.e. the highest one) is found on the 0-shift curve at
0.16 Hz and corresponds to the amplitude cj0cj

H
0 . At such frequency, all curves show a

prominent peak, from which one may easily compute also the damping factors using for
example the standard half power bandwidth method. The participation factors are then ex-
tracted by looking at the amplitudes of the power spectra using Eq. (27).10

Starting from this peak and moving to the right, the subsequent higher peaks are found
on the negative-shift curves, first in the −1-shift one at 0.28 Hz, then in the −2-shift one
at 0.41 Hz, etc. The opposite happens when moving to the left. Peaks located at negative
frequencies appear as reflected in the positive frequency range, but with opposite shifts.
This is clear if one looks at the peak located at -0.10 Hz, which has the −2-shift curve as15

the one with the highest amplitude, whereas the reflected peak at 0.10 Hz is associated with
the 2-shift curve. This complex behavior is easily explained by means of Eq. (28), which also
states that the information in the negative frequency range can be reconstructed by looking
at the curve with the opposite shift in the positive frequency plane.

Frequencies and damping factors computed from such spectra using the peak-picking20

method are reported in Table 1. The same table also displays the results obtained from the
full-Floquet analysis of the system. The comparison shows good accuracy, especially for
frequencies and damping factors of the first highest super-harmonics.

The output-specific participation factors are displayed in Table 2. Multiple estimates have
been computed from each spectrum peak in the positive frequency plane. The last column25

shows also the analytical results. As expected, in general modes with lower participation
factors are associated with higher estimation errors.
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4 Stability analysis of a model wind turbine problem

Next, a simplified wind turbine model is used for comparing the results obtained with the
PARX and POMA approaches. This is useful because it gives a way of comparing the basic
performance of the two methods with respect to a known exact ground truth in the ideal
case of null disturbances. Later on in this work, the two methods will be compared for the5

case of a higher fidelity wind turbine model operating in turbulent wind conditions. As no
exact solution is known in that case, the preliminary investigation of this section serves
the purpose of clarifying whether significant differences exists between the two approaches
even at this more fundamental level. Indeed, it will be shown here that some of the un-
derlying hypothesis of POMA are not always fulfilled, and this leads occasionally to some10

imprecisions in the estimates of modal quantities of interest.
The analytical model is derived in detail in Appendix B, which also gives a schematic

sketch of the system in Fig. 12. The model considers the coupled motion of tower and
blades subjected to aerodynamic and gravitational forces. The fore-aft and side-side flexi-
bility of the tower is rendered by two equivalent linear springs, whereas each blade is repre-15

sented as a rigid body connected to the hub through two coincident linear torsional springs,
allowing respectively the blade flap- and edge-wise rotations. The characteristics of each
element in the model are chosen so as to match the first tower fore-aft and side-side modes
and the first blade flap-wise and edge-wise modes in vacuo of a reference 6 MW wind
turbine, as computed using a high-fidelity multibody model. The aerodynamic formulation20

is inspired by the treatment of Eggleston and Stoddard (1987), in which the aerodynamic
forces and moments at the blade hinges are computed assuming linear aerodynamics,
small flap and lag angles, uniform inflow over the rotor disk and constant rotor speed. The
aerodynamic forces induced by tower motion, not present in the treatment of Eggleston
and Stoddard (1987), are additionally considered in this paper. The model represents the25

complete lower spectrum of a wind turbine, including the first side-side and fore-aft tower
modes, the first in-plane and out-of-plane blade modes as well as their related whirling
modes.
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After having collected all degrees of freedom in vector ξ = (β1, . . . ,βB, ζ1, . . . , ζB,yH ,zH)T ,
being B the number of blades, and the inputs in vector ν = (θp1 , . . . ,θpB )T , being θk the
pitch angle of the kth blade, the resulting nonlinear second order implicit system writes

f(ξ, ξ̇, ξ̈,ν, t) = 0. (31)

System (31) can be integrated in time using any suitable numerical scheme, starting from5

a consistent set of initial condition. This was done for generating the time histories used for
PARX and POMA, paying attention not to excite the system non-linearities, as the reference
solution is based on the Floquet analysis of the linearized problem.

Since any mechanical system is linear in ξ̈, one may compute the mass matrix M̂(ξ, ξ̇, t)

and rewrite the system as M̂(ξ, ξ̇, t)ξ̈ = g(ξ, ξ̇, ν, t). System (31), if asymptotically stable,10

converges to a periodic trajectory ξ̃(t) when subjected to a periodic input ν̃(t). In such a
regime, the linearized periodic equations of motion write

M(t)¨̂
ξ+T (t) ˙̂

ξ+K(t)ξ̂+W (t)ν̂ = 0, (32)

where the new state ξ̂(t) and input ν̂(t) are defined as

ξ̂(t) = ξ(t)− ξ̃(t), ν̂(t) = ν(t)− ν̃(t), (33)15

and the periodic mass, damping, stiffness and input matrices are defined

M(t) =
∂f

∂ξ̈

∣∣∣∣
ξ̃, ˙̃ξ,¨̃ξ,ν̃

, T (t) =
∂f

∂ξ̇

∣∣∣∣
ξ̃, ˙̃ξ,¨̃ξ,ν̃

,

K(t) =
∂f

∂ξ

∣∣∣∣
ξ̃, ˙̃ξ,¨̃ξ,ν̃

, W (t) =
∂f

∂ν

∣∣∣∣
ξ̃, ˙̃ξ,¨̃ξ,ν̃

.

(34)

Notice that M(t) is equal to M̂(ξ, ξ̇, t) evaluated on the periodic trajectory ξ̃. These lin-
earized equations of motion about a periodic orbit were then used for developing the anal-
ysis according to Floquet, yielding the ground truth solution.20
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4.1 Stability analysis of a wind turbine analytical model

The parameters of the wind turbine analytical model were defined according to Table 3,
which loosely represent a conceptual 6 MW wind turbine. The stability of the model is
studied in a uniform axial wind of 9 m/s for a collective pitch angle of −0.54°, corresponding
to operation towards the end of the partial load region.5

The linearized periodic system was first studied using Floquet theory (see Appendix A) in
order to get the exact natural frequencies, damping and output-specific participation factors.
Next, the model was used for generating all outputs needed for performing the PAR(MA)X
and POMA analyses by integrating the system forward in time starting from suitable initial
non-zero conditions, chosen so as to excite the modes of interest. In this exercise, the wind10

was considered as stationary, so that the PARMAX identification reduces to the simpler
PARX one as the MA-part is not necessary.

Both PARX and POMA estimates were compared with the full-Floquet results in term
of relative errors for frequencies and damping factors, and absolute errors for participation
factors. Relative errors are defined as vE/vR− 1, while absolute errors as vE− vR, where v15

is a specific modal parameter and the subscripts E and R refer, respectively, to an estimated
and a real (exact) quantity.

4.1.1 Identification of the blade edge-wise mode

The blade edge-wise mode was excited by imposing the initial edge-wise angles of all
blades equal to a unique non-zero value, whilst all other states were set to zero at the20

initial time. This way the blade in-plane mode was excited, while avoiding the onset of the
whirling modes.

Considering first the POMA approach, the harmonic power spectrum for the second blade
edge-wise angle, ζ2, was computed with frequency shifts from −2Ω to +2Ω. The results
obtained this way are reported in Fig. 2.25

Clearly, the 0-shift PSD shows a prominent peak at ωE = 0.86 Hz related to the blade
in-plane mode, from which one may easily extract the frequency and damping factor of the
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principal harmonic. The peak-picking method could in principle be applied to any of the
peaks displayed in the figure; however, one may observe that most of the peaks are of a
low amplitude and often barely noticeable from the side-band of the principal harmonic. For
example, the super-harmonic at 0.67 Hz, even if visible within the 0-shift curve, has not
enough energy to allow one to estimate its modal quantities to any reasonable accuracy.5

Therefore, it was preferred to compute frequency and damping factors only by looking at
the highest peaks: the frequency and damping factor of the super-harmonic at ωE + Ω were
extracted from the peak at 1.05 Hz of the -1-shift curve, while those of the super-harmonic
at ωE + 2Ω from the peak at 1.24 Hz of -2-shift curve, and similarly for the other super-
harmonics. For the same reason, participation factors were obtained only by looking at the10

PSD amplitude at ωE. In fact, at this frequency all curves show peaks that are prominent
and distinct enough to compute the participation factors according to Eq. (27).

Next, the PARX analysis was considered. As long as only the blade in-plane mode is
significantly excited, as indicated from the 0-shift curve in Fig. 2, the order of the AR-part
may be set as Na = 2. A first order X-part (Nb = 1) was considered as the inputs (wind15

speed and pitch angle) are constant in this case. Finally, the number of harmonics for the
Fourier series expansion of both the AR- an X- parts, NFa and NFb

, were both set equal
to 1. The matching between predicted and simulated output, not reported here for the sake
of brevity, showed excellent correlation, proof of the fact that the identified model captures
very well the dynamics of interest.20

Table 4 reports the Floquet modal parameters, assumed as ground truth, as well as the
errors obtained by the two methods considered here.

Looking at the results, it appears that both the PARX and POMA methods are able to
capture the relevant dynamics related to the principal harmonics, as frequencies, damping
and participation factors are of good quality. In particular, damping factors are slightly better25

estimated by POMA, while participation factors are underestimated by POMA but more
accurately captured by PARX.

The estimation of the super-harmonic modal parameters deserves a special mention. The
PARX method is able to provide a good matching for all modal parameters of all harmonics:
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frequencies and participation factors have negligible errors, whereas damping factors show
an error lower than 10%. On the other hand, the error of the POMA super-harmonic esti-
mates is typically quite large especially for the damping factors, even though the principal
harmonic is well captured.

This fact has mainly two possible explanations. First, the hypothesis of well separated5

modes is here not fully satisfied, as the side band of the tower principal harmonic affects
all super-harmonic peaks. The lower the rotor speed, the more this effect is pronounced,
as the frequency separations among super-harmonics coincide with multiples of the rotor
frequency. Second, but more importantly, according to the dynamics of a periodic system
all harmonics belonging to a specific mode descend from a sole characteristic multiplier.10

Therefore their frequencies and damping factors are strictly connected to each other. This
relation is totally ignored by POMA (cf. Allen et al., 2011b), as it considers each peak in the
frequency response as a stand-alone mode.

4.1.2 Identification of other low-damped modes

The tower side-side and blade in-plane whirling modes were excited by imposing different15

initial conditions for each blade edge-wise angle and a suitable lateral displacement of the
tower.

Figure 3 shows the harmonic power spectral density (HPSD) for the tower side-side dis-
placement yH , with frequency shifts from −2Ω to +2Ω. Here again, the zero-shift curve
shows three distinct peaks: the tower side-side mode, the backward and forward in-plane20

whirling modes, respectively at 0.34 Hz, 0.68 Hz and 1.1 Hz. Accordingly, the PARX com-
plexity was set as Na = 6, Nb = 1, NFa = 1 and NFb

= 1. As for the previous case, the
matching between predicted and simulated output, not reported here, is excellent.

Comparisons among the exact and identified modal parameters are displayed in Tables 5
through 7.25

Figure 3 clearly shows that a good mode separation is here not fully achieved, as whirling
super-harmonics interact with each other. This is not due to the specific wind turbine or
condition considered here, as in fact any rotating blade system will always have the principal
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harmonics of its whirling modes separated by about 2Ω. In addition, it also appears that the
second super-harmonic of the tower mode at 0.73 Hz is very close to the second super-
harmonic of the forward (FW) whirling mode at 0.71 Hz; additionally, both harmonics are
close to the backward (BW) whirling mode at 0.68 Hz. For this reason, there are missing
values in Tables 5 through 7, wherever it was not possible to pick all peaks for all modes of5

interest using POMA.
Considerations similar to ones previously made for the blade in-plane mode, can be

stated here also for these other three modes. Specifically, the frequency and damping fac-
tors of the principal harmonic of all modes are almost perfectly captured by both methods.
The PARX method is the one that gives globally the most accurate results for both prin-10

cipal and super-harmonics: damping and participation factor estimates are characterized
by small errors, while only the damping factors of the backward whirling mode have errors
greater than 10%. On the other hand, the POMA technique does not provide consistent
results for the super-harmonic damping factors, which are characterized by large errors
even when the damping factor of the principal harmonic is well captured. Moreover, the par-15

ticipation factors of the whirling modes exhibit non negligible errors for both principal and
super-harmonics. This last issue is mainly due to the fact that, especially for the whirling
case, the underlying hypothesis of well-separated modes is not completely fulfilled, as pre-
viously mentioned.

5 PARMAX-based damping estimation using a high-fidelity multibody model20

A detailed 6 MW wind turbine high-fidelity multibody model operating in closed-loop, im-
plemented with the aeroservoelastic simulator Cp-Lambda (Bottasso and Croce, 2006–
2015), was then used for a comparison of the POMA and the proposed PARMAX stability
analysis techniques in a more sophisticated setting. Blades and tower are modeled with
geometrically exact beam elements, discretized in space using the finite element method,25

whereas the classical blade element momentum (BEM) theory is used to model the aero-
dynamics, with the usual inclusion of wake swirl, tip and hub losses, unsteady corrections
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and dynamic stall. The total number of degrees of freedom in the resulting finite element
multibody model is about 2500. A pitch–torque controller complements the aeroservoelastic
model. Wind histories compliant with IEC-61400 design guidelines were generated through
TurbSim (Jonkman and Kilcher, 2012). The considered wind fields are characterized by
a 5% turbulence intensity, and 10-minute-averaged wind speeds ranging from 3 to 10 m/s,5

upflow of 8° and an atmospheric boundary layer power law exponent equal to 0.2.
According to the PARMAX-based stability analysis, the system should be perturbed so as

to induce a significant response of one or more modes of interest. Among the many possible
ways of exciting a specific wind turbine mode, as for example the use of pitch and torque
actuators (Hansen et al., 2006) or of eccentrical masses (Thomsen et al., 2000), impulsive10

forces were used in this work. Such forces could be realized in practice by pyrotechnic
exciters. The rotor angular speed is averaged over the length of the recorded history and
used to compute the system period. Afterwards, the signal is re-sampled so as to have an
integer number of steps within a period.

The selection of the model complexity deserves special care. As the order of the AR-15

part Na is strictly related to the number of system modes, it can be estimated by looking
at the number of principal-harmonic peaks present in the output PSD. This heuristic ap-
proach for the problem at hand turned out to be simple and effective and was preferred to
more sophisticated criteria (Skjoldan and Bauchau, 2011; Avendaño-Valencia and Fassois,
2014). As described in Sect. 2.1, the input wind speed was considered as the sum of two20

contributions, a constant deterministic part and a turbulence-induced one. As long as the
deterministic input is considered to be constant, one is allowed only to estimate an X-part
with order Nb = 1. The MA-part order (noted Ng) as well as the number of harmonics used
to model the periodicity of the coefficients (noted NFa , NFb

and NFg ) were set with a trial
an error approach, until the achievement of satisfactory results.25

After having performed the estimation for different wind conditions and therefore at differ-
ent rotor speeds, the results of the analyses in term of frequency, damping and participation
factors were fitted using low-order polynomials, computed by means of the robust bi-square
algorithm (Kutner et al., 2005). The fitting process was applied only to the frequency and
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damping of the principal harmonic, indicated with the subscript (·)0. The corresponding
characteristic exponent was then computed as

ηj0 =−ωj0ξj0 + iωj0

√
1− ξj2

0 . (35)

The super-harmonics were finally obtained by means of Eq. (A17). On the other hand, the
participation factors of all super-harmonics were fitted with the same bi-square algorithm.5

5.1 Blade edge-wise mode

Two mainly edge-wise doublets, applied at mid span and near the tip of the blade, were used
to excite this mode. The PARMAX reduced order model considered the following choice of
parameters: Na = 6, NFa = 1, Nb = 1, NFb

= 1, Ng = 2 and NFg = 0. This setting allows
for the modeling of three periodic modes.10

The result of an identification executed at the rated rotor speed is shown in Fig. 4. The
excellent superposition of the curves indicates a reduced order PARMAX model of very
good quality.

To draw the Campbell diagram, eight different identifications were made so as to cover
the entire range of angular speeds of the machine. The results are shown in Fig. 5, where15

red dots indicate each specific identification, whereas lines refer to their quadratic fits. The
gray bands are the 2σ non-simultaneous functional prediction bounds, and measure the
confidence level of the fitting curves. From the gray bands one can infer that frequency and
damping estimates are characterized by a high accuracy, while a significant uncertainty
characterizes the participation factors. Similar analyses were conducted by Bottasso et al.20

(2014), where a different turbulence (level “B”) was used, caeteris paribus. As the Campbell
diagram is similar in both works, one may conclude that the PARMAX-based analysis is not
highly influenced by turbulence level.

Much longer portions of the time histories analyzed with PARMAX were then processed
with the POMA method. In Fig. 6, the HPSD obtained for a wind field with a 3 m/s average25

speed is shown (notice the similarities with Fig. 2). For this case the turbulence intensity

26

anon
Highlight

anon
Comment on Text
I do not understand why the confidence level of the fitting across the results of the PARMAX models over the rpm range can tell anything about the accuracy of the individual models. I suggest that the authors elaborate on this statement. 

anon
Comment on Text
I assume that the authors refer to the IEC classes for turbulence. The 5% TI used herein is not according to this standard so it is difficult for the reader to make this connection. Maybe consider to write the TI range for the wind speed range for the class B turbulence.

anon
Comment on Text
Would it be possible to overplot the HPSDs obtained from the PARMAX models in Figure 6?



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

was quite low, and the HPSD lines present well defined peaks. However it was found that,
for increasing wind speed, while the n= 0 lines remain well defined, the quality of the
peaks associated with the super-harmonics progressively degrades, making the estimation
of damping (and, in some cases, also of frequency) increasingly more difficult.

The Campbell diagram obtained from POMA is displayed in Fig. 7. Comparing this figure5

with the PARMAX plot shows that frequencies are well identified, but the high dispersion
of damping factors masks the expected trend. Several differences can also be noticed be-
tween the plots with respect to the participation factors. While both approaches indicate
that the principal harmonic is the most important in the response, they however detect a
markedly different behavior as a function of rotor speed. In addition, POMA overestimates10

the participation factors of the ±2 super-harmonics.

5.2 Tower side-side mode

The tower side-side mode was excited with a chirp-shaped force applied at the tower top.
The frequency band of such signal was set so as to excite only that single mode. The tower
base side-side moment was then recorded and used as output. As only the tower side-side15

peak is visible in the PSD of the response, thenNa was set equal to 2. The other coefficients
were set as NFa = 1, Nb = 1, NFb

= 1, Ng = 2 and NFg = 1.
The agreement between the output predicted with the PARMAX reduced model and the

measure, not shown here for the sake of brevity, is very good. The left plot of Fig. 8 shows
the Campbell diagram obtained with the PARMAX approach. In this diagram the results20

of the identifications are approximated with straight lines. Looking at this plot, it appears
that at 0.8Ωr the principal harmonic intersects the 2×Rev. For the PARMAX identification
this is not particularly problematic, and in fact only the participation factor has been slightly
underestimated. On the other hand, this poses a major problem for POMA. In fact, when
the signal is frequency-shifted by +2Ω, its average value is transported over the principal25

peak, making it difficult to estimate the mode shape and the damping of the tower side-side
mode.
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The Campbell diagram obtained from POMA identifications is shown in the right plot of
Fig. 8. The plot clearly shows that the damping of the principal harmonic estimated with the
half-power bandwidth is double the one estimated by PARMAX.

5.3 Backward and forward whirling in-plane modes

The backward and forward whirling in-plane modes were excited with a tower top side-side5

doublet, whose amplitude and duration were selected such that the input force spectrum
is almost flat in the frequency range of interest. The three blade root edge-wise bending
moments M1, M2 and M3 were recorded and the multi-blade coordinate transformationM0

Md

Mq

=
1

3

 1 1 1
2cos(ψ1) 2cos(ψ2) 2cos(ψ3)
2sin(ψ1) 2sin(ψ2) 2sin(ψ3)

M1

M2

M3

 (36)

was used to yield the direct and quadrature moments, noted respectively Md and Mq. The10

spectra of Md, displayed in Fig. 9, show well defined peaks.
The PARMAX reduced model was set with the following choice of parameters: Na = 8,

NFa = 1, Nb = 1, NFb
= 1, Ng = 2 and NFg = 1. Both the backward and forward whirling

in-plane modes, as well as the side-side tower mode, were nicely visible in the frequency
plot of the perturbed time histories. Thus, for each wind speed, only one reduced model15

capable of representing the behavior of all these three modes was identified.
Figures 10 and 11 show at left the periodic Campbell diagram obtained using the PARMAX

approach, and at right the one computed with POMA, respectively for the backward and the
forward whirling in-plane modes. It should be noticed that both approaches provide the
same results in terms of frequencies. The overall trend of the principal harmonic damp-20

ing factors as functions of the rotor speed is similarly captured. In particular, the PARMAX
results are characterized by a lower uncertainty for the backward mode and a higher uncer-
tainty for the forward one.

Once again, the damping of the super-harmonics obtained with the POMA technique are
not well estimated, as already noticed in Sect. 4. Moreover the participation factors of the25
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±2 super-harmonics are typically too high: for example, in the right plot of Fig. 11 one may
notice that the participation of super-harmonic +2 of the forward whirling mode is higher
than that of the principal one. This strongly overestimated participation is due to the nearly
2Ω spacing of the whirling modes, which causes their super-harmonics to nearly overlap.

6 Conclusions5

In this paper we have considered a model-independent periodic stability analysis capable of
handling turbulent disturbances. The approach is based on the identification of a PARMAX
reduced model from a transient response of the machine. The full-Floquet theory is then
applied to the reduced model, yielding all modal quantities of interest. As only time series
of measurements are necessary, the method appears to be suitable for the application to10

real wind turbines operating in the field.
In order to assess the validity of the proposed method, the well known POMA was imple-

mented and used for comparison. Tests were performed first with the help of a wind turbine
analytical model, whose exact solution can be obtained by the theory of Floquet, and then
with a high-fidelity wind turbine multibody model operating in turbulent wind conditions.15

Based on the results obtained in this study, one may draw the following considerations:

– Both methods are able to characterize the relevant behavior of the wind turbine in tur-
bulent wind conditions. However, the results provided by the proposed PARMAX anal-
ysis are in general more accurate than those given by the POMA technique, especially
if one looks not only at the principal harmonics but also at the super-harmonics.20

– Often the underlying hypothesis of POMA are not exactly fulfilled, and this leads to
inaccuracies especially in terms of damping and participation factors. These effects
are more visible for the whirling modes, as they are separated by about 2Ω, which
means that there will always be a perfect overlap between the super-harmonics of
these two modes at some angular velocity. The PARMAX analysis is less prone to25

such problems.
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– A major advantage of PARMAX over POMA is that it requires shorter time-histories.
This is important in turbulent conditions, where the rotor speed is hardly constant
(which, on the other hand, is a fundamental hypothesis of both methods).

The development of the present SISO-PARMAX approach suggests a number of exten-
sions, which are currently under investigation:5

– The use of multiple outputs in a multiple-input multiple-output (MIMO) PARMAX frame-
work could improve the quality of the results.

– Due to the stochastic nature of turbulence, a multi-history PARMAX applied to different
realizations of the same experiment could provide more robust modal results, along
with the associated variances.10

– The peak-picking method is rather simple and it is unable to exploit all the informational
content in the HPSD, especially in the presence of noisy peaks. Fitting algorithms have
been preliminary explored (see Allen et al., 2011a), but their application to the multiple
output case has not yet been attempted.

Appendix A: Review of linear time periodic systems15

A1 Floquet theory in continuous time

A generic SISO LTP system in continuous time can be written in state-space form as

ẋ=A(t)x+B(t)u, (A1a)

y =C(t)x+D(t)u, (A1b)

where t is time, x, u and y the state, input and output vectors, respectively, while A(t),20

B(t), C(t) and D(t) are periodic system matrices such that

A(t+T ) =A(t), B(t+T ) =B(t), (A2a)

C(t+T ) =C(t), D(t+T ) =D(t), (A2b)
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for any t. The smallest T satisfying Eq. (A2) is defined as the system period. Vector u
contains the wind turbine control inputs (i.e. blade pitch angles, electrical torque, possibly
the yaw angle) as well as exogenous inputs related to the wind states (e.g. wind speed,
vertical or lateral shears, cross-flow, etc.).

To study the stability of Eq. (A1a), its autonomous version is considered together with the5

associated initial conditions:

ẋ=A(t)x, x(0) = x0. (A3)

The state transition matrix Φ(t,τ ) maps the state at time τ , x(τ), into the state at time t,
x(t):

x(t) = Φ(t,τ)x(τ), (A4)10

and it obeys a similar equation with its associated initial conditions

Φ̇(t,τ) =A(t)Φ(t,τ), Φ(τ,τ) = I, (A5)

where I is the identity matrix. It can be shown that in the continuous-time case the transition
matrix is always invertible (Bittanti and Colaneri, 2009).

An important role in the stability analysis of periodic systems is played by the state tran-15

sition matrix over one period Ψ(τ ) = Φ(τ +T,τ), termed monodromy matrix. By definition,
the monodromy matrix relates two states separated by a period; consequently, a generic
state that is sampled at every period, noted x̃τ (k) = x(τ + kT ), obeys the following linear-
invariant discrete-time equation

x̃τ (k+ 1) = Ψkx̃τ (k). (A6)20

The system is asymptotically stable if all the eigenvalues of the monodromy matrix, called
characteristic multipliers and noted θj , belong to the open unit disk in the complex plane. It
can be shown that the eigenvalues of the monodromy matrix and their multiplicity are time-
invariant even if the monodromy matrix is periodic (Bittanti and Colaneri, 2009). For this
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reason, one can ignore the time lag τ when referring to the characteristic multipliers. The
eigenvalues θj and associated eigenvectors sj are obtained by the spectral factorization of
the monodromy matrix, i.e.

Ψ(τ) = Sdiag(θj)S
−1, (A7)

with S = [. . . ,sj , . . . ].5

In order to determine the frequency content of a periodic system, it is necessary to in-
troduce the so called Floquet-Lyapunov transformation. The Floquet-Lyapunov problem is
the one of finding a bounded, periodic and invertible state-space transformation z(t) =
Q(t)x(t) such that the resulting governing equation

ż =Rz (A8)10

is time-invariant, i.e. the Floquet factor matrixR is constant. SinceR=Q(t)A(t)Q−1(t)+
Q̇(t)Q−1(t), the periodic transformation Q(t) must obey the following matrix differential
equation

Q̇(t) =RQ(t)−Q(t)A(t), (A9)

whose solution is15

Q(t) = eR(t−τ)Q(τ)Φ−1(t,τ). (A10)

Exploiting the periodicity condition Q(τ +T ) =Q(τ), one gets the relationship between
monodromy matrix and Floquet factor, which writes

Ψ(τ) =Q(τ)−1eRTQ(τ). (A11)

The eigenvalues of the Floquet factor, called characteristic exponents and noted ηj , are20

computed by the spectral factorization of R:

R= V diag(ηj)V
−1, (A12)
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with V = [. . . ,vj , . . . ]. Inserting Eqs. (A7) and (A12) into (A11), the following result is derived

diag(θj) = S−1Q(τ)−1V diag(eηjT )V −1Q(τ)S, (A13)

which shows that V =Q(τ)S and, more importantly, that characteristic multipliers and
characteristic exponents are related as5

θj = eηjT . (A14)

Notice that there is an infinite number of Floquet factors, and therefore an infinite number
of Floquet-Lyapunov transformations. In fact, one can choose any invertible initial condition
Q(τ). In addition, computing characteristic exponents from multipliers by inverting Eq. (A14)
leads to a multiplicity of solutions, as in fact10

ηj =
1

T
ln(θj) =

1

T

(
ln|θj |+ i(∠(θj) + 2`π)

)
, (A15)

where ` ∈ Z is an arbitrary integer. This indeterminacy, however, does not affect the real
frequency content of the response, since the transition matrix is uniquely defined. This
aspect of the problem will be further analyzed later on in these notes.

Given Q(τ) and R, the transition matrix is readily obtained from Eq. (A10) as15

Φ(t,τ) = P (t)eR(t−τ)P (τ)−1, (A16)

where the periodic matrix P (t) =Q(t)−1 is termed periodic eigenvector.
Consider now, for each mode, one of the infinite solutions of Eq. (A15), for example the

one with `= 0, noted η̂j . Introducing Ω = 2π/T , any other characteristic exponent ηj could
be computed from η̂j as20

ηj = η̂j + inΩ, n ∈ Z. (A17)

33



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Inserting Eq. (A12) into (A16), one can express the state transition matrix as the following
modal sum

Φ(t,τ) =
Ns∑
j=1

Zj(t,τ)eη̂j(t−τ), (A18)

where Zj(t,τ) = P (t)V IjjV
−1Q(τ), while Ijj is a matrix with the sole element (j, j)

equal to 1 and all others equal to 0. Because of the particular definition of Ijj , matrix5

Zj(t,τ) is of unitary rank ∀(t, τ) and it is also equal to ψj(t)Lj(τ)T , where

ψj(t) = colj(Ξ(t)), (A19a)

Lj(τ)T = rowj(Ξ−1(τ)), (A19b)

with Ξ(t) = P (t)V . Equation (A18) can be now reformulated as

Φ(t,τ) =
Ns∑
j=1

ψj(t)Lj(τ)T eη̂j(t−τ). (A20)10

Exploiting the periodicity of ψj(t), Eq. (A20) becomes

Φ(t,τ) =
Ns∑
j=1

+∞∑
n=−∞

ψjnLj(τ)T e(η̂j+inΩ)(t−τ)einΩτ , (A21)

where ψjn are the amplitudes of the harmonics of the Fourier expansion of ψj(t).
From Eq. (A21) it appears that, for each mode, an infinite number of exponents (play-

ing the role of eigenvalues of the LTI system) participates in the response of the system.15

Furthermore, a single frequency is not sufficient for completely characterizing that mode.
All exponents have imaginary parts that differ by integer multiples of Ω and have the same
real part; thus, all exponents of a given mode are either stable or unstable. This fact is not
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surprising, as the stability of the system is just determined by the characteristic multipliers,
which are uniquely defined.

For the LTP system, the exponents η̂j + inΩ play the role of the eigenvalues of the LTI
case, as they yield the frequencies ωjn = |η̂j + inΩ| and damping factors ξjn =−Re(η̂j)/ωjn
of each mode. To describe this situation, this infinite multiplicity of frequencies is termed a5

fan of modes (cf. Bottasso and Cacciola, 2015). Each harmonic in a fan contributes to the
overall response according to its associated “modal shape” ψjn. The relative contribution
of the nth harmonic to the jth mode is measured through its participation factor, defined as

φjn =
‖ψjn‖∑
n‖ψjn‖

. (A22)10

The triads {ωjn, ξjn,φjn} describe completely the behavior of a periodic mode. The partic-
ipation factors can be defined also as functions of the Frobenius norm of the harmonics of
Zj(t,τ), Zjn =ψjnLj(τ)T , as shown in Bottasso and Cacciola (2015):

φjn =
‖Zjn‖F∑
n‖Zjn‖F

. (A23)

The two definitions are exactly equivalent as, in this specific case, ‖Zjn‖F = ‖ψjn‖‖Lj(τ)‖15

and Lj(τ) stays the same for all harmonics1.
The apparent indeterminacy in the computation of the imaginary part of the logarithm

of the characteristic multipliers in Eq. (A15) is then understood. In fact, all the exponents
that satisfy Eq. (A14) are present in the response of the system, as it can be seen from
Eq. (A21). Since the transition matrix is uniquely defined, any choice of the integer ` in20

Eq. (A15) would act as a shift in the frequency content ofZj , such that all triads {ωjn, ξjn, φjn}
1Given two column vectors v = (. . . , vi, . . .)

T and w = (. . . , wj , . . .)
T , the square of the Frobe-

nius norm of the product vwT can be expressed as ‖vwT ‖2
F =

∑
i

∑
j(viwj)

2 =
∑
i v

2
i

∑
jw

2
j =

‖v‖2‖w‖2.
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remain exactly the same, as first observed by Borri (1986) and later discussed by Peters et
al. (2011).

Often, although not always, the harmonic with the highest participation is very similar in
terms of frequency and damping to the one that would results from the invariant analysis
of periodic systems based on the Coleman transformation (Coleman and Feingold, 1958;5

Hansen, 2004). As suggested by Bottasso and Cacciola (2015), such harmonic may be
called the principal one, while the others may be termed super-harmonics. Furthermore,
any one of these harmonics could resonate with external excitations.

In order to understand how each harmonic appears in a specific output of the system,
the output-specific participation factor can be defined. To this end, consider an output of10

the autonomous system (A3),

y(t) =C(t)Φ(t,τ)x(τ) = Φy(t,τ)x(τ). (A24)

Inserting Eq. (A20) into (A24) the following is derived

Φy(t,τ) =
Ns∑
j=1

C(t)ψj(t)Lj(τ)T eη̂j(t−τ). (A25)

Exploiting now the periodicity of the product C(t)ψj(t), Eq. (A25) can be rearranged as15

Φy(t,τ)=
Ns∑
j=1

+∞∑
n=−∞

cjne
((η̂j+inΩ)(t−τ))Lj(τ)TeinΩτ , (A26)

where cjn are the harmonics of the Fourier expansion of C(t)ψj(t). The output-specific
participation factor can finally be defined as

φyj n =
|cjn|∑
n|cjn|

. (A27)
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A2 The harmonic transfer function and the harmonic frequency response function

The forced response of system (A1), named yF(t), can be computed as

yF(t) =

t∫
0

h(t,σ)u(σ)dσ =

t∫
0

(
C(t)Φ(t,σ)B(σ) +D(σ)δ(t−σ)

)
u(σ)dσ, (A28)

where

h(t,τ) =C(t)Φ(t,τ)B(τ) +D(τ)δ(t− τ) (A29)5

is the impulse response. From Eq. (A28), it appears that the periodicity of C(t), B(t) and
Φ(t,τ) causes the input-output behavior of a LTP system to be far from being describable
as a LTI-like one. In particular, it can be shown that a LTP system subjected to an input at
a given frequency may respond at an infinite number of frequencies, which in addition to
the input frequency itself include also the integer multiples of the system frequency (Bittanti10

and Colaneri, 2009; Wereley, 1991). This is also the reason why any output of a wind
turbine subjected to a constant-in-time wind (i.e. at the zero frequency) is characterized by
frequencies at the multiples of the rotor speed (i.e. 0×Rev, 1×Rev, 2×Rev, . . . ).

In the frequency domain, the input-output relation can be expressed by means of the
HTF (cf. Bittanti and Colaneri, 2009; Wereley, 1991), which can be interpreted as the ex-15

tension to periodic systems of the standard time-invariant transfer function. To this end, the
so-called exponentially modulated periodic (EMP) signal is defined as

v(t) =
∑
k∈Z

vke(s+ikΩ)t, (A30)

where s ∈ C. According to definition (A30), any vk can be also viewed as the Laplace trans-
formation of v(t) evaluated at s+ jkΩ as20

vk(s) =

∞∫
−∞

v(t)e−(s+jkΩ)t. (A31)
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It can be shown that a periodic system subjected to an EMP admits an EMP regime (Bittanti
and Colaneri, 2009), and that in such a regime its states are EMP signals. In order to ex-
ploit this property, one has first to define two doubly infinite-dimensional vectors containing
respectively the EMP harmonics u(t) and y(t), as

Y(s) =
(
· · · y−1(s) y0(s) y1(s) · · ·

)T
, (A32a)5

U(s) =
(
· · · u−1(s) u0(s) u1(s) · · ·

)T
. (A32b)

Next, the doubly-infinite Toeplitz matrices A, B, C and D, containing the Fourier expansions
Ak, Bk, Ck and Dk of the corresponding system matrices, are defined as

A =



. . .
...

...
...

...
· · · A0 A−1 A−2 · · ·
· · · A1 A0 A−1 · · ·
· · · A2 A1 A0 · · ·

...
...

...
...

. . .

 , (A33)

and similarly for the B, C and D matrices. Finally, by inserting the EMP expansions of y and10

u and the Fourier expansions of the system matrices into Eq. (A1), summing up all terms at
the same frequency, the input-output relationship is derived as

Y(s) = G(s)U(s). (A34)

where the HTF is defined as

G(s) = C
(
sI − (A−N )

)−1
B +D, (A35)15

with N = blkdiag{ikΩI, k ∈ Z}, being I and I identity matrices of suitable dimensions.
The HTF can also be represented by means of the impulse response of the system (Bit-

tanti and Colaneri, 2009). From Eq. (A29), it is easily verified that function h(t, t− r) for a
38
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fixed time lag r is periodic and, consequently, that it can be expanded in a Fourier series as

h(t,τ) =
∞∑

k=−∞
hk(t− τ)eikΩt. (A36)

The output equation can be then written according to the following convolution

y(t) =
∞∑

k=−∞

t∫
0

hk(t− τ)eikΩ(t−τ)u(τ)ejkΩτ , (A37)5

which leads to the input-output relation in the Laplace domain

Y (s) =
∞∑

k=−∞
Hk(s− jkΩ)U(s− jkω), (A38)

where Y (s), U(s) and Hk(s) are respectively the Laplace transforms of y, u and hk. Equa-
tion (A38) can be evaluated for each element of the EMP output signal Y by substituting
the complex number s with the exponentially modulated periodic one s+ ikΩ with k ∈ Z,10

leading to the following relationship

Y (s+ ikΩ) =
∑
n=−∞

Hk−n(s+ jnΩ)U(s+ jnΩ). (A39)

Consequently, since Y (s+ ikΩ) = yk(s) and U(s+ ikΩ) = uk(s) because of Eq. (A31), the
HTF can be written as

G(s) =



. . .
...

...
...

...
· · · H0(s− iΩ) H−1(s) H−2(s+ iΩ) · · ·
· · · H1(s− iΩ) H0(s) H−1(s+ iΩ) · · ·
· · · H2(s− iΩ) H1(s) H0(s+ iΩ) · · ·

...
...

...
...

. . .

 . (A40)15
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Inserting (A21) into Eq. (A29), one can derive the following expression

h(t,τ)=
∞∑

n=−∞

 Ns∑
j=1

∞∑
m=−∞

cjne

(
(ηj+inΩ)(t−τ)

)
ljme

i(n+m)Ωτ

+
∞∑

k=−∞
dke

ikΩtδ(t− τ), (A41)

where the product LTj (τ)B(τ) and D(τ) have been expanded in Fourier series, being ljm
and dk the related amplitudes. After some manipulations (see also Wereley, 1991; Wereley
and Hall, 1990), the Laplace transformation of hk(t− τ)e−inΩ(t−τ) can be finally written as5

Hk(s+ inΩ) =
Ns∑
j=1

∞∑
m=−∞

cjk+mlj−m
s− (ηj + i(m−n)Ω)

+ dk. (A42)

Consider now the row-index ` ∈ Z and the column-index r ∈ Z of the HTF, defined such that
the element with `= r = 0 (noted G0,0) corresponds to the median element H0(s), and the
element with `= r =−1 (notedG−1,−1) toH0(s−iΩ). Hence, according to such definitions
and thanks to Eq. (A42), the following holds10

G`,r(s) =H`−r(s+ irΩ) =
Ns∑
j=1

∞∑
w=−∞

cj`+wlj−r−w
s− (ηj + iwΩ)

+ d`−r. (A43)

Consequently, the HTF can be computed as

G(s) =
Ns∑
j=1

∞∑
w=−∞

Cj,wB
T
j,w

s− (ηj + iwΩ)
+D, (A44)

where

Cj,r =
(
· · · cj−1+w cjw cj1+w · · ·

)T
, (A45)15

40



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Bj,m =
(
· · · lj1−w lj−w lj−1−w · · ·

)T
, (A46)

and D = D.
From a practical standpoint, the use of the harmonic input-output relation expressed by

the HTF implies that one has to consider a truncated finite dimensional approximation of5

G(s), which corresponds to the use of truncated versions of the EMP input and output
signals.

A3 The discrete-time case

In this section the stability analysis of periodic discrete-time systems is briefly reviewed. For
a more comprehensive treatment, the reader is referred to Bittanti and Colaneri (2009) and10

Bottasso and Cacciola (2015).
The autonomous dynamic equation of a generic LTP system in discrete time and its initial

conditions are

x(k+ 1) =A(k)x(k), x(0) = x0, (A47)

where k is a generic time instant and A(k) is a periodic matrix of period K such that15

A(k+K) =A(k), ∀k. Similarly, the transition matrix obeys the following equation with its
initial conditions

Φ(k+ 1, κ) =A(k)Φ(k, κ), Φ(κ, κ) = I. (A48)

In this work we consider only reversible systems, i.e. those for which det(Φ(k, κ)) 6= 0,∀(k, κ).
For reversible discrete-time systems, the state transition matrix Φ(k, κ) can be decom-20

posed in periodic and contractive parts as

Φ(k, κ) = P (k)R(k−κ)P (κ)−1, (A49)

where P (k) is periodic andR is constant. Here again, the system is stable if the character-
istic multipliers θj , i.e. the eigenvalues of the monodromy matrix Ψ(κ) = P (κ)R(K)P (κ)−1,
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belong to the open unit disk in the complex plane. The relationship between characteristic
multipliers and characteristic exponents is

θj = ηKj . (A50)

In the discrete-time case, the apparent multiplicity of the characteristic exponents mani-
fests itself as a phase indetermination since5

ηj = K

√
|θj |exp

(
i
∠(θj) + 2`π

K

)
, (A51)

where `= 0, . . . , K−1 is an arbitrary integer. As in the continuous-time case, this does not
in reality generate any inconsistency as frequencies, damping and participation factors of
the various harmonics are unaffected by this apparent arbitrariness.

Following the same approach of the continuous-time case, the transition matrix can be10

rewritten as

Φ(k,κ) =
Ns∑
j=1

ψj(k)Lj(κ)T eη̂j(k−κ), (A52)

where Ξ(k) = P (k)V and

ψj(k) = colj(Ξ(k)), (A53a)

Lj(κ)T = rowj(Ξ−1(κ)). (A53b)15

After having expanded ψj(k) in Fourier series, one gets

Φ(k,κ)=
Ns∑
j=1

K−1∑
n=0

ψjnLj(κ)T
(
|η̂j |exp(i∠(η̂j)+n2π

K )
)k−κ

, (A54)
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where now ψjn are the amplitudes of the harmonics of the Fourier expansion of ψj(k).
Coherently, the multiplication of Eq. (A54) with C(k) leads to

Φy(k,κ)=
Ns∑
j=1

K−1∑
n=0

cjnLj(κ)T
(
|η̂j |exp(i∠(η̂j)+n2π

K )
)k−κ

, (A55)

being cjn the harmonics of the Fourier expansion of C(k)ψj(k). This shows that the jth
mode is characterized by K exponents with the same modulus and different phases. Each5

exponent can be transformed into the continuous one using the following expression (cf.
Franklin and Powell, 1980)

ηjc =
1

∆t
ln
(
ηjd
)
, (A56)

where ∆t is the sampling time and subscripts (·)c and (·)d refer, respectively, to the continu-
ous and discrete-time cases. Once the continuous-time exponents are computed, frequen-10

cies, damping and participation factors can be readily obtained as in the continuous-time
case.

Appendix B: Derivation of the equations of motion for a wind turbine analytical
model

The simplified upwind horizontal-axis wind turbine model used in this work, depicted in15

Fig. 12, considers the coupled motion of tower and blades. The tower fore-aft and side-side
flexibility are rendered by two equivalent linear springs and dampers, while each blade is
modeled as two rigid bodies connected to each other by means of two equivalent revolute
joints, which allow respectively the blade flap and edge-wise rotations. The inner part of the
blade is rigidly connected to the hub. Each joint is associated to a rotational spring and a20

rotational damper. The inertial and structural characteristics of each element are chosen
so as to match the first tower fore-aft and side-side mode and the first blade flap-wise and
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edge-wise modes in vacuo, computed using a high-fidelity multibody model of the wind
turbine.

The reference frame used for the derivation of the equations of motions has its origin
located at the hub, the x axis directed downward, the z axis directed from the tower to the
rotor, and the y axis selected so as to form a right handed triad. To simplify the notation, in5

the following subscript k, denoting the blade number, will be dropped together with the time
dependence whenever possible.

The contribution of the two blade parts to the total energy can be developed separately.
Thus, let rU and rD indicate respectively the dimensional abscissa along the inner and the
movable parts of the blade, respectively. The position of a generic blade point is given by10

rU =

 rU cosψ
yH + rU sinψ

zH

 , (B1)

when the point belongs to the inner part of the blade, and by

rD =

 ecosψ+ rD cosβ cos(ψ+ ζ)
yH + esinψ+ rD cosβ sin(ψ+ ζ)

zH + r sinβ

 , (B2)

when it belongs to the movable part. The kinetic energy of the whole rotor is obtained by
summing up the kinetic energy of the hub, TH , and of both the inner and the movable parts15

of the kth blade, respectively noted TDk
and TUk

, resulting in

T = TH +
B∑
k=1

(TUk
+TDk

) , (B3)

where

TH =
1

2
mH(ẏ2

H + ż2
H), (B4)
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and

TUk
=

1

2

e∫
0

ρ(r)ṙU (r) · ṙU (r)dr, (B5a)

TDk
=

1

2

R∫
e

ρ(r)ṙD(r) · ṙD(r)dr, (B5b)

being ρ(r) the blade mass per unit span.
All springs and gravity contribute to the potential energy of the system as5

V = VyH +VzH +
B∑
k=1

(Vβk +Vζk +VUk
+VDk

) , (B6)

where the potential energy of the side-side and fore-aft springs are defined respectively as
VyH = 1/2Kyy

2
H and VzH = 1/2Kzz

2
H , while that of the flap-wise and edge-wise springs as

Vβk = 1/2Kββ
2
k and Vζk = 1/2Kζζ

2
k . Finally the contribution of gravity can be expressed as

10

VU =−mUgxCGU
=−mUgrGU cosψ, (B7a)

VD =−mDgxCGD
=−mDgrGD cosβ cos(ψ+ ζ). (B7b)

The damping function D follows a rather similar procedure, where

D =DyH +DzH +
B∑
k=1

(Dβk +Dζk) . (B8)

The aerodynamic model is based on a linearized BEM approach with constant aerody-15

namic properties along the blade, mostly taken from Eggleston and Stoddard (1987), with
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the addition of the hub velocity (ẏH , żH) to the inflow and cross-flow terms, but neglecting
the yaw rate. Table 8 gives the meaning of some symbols used in the following equations.

The hub shear force in the fore-aft direction is

Saero
β =

1

2
γJD

Ω2

R

{
λ

2
+
θp
3
− β̇/Ω

3
− sinψ

[
Ū0β

2

]
− cosψ

[
Ū0

(
λ− β̇/Ω

2
− θp

)
+
K1V̄0

3

]}
. (B9)

The hinge out-of-plane moment is5

Maero
β =

1

2
γJDΩ2

{
λ

3
+
θp
4
− β̇/Ω

4
− sinψ

[
Ū0β

3

]
− cosψ

[
Ū0

(
λ

2
− β̇/Ω

3
+

2θp
3

)
+
K1V̄0

4

]}
. (B10)

The hub shear force in the direction parallel to the chord of the blade, and pointing towards
the leading edge, is

Saero
ζ =

1

2
γJD

Ω2

R

{
λ

(
λ+

θp
2

)
− β̇

Ω

(
λ+

θp
3

)
− cosψ

[
K1V̄0

(
λ+

θp
3

)
+ Ū0θpλ−

β̇

Ω

(
2

3
K1V̄0 +

Ū0θp
2

)]
− sinψ

[
βŪ0

(
2λ+

θp
2
− β̇

Ω

)]}
. (B11)
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The hinge moment in the edge-wise direction is

Maero
ζ =

1

2
γJDΩ2

{
λ

(
λ

2
+
θp
3

)
− β̇

Ω

(
2

3
λ+

θp
4

)
− cosψ

[
K1V̄0

(
2

3
λ+

θp
4

)
+
Ū0θpλ

2
− β̇

Ω

(
K1V̄0

2
+
Ū0θp

3

)]
− sinψ

[
βŪ0

(
λ+

θp
3
− 2

3

β̇

Ω

)]}
. (B12)

This aerodynamic model assumes that the wind velocity varies linearly over the rotor disc,
and therefore it is not suited to simulate turbulent wind fields.

The virtual work of the aerodynamic forces and moments results to be5

δW aero =
B∑
k=1

(
Saero
ζk

cos(ψk + ζk)δyH +Saero
βk

δzH+ Maero
βk

δβk +Maero
ζk

δζk
)
. (B13)

The generalized forces follow directly from the previous expression.
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Finally, the non-linear Lagrangian equations of motion of the system are

JDβ̈+Cββ̇+Kββ =Maero
β − JD(Ω+ζ̇)2 cosβ sinβ−

mDrGD
(
g cos(ψ+ ζ)sinβ+ eΩ2 cosζ sinβ−

ÿH sin(ψ+ ζ)sinβ+ z̈H cosβ
)
, (B14a)

5

JD cos2βζ̈+Cζ ζ̇+Kζζ=Maero
ζ +2JD(Ω + ζ̇)β̇ cosβ sinβ−

mDrGD cosβ
(
g sin(ψ+ ζ)+

eΩ2 sinζ + ÿH cos(ψ+ ζ)
)
, (B14b)

(mH +B(mU +mD))z̈H +Cz żH +KzzH =10

B∑
k=1

(
Saero
βk
−mDrGD

(
β̈k cosβk− β̇2

k sinβ
))
, (B14c)

(mH +B(mU +mD))ÿH +CyẏH +KyyH =

B∑
k=1

(
Saero
ζk

cos(ψk+ζk)+mDrGD
(
Ω2 cosβk sin(ψk+ζk)+

β̇2
k cosβk sin(ψk + ζk) + 2β̇kζ̇k sinβk cos(ψk + ζk)+15

ζ̇2
k cosβk sin(ψk + ζk + 2Ω(β̇k sinβk cos(ψk + ζk)+

ζ̇k cosβk sin(ψk + ζk)) + β̈k sinβk sin(ψk + ζk)−

ζ̈k cosβk cos(ψk + ζk)
))
. (B14d)

All equations shown in this section and the system linearization were computed analyti-
cally with Wolfram Mathematica® (Wolfram Research, 2013).20
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Nomenclature

A(q;k) Periodic autoregressive polynomial
B(q;k) Periodic exogenous polynomial
Na Order of the autoregressive part
Nb Order of the exogenous part5

Ng Order of the moving average part
F(q;k) Shape filter polynomial
G(q;k) Periodic moving average polynomial
K Discrete-time system period
T Continuous-time system period10

J Cost function
N Total number of samples used for identification
Ns Number of states
P(p) Characteristic multipliers of the PARMAX predictor p
NFa Number of harmonics of the autoregressive coefficients15

NFb
Number of harmonics of the exogenous coefficients

NFg Number of harmonics of the moving average coefficients
C Complex number set
Z Integer number set
B Number of blades20

Y (s) Laplace transformation of the output
U(s) Laplace transformation of the input
Hk(s) Laplace transformation of the kth harmonic of the impulse response
z Measured output
ẑ Predicted output25

q One-step-ahead shift operator
k Time index
ut Turbulent wind input
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u Mean wind speed
n Order of the system, n= max(Na, Nb, Ng)
y System output
e Process noise
yk(ω) Fourier transformation of the kth shifted copy of the output5

uk(ω) Fourier transformation of the kth shifted copy of the input
yk(s) Laplace transformation of the kth shifted copy of the output
uk(s) Laplace transformation of the kth shifted copy of the input
t Time
yF Forced response10

h(t, τ) Impulse response
hk(t) kth harmonic of the impulse response
s Laplace variable
A(t) State matrix
B(t) Input matrix15

E(t) Process noise input matrix
C(t) Output matrix
D(t) Direct transition matrix
F (t) Measurement noise matrix
N(t) State matrix of the PARMAX predictor20

G Harmonic transfer function
U Exponentially modulated periodic expansion of the input
Y Exponentially modulated periodic expansion of the output
Y (ω) Vector of Fourier transformations of all shifted copies of the output
U(ω) Vector of Fourier transformations of all shifted copies of the input25

G(ω) Harmonic frequency response function
SY Y (ω) Harmonic power spectrum of the output
SUU (ω) Harmonic power spectrum of the input
Φ State transition matrix
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I Identity matrix
Ψ Monodromy matrix
S Eigenvector matrix of the monodromy matrix
Q(t) Floquet-Lyapunov transformation
R Floquet factor5

V Eigenvector matrix of the Floquet factor
P (t) Periodic eigenvector
x State vector
p Unknown vector of model coefficients
x0 Initial state vector10

x̃τ State vector sampled at every period
sj jth eigenvector of the monodromy matrix
z Floquet-Lyapunov transformed state vector
Ω Rotor speed
δut Turbulent perturbation of the wind15

αi ith coefficient of canonical system matrix A
βi ith coefficient of canonical input matrix B
γi ith coefficient of canonical process noise input matrix E
ψ Azimuth angle
ε Prediction error20

ω Generic frequency
ηj jth characteristic exponent
τ Time lag
θj jth characteristic multiplier
φjn Participation factor of the nth harmonic of the jth mode25

φyj n Output specific participation factor of the nth harmonic of the jth mode
(·)∗ Complex conjugate
(·)s Sine amplitude
(·)c Cosine amplitude
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(·)T Transpose
(·)H Complex conjugate transpose
˙(·) Time derivative

IPC Individual pitch control
HHC Higher harmonic control5

HTF Harmonic transfer function
HFRF Harmonic frequency response function
MBC Multi-blade coordinate
LTI Linear time-invariant
LTP Linear time periodic10

PARMAX Periodic autoregressive moving average with exogenous input
POMA Periodic operational modal analysis
PEM Prediction error method
EMP Exponentially modulated periodic
SISO Single-input single-output15

HPSD Harmonic power spectral density
BEM Blade element momentum
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Table 1. Frequencies and damping factors for the Mathieu oscillator and analytical results.

Frequencies Damping factors
Peak Identified Exact Identified Exact

−4Ω 0.3523 0.3523 0.0156 0.0090
−3Ω 0.2254 0.2250 0.0220 0.0142
−2Ω 0.0969 0.0977 0.0363 0.0326
−1Ω 0.0299 0.0299 0.1071 0.1065

0 0.1571 0.1571 0.0203 0.0203
+1Ω 0.2848 0.2844 0.0114 0.0112
+2Ω 0.4121 0.4117 0.0124 0.0077
+3Ω 0.5390 0.5390 0.0102 0.0059
+4Ω 0.6663 0.6664 0.0083 0.0048
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Table 2. Most relevant output-specific participation factors for the Mathieu oscillator and related
analytical results.

0.35 Hz 0.23 Hz 0.10 Hz 0.03 Hz Peak at 0.28 Hz 0.41 Hz 0.54 Hz 0.67 Hz
Exact

(−4Ω) (−3Ω) (−2Ω) (−1Ω) 0.16 Hz (+1Ω) (+2Ω) (+3Ω) (+4Ω)

φx1−4
0.0174 0.0167 0.0164 0.0162 0.0163 − − − − 4.961E-04

φx1−3
0.0352 0.0346 0.0316 0.0323 0.0328 0.0323 − − − 0.0097

φx1−2
0.0659 0.0587 0.0660 0.0626 0.0618 0.0652 0.0667 − − 0.0477

φx1−1
0.1509 0.1405 0.1419 0.1409 0.1410 0.1433 0.1473 0.1560 − 0.1583

φx10
0.7000 0.6614 0.6445 0.6499 0.6537 0.6562 0.6753 0.7234 0.8527 0.7160

φx11
− 0.0642 0.0687 0.0666 0.0661 0.0685 0.0703 0.0731 0.0862 0.0655

φx12
− − 0.0134 0.0131 0.0130 0.0134 0.0137 0.0144 0.0170 0.0023

φx13
− − − 0.0085 0.0085 0.0086 0.0089 0.0095 0.0111 4.401E-05

φx14
− − − − 0.0067 0.0067 0.0069 0.0074 0.0087 5.325E-07
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Table 3. Parameters of the analytical wind turbine model.

Parameter Symbol Value

Number of blades B 3
Rotor radius R 75 m
Rotor speed Ω 11.5 rpm
Hinge offset e 25.651 %R
Mass of hub mH 7.500E+4 kg

Blade mass (movable part) mD 1.448E+4 kg
Blade mass (fixed part) mU 1.087E+4 kg

Blade CG after hinge rGD 18.72 m
Blade moment of inertia JD 7.488E+6 kg m2

Edge-wise spring stiffness Kζ 2.119E+8 Nm
Edge-wise spring damper Cζ 1.756E+6 Nms
Flap-wise spring stiffness Kβ 5.215E+7 Nm
Flap-wise spring damper Cβ 1.756E+6 Nms
Tower SS spring stiffness Ky 7.312E+5 Nm−1

Tower SS spring damper Cy 1.329E+4 Nsm−1

Tower FA spring stiffness Kz 6.581E+5 Nm−1

Tower FA spring damper Cz 1.329E+4 Nsm−1

Lock number γ 20
Wind shear gradient K1 0.018 s−1
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Table 4. Analytical results and estimation errors of blade in-plane modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.4796 0.0015 0.0011 0.0367 0.0071 0.8773 0.0010 -0.0009 0.0261
0.6712 0.0010 -0.0005 0.0262 0.0075 0.6569 0.0208 -0.0038 0.0579
0.8628 0.0008 -0.0003 0.0204 0.0077 0.0325 0.9584 0.0074 -0.1757
1.0544 0.0007 -0.0048 0.0167 0.0079 1.3739 0.0181 -0.0011 0.0494
1.2461 0.0006 -0.0009 0.0141 0.0080 0.7958 0.0016 -0.0015 0.0425
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Table 5. Analytical results and estimation errors of tower side-side modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.0374 -0.0066 -0.0276 0.1874 -0.0887 0.8103 0.0000 0.0000 0.0081
0.1550 0.0007 0.0014 0.0453 -0.0953 0.7953 0.0000 0.0085 0.0196
0.3466 0.0003 0.0009 0.0202 -0.0950 0.0030 0.9990 -0.0250 -0.1375
0.5383 0.0002 0.0006 0.0130 -0.0949 0.7199 0.0000 0.0161 0.0640
0.7299 0.0002 -0.0022 0.0096 -0.0948 2.8363 0.0000 0.0013 0.0468
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Table 6. Analytical results and estimation errors of in-plane backward whirling modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.3050 -0.0135 − 0.0619 -0.1675 − 0.0000 0.0007 −
0.4964 -0.0081 -0.0096 0.0380 -0.1720 5.3415 0.0000 0.0258 0.1234
0.6880 -0.0058 -0.0040 0.0274 -0.1739 0.0740 0.9889 -0.0533 -0.6323
0.8796 -0.0045 0.0002 0.0215 -0.1750 0.7516 0.0000 0.0339 0.0315
1.0712 -0.0037 0.0056 0.0176 -0.1757 0.3572 0.0000 0.0040 0.2431
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Table 7. Analytical results and estimation errors of in-plane forward whirling modal parameters.

Frequencies Damping factors Participation factors

Analytical
Relative error

Analytical
Relative error

Analytical
Absolute error

PARX POMA PARX POMA PARX POMA

0.7108 0.0012 − 0.0281 0.0192 − 0.0000 0.0061 −
0.9024 0.0010 0.0025 0.0222 0.0195 0.9598 0.0000 0.0411 0.0579
1.0940 0.0008 -0.0005 0.0183 0.0197 0.0000 0.9610 -0.0168 -0.3787
1.2857 0.0007 -0.0027 0.0156 0.0198 0.8850 0.0000 0.0084 0.0566
1.4773 0.0006 -0.0010 0.0135 0.0199 0.8131 0.0000 0.0000 0.0239
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Table 8. Definitions of the symbols in the aerodynamic loads.

Symbol Meaning Expression

θp Pitch angle
K1 Vertical shear gradient

U0, V0 Cross and axial wind
vi Axial induced velocity
λ Non-dimensional inflow (V0−vi−żH)/(ΩR)
Ū0 Non-dimensional cross-flow (U0−ẏH)/(ΩR)
V̄0 Non-dimensional axial wind V0/(ΩR)
γ Lock number ρClαcR

4/JD
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Figure 1. Harmonic power spectrum of the output of the Mathieu oscillator.
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Figure 2. Harmonic power spectrum of the ζ2 output of the wind turbine analytical model. The peak
of the n= 0 curve is caused by the blade in-plane mode, while spikes are due to the rotational
frequency and its multiples.
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Figure 3. Harmonic power spectrum of the yH output of the wind turbine analytical model. Three
modes are visible on the n= 0 curve, along with the rotational frequency and its harmonics.
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Figure 4. Comparison between measured (solid line) and predicted (dashed line) normalized blade
root edge-wise bending moment, in the time (left) and frequency (right) domains.
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Figure 5. Periodic Campbell diagram of the first blade edge-wise mode obtained from PARMAX
identifications. The results of the single identifications along with the confidence level of the fitting
curves are shown. Participation factors are computed in the rotating reference frame.
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Figure 6. HPSD for the blade in-plane mode, obtained for a 3 m/s average wind speed.
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Figure 7. Periodic Campbell diagram of the first blade edge-wise mode obtained from POMA iden-
tifications.
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Figure 8. Periodic Campbell diagram for the tower side-side mode obtained from PARMAX (left) and
POMA (right) identifications.
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Figure 9. HPSD of the Md load, obtained for a 7 m/s average wind speed.
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Figure 10. Periodic Campbell diagram of the backward whirling in-plane mode obtained from
PARMAX (left) and POMA (right) identifications.
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Figure 11. Periodic Campbell diagram of the forward whirling in-plane mode obtained from PARMAX
(left) and POMA (right) identifications.
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Figure 12. Sketch of the wind turbine analytical model. Only one blade is shown not to clutter the
figure.
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