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Abstract. Using detailed upwind and nacelle-based measurements from a General Electric [GE] 1.5sle model with a 

77-m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to 

different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating 

power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135-m 

meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on 5 

turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the Bulk 

Richardson number (𝑅𝐵). We also calculate AEP with and without these atmospheric filters and highlight 

differences between the results of these calculations. The power curves for different TI regimes reveal that increased 

TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds 

at this site, the U.S. Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power 10 

curves for different 𝑅𝐵 regimes reveal that periods of stable conditions produce more power at wind speeds near 

rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that 

calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically-

significant differences between power curves and AEP calculated with these turbulence and stability filters for this 

turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate 15 

effects of atmospheric stability and turbulence across the rotor disk. 

Keywords 

wind energy, power curve, atmospheric stability, TI 

1 Introduction 

Power performance testing and annual energy production (AEP) assessments rely on accurate calculations of wind 20 

turbine power curves. Previous work on power performance highlights the role of turbulence intensity (TI) and wind 

shear in influencing power production (Elliot and Cadogan, 1990; Hunter et al., 2001; Kaiser et al., 2003; Sumner 

and Masson, 2006; Gottschall and Peinke, 2008; Antoniou et al., 2009; Rareshide et al., 2009; Wharton and 

Lundquist, 2012a, 2012b; Clifton et al., 2013; Dörenkämper et al., 2014). Wharton and Lundquist (2012b) also 

found that vertical TI and turbulence kinetic energy (TKE) affect power performance and Rareshide et al. (2009) 25 

found that veer affects power performance. Atmospheric stability induces deviations of power from the 
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manufacturer power curve (MPC) (Motta et al., 2005; van den Berg, 2008; Vanderwende and Lundquist, 2012; 

Wharton and Lundquist, 2012b), and atmospheric variations across the rotor disk can influence power performance 

results (Sumner and Masson, 2009; Wagner et al., 2009; Choukulkar et al., 2015).  

Because the power curve so closely impacts AEP, factors that influence power performance typically 30 

influence AEP calculations as well. As suggested by the works mentioned above, the two most closely explored 

atmospheric factors with regard to AEP are TI and wind shear, but the existing studies do not agree on the influence 

of TI and wind shear on AEP. The simulation-based study of Antoniou et al. (2009) found that low wind shear 

supported high AEP. For low wind speeds, the highest AEP occurred during conditions of high TI, but at higher 

wind speeds, the highest AEP occurred when TI was low. In contrast, based on data from a number of wind farms in 35 

the continental United States, Rareshide et al. (2009) also compared AEP calculated with different TI and shear 

combinations, and found that AEP typically decreased with increasing TI, but increased with increasing shear. 

In this study, we also investigate the influence of different atmospheric stability and turbulence regimes on 

wind turbine power curves and AEP calculations, incorporating a broad set of atmospheric parameters as well as 

different approaches to measuring these parameters. In Sect. 2 we describe our data set, which includes an upwind 40 

meteorological (met) tower with measurements spanning the rotor disk as well as a wind-profiling lidar. In Sect. 3 

we present our data analysis methods, which include filtering the data by atmospheric parameters like shear, TI, and 

atmospheric stability. The effects of atmospheric parameters on power curves and AEP are presented in Sect. 4, and 

in Sect. 5 we summarize conclusions about the effects of atmospheric stability and inflow turbulence on power 

curves and AEP calculations.  45 

2 Data  

2.1 Measurement site 

The measurements used in this analysis were collected at the U.S. Department of Energy (DOE) National Wind 

Technology Center (NWTC, Fig. 1) at the National Renewable Energy Laboratory (NREL), located just south of 

Boulder, Colo., and about 5 km east of the Colorado Front Range (Clifton et al., 2013; Aitken et al., 2014). The 50 

prevailing wind direction at 80 m (hub height) at this site during this campaign (29 November 2012 – 14 February 

2013) was west–northwesterly. 
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This wind direction also dominated a 14-year period from a neighboring met tower at the NWTC (Clifton 

and Lundquist, 2012). During the winter, the downslope flow from the nearby Rocky Mountains is frequently 

channeled through Eldorado Canyon, located just west-northwest of the NWTC (Banta et al., 1996; Poulos et al., 55 

2000, 2007; Clifton et al., 2013; Aitken et al., 2014). The NWTC site slopes upward with about 20 m in elevation 

change toward the west for about 1.5 km before dropping off 20 m towards the highway on the western edge of the 

site. The surface is mostly short grass. 

2.2 Upwind measurements 

Upwind measurements were taken using a Renewable NRG Systems (NRG)/LEOSPHERE WINDCUBE v1 60 

vertically-profiling Doppler lidar (Courtney et al., 2008; Rhodes and Lundquist, 2013) and a 135-m met tower. The 

tower supports several levels of cup anemometers, vanes, sonic anemometers, and temperature sensors, along with 

precipitation and air-pressure sensors (Fig. 2, Table 1), all on booms pointing in the dominant wind direction (west-

northwest). Data were collected during the winter season, typically the season of the strongest winds at the NWTC 

(from 29 November 2012 through 14 February 2013). The lidar is located about 216 m (2.7 D) west of the General 65 

Electric (GE) 1.5sle turbine on the NWTC site. The met tower is located approximately 160 m (2.0 D) west-

northwest of the turbine (Fig. 1). Because different instruments employ different averaging methods, Fig. 3 

demonstrates that all wind speed data sets were synchronized and illustrates how the power output responds to 

changes in wind speed. 

2.2.1 Lidar  70 

The NRG/LEOSPHERE WINDCUBE v1 lidar measures volumetric-averaged wind speeds and directions every 20 

m from 40 m to 220 m, thereby spanning the entire vertical extent of the turbine rotor disk. The wind speeds are 

measured with an accuracy of 0.2 m s
–1

 and the wind directions are measured with an accuracy of 1.5° (Pauliac, 

2009). First, we filtered the nominally 1-Hz measurements of the horizontal wind speeds and directions for suitable 

carrier-to-noise ratio (CNR). Next, we averaged these 1-Hz data to 10-min averages for comparison with the tower 75 

and turbine data. The lidar takes a volumetric measurement, assuming homogeneity over the entire volume it is 

measuring. This process introduces an uncertainty in the lidar measurements in inhomogeneous flow (Bingöl et al., 
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2009; Rhodes and Lundquist, 2013; Lundquist et al., 2015); this possible source of error is discussed in further detail 

in the supplement (Sect. S1).  

2.2.2 Meteorological tower 80 

The M5 met tower (NWTC, 2016, similar to the M4 tower at the site, which was studied by Rinker et al., 2016) is 

instrumented with cup anemometers at 3, 10, 30, 38, 55, 80, 87, 105, 122, and 130 m, and vanes at 3, 10, 38, 87, and 

122 m (Fig. 2 and Table 1). Barometric pressure and precipitation sensors are located at 3 m and temperature sensors 

at 3, 38, and 87 m (Table 1). Sonic anemometers are mounted at 15, 41, 61, 74, 100, and 119 m (Fig. 2 and Table 1). 

The tower booms are directed at 278°, into the prevailing wind direction, slightly north of west. Measurements from 85 

the sonic anemometers at 15 and 74 m are used to calculate turbulent fluxes of momentum and heat for assessment 

of atmospheric stability and turbulence as discussed in the following sections.  

2.3 Wind turbine data 

A GE 1.5MW turbine (GE 1.5/77 sle) with an 80-m hub height was chosen for this study. The GE 1.5MW is the 

most widely deployed utility-scale turbine in the world with more than 12,000 turbines deployed around the globe as 90 

of 2009 (GE Energy, 2009). The supervisory control and data acquisition (SCADA) system of the turbine provides 

10-min averages of nacelle wind speed, nacelle orientation, turbine power, blade pitch angles, and generator speed 

set point. These measurements can be compared with the upwind measurements to quantify power curves and AEP. 

The cup anemometer mounted on the nacelle of the turbine is a NRG IceFree Hybrid XT Turbine Control 

Anemometer. The GE 1.5sle reaches its nameplate capacity, 1.5 MW, at a wind speed of 14 m s
–1

 (GE Energy, 95 

2009). We refer to this wind speed as the rated wind speed for the rest of this article. The lower and upper extremes 

of the swept area of the GE 1.5sle in this study are approximately 41.5 m and 118.5 m above ground. More details 

on this turbine and power performance testing results as well as instrument and site calibration information can be 

found in Mendoza et al. (2015). 

3 Analysis methods 100 

Before calculating atmospheric parameters, all meteorological and turbine data are checked for data quality as 

described in Sect. 3.1. 
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3.1 Data quality control 

3.1.1 Lidar  

All lidar-measured wind-speed measurements are filtered by CNR: only measurements with a CNR greater than –18 105 

dB are retained. Lower CNR results from clean-air conditions (Aitken et al., 2012), which occur frequently on 

Colorado’s Front Range in the winter. After additional filtering for quality control purposes (such as removing bad 

data as defined by the manufacturer’s wind speed and temperature limits), the data recovery rate is approximately 

33.5 % for horizontal wind speeds and directions at 40 m, 40 % for horizontal wind speeds and directions at 60 and 

120 m, and 45 % for horizontal wind speeds and directions at 80 and 100 m.  110 

3.1.2 Meteorological tower 

Quality control filtering methods performed on the met tower data discard data that are flagged for a number of 

reasons, including irregular timing (the time between measurements is inconsistent), insufficient percentage of data 

points within an averaging period (less than 95 %), low standard deviation (less than 0.01 % of the mean) or 

constant values during the measurement interval (which indicate icing events), empty data channels, bad values as 115 

defined by manufacturer limits, or when an instrument records a “NaN” in place of a real measurement. After 

filtering for quality control purposes, the met tower provides horizontal wind speeds and directions and temperatures 

about 90 % of the time at all levels during this study. 

Several spikes in wind speed occur in the raw sonic anemometer data. Therefore, a de-spiking filter is 

applied based on the change in wind speed from each data point to the next. Data points are removed if they are 120 

preceded and followed by changes exceeding the lowest 99 % of all changes. After filtering the spikes in the sonic 

anemometers as well as the previously discussed quality control procedure, the sonic anemometers provide wind 

speed and temperature about 90 % of the time at 15 m and about 60 % at 74 m during this study. 

3.2 Wind speed and direction subselection 

Although the dominant wind direction at the site is west-northwesterly, other wind directions do occur. To ensure 125 

the lidar and met tower measurements are upwind of the turbine, we consider only data from time periods of hub-

height wind from the 235°–315° wind direction sector. This sector includes the most frequent and highest wind 
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speeds as measured by both upwind instruments (Fig. 4). Only wind speeds between cut-in (3.5 m s
–1

) and cut-out 

(25 m s
–1

) are considered to ensure that the turbine is operating.  

3.3 Filtering turbine underperformance 130 

After filtering for quality control as well as wind speed and direction, a large number of times occur when the 

turbine is producing significantly less power than expected—underperforming—as seen in Fig. 5a. We test two 

methods to isolate and discard the cases where the turbine is producing significantly lower power, inconsistent with 

“normal operation.” The first approach relies on blade pitch angle to segregate data and flag most of these 

underperforming periods; this approach could be used by wind plant owner-operators with access to limited SCADA 135 

parameters. When more SCADA parameters are available, such as generator speed set point, these values may be 

used in a more rigorous way to filter on curtailment and to define normal turbine operation. 

3.3.1 Filtering based on blade pitch angle 

Without access to the turbine control system or data more refined than 10-min averages, typical blade pitch angles 

can be quantified as a function of wind speed (Fig. 5b). The median value for blade pitch angle for each wind speed 140 

bin as well as ± 4.5 median absolute deviation (MAD), equivalent to 3 σ, are shown by the red envelope in Fig. 5b. 

(We use MAD here instead of mean absolute deviation so that the calculation is not biased by a few outliers.) When 

plotted on a power curve using the tower 80-m cup anemometer for wind speed, Fig. 5a, the majority of the points 

outside of the ± 4.5 MAD envelope and between 5 and 17 m s
–1

 show underperformance. To identify 

underperformance, then, we calculate MAD blade pitch angles from each blade for each wind speed bin between 5 145 

and 17 m s
–1

. Time periods with blade pitch angles outside of ± 4.5 MAD are discarded. While variability on 

timescales shorter than 10 min may affect turbine operation, the effective filtering seen in the red scatter in Fig. 5a 

suggests that this approach is sufficient. This filtering by blade pitch angle also has the advantage of using only data 

to which a typical wind plant operator would have access.   

 After filtering for hub-height wind speed and direction, positive power production, and blade pitch angle, 150 

1,240 out of 7,949 lidar 80-m wind speed data points remain (16 %), and 2,235 out of 9,918 met tower 80-m wind 

speed data points remain (23 %). Concurrent lidar, met tower, and turbine data that fulfill the various screening 

criteria occur during 1,107 10-min periods.  
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3.3.2 Filtering based on extensive SCADA turbine operational parameters 

Access to a number of turbine control parameters from the SCADA on the DOE GE 1.5 allows for a more accurate 155 

definition of normal turbine operation, mostly based on generator speed set point filtered on curtailment. However, 

from cut-in wind speed until around 5.5 m s
–1

, using generator speed set point to filter the data results in discarding 

too many data points. Therefore, between cut-in wind speed and about 5.5 m s
–1

, the generator speed set point is not 

used; rather data points are discarded only when the turbine is not grid connected and is faulted. Above 5.5 m s
–1

, 

only generator speed set point is used to filter on curtailment and for normal operation. The data points filtered using 160 

this method are represented in Fig. 6 in blue, while the red points in Fig. 6 represent the data points that pass this 

filtering method.  

After filtering for hub-height wind speed and direction, positive power production, and normal turbine 

operation, 1,227 out of 7,949 lidar 80-m wind speed data points remain (15 %), and 2,249 out of 9,918 met tower 

80-m wind speed data points remain (23 %). Concurrent lidar, met tower, and turbine data that fulfill the various 165 

screening criteria occur during 1,127 10-min periods. 

3.3.3 Comparison of different turbine operation filters 

The turbine operation filters described in Sect. 3.3.2 not only filter out all of the times when the turbine is producing 

significantly less power than expected, but allows the use of about 2 % more data points deemed “bad” by the blade 

pitch angle filtering method described in Sect. 3.3.1. Many of the data points that would be discarded using the blade 170 

pitch angle filtering method are between cut-in wind speed and 10 m s
–1

, and lie reasonably within the expected 

power curve, on top of data points that passed through the filter. Therefore, the remaining analysis is based on data 

filtered using the methodology described in Sect. 3.3.2. 

3.4 Power curves  

Power curves based on wind speeds normalized by air density following International Electrotechnical Commission 175 

(IEC) 61400-12-1 (2015) can be used to evaluate turbine performance. The observed power curves, comparing 

power production to 80-m tower anemometer wind speeds (Fig. 7a), 80-m lidar wind speeds (Fig. 7b), and nacelle 

anemometer wind speeds (Fig. 7c), generally show good agreement with an approximation of the MPC (GE Energy 
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2009). This approximated MPC is determined by placing the publicly-available MPC for the GE 1.5sle on a grid 

(with dimensions of 0.5 m s
–1

 by 50 kW) and estimating expected power produced at each wind bin. 180 

The nacelle-mounted anemometer does not observe the ambient wind speed that the rotor disk experiences 

because the wind that flows through the rotor disk and along the nacelle during operation is modified by the blades 

and nacelle (Antoniou and Pedersen 1997; Smith et al. 2002; Frandsen et al. 2009; Zahle and Sørensen 2011). 

However, power curves calculated using nacelle wind speeds are shown here along with power curves calculated 

using upwind measurements in order to compare the different methods. In many cases, operators calculate these 185 

nacelle-based power curves due to lack of other data. 

The power curves created from 10-min tower and nacelle-mounted anemometers (Fig. 7a, Fig. 7c, 

respectively) show less variability than the lidar power curve (Fig. 7b). It is especially apparent from the power 

curve created from 10-min lidar measurements (Fig. 7b) that the lidar variability at this particular site is vulnerable 

to inhomogeneity in the flow. Although lidars are widely available and used in the field (Clifton, 2015), the 190 

variability between the lidar and tower measurements (Fig. 8) indicates sufficient inhomogeneity in the flow at this 

particular site (as observed by Aitken et al., 2014) to cause us to discuss and show only the upwind data from the 

tower from this point forward. Note, however, that not all sites are subject to the inhomogeneity seen at the NWTC, 

and all instruments available for wind measurement should be considered. Concurrent met tower and turbine data 

that fulfill the screening criteria occurred during 2,240 10-min periods, equivalent to about 373 h of data, which is 195 

more than twice the 180 h of data that the IEC 61400-12-1 standard (2015) recommends for power performance 

testing.  

3.5 Atmospheric stability regimes  

Numerous approaches are available for classifying the atmospheric stability of a given 10-min or 30-min time 

period. Bulk Richardson number (𝑅𝐵) calculations use temperature and wind speed differences from the lowest met 200 

tower measurement to the height of the top of the rotor disk to compare the buoyant production of turbulence to the 

wind-shear-generated mechanical production of turbulence (Stull, 1988) as 

𝑅𝐵 =  
𝑔 ∆𝑇 ∆𝑧

�̅� ∆𝑈2   ,                                                                                                                                                               (1) 
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where g is the gravitational constant 9.81 m s
–2

, ∆z is the change in height, ∆T is the change in 10-min averages of 

temperature across ∆z, �̅� is the mean temperature across ∆z, and ∆U is the change in the 10-min averages of 205 

horizontal wind speed across ∆z. Note that Eq. (1) does not consider wind direction variability because cup 

anemometer measurements provide only information about horizontal wind speed. Typical stability classifications 

based on 𝑅𝐵 calculations are as follows: turbulent flow in unstable conditions when 𝑅𝐵  is less than 0, laminar flow 

in stable conditions when 𝑅𝐵 is greater than 0.25, and neutral conditions when 𝑅𝐵 is between 0 and 0.25 (Stull, 

1988). These stability classifications are similar to those used in previous work on stability effects on wind turbine 210 

fatigue and loading in Kelley (2011), and slightly different from the stability classifications used in Vanderwende 

and Lundquist (2012). The distribution of 𝑅𝐵 calculated from the tower measurements for this campaign (Fig. 9), 

however, suggested that slightly different regimes, shown in Table 2, could be used to better represent the data at 

this site. Similar to the approach used in Aitken et al. (2014), the 𝑅𝐵 distribution is split roughly into thirds to allow 

for less overlap between stable and unstable regimes. The uncertainty in 𝑅𝐵 for these instruments over the 215 

measurement period is about 0.01, therefore the 𝑅𝐵 classifications used are larger than the uncertainty.  

 Obukhov length (L) is also a useful measure of atmospheric stability, relying on surface stresses as well as 

heat fluxes to estimate the height in the surface layer at which the buoyant production of turbulence dominates wind-

shear-generated mechanical production of turbulence (Stull, 1988) as 

𝐿 =  −
𝑢∗

3

𝑘 𝑔
 

𝑇𝑣

𝑤′𝑇𝑠′̅̅ ̅̅ ̅̅ ̅̅
   ,                                                                                                                                                         (2) 220 

where 𝑢∗ is the friction velocity, k is the von Karman constant 0.41,  𝑇𝑣 is the virtual temperature, 𝑤′ is the vertical 

wind speed fluctuation in the 30-min averaging period, and 𝑇𝑠′ is the sonic temperature fluctuation in the 30-min 

averaging period. L calculations are based on sonic anemometer measurements at 15 m and temperature 

measurements interpolated to 15 m to ensure L is calculated using measurements within the surface layer. Typical 

stability classifications are used in this work and are based on L calculations as defined by Muñoz-Esparza et al. 225 

(2012); shown in Table 2. These classifications are slightly different from those used in Wharton and Lundquist 

(2012b). The distributions of L are shown in Fig. 10.  

When the 𝑅𝐵 and L stability approaches are compared against one another and against time-of-day, as in 

Fig. 11, the stability parameters differ slightly in their definitions of unstable and stable. Because of differences in 
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stability classes due to varying approaches to defining atmospheric stability, we treat 𝑅𝐵-defined stability classes 230 

separately from L-defined stability classes in the power curves. 

3.6 Turbulence regimes  

TI can also be used to describe atmospheric conditions, as demonstrated by Rareshide et al. (2009), Wagenaar and 

Eecen (2011), and Wharton and Lundquist (2012a). TI is typically defined as  

𝑇𝐼 =  
𝜎80𝑚

𝑈80𝑚
∗ 100 ,                                                                                                                                                      (3) 235 

where 𝜎80𝑚 is the 10-min standard deviation of the horizontal wind speed at 80 m and  𝑈80𝑚 is the 10-min mean 

horizontal wind speed at 80 m. Although the TI approach has been used successfully at other locations, the NWTC 

consistently features strong turbulence likely resulting from the terrain characteristics of the site (Fig.12, Fig. 13), 

making it difficult to distinguish typical stability classes from TI calculations. This strong ambient turbulence has 

led to the choice of site-specific turbulence classification defined in Table 3.  240 

When the atmospheric stability regimes are compared to the TI regimes defined here (Fig. 14), the 𝑅𝐵 and 

TI regime percentages also differ slightly in their definitions of unstable atmospheric conditions and highly turbulent 

conditions. Most of the daytime points are within the unstable regime as defined by 𝑅𝐵; however, only about 17 % 

of the data fall within unstable conditions with higher TI. This comparison, again, emphasizes the highly turbulent 

characteristics of the NWTC.  245 

 To further understand the turbulence characteristics demonstrated during this campaign, we also calculate 

TKE using the 74-m 3D sonic anemometer mounted on the M5 met tower. Although TI is a parameter typically 

calculated and analyzed in the wind industry, TKE has the advantage of including the vertical component of the 

wind: 

𝑇𝐾𝐸 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅)  ,                                                                                                                                       (4) 250 

where we calculate TKE per unit mass, u’ is the perturbation from a 30-min average of the zonal component of the 

wind, v’ is the perturbation from a 30-min average of the meridional component of the wind, and w’ is the 

perturbation from a 30-min average of the vertical component of the wind. Using this TKE approach also reveals the 
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strong turbulence at the NWTC, only slightly affected by the diurnal cycle during this wintertime campaign (Fig. 12, 

Fig. 15). Turbulence classifications based on TKE are determined by the distribution in Fig. 15 and are listed in 255 

Table 3. 

Many cases with relatively high TI or TKE are considered neutral and stable according to our stability 

definitions in Table 3. Depending on whether TI, TKE, 𝑅𝐵, or L is considered a measure of atmospheric stability, a 

particular time period may be classified differently. In other words, different results are found depending on the 

metric selected. 260 

3.7 Wind shear regimes 

To estimate the effect of the wind speed vertical profile across the rotor disk, the wind shear exponent or power law 

exponent parameter, α, is typically used in the wind energy industry: 

𝛼 =  
log(

𝑈2
𝑈1

)

log(
𝑧2
𝑧1

)
 ,                                                                                                                                                                 (5)  

where 𝑧1 is the reference height, 𝑧2 is the height above ground level, 𝑈2 is the wind speed at height 𝑧2, and 𝑈1is the 265 

wind speed at height 𝑧1. At the NWTC during this study, the average wind shear exponent using the 122 m and 38 m 

tower wind speeds as 𝑧2 and 𝑧1, respectively,  is 0.15. The standard deviation is 0.14 and the maximum wind shear 

exponent is 1.10.  

For this period of time at this site, however, it was rare for the rotor equivalent wind speed (REWS) to 

deviate significantly from the hub-height wind speed (Sect. S2). Therefore, shear exponents are separated into 270 

regimes simply by splitting the shear exponent distribution into thirds (Table 2, Fig, 16). Other approaches to 

classify stability regimes using shear exponents such as combining with other stability measures such as L and 𝑅𝐵, 

(Vanderwende and Lundquist, 2012) or using a REWS in the power curves (Elliott and Cadogan, 1990), may work 

at other sites.  

4 Results 275 

To explore the variability in the power curves, we apply filters to the power curves based on factors such as 

atmospheric stability and TI. We apply a new method to calculate AEP using these classifications. We can consider 
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periods with low TI to be approximately “stable” by 𝑅𝐵 and 𝐿; “unstable” conditions would generally have high TI. 

Our results show that, generally, at this site with little veer, stable conditions (with varying degrees of significance) 

lead to over-performance at wind speeds just below rated power. At lower wind speeds, however, unstable 280 

conditions lead to over-performance, with a few exceptions. 

4.1 Power curves 

The NWTC site generally exhibits high TI throughout this data collection period. Even so, some differences in 

power produced emerge at wind speeds between 5 and 7 m s
–1

 and at wind speeds between 10 and 14 m s
–1

 after 

separating the TI into relative classes of low, medium, and high TI (Fig. 17a, Fig. 17c, Fig. 18a, Fig. 18c, Table 3). 285 

Statistically-distinct differences within each wind speed bin between the TI classes defined in Table 3 are 

determined by the Wilcoxon rank sum test with a 1 % significance level. These statistically-distinct bins are denoted 

by closed circles in Fig. 17a, Fig. 17c, Fig. 18a, and Fig. 18c. This statistical test shows that for the power curves 

using nacelle winds, periods of relatively high TI produce significantly more power than periods of relatively low TI 

at wind speeds between 5 and 9 m s
–1

 (Fig. 17a, Fig. 18a). For the power curves using upwind tower winds, periods 290 

of relatively high TI produce significantly more power than periods of relatively low TI at wind speeds between 6.0 

and 6.5 m s
–1

 (Fig. 17c, Fig. 18c). Conversely, power curves using nacelle winds show that at wind speeds between 

10.5 and 13.5 m s
–1

, periods of relatively low TI produce significantly more power than periods of relatively high TI. 

Power curves using upwind tower winds show that at wind speeds between 9.5 and 15.5 m s
–1

, periods of relatively 

low TI produce significantly more power than periods of relatively high TI. Rareshide et al. (2009) found similar 295 

behavior.  

 On the other hand, power curves separated by 𝑅𝐵-defined stability class show only a few bins that are 

statistically distinct in power produced (Fig. 17b, Fig. 17d, Fig. 18b, Fig. 18d). Power curves using nacelle winds 

show that at most wind speeds between 6.5 and 9.0 m s
–1

, periods of unstable conditions produce significantly more 

power than periods of stable conditions. Power curves using upwind tower winds show that at wind speeds around 7 300 

m s
–1

, periods of unstable conditions produce significantly more power than periods of stable conditions. Power 

curves using both nacelle winds and tower winds show that at wind speeds around 12 m s
–1

, periods of stable 

conditions produce significantly more power than periods of unstable conditions.  
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Distinct differences between power curves calculated from nacelle winds and power curves calculated from 

upwind tower winds occurred in the power curves of both of these atmospheric parameters. Statistically distinct 305 

wind speed bins in power curves calculated from nacelle winds tend to be similar to those in power curves 

calculated from tower winds near rated speed. At lower wind speeds, however, between about 5 and 9 m s
–1

, many 

more statistically distinct differences emerge between nacelle power curves than between tower power curves, most 

notably in the power curves segregated by TI regimes. Turbine operations are especially variable in this region of 

rapid increase in power with wind speed. The turbine reacts directly to the conditions as measured by instruments on 310 

the turbine. The nacelle-mounted anemometer observes winds that flow through the rotor disk and along the nacelle 

during turbine operation, and therefore likely measures different wind speeds than the upwind met tower. The 

nacelle anemometer observes complex flows behind the rotor disk that are strongly influenced by ambient 

turbulence, leading to more statistically significant differences in the nacelle power curves for TI regimes. 

Agreement between the TI and 𝑅𝐵 methods means that at wind speeds around rated, low TI and high 315 

stability result in over-performance relative to high TI and low stability. Both methods also agree that somewhere in 

between cut-in and rated, sometimes called “region 2,” high TI and low stability result in over-performance relative 

to low TI and high stability. Power curves separated by L-defined stability class as well as power curves separated 

by shear class do not show any statistically-significant differences in power produced between unstable and stable 

periods (not shown). Power curves separated by TKE class show few statistically-significant differences in power 320 

produced between high and low TKE periods, likely because of the few data points available for the 30-min 

averaging period, therefore these results are shown in the supplement (Sect. S4). 

4.1.1 Underlying physics 

The large variability reported in the literature (and herein) regarding power production can be understood by 

recognizing the interactions between a pitch-controlled turbine and the atmosphere: the operation of control 325 

algorithms changes with wind speed, with varying effects depending on the ambient turbulence.  

Sensitivity to atmospheric turbulence occurs at low wind speeds, near cut-in wind speed. In these 

conditions, the turbine generator speed (revolutions per minute, RPM) increases, as does the generator torque. As a 

result, the blades will often pitch backward, changing the angle of attack to generate more lift, and the power 
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production ramps up. At low wind speeds and higher turbulence, the turbine can react to the higher variation in wind 330 

speed and can capitalize on the variation seen in the wind flow because of the additional lift resulting from the blade 

pitch, and the turbine produces more power. Conversely, at low wind speeds with lower turbulence, the variation in 

wind speed is lower, and so the turbine experiences more consistent wind than in highly turbulent conditions and 

therefore produces less power. 

At higher wind speeds, closer to or just below rated speed, control mechanisms seek to maintain rated 335 

generator speed, rather than continuing to increase generator speed. The blades will pitch forward (or “feather”), 

allowing the power production to maintain rated power. This process effectively decreases the amount of lift when 

compared to lift generated by a non-feathered blade.  At these wind speeds during periods of high TI, a turbine 

reacts to the high variation in wind speed with subtle changes in blade pitch. For example, if the turbine detects a 

drop in wind speed, the blades may pitch back to generate more lift, but then if the wind speed increases quickly 340 

after, the blades will pitch forward again. If the blade pitch cannot immediately respond to increases in wind speed, 

then power losses occur. At these higher wind speeds, lower turbulence enables consistent blade pitch to match 

atmospheric conditions, and so the turbine can capture more power. 

It is also important to mention the strong connection between turbulence and shear: high shear will 

eventually erode turbulence (Wharton and Lundquist, 2012a). Periods of high shear generally coincide with periods 345 

of low turbulence and vice versa. With low shear, the mean wind speed is more consistent over the height of the 

rotor disk. However, since we did not see significant differences in power curves for different shear regimes here, 

we cannot speculate further on this in this analysis. Finally, if veer occurs in the wind profile (as in Vanderwende 

and Lundquist, 2012 and Dörenkamper et al., 2015), which usually occurs only in stable or low turbulence 

atmospheric conditions, that veer will generally undermine power production as the turbine blades are not oriented 350 

perpendicular  to the flow at all vertical levels. 

4.2 Annual energy production 

AEP allows developers and operators to quantify the projected energy production of a turbine. To quantify the 

impact on AEP of these stability- and turbulence-driven differences in power curves, we use a Weibull distribution 

for wind speed and calculate AEP with no filter, as well as with TI and stability filters. These turbulence and 355 
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stability filters for the AEP calculations can be further explained as AEP calculated using the power curves 

calculated from nacelle winds (Fig. 17a,b) as well as the power curves calculated from upwind tower winds (Fig. 

17c,d). These power curves are used together with a sample wind distribution using Weibull distribution parameters 

based on wind speed data separated into each stability class (Table 4) as suggested by IEC 61400 12-1 (2015) for a 

site-specific AEP. For each of these filters, separate AEP calculations are made for each regime, weighted by the 360 

number of data points in that regime, and then added together to compare with the AEP calculated with no 

atmospheric filter. Note that although data are collected only during 2.5 months in the winter of 2012, AEP is 

calculated for an entire year to show values closer to a representative AEP value.  

Results in Table 5 show a higher AEP when using no filter, followed by an AEP calculated with a TI filter 

and then a stability filter. The lower AEP calculated when separating by stability and turbulence regimes suggests 365 

that the AEP calculated using no filters may be overestimating the production, perhaps because the higher and lower 

extremes of the parameter ranges bias the averages in each bin.  

AEP results in Table 5 also show that the AEP calculated using nacelle winds underestimates the AEP 

when compared with an AEP calculated using upwind tower measurements. This underestimation of the nacelle 

anemometer-calculated AEP is true for both the AEP calculated for the entire dataset as well as with each stability or 370 

turbulence filter and is likely because the nacelle anemometer underestimates the ambient wind speed due to flow 

interference of the rotor disk and nacelle. 

When the AEP’s low and high regimes are compared to the medium regimes of their respective 

atmospheric parameters, the AEP for medium-TI periods is higher than that for low-TI periods and for high-TI 

periods for both the nacelle anemometer-calculated AEP and the tower-calculated AEP (Table 6). Using low- and 375 

high-TI power curves results in an AEP smaller than that calculated using the medium-TI power curve. These results 

are likely obtained because the low-TI power curve loses production at lower wind speeds and the high-TI power 

curve loses production around rated speed. When using a stability filter, the AEP calculated with the low-𝑅𝐵 power 

curve is higher than that with the high-𝑅𝐵 power curve (Table 6). This contrast between AEP calculated for the low 

stability regime and AEP calculated for the high stability regimes suggests that the unstable power curve (Fig. 380 

17b,d) gains enough production near rated wind speed to surpass the production gain by the stable power curve (Fig. 

17b,d) at lower wind speeds. 
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5 Conclusions 

Using 2.5 months of data from upwind and nacelle-based instruments, we calculate power curves for different 

regimes of atmospheric stability and turbulence as well as AEP with and without these atmospheric filters. This 385 

work focuses not only on the idea of calculating different power curves for different atmospheric conditions for 

power performance testing, but also highlights the differences in AEP that can emerge from the application for 

stability- or turbulence-dependent power curves. We summarize extensive data quality-control methods, including 

two approaches for filtering out turbine underperformance or curtailments. 

Statistically-significant differences emerge among power curves segregated by TI and 𝑅𝐵.  At wind speeds 390 

between 5 and 7 m s
–1

, during periods of high TI, significantly more power is produced than during periods of low 

TI. From about 10 to 14 m s
–1

 (near rated wind speed), during periods of low TI, significantly more power is 

produced than during periods of high TI. During periods of stable conditions, significantly more power is produced 

than during periods of unstable conditions around 12 m s
–1

; significantly less power is produced than during periods 

of unstable conditions at some wind speeds between 6.5 and 9.0 m s
–1

. Statistically significant distinctions in power 395 

curves did not occur when filtering for TKE, L, yaw error, wind shear, or wind veer for this data set at this site, 

perhaps explaining why stable conditions promote overperformance here, as in Wharton and Lundquist (2012b). A 

site with veer, however, exhibits underperformance in stable conditions (Vanderwende and Lundquist 2012). 

After calculating an AEP for each regime and comparing the high and low regimes with the medium 

regime, differences between AEP calculated using different atmospheric filters are revealed. An AEP calculated 400 

with no atmospheric or turbulence filter is higher than any AEP calculated with these filters. In addition, the AEP 

calculated using a TI filter shows that the AEP calculated with the medium TI regime is greater than the AEP 

calculated with the low or high TI regimes. The AEP calculated with the 𝑅𝐵 filter shows that the low regime AEP is 

much larger than the AEP in the high and medium regimes.  

As a small percent difference in AEP leads to a large deviation in cost for both operators and 405 

manufacturers, calculating different power curves for different atmospheric conditions may not only be a practical 

approach, but may lower the financial risks for both operators and manufacturers. 
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 As discussed by Rareshide et al. (2009), manufacturers increasingly filter out data that represent what they 

consider anomalous or extreme atmospheric conditions for power performance testing. The IEC-61400-12-1 

standard (2015) calls for at least 180 h of data to be used in a power performance test. Consequently, if 410 

manufacturers filter out data based on higher TI values, for instance, this means that more data must be gathered to 

make up for the discarded data. We see this discarding of data as unnecessary and potentially more costly. We 

suggest that instead of discarding these data, different power curves be calculated for different conditions. This 

approach can allow for a more nuanced understanding of how a turbine operates in different atmospheric conditions, 

and may lead to a more accurate and reliable performance result and AEP calculation. 415 
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Table 1. 135-m met tower instrument information 

Type Instrument Mounting Heights (m) Accuracy 

Cup anemometer Met One SS-201 3, 10, 38, 87, 122 0.5 m s
–1 

Cup anemometer Thies 4.3351.10.0000  30, 55, 80, 105, 130 0.2 m s
–1 

Wind vane Met One SD-201  3, 10, 38, 87, 122 3.6° 

Air temperature 

sensor 

Met One T-200A platinum 

RTD 

3, 38, 87 0.1°C 

Differential 

temperature sensor 

Met One T-200A 38, 87, 122 0.1°C 

Sonic anemometer ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.01 m s
–1 

Boom triaxial 

acceleration sensor 

Summit 34201A 15, 41, 61, 74, 100, 119  

Sonic temperature ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.1°C 

Barometric pressure 

sensor 

AIR AB-2AX 3  

Dewpoint temperature 

sensor 

Therm-x 9400ASTD 3, 38, 87, 122  

Precipitation sensor Vaisala DRD11A 3  
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Table 2. Defined stability regimes 

Stability class 𝑹𝑩 L (m) α 

Unstable conditions 𝑅𝐵 < –0.03 –1,000  < L ≤ 0 α < 0.11 

Neutral conditions –0.03 < 𝑅𝐵< 0.03 |L| ≥ 1,000 0.11 < α < 0.17 

Stable conditions 𝑅𝐵 > 0.03 0 ≤ L < 1,000 α > 0.17 

 

Table 3. Defined turbulence regimes 

Turbulence regime TI (%) TKE (m
2
 s
–2

) 

High turbulence  TI > 20 TKE > 6.5 

Medium turbulence 15 < TI < 20 3.0 < TKE < 6.5 

Low turbulence TI < 15 TKE < 3.0 

 

Table 4. Weibull parameters for the case of no stability or turbulence filter as well as for each turbulence and stability class.  

 Scale parameter Shape parameter Mean 

No filter 10.04 2.63 8.90 

low TI regime 10.83 2.59 9.60 

med TI regime 10.81 2.90 9.63 

high TI regime 8.52 2.81 7.57 

low 𝑹𝑩 regime 10.12 3.09 9.05 

med 𝑹𝑩 regime 13.29 3.45 11.96 

high 𝑹𝑩 regime 7.64 3.10 6.83 

 

Table 5. AEP in megawatt-hours/year calculated for different atmospheric and turbulence regimes using a Weibull distribution 

with a scale and shape parameters associated with the corresponding wind speed distribution.  

 No filter TI filter 𝑹𝑩 filter 

AEP using tower data 7,479.3 7,409.6 7,278.7 

AEP using nacelle data 7,430.6 7,388.9 7,266.7 
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Table 6. AEP in percentage calculated for different filter regimes using a Weibull distribution with a scale factor and a shape 

factor representative of the corresponding wind speed distribution. Medium regime is set at 100 % and low and high regimes are 

percentages compared to the medium regime. Boxes with the highest value within that row are italicized. 

Filter Low regime Medium regime High regime  

TI using tower data 85.03 100.00 68.20 

𝑹𝑩 using tower data 116.28 100.00 71.33 

TI using nacelle data 84.76 100.00 68.32 

𝑹𝑩 using nacelle data 115.86 100.00 70.52 
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Figure 1. Left: Local map of the NWTC with instrument locations and topographic contours in meters above sea level. Right: 

The regional setting of the NWTC between the Greater Denver Metro area and Boulder, with the Front Range of the Rocky 

Mountains shown in the higher topography west of the site. (Courtesy of Joshua Bauer and Billy Roberts at NREL.) 
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Figure 2. 135-m meteorological tower configuration with some key heights labeled. This tower varies slightly from the M4 tower 

described in Clifton et al. (2013), but data are available online (NWTC, 2016). 
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Figure 3. Time series from 11 January 2013 from 08:00 to 17:00 Mountain Standard Time (MST): (a) is a time series of 80-m 

wind speeds measured by the cup on the tower; (b) is a time series of 80-m wind speeds measured by the lidar; (c) is a time series 

of the hub-height wind speeds measured by the cup anemometer on the nacelle; and (d) is a time series of the power output from 

the turbine.  
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Figure 4. Wind roses for (a) lidar 80-m altitude and (b) met tower 87-m altitude, the closest to hub-height with both a cup and 

vane. Wind bins are 2 m s–1 and wind directions bins are 10°. The black outline highlights the chosen wind direction sector. 
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Figure 5. (a) Scatter power curve based on the tower 80-m wind speed. Blue dots show points that are outside of the median 

absolute deviation (MAD) envelope in (b) and the red dots represent points that are within the MAD envelope in (b). The vertical 

grey dashed line marks rated speed; (b) blade pitch angle from a single blade versus tower 80-m wind speed. Red envelope 

represents ± 4.5 MAD of the blade pitch angle within wind speed bins 0.5 m s–1 wide.  
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Figure 6. Scatter power curve using the tower 80-m wind speed. Blue dots show points filtered out using turbine control 

parameters described in Sect. 3.3.2. Red dots show data points that passed this filtering process. The grey dashed line marks rated 

speed. 
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Figure 7. Power curves after filtering for wind speeds between 3.5 and 25 m s–1, wind directions between 235°and 315°, and for 

normal turbine operation: (a) turbine power production versus 80-m cup anemometer wind speed from the met tower; (b) turbine 

power production versus 80-m wind speed from the lidar; (c) turbine power production versus hub-height wind speed from the 

anemometer on the nacelle. The black line represents an approximation of the manufacturer power curve for the GE 1.5sle (GE 

Energy, 2009). Wind speed is normalized for density following IEC 61400-12-1 (2015). The grey dashed line marks rated speed.  
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Figure 8. Lidar 80-m wind speeds compared to tower 80-m wind speeds filtered for wind speeds between 3.5 and 25.0 m s–1, 

wind directions between 235° and 315°, and for normal turbine operation. Black dashed line represents a 1:1 relationship. 
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Figure 9. 𝑅𝐵 distribution using thresholds in Table 2, including data filtered for tower 80-m wind speeds between 3.5 and 25.0 m 

s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 10. L distribution using thresholds in Table 2. Note that some neutral cases are outside of these axes. Includes data filtered 

for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal turbine 

operation. 
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Figure 11. L versus 𝑅𝐵. Blue box represents where both L and 𝑅𝐵 agree on the stable conditions; percentage (24 %) represents 

the percentage of data points in this box. Red box represents where both L and 𝑅𝐵 agree on the unstable conditions; percentage 

(11 %) represents the percentage of data points in this box. Includes data filtered for tower 80-m wind speeds between 3.5 and 25 

m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 12. TI (a) and TKE (c) calculated with near hub-height tower measurements versus time of day, where hour 0 and hour 24 

represent local midnight. The blue line represents the mean TI in the corresponding hour and the error bar represents the standard 

deviation. The blue rectangle represents nighttime hours and the red rectangle represents daytime hours. Mean and standard 

deviation of TI (b) and TKE (d) calculated with near hub-height tower measurements in each wind speed bin. Includes data 

filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation. 
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Figure 13. TI distribution using thresholds in Table 3. Includes data filtered for tower 80-m wind speeds between 3.5 and           

25 m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 14. TI versus 𝑅𝐵 . Blue box represents where both TI and 𝑅𝐵 agree on the stable conditions; percentage (15 %) represents 

the percentage of data points in this box. Red box represents where both TI and 𝑅𝐵 agree on the unstable conditions; percentage 

(17 %) represents the percentage of data points in this box. Includes data filtered for tower 80-m wind speeds between 3.5 and 25 

m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 15. TKE distribution using thresholds in Table 3. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 

m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 16. Shear exponent distribution using thresholds in Table 2. Includes data filtered for tower 80-m wind speeds between 

3.5 and 25.0 m s–1, 87-m wind directions between 235̊° and 315°, and for normal turbine operation. 
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Figure 17. Nacelle anemometer power curves with (a) TI regimes and (b) 𝑅𝐵 regimes. Eighty-meter tower anemometer power 

curves with (c) TI regimes and (d) 𝑅𝐵 regimes. Median statistics are used to avoid outlier effects. Statistically distinct differences 

within each wind speed bin between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and 

denoted by closed circles. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions 

between 235° and 315°, and for normal turbine operation. Envelopes represent ± 1 MAD for each wind speed bin. The grey 

dashed line marks rated speed. 
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Figure 18. Nacelle anemometer power curves shown as the anomaly from the neutral or medium power curve of the (a) TI 

regimes and (b) 𝑅𝐵 regimes. Eighty-meter tower anemometer power curves shown as the anomaly from the neutral or medium 

power curve of the (c) TI regimes; (d) 𝑅𝐵 regimes. Median statistics are used to avoid outlier effects. Statistically distinct 

differences within each wind speed bin between the regimes are determined by the Wilcoxon rank sum test with a 1 % 

significance level and denoted by closed circles. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 

87-m wind directions between 235° and 315°, and for normal turbine operation. Envelopes represent ± 1 MAD for each wind 

speed bin. The grey dashed line marks rated speed. 

 

 

 

 


