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Abstract. The modal dynamics of structures with bladed isotropic rotors is analyzed using Hill’s method. First, analytical

derivation of the periodic system matrix shows that isotropic rotors with more than two blades can be represented by an exact

Fourier series with 3/rev (three per rotor revolution) as the highest order. For 2-bladed rotors, the inverse mass matrix has

an infinite Fourier series with harmonic components of decreasing norm, thus the system matrix can be approximated by a

truncated Fourier series of predictable accuracy. Second,a novel method for automatically identifying the principalsolutions5

of Hill’s eigenvalue problem is introduced. The corresponding periodic eigenvectors can be used to compute symmetric and

anti-symmetric components of the 2-bladed rotor motion, and the additional forward and backward whirling components for

rotors with more than two blades. To illustrate the use of these generic methods, a simple wind turbine model is set up with

three degrees of freedom for each blade and seven degrees of freedom for the nacelle and drivetrain. First, the model parameters

are tuned such that the low order modal dynamics of a 3-bladed10MW turbine from previous studies is recaptured. Second,10

one blade is removed leading to larger and higher harmonic terms in the system matrix. They lead to modal couplings for the

2-bladed turbine that do not exist for the 3-bladed turbine.A single mode of a 2-bladed turbine will also have several resonance

frequencies in both the ground-fixed and rotating frames of reference, which complicates the interpretation of simulated or

measured turbine responses.

1 Introduction15

A fundamental understanding of the modal dynamics of structures with bladed rotors is relevant for the design and analysis of

wind turbines, helicopters, and other rotating machinery because their vibrational responses are composed of their structural

modes. It is important to understand how these modes are excited by resonances or aeroelastic instabilities, i.e., at which

frequencies and where on the structure or rotor the individual modes can be excited. Such knowledge is not only necessaryfor

the interpretation of design simulations but also for the understanding of real measurements.20

The modal dynamics of 3-bladed turbines is well understood,also including the interaction with aerodynamic forces anda

controller. For isotropic rotors, the Coleman transformation (Coleman & Feingold, 1958) is often used to transform theperiodic

system into a time-invariant system and then solving the associated eigenvalue problem with the blade motion describedby

the multi-blade coordinates (Hansen, 2003; Van Engelen & Braam, 2004; Hansen, 2004, 2007; Riziotis et al., 2008; Bir, 2008;

Skjoldan & Hansen, 2009; Bergami & Hansen, 2016). The turbine modes may either be dominated by vibrations of the rotor25
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support structure and drivetrain, e.g. tower bending and shaft torsion modes, or by blade vibrations which herein are called the

rotor modes. The rotor modes of the 3-bladed isotropic rotor consist of asymmetric mode and two whirling modes for each

blade mode (edgewise/flapwise bending and torsion). In the whirling modes, the order of blade vibration describes a backward

(regressive) and a forward (progressive) whirling direction relative to the rotor rotation. Due to the anisotropy of the rotor

support, the rotor modes are not “pure” meaning that for example a backward whirling mode will also contain symmetric and5

forward whirling components when observed from the rotating blade frame of reference. The modal frequency obtained from

the eigenvalue problem describes the frequency observed from the ground-fixed frame of reference in which the multi-blade

coordinates describes the rotor motion. In the rotating blade frame, the symmetric rotor response will be observable atthe same

frequency but the backward and forward whirling componentsof a rotor mode will be shifted by +1/rev and -1/rev, respectively.

Since a rotor mode is not pure, its response may therefore be observable at three different frequencies in a signal measured on10

the blade (Hansen, 2003, 2007).

For anisotropic 3-bladed rotors, Floquet theory or Hill’s method is needed to obtain an eigenvalue problem which leads to the

periodic eigenvectors of the principal eigenvalue solutions (Skjoldan & Hansen, 2009; Bottasso & Cacciola, 2015; Skjoldan,

2009; Skjoldan & Hansen, 2009). To handle the frequency indeterminacy of the periodic eigenvalue solutions from these

methods, Skjoldan & Hansen (2009) suggest to select the principal solution such that the harmonic components on the ground-15

fixed degrees of freedom are minimized. Bottasso & Cacciola (2015) introduce the concept ofmodal participation factors

in which the norm of the individual harmonic components of a periodic eigenvector determines how much the particular

component contributes to the response of the particular mode. They also introduce the concept ofperiodic Campbell diagrams

to plot the frequencies of these harmonic components along with the principal frequency. All studies show that periodicmode

shapes of turbines with 3-bladed anisotropic rotors can contain harmonic components which frequencies can be shifted more20

than±1/rev from the principal modal frequency. The size of these higher harmonic components depend on the size of rotor

anisotropy.

The modal analysis of structures with 2-bladed rotors is complicated by the strong periodicity of the system. The use of

Floquet theory or Hill’s method is unavoidable, unless bothrotor and support structure are isotropic with respect to rotation

(Coleman & Feingold, 1958). Early studies (Warmbrodt & Friedmann, 1980; Wendell, 1982; Kirchgäßner, 1984) have used25

Floquet theory to investigate the aeroelastic stability of2-bladed rotors without focusing on their modal dynamics. How-

ever, Kirchgäßner (1984) introduces the concept ofdominant eigenfrequenciesfor the harmonic components of the Floquet

solutions with the largest magnitude in the corresponding eigenvector, and he plotted the frequencies of all harmonic compo-

nents with magnitudes larger than a threshold relative to the dominant component in a periodic Campbell diagram similarto

Bottasso & Cacciola (2015). A later study by Stol et al. (2002) considers the dynamic stability of a teetered 2-bladed turbine30

using Floquet theory on a model with up to seven degrees of freedom. Their focus is mainly on the parametric excitation of the

system and less on its modal dynamics. Recent studies of 2-bladed turbines have focused on their aero-servo-elastic control

(Solingen, 2015; Wang & Wright, 2016; Solingen et al., 2016a,b) and on their design loads (Kim et al., 2015). In the latter

study, Kim et al. (2015) plots the spectrogram of the tower top signal obtained from nonlinear time simulations of a 2-bladed

turbine and compares it to the spectrogram of a 3-bladed version of the same turbine. There are similarities between these35

2



spectrograms which lead the authors to conclude that 2-bladed turbines have similar modes as 3-bladed turbines. In experi-

mental study of a scaled turbine, Larsen & Kim (2015) conclude that asymmetric rotor modes split into backward and forward

whirling modes with±1/rev, similar to whirling modes of 3-bladed turbines except that there also are components at multiple

of the rotor speed.

In this paper, the modal dynamics of structures with rotor that have two and more blades is considered; first from a generic5

model-independent perspective, and then with focus on the differences between the modal dynamics of 2- and 3-bladed tur-

bines. In Section 2, analytical derivations of the linear equations of motion in a generic form and analytical inversionof the

mass matrix show that the periodic system matrix for isotropic rotors with more than two blades have a finite and exact Fourier

series with 3/rev being the highers harmonic order. The system matrix for structures with 2-bladed rotors has an infiniteFourier

series of harmonic components that decrease in norm for increasing order. Using Hill’s method to obtain the periodic mode10

shapes of the principal eigen-solutions, it is shown in Section 3 how the modal amplitudes for rotating blade degrees of free-

dom in the periodic eigenvectors can be used to decompose therotor motion into symmetric and anti-symmetric components

for 2-bladed turbines and additional whirling components for rotors with more than two blades; noting that anti-symmetric

components do not exist for odd number of blades and whirlingcomponents do not exist for 2-bladed turbines. In Section 4,a

low-fidelity kinematic model of a 10MW turbine consisting ofthree blade modes and seven degrees of freedom for the nacelle15

and drivetrain is used to exemplify the differences betweenthe modal dynamics of 2- and 3-bladed turbines using the presented

generic methods. It is shown that although a 2-bladed turbine does not have whirling modes, the response of an anti-symmetric

rotor mode observed from a ground-fixed signal, such as a tower acceleration or moment, looks similar to the±1/rev frequency

splitting from the a whirling mode pair for a 3-bladed turbine. This similarity explains the incorrect conclusions madein the

previous studies (Kim et al., 2015; Larsen & Kim, 2015). The present analytical study also shows that the additional harmonics20

observed for 2-bladed rotors lead to several significant modal couplings when the frequencies of higher harmonic components

in a periodic mode shape coincide with other modal frequencies.

2 Analytical system matrix for isotropic rotors

Analytical expressions for the harmonic components of the periodic system matrix for structures with an isotropic rotor are

derived in this section. The first order state-space equation for a periodic system with the periodT is given by25

ẋ=A(t)x (1)

where(̇ ) = d/dt andA(t) =A(t+T ) is theT -periodic system matrix of dimension2ND×2ND, whereND is the number of

degrees of freedom (DOFs). Ordering the state vector asx= {u, u̇}T whereu andu̇ are the DOFs and their time derivatives,

the system matrix can be derived from linear second order equations of motion as

A(t) =





0 I

−M−1(t)K(t) −M−1(t)C(t)



 (2)30
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whereI is a identity matrix, andM, C, andK are theT -periodic mass, gyroscopic/damping, and stiffnessND×ND matrices,

respectively. Periodicity of these matrices ensures that the system matrix can be written as a Fourier series

A(t) =

∞
∑

n=−∞

Ane
ınΩt (3)

whereı=
√
−1 andΩ≡ 2π/T is the constant mean rotational speed. Note that the mean component of the system matrixA0

is a real matrix, and the complex matrices of the harmonic components come in conjugated pairs5

A−n = Ān , n= 1,2,3, . . . (4)

where the bar denotes the complex conjugated operator. The periodic matrices of the second order equations of motion are

derived in the next section. In Section 2.2, the mass matrix is inverted analytically to obtain its Fourier series. The mean and

harmonic component matrices of the periodic system matrix are finally presented in Section 2.3.

2.1 Equations of motion10

Let the Lagrangian for a structure with a rotor be written as

L= T (t,u, u̇)−V (u) (5)

where it is assumed that the potential energy of the conservative forces is time-independent and only depends on the generalized

coordinatesV = V (u), e.g. the elastic forces. The total kinetic energy is given by an integral of the kinetic energy of each

particle over the entire volumeV of the structure as15

T =

∫

V

1
2 ρ ṙ

T ṙ dV (6)

where(·)T denotes to the transpose matrix operator, andṙ is the velocity vector of the particle given as the time derivative of

its position vectorr= r(t,u), which for the rotor part of the structure will be explicitlytime-dependent.

Substitution of the Lagrangian (5) with (6) into Lagrange’sequations and linearization about a steady state deflectionof the

structureu= u0 andu̇= 0, the coefficients of the matrices of Eq. (2) can be written as (Meirovitch, 1970)20

mij =

∫

V

ρ

(

∂rT

∂ui

∂r

∂uj

)

dV

cij =
∂

∂t
mij +

∫

V

ρ

(

∂rT

∂ui

∂

∂uj

(

∂r

∂t

)

− ∂rT

∂uj

∂

∂ui

(

∂r

∂t

))

dV +
∂2D

∂u̇i∂u̇j
(7)

kij =

∫

V

ρ
∂

∂uj

(

∂rT

∂ui

∂2r

∂t2

)

dV +
∂2V

∂ui∂uj

where all derivatives are evaluated atu= u0 andD is Rayleigh’s dissipation function. Note that only the partial time derivatives

of the position vector is needed, not the full velocity, or acceleration vectors.25
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Letug denote the DOFs for the ground-fixed substructure andubk denote the DOFs for rotating blade numberk (blades are

in this paper always numbered in the direction of the rotation); then the position vectorr in the ground-fixed inertial frame to

a particle point on the substructure is written as a functionof ug as:

r= rg(ug) (8)

and on the blade numberk as5

r= rc(ug)+Tc(ug)
(

R0 +R1e
ıψk + R̄1e

−ıψk
)

rb(ubk) (9)

where the vectorrc and the rotation matrixTc describe the position of the rotor center and the orientation of the rotational

axis, respectively, both functions of the ground-fixed DOFsug. The local position vectorrb of a particle on blade numberk is

a function ofubk , which is the same function for all blades due to the isotropyof the rotor and its discretization. The prescribed

rotation of the blade is given by the angleψk =Ωt+2π(k− 1)/B, whereB is the number of blades. The rotation matrix10

is written on exponential form using a real matrixR0 and a complex matrixR1, which are constant and given by the initial

orientation of the rotational axis.

Let the conservative and dissipative forces be linear and depend only on the local DOFs and their time derivatives, such that

the potential energy and Rayleigh’s dissipation function can be written as

V = uTgKgug +
B
∑

k=1

uTbkKbubk andD = u̇TgCgu̇g +
B
∑

k=1

u̇TbkCbu̇bk (10)15

whereCg andKg are local damping and stiffness matrices for the ground-fixed substructure, andCb andKb are local and

identical damping and stiffness matrices for each blade of the isotropic rotor.

Insertion of (10) and the position vectors (8) and (9) into the coefficients (7) and summation over all volumes of the entire

structure, the linear equations of motion can be written on ageneric matrix form as




Mr MT
gr

Mgr Mg



 ü+





Cr Grg

Ggr Gg +Cg



 u̇+





Kr +Sr 0

Sgr Kg



u= 0 (11)20

where theND DOFs are ordered as

u= {ur,ug}T with ur = {ub1 , . . . ,ubB}
T (12)
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Note thatND =Ng +BNb, whereNg andNb are the number of DOFs on the substructure and each blade, respectively. The

block matrices of (11) can be written as

Mr = diag{Mb,Mb, · · · ,Mb} , Cr = diag{Cb,Cb, · · · ,Cb} ,

Kr = diag{Kb,Kb, · · · ,Kb} , Sr = diag{Sb,Sb, · · · ,Sb} ,

Mg (t) =Mg,0 +Mg,2e
ı2Ωt+ M̄g,2e

−ı2Ωt5

Gg (t) =Gg,0 +Gg,2e
ı2Ωt+ Ḡg,2e

−ı2Ωt

Mgr (t) =Mgr,0 +Mgr,1e
ıΩt+ M̄gr,1e

−ıΩt,

Ggr (t) =Ggr,0 +Ggr,1e
ıΩt+ Ḡgr,1e

−ıΩt, (13)

Grg (t) =Grg,1e
ıΩt+ Ḡrg,1e

−ıΩt,

Sgr (t) = Sgr,1e
ıΩt+ S̄gr,1e

−ıΩt10

where the time-dependent coupling matrices can be subdivided further into constant single blade components as

Mgr,0 = [Mgb,0 Mgb,0 · · · Mgb,0] ,

Mgr,1 =
[

Mgb,1 Mgb,1e
i2π/B · · · Mgb,1e

i2π(B−1)/B
]

,

Ggr,0 = [Ggb,0 Ggb,0 · · · Ggb,0] ,

Ggr,1 =
[

Ggb,1 Ggb,1e
i2π/B · · · Ggb,1e

i2π(B−1)/B
]

, (14)15

Grg,1 =
[

GT
bg,1 G

T
bg,1e

i2π/B · · · GT
bg,1e

i2π(B−1)/B
]T

,

Sgr,1 =
[

Sgb,1 Sgb,1e
i2π/B · · · Sgb,1ei2π(B−1)/B

]

The matrices in (13) and (14) related to inertia forces are listed in Appendix A. Note that the 2/rev components of the massand

gyroscopic matrices for the ground-fixed substructure onlyexists in case of a 2-bladed rotor.

2.2 Inversion of mass matrix20

The inverse of the mass matrix in (11) can be written as

M−1 =





E FT

F H



 (15)

where

E=M−1
r +M−1

r MT
grHMgrM

−1
r , F=−HMgrM

−1
r ,

H=
(

Mg −MgrM
−1
r MT

gr

)−1
(16)25

Using (13) and (14), it can be shown that the inverse ofH can be written as

H−1 =Q0 +Q2e
ı2Ωt+ Q̄2e

−ı2Ωt (17)
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where the mean and 2/rev components for aB-bladed isotropic rotor are

Q0 =Mg,0 −B
(

Mgb,0M
−1
b MT

gb,0 + M̄gb,1M
−1
b MT

gb,1 +Mgb,1M
−1
b M̄T

gb,1

)

Q2 =







Mg,2 − 2Mgb,1M
−1
b MT

gb,1 for B = 2

0 for B > 2
(18)

Thus,H=Q−1
0 is a real, symmetric, and constant matrix for isotropic rotors with more than two blades. Using (16) and (13),

this property implies that the inverse mass matrix of such rotors have a finite Fourier series with 2/rev as the highest harmonic5

component. Note that the second harmonic component for 2-bladed rotors is also symmetricQT
2 =Q2,

For 2-bladed rotors,H−1 is periodic andH can therefore be written as a Fourier series

H=

∞
∑

n=−∞

Hne
ınΩt (19)

whereH−n = H̄n. Insertion into the equationH−1H= I and collection of terms of equal harmonics yields

Q0H0 + Q̄2H2 +Q2H̄2 = I mean terms (20a)10

Q0H1 + Q̄2H3 +Q2H̄1 = 0 1/rev terms (20b)

Q0H2m+1 + Q̄2H2m+3 +Q2H2m−1 = 0 (2m+1)/rev terms (20c)

Q0H2m+ Q̄2H2m+2 +Q2H2m−2 = 0 (2m)/rev terms (20d)

wherem= 1,2, . . . is a positive integer. The equations for odd terms are homogeneous and regular, thus all odd harmonic

components vanishH2m−1 = 0 for m= 1,2, . . ..15

To solve the equations for the even terms, the mean componentH0 is obtained from (20a) as a linear function of the second

harmonic componentH2 and a constant matrix

H0 =Q−1
0 −Q−1

0

(

Q̄2H2 +Q2H̄2

)

(21)

The remaining even equations can be solved recursively forH2m by insertion of the solution forH2m−2 into the2m/rev

equation. It is convenient to split the equations into real and imaginary parts and solve for each part to obtain20




Re(Hm)

Im(Hm)



=

(

m
∏

k=1

(

−PkQ
T
s

)

)

B0 −PmQs





Re(Hm+)

Im(Hm+)



 for m= 1,2, . . . (22)

where the following real matrices have been introduced:

Qs =





Re(Q) Im(Q)

−Im(Q) Re(Q)



 , B0 =





Q−1
0

0



 (23)

and the recursive matrices

Pk =
(

I−Q−1
d QT

s Pk−1Qs

)−1
Q−1
d for k = 1,2, . . . (24)25
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whereQd = diag{Q0,Q0} andP0 = diag
{

2Q−1
0 ,0

}

are2× 2 block diagonal matrices. Symmetries ofQ0 andQ2 and the

resulting anti-symmetry ofQs causes the matricesPk to be symmetric. Note thatQd is a regular matrix due to the positive

definiteness of the mass matrix.

If
∥

∥Q−1
d QT

s Pk−1Qs

∥

∥< 1 then an inequality for thep-norm of the productPkQ
T
s can be derived (Golub & Van Loan,

1996) as5

∥

∥PkQ
T
s

∥

∥≤
∥

∥Q−1
d QT

s

∥

∥

1−
∥

∥Q−1
d QT

s Pk−1Qs

∥

∥

for k = 1,2, . . . (25)

where‖ ·‖ here and subsequently denotes anyp-norm of a matrix. The condition
∥

∥Q−1
d QT

s Pk−1Qs

∥

∥< 1 is fulfilled for k ≥ 1

if
∥

∥Q−1
d QT

s P0Qs

∥

∥< 1. It is not straight forward to prove this inequality, but it’s validity for a given model can easily be

checked. Intuitively, thep-norm of the constant partQ0 of the mass matrix for the ground-fixed coordinates should bemuch

larger then thep-norm of the second order harmonic partQ2. It is therefore also assumed that
∥

∥PkQ
T
s

∥

∥< 1 for k = 1,2, . . .10

based on the inequality (25). From the recursive solution (22), this assumption is sufficient (but not necessary) to ensure that

thep-norm of harmonic componentsH2m decreases with their order

‖H2m‖ ≤
(

m
∏

k=1

∥

∥PkQ
T
s

∥

∥

)

‖B0‖+ ‖PmQs‖‖H2m+2‖→ 0 for m→∞ (26)

Thus, closure to the recursive equation (22) can therefore be obtained by choosingH2NH+2 = 0, where2NH is the highest

harmonic component used in the Fourier series (19). The recursive solution of (22) is computed backward starting withH2NH
15

and ending withH0 given by Eq. (21).

Truncation of (19) to2NH and insertion into (16) shows that the block matrices of the inverse mass matrix are

E=

2Nh+2
∑

n=−(2Nh+2)

Ene
ınΩt , F=

2Nh+1
∑

n=−(2Nh+1)

Fne
ınΩt , and H=

Nh
∑

m=−Nh

H2me
ı2mΩt (27)

where the component matricesEn andFn are written out in Appendix B. Thus, the highest order of the harmonics in the

inverse mass matrix for a 2-bladed rotor is2NH +2 and involves only the rotor coordinates.20

2.3 Harmonic components in system matrix

Insertion of (15) with (27) into the system matrix (2) with the gyroscopic/damping and stiffness matrices of (11) shows that

the Fourier series of the periodic system matrix (3) can be truncated to the orderN as

A(t) =

N
∑

n=−N

Ane
ınΩt (28)

where25

N =







2NH +3 for B = 2

3 for B > 2
(29)
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and the matricesAn can be found in Appendix C. This analytical derivation of thesystem matrix is exact for isotropic rotors

with more than two blades. In fact, if the anisotropy of the rotor is only related to the stiffnesses of the blades and not the

mass distributions or rotor geometry, as in previous studies e.g. (Skjoldan & Hansen, 2009; Skjoldan, 2009), then the system

matrices for such rotors also have finite Fourier series. For2-bladed isotropic rotors, the series converges when the Fourier

series of the inverse mass matrix converges; sufficient but not necessary criteria for convergence are given in the previous5

section.

3 Modal analysis using Hill’s method

This section contains a description of Hill’s method and howit can be applied for modal analysis of structures with bladed

rotors. First, the concept of periodic mode shapes and Hill’s truncated eigenvalue problem is introduced. Then, a novelmethod

for automatic identification of the principal solutions among all eigen-solutions of this eigenvalue problem is brieflypresented.10

The section ends with a description of the modes of bladed rotors, including the identification of the different rotor mode

components based on the periodic eigenvectors of Hill’s eigenvalue problem.

3.1 Periodic mode shapes and Hill’s truncated eigenvalue problem

Floquet theory defines that the eigen-solution of the linearperiodic system (1) consists of an eigenvalue and a corresponding

periodic eigenvector. A homogenous solution to (1) can therefore be written as15

x=

∞
∑

m=−∞

vme
ımΩt eλt (30)

wherevm are harmonic components of the periodic eigenvector andλ is the complex eigenvalue. Insertion into (1) with the

2ND×2ND periodic system matrix written as the infinite Fourier series (3) and collecting terms of equal harmonics yields an

infinite set of2ND equations
∞
∑

n=−∞

Anvm−n− (λ+ ımΩ)vm = 0 ∀m ∈ Z (31)20

These equations constitutes the algebraic eigenvalue problem of infinite dimension that forms the basis of Hill’s method (Hill,

1886; Xu & Gasch, 1995). The eigenvalue isλ and the eigenvector can written asv = {. . . ,vT−2,v
T
−1,v

T
0 ,v

T
1 ,v

T
2 , . . .}T and

is of infinite dimension. If the harmonic index in the eigenvector is shifted by an integers then the resulting vectorv =

{. . . ,vT−2−s,v
T
−1−s,v

T
−s,v

T
1−s,v

T
2−s, . . .}T and the complex numberλ+ ısΩ are also an eigen-solution. Thus, although the

eigenvalue problem has infinitely many eigen-solutions, there are only2ND principal solutions from which all other solutions25

can be constructed. This construction is also clear when inserting the shifted eigen-solution into (30)

x=

∞
∑

m=−∞

vm−se
ımΩt e(λ+ısΩ)t =

∞
∑

m=−∞

vme
ı(m−s)Ωt e(λ+ısΩ)t =

∞
∑

m=−∞

vme
ımΩt eλt (32)

This arbitrarys/rev shift between the periodicity of the eigenvector and the frequency of the eigenvalue is identical to the fre-

quency indeterminacy in Floquet analysis due to the logarithm of the complex Floquet multipliers (Skjoldan & Hansen, 2009;
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Bottasso & Cacciola, 2015). The advantage of Floquet analysis is that there is only2ND solutions and the frequency indeter-

minacy can be chosen arbitrarily for each of them; here the concept ofparticipation factorsintroduced by Bottasso & Cacciola

(2015) is helpful. In Hill’s method, the problem is to link all eigen-solutions into2ND sub-sets in which a principal eigen-

solution can be used to construct all eigen-solutions in theparticular sub-set. A novel method for this linking into sub-sets and

identification of the principal solutions to Hill’s eigenvalue problem is presented in the next section.5

To numerically solve Hill’s eigenvalue problem (31) is truncated. When the periodic system matrix has a finite Fourier series

(28), the periodic eigenvectors can also be represented by afinite Fourier series (Curtis, 2010) in the homogenous solution

x=

M
∑

m=−M

vme
ımΩt eλt (33)

whereM is the number of harmonics. The infinite eigenvalue problem (31) can then be truncated to finite dimension as

Nm
∑

n=−Nm

Anvm−n− (λ+ ımΩ)vm = 0 ∀m ∈ [−M :M ] (34)10

whereNm =min(N, |M −m|) is the limit for the summation over the product of the harmonic components of the system

matrix and the eigenvector. This limit is lower than the number of harmonics in the system matrixN for the matrix equations

where|m|>M −N , showing that truncation errors are introduced in those2N of the2M +1 matrix equations in Eq. (34).

The truncation error has been investigated by Skjoldan (2009); Lee et al. (2007) and they show a convergence of the principal

eigen-solutions of the truncated Hill’s matrix for their particular systems whenM ≥ 2N . This finite matrix can be easily set15

up from (34) by arranging the harmonic components of the periodic eigenvector as

v = {vT−M , . . . ,vT−1,v
T
0 ,v

T
1 , . . . ,v

T
M}T (35)

The2ND(2M+1) solutions to the truncated eigenvalue problem (34) will still follow the above rules for index shift, except that

the eigen-solutions with the largest harmonic components of their eigenvectors closest to the “edges” at±M will be affected by

the truncation error. There still exist2ND sub-sets of2M+1 eigen-solutions that can be constructed from a principal solution;20

however, these solutions with periodic eigenvectors of highest harmonic order will be less accurately constructed. Note that

the eigenvector (35) can be given a norm of 1, such that‖vm‖ is the participation factor of them’th harmonic component

(Bottasso & Cacciola, 2015).

3.2 Automatic identification of principal solutions

The identification of the principal solutions can for small systems be done manually (Skjoldan, 2009; Christensen & Santos,25

2005; Lee et al., 2007; Kim & Lee, 2012). More systematic approach is to select the2ND eigen-solutions among the2ND(2M+

1) solutions that have periodic eigenvectors where the harmonic components are most centered around the mean component,

different methods of this concept can be found in (Xu & Gasch,1995; Ertz et al., 1995; Lazarus & Thomas, 2010). However,

these methods do not always ensure that the identified principal solutions2ND can construct all2ND(2M +1) solutions,

10



because two selected principal solutions may come from the same sub-set, whereby one sub-set is not represented. A novel

method is therefore suggested, where the principal solutions are identified in three steps:

1. Remove half the eigen-solutions with eigenvectors dominated by harmonic components of the highest order.

2. Link the remaining eigen-solutions in2ND sub-sets based on a Modal Assurance Criterion (Allemang, 2003).

3. Pick the principal solution in each sub-set that has the largest mean componentv0 in its eigenvector.5

Step 1 ensures that the eigen-solutions with the largest truncation errors are removed. Step 2 ensures that all2ND sub-sets

are represented. The choice of the particular solution in step 3 as the principal one in each sub-set is less important (sim-

ilar to Floquet analysis). If the eigenvector with the largest norm of its mean ground-fixed components||v0,g|| is chosen,

then the frequency of the principal eigenvalue will also be the dominating frequency observed in the ground-fixed frame

(Skjoldan & Hansen, 2009). For drawing of Campbell diagrams, it is convenient to link the sub-sets across the variation of10

rotor speed. Step 3 is therefore only done for one rotor speedcomputation, and the selection of the principal solutions in each

sub-set for subsequent rotor speeds is based on a Modal Assurance Criterion with the previous speed.

3.3 Modes ofB-bladed isotropic rotors

Modes of a structure with a bladed rotor may be dominated by the motion of the sub-structure and therefore named after its

dominant component of the periodic eigenvector, e.g. ‘tower fore-aft’ or ‘drivetrain torsion’ modes of wind turbines.The name15

of a rotor mode dominated by blade motion will depend on the number of blades.

The naming conventions of symmetric and whirling rotor modes of 3-bladed rotors deduced from the modal analysis using

the multi-blade coordinates (Hansen, 2003) can be generalized. The Coleman transformation will for isotropic rotors with

more than two blades render the system matrix time-invariant with constant eigenvectors described in multi-blade coordinates

(Skjoldan & Hansen, 2009). The Coleman transformation can be written on a complex form, where the cosine and sine parts20

of the multi-blade coordinates are combined into backward and forward whirling coordinates, similar to complex wave co-

ordinates for vibrations of spinning disks (Lee & Kim, 1995;Hansen, 1999). Let the modal response in these coordinates be

written aszreıωt then the Coleman transformed responses in rotating blade coordinates will be given as

ur =





















I −I Ieıψ1 Ie−ıψ1 · · · IeıB̃ψ1 Ie−ıB̃ψ1

I I Ieıψ2 Ie−ıψ2 · · · IeıB̃ψ2 Ie−ıB̃ψ2

I −I Ieıψ3 Ie−ıψ3 · · · IeıB̃ψ3 Ie−ıB̃ψ3

...
...

...
...

...
...

I I IeıψB Ie−ıψB · · · IeıB̃ψB Ie−ıB̃ψB





















zre
ıωt (36)

whereB̃ = (B−1)/2 for odd andB̃ =B/2−1 for even number of blades,ψk =Ωt+2π(k−1)/B is the azimuth angle of blade25

numberk, the second column in the matrix is only present for even number of blades, and the harmonic azimuth dependent

parts are omitted for 2-bladed rotors. These harmonic partscome in pairs for each harmonic order with plus and minus on

11



the blade azimuth angle, defining the direction of the whirling. The constant eigenvector in complex whirling coordinates can

be written aszr = {AT
0 ,A

T
D,A

T
BW,1,A

T
FW,1, . . . , ,A

T
BW,B̃

,AT
FW,B̃

}T , which by substitution into (36) shows that the modal

response of blade numberk of the isotropic rotor can be written as

ubk =
(

A0 +(−I)
k
AD

)

eıωt+

B̃
∑

p=1

ABW,p e
ı(ω+pΩ)teı

2πp(k−1)
B +

B̃
∑

p=1

AFW,p e
ı(ω−pΩ)te−ı

2πp(k−1)
B (37)

showing thatA0 are symmetric components,AD are anti-symmetric components, andABW,p andAFW,p are backward (BW)5

and forward whirling (FW) components of the blade motion in the mode. The direction of the whirl is given by the sign

of the phase shifts2πpB (k− 1) for each blade. Note that for BW components, the angular frequencyp/rev is added to the

eigenfrequencyω, and it is subtracted for FW modes. As explained in Hansen (2003, 2007), the eigenfrequencies of a 3-bladed

rotor system described in multi-blade coordinates are measured in the ground-fixed frame, in which the frequencies of a pure

BW modeωBW and pure FW modeωFW decrease and increase with 1/rev, respectively, such that their frequencies in the10

rotating blade frame given by (37) are close to the frequencyof the corresponding blade modeωb ≈ ωBW +Ω≈ ωFW −Ω.

Equation (37) shows that generally there will be whirling mode pairs that split with up to2B̃/rev in the ground-fixed frame,

where the general relationshipωb ≈ ωBW +pΩ≈ ωFW −pΩ to the blade frequencies holds. Note that the phase speed2πp
B of

the rotor whirling will a factorp higher. Note also that the frequencies of anti-symmetric components for even number of blades

(except for two) are unchanged by the transformation from ground-fixed to rotating blade frame. This properties shared by the15

symmetric components is caused be the fact that the reactionforces due to these components of rotor motion is neutral with

respect to the rotation; the center of gravity of the entire rotor is only moved axially by symmetric components and remains

stationary for anti-symmetric components.

Each harmonic component of each DOF of a rotor mode may therefore be named

– Symmetric20

– Anti-symmetric (exist only forB even)

– Backward whirling (exist only forB ≥ 3)

– Forward whirling (exist only forB ≥ 3)

followed by the name of the DOF. For rotors with more than fourblades, the whirling components must also have the phase

speed indexp= 1,2, . . . B̃ added to the name of the particular component. The symmetric, anti-symmetric, and whirling com-25

ponents of the rotor motion given by (37) can be derived by inverting the transformation (36). Inserting the rotor motion

ur = vm,re
ımΩt eλt of them’th harmonic of the periodic eigenvector into (36) and setting the time to zerot= 0, the symmet-
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ric, anti-symmetric, and whirling components of this harmonic can be derived as






























































A0

AD

ABW,1

AFW,1

...

ABW,B̃

AFW,B̃































































m

=
1

B

































I I . . . I I

−I I . . . −I I

I Ie−ı2π/B . . . Ie−ı2π(B−1)/B I

I Ieı2π/B . . . Ieı2π(B−1)/B I

...
...

...
...

I Ie−ıB̃2π/B . . . Ie−ıB̃2π(B−1)/B I

I IeıB̃2π/B . . . IeıB̃2π(B−1)/B I

































vm,r (38)

wherevm,r is the rotor part of a harmonic componentvm of the eigenvectorv, and the last row of matrices is omitted for rotors

with odd number of blades. The harmonic orderm of each component is also relevant for its naming, but again noting that it is

directly dependent on the choice of the principal solution.Note that 2-bladed rotors only have symmetric and anti-symmetric5

components.

4 Modal analysis of 2- and 3-bladed wind turbines

The theories presented in the previous sections are applicable to structures with isotropic rotors with any number of blades

higher than one. In this section, the modal dynamics of 2- and3-bladed turbines are investigated because they are of the

highest interest to the wind turbine industry, but also because the finite Fourier series of the system matrix shows that there are10

no qualitative difference between turbines having three orhaving more identical blades.

The turbine used for the analysis is the DTU 10MW reference wind turbine (RWT) by Bak et al. (2012) with three identical

blades. For the sake of comparability of the modal dynamics,the 2-bladed version is obtained by reusing the same blade. In

reality, the optimal aerodynamic solidity of the rotor would require a redesign (Bergami et al., 2014); the blades wouldget a

larger chord and the increased absolute thickness (assuming the same relative thickness of the airfoils) would be used to either15

decrease the blade mass, increase the blade stiffness (keeping the same bending stresses), or combine these two objectives. In

any cases, the blade for the 2-bladed turbine will have different blade modal frequencies and possible mass distribution, which

would complicate the direct comparison of turbine modes to the 3-bladed version.

The turbine model derived in the next section is based on the simple model presented in Hansen (2003), except that the

bending of the main shaft is here omitted and the generator rotation has been added as a new DOF. The model parameters20

are tuned such that the modal frequencies of the first eleven modes of the three-bladed turbine are closest possible to the

modal frequencies computed for the 10MW RWT with the higher fidelity linear model of the software HAWCStab2 using

beam elements and the method of the Coleman transformation (Hansen, 2004). Minor modifications of the turbine have been

introduced such that the center of gravity in the blade cross-sections coincide with the pitch axis and the coning is alsoset to

zero.25

The convergence of the Fourier series of the system matrix for the 2-bladed turbine is analyzed in Section 4.2. The Campbell

diagrams of the principal modal frequencies are presented for 3- and 2-bladed turbines in Section 4.3. The well-known periodic

13
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Figure 1. Illustration of the simple turbine model.

mode shapes of 3-bladed turbines are repeated in Section 4.4, and more complex periodic mode shapes for 2-bladed turbines

are presented in Section 4.5. The section ends with a discussion of the differences between the modal dynamics of the two

turbine types.

4.1 Model kinematics and parameters

Figure 1 shows an illustration of the structural turbine model. The nacelle and tower motions are described by five DOFs. The5

nacelle can translate in the two horizontal directions described in the ground-fixed inertial frame (X,Y,Z) by ux (side-side)

anduy (fore-aft). It can tilt, roll and yaw described by the anglesθx, θy, andθz, respectively. The azimuthal angle of the blade

number one isψ1 =Ωt+ψs+ψg, whereΩ is the constant mean speed, andψs andψg are the torsional and rigid-body rotations

of the drivetrain, respectively. The generator is rotatingat the speedΩ+ ψ̇g.

The blade motion is described in their own rotating frames (x,y,z), where thez-axis is the blade axis and they-axis at rest10

coincides with theY -axis. The local position vector for the center of gravity onblade numberk is described by an expansion

in the first three blade modes at standstill as

rb (ubk) =















φx,f1(z)

φy,f1(z)

z















qf1,k(t)+















φx,e(z)

φy,e(z)

z















qe,k(t)+















φx,f2(z)

φy,f2(z)

z















qf2,k(t) (39)

for z ∈ [Rh :R] andrb = {0,0, z}T for z ∈ [0 :Rh], whereRh andLb are the hub radius and blade length, respectively. The

outer rotor radius isR=Rh+Lb. The edgewise and flapwise deflections in the first flapwise blade mode areφx,f1(z) and15

φy,f1(z), respectively, andqf1,k is the DOF of this deflection shape for blade numberk. Similar, the subscriptse andf2 denote

the contributions from the first edgewise and second flapwisedeflection shapes. All shape functions are obtained by polynomial

fits to the isolated blade mode shapes computed with the beam element model of HAWCStab2, see Figure 2.

14



The vector containing the system DOFs is defined according toEq. (12) as

u= {qf1,1, qe,1, qf2,1, . . . , qf1,B , qe,B , qf2,B ,ux,uy,θx,θy,θz,ψg,ψs}
T (40)

where the number of DOFs is dependent on the number of blades asND = 3B+7. To obtain the linear equations of motion

using the derivations of Section 2.1, the blade mass motion is written on the form of (9) using (39) and the following rotor

center position and orientation of the rotational axis5

rc =









1 −θz θy

θz 1 −θx
−θy θx 1























0

−Ls
0















Tc =









1 −θz θy

θz 1 −θx
−θy θx 1

















cos(ψs+ψg) 0 sin(ψs+ψg)

0 1 0

−sin(ψs+ψg) 0 cos(ψs+ψg)









(41)

and constant rotation matrices

R0 =









1 0 0

0 0 0

0 0 1









and R1 =









1/2 0 −ı/2
0 0 0

ı/2 0 1/2









(42)

These vector and matrix functions of the DOFs are inserted into the volume integrals for the matrix elements in Appendix A,10

which reduce to line integrals overz ∈ [0 :R]. The mass distribution of hub is defined asm(z) =Mh/B/Rh for z ∈ [0 :Rh],

whereMh is the total hub mass. The mass distribution of the blade is plotted in Figure 2.

The ground-fixed substructure are modeled as a lumped mass, and the inertia forces from the nacelle and effective tower

masses and the generator rotational inertia are derived from the kinetic energy:

Tg =
1
2M (u̇x+ u̇y)

2
+ 1

2Ixθ̇
2
x+

1
2Iy θ̇

2
y +

1
2Iz θ̇

2
z +

1
2Igψ̇

2
g (43)15

such that the first term ofmg,0,ij in Eq. (A2) is replaced by∂2Tg/∂u̇i∂u̇j . The potential energy for the linear elastic stiffnesses

of the nacelle/tower motion, shaft torsion and blade deflections is written as

V = 1
2Kxu

2
x+

1
2Kyu

2
y +

1
2Gxθ

2
x+

1
2Gyθ

2
y +

1
2Gzθ

2
z − gxyθxuy + gxyθyux+

1
2Gsψ

2
s +

B
∑

k=1

Vbk (44)

whereVbk is the potential energy of blade numberk given as

Vbk =
∑

β=[f1,e,f2]

1
2Mβω

2
βq

2
β,k +Ω2

∑

β=[f1,e,f2]

R
∫

0

(

(

∂2φx,β
∂z2

)2

+

(

∂2φy,β
∂z2

)2
)

q2β,k

R
∫

z

m(s)dsdz (45)20

whereMβ andωβ are the modal mass and frequency of the orthogonal blade modesβ = [f1, e,f2]. The last term is the potential

energy of the centrifugal forces proportional to the squared rotor speed.
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Figure 2. Edgewise (dashed curves) and flapwise (solid curves) deflections in the blade mode shapes (left plots) and the blade mass distri-

bution (right plot) for the blade of the DTU 10MW RWT. Circles in the left plots are results from the beam element model of the software

HAWCStab2 and the curves are polynomial fits used in the present model.

The damping matrices of Rayleigh’s dissipation function in(10) for the bladesCb and the nacelle/tower motion and shaft

torsionCg are setup using a spectral damping model (Clough & Penzien, 1975). The first and second flapwise blade modes are

set to have logarithmic decrements of 20 % and 10 %, respectively, whereas all other modes are damped 2 – 5 %. These choices

of damping are simply crude approximations to the aeroelastic damping of the turbine in operation (Bak et al., 2012), andthey

have no significant effect on the results of Hill’s method. Damping is very important for solutions using Floquet theory where5

the system is time integrated.

The linear equations of motion (11) can be derived from Eq. (7) and the integrals in Appendix A using the above kinematic

description of the blade motion, the kinetic energy of the nacelle/tower and generator inertia, the total potential energy, and the

spectral damping matrices. The block matrices of (11) are not explicitly included for brevity. All parameters (except for the

blade properties in Figure 2) of the tuned model are listed inTable 1.10

4.2 Convergence of Fourier series for 2-bladed rotor

Convergence of the Fourier series for the system matrix of 2-bladed isotropic rotors is ensured if the constant part of the mass

matrix for the ground-fixed DOFs is sufficiently larger then the second order harmonic part. Using Eq. (23) and (24), it canbe

computed that
∥

∥Q−1
d QT

s P0Qs

∥

∥≈ 0.22< 1 and
∥

∥PkQ
T
s

∥

∥< 0.67 for k = 1,2, . . ., i.e., the inverse mass matrix and therefore

the system matrix have finite Fourier series for the 2-bladedrotor.15

Figure 3 shows the 2-norms of the Fourier components of the system matrices for the models with the 2- and 3-bladed

isotropic rotors. The convergence for the 2-bladed rotor isobserved and for the following analysis the number of harmonics is

chosen to beN = 7. The largest norm for the 1/rev component is 46,480 s−1 and the largest norm of an omitted component
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Parameter description Symbol Value

Blade length Lb 86.366 m

First blade flap frequency ωf1 0.610 Hz

First blade edge frequency ωe 0.934 Hz

Second blade flap frequency ωf2 1.738 Hz

Hub radius Rh 2.8 m

Hub mass Mh 105,520 kg

Tower to rotor distance Ls 7.1 m

Generator inertia on LSS Ig 3,751,000 kgm2

Drivetrain stiffness Gs 0.668 GNm/rad

Nacelle/effective tower mass M 446,040 kg

Nacelle tilt inertia Ix 4,106,000 kgm2

Nacelle roll inertia Iy 410,600 kgm2

Nacelle yaw inertia Iz 4,106,000 kgm2

Tower top side-side stiffness Kx 7.4 MN/m

Tower top fore-aft stiffness Ky 7.4 MN/m

Tower top tilt stiffness Gx 7.462 GNm/rad

Tower top roll stiffness Gy 7.462 GNm/rad

Tower top coupling stiffness gxy 0.2035 GN

Tower top yaw stiffness Gz 3.5 GNm/rad
Table 1.Tuned parameters of simple model to fit the modal properties of the DTU 10MW RWT up till its 11th mode.
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Figure 3. The 2-norms of the Fourier components of the system matrices for the 2-and 3-bladed simple models of the DTU 10MW RWT.

(9/rev) is 0.03 s−1. For the 3-bladed rotor allN = 3 harmonic components are used although the third harmonic iseffectively

zero.
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4.3 Campbell diagrams of 2- and 3-bladed turbines

The number of harmonics in the periodic eigenvectors used for Hill’s truncated eigenvalue problem is set toM = 2N for both

rotors, thusM = 14 andM = 6 for the 2-and 3-bladed rotor, respectively. The eigenvalueproblem is solved for 33 equidistant

rotor speeds ranging from 2 rpm to 10 rpm (nominal speed of theDTU 10MW RWT is 9.6 rpm). The principal solutions at

the lowest speed of 2 rpm are selected among the sub-sets of solutions as the one that has the largest mean component on the5

ground-fixed DOFs (cf. Section 3.2). For the remaining rotorspeeds, the principal solutions are selected as the ones that have

the largest Modal Assurance Criterion relative to the principal solutions selected at the previous rotor speed.

Figure 4 shows the Campbell diagrams of principal modal frequencies versus rotor speed for the 3-bladed (left) and 2-bladed

(right) versions of the DTU 10MW RWT. The mode names are deduced from the dominating components in the periodic mode

shapes (cf. Section 4.4 and 4.5). For the 3-bladed rotor, theprincipal modal frequencies computed with Hill’s method (circles)10

are in close agreement with the modal frequencies computed with the high-fidelity software HAWCStab2 (crosses). It shows

that the simple model combined with the automatic identification of the principal solutions is able to predict the same modal

frequencies in the ground-fixed frame as computed using the Coleman transformation method.

Comparison of the two Campbell diagrams shows that the towermodes of the 2-bladed turbine have slightly higher fre-

quencies due to the lighter rotor. The±1/rev frequencies splitting for the pairs of whirling rotormodes in the ground-fixed15

frame is clear for the 3-bladed turbine (noting that out-of-plane blade deflections are stiffened by the centrifugal forces). For

the 2-bladed turbine, there are no whirling modes but the anti-symmetric modes are still either increasing (first edge and flap)

or decreasing (second flap) with 1/rev, because the principal solutions are selected as the solutions with the largest mean com-

ponents on ground-fixed DOFs. Campbell diagrams containingonly the principal frequencies are not very informative for

2-bladed turbines. Instead the periodic mode shapes of the selected principal solutions are now analyzed. Note that first mode20

of both turbines is the trivial rigid body rotation of the drivetrain, which is omitted from this analysis.

4.4 Periodic mode shapes of 3-bladed turbines

Figures 5 – 15 show the dominating modal components of selected DOFs in the periodic mode shapes of the 3-bladed turbine.

The modal amplitudes are plotted as functions of both the rotor speedΩ and the frequency of the particular componentω0+mΩ,

whereω0 is the principal modal frequency andm is the harmonic order of the component (cf. Eq. (33)). Only amplitudes higher25

than 10 % of the overall maximum amplitude across all rotor speeds are plotted. The generator rotation and shaft torsion angles

are multiplied by 10 for better scaling of these small anglescompared to blade deflections. Scaling of the tower translations

are also applied to show weak couplings for some modes. The plot layout is the same in all figures: A three-dimensional plot

in the top and its projections onto the amplitude-rotor speed (left) and frequency-rotor speed (right) planes in the lower plots.

The principal frequenciesω0 are always denoted by black bullets in the frequency-rotor speed planes. The color coding of the30

modal components is also the same in all figures: Black markers denote amplitudes of ground-fixed DOFs. Red, green, and

blue markers denote amplitudes of the rotor components of the first flapwise, first edgewise, and second flapwise deflection

shapes, respectively, computed using Eq. (38). Note that the frequency-rotor speed diagrams (lower right) are similarto the
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Figure 4. Campbell diagrams of the principal modal frequencies of the 3-bladed(left plot) and 2-bladed (right plot) version of the DTU

10MW RWT computed with Hill’s method (circles) and with the software HAWCStab2 (crosses) for the 3-bladed turbine.

periodic Campbell diagrams in Bottasso & Cacciola (2015); except that each curve represent the magnitude of the harmonic

component for a particular DOF, and not the vector norm of allDOFs like the participation factors.

The naming of the modes shown in Figure 4 is deduced from the harmonic components that dominate the periodic mode

shapes observed in Figures 5 – 15 across a large part of the rotor speed range. Note that the first flapwise symmetric and

forward whirling modes interchange their mode shapes at lowrotor speeds. The routine for sorting the modes based on a5

Modal Assurance Criterion cannot always distinguish strongly coupled modes from each other. This issue is dependent onthe

resolution of the rotor speed range.

A general observation for the 3-bladed turbine modes is thatno harmonic component of the rotor response is more than

±1/rev from the principal frequency. Lowering the thresholdfor the plotted amplitudes to 0.1 % of the overall maximum

amplitude did not change this observation. It agrees with Eq. (37) and previous studies of isotropic 3-bladed turbines using10

the Coleman transformation method (Hansen, 2003, 2007): aninverse Coleman transformation from the ground-fixed frame

with a single modal frequency back to the rotating frame shows that symmetric components will have the same frequency as

in the ground-fixed frame, but BW and FW components will have frequencies that are +1/rev and -1/rev, respectively, from a

principal frequency defined in the ground-fixed frame. If the3-bladed rotor would be anisotropic then secondary harmonics

will arise which magnitudes will depend on the magnitude of the anisotropy (Skjoldan & Hansen, 2009).15

Looking at the individual mode shapes, there are couplings of the different DOFs in each mode of 3-bladed turbines. The

tower fore-aft mode (Figure 5) contains symmetric, BW and FWcomponents in the first flapwise blade mode. Similarly, the
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tower side-side mode (Figure 6) contains BW and FW components in the first edgewise blade mode and generator rotation due

to the nacelle roll. The first BW flapwise mode (Figure 7) is notpure and contains also symmetric and FW components. The

strongly coupled first symmetric (Figure 8) and FW (Figure 9)flapwise modes are also not pure and contain other components

as well. Note that a BW edgewise component (in green) appearsin the first FW flapwise mode at the highest rotor speeds where

its BW flapwise component approaches the edgewise blade frequency of about 0.93 Hz. Similarly, the FW flapwise components5

appears in the first BW edgewise mode (Figure 10) at higher rotor speeds. The first FW edgewise mode (Figure 11) contains a

small BW edgewise component and a larger FW flapwise component. Similar couplings can be seen for the remaining modes.

The second flapwise whirling modes (Figure 12 and 13) have thelargest blade response at a frequency of about 1.5 Hz (the

+1/rev for BW and -1/rev for the FW components). The amplitude ratio of these flapwise DOFs are almost constant indicating

that the rotor modes are constructed as a combination of the two blade modes with the isolated modal frequencies 0.61 Hz and10

1.74 Hz. The first symmetric edgewise mode (Figure 15) couples with both the generator rotation and the shaft torsion, butnot

with any whirling components. The second symmetric flapwisemode (Figure 14) contains whirling components that are just

below the selected threshold for the plotted amplitudes andtherefore not shown.
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Figure 5. Harmonic modal components for the 3-bladed turbine mode dominated bytower fore-aft motion. Top plot: Modal amplitudes

plotted versus rotor speed and frequency of the particular harmonic component. Lower left plot: Projection onto the plane of modal amplitudes

and rotor speed. Lower right plot: Projection onto the plane of component frequencies and rotor speed (periodic Campbell diagram). Bullets

show the principal modal frequencies in the frequencies and rotor speed planes. Only modal components with amplitudes larger than 10 %

of the overall maximum amplitude are plotted.
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Figure 6. Harmonic modal components for the 3-bladed turbine mode dominated bytower side-side motion. Plot layout as in Figure 5.
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Figure 7.Harmonic modal components for the 3-bladed turbine mode dominated bybackward whirling (BW) of the rotor in the first flapwise

DOF. Plot layout as in Figure 5.
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Figure 8. Harmonic modal components for the 3-bladed turbine mode dominated bysymmetric deflection of the rotor in the first flapwise

DOF across the rotor speed range. Plot layout as in Figure 5.
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Figure 9. Harmonic modal components for the 3-bladed turbine mode dominated byforward whirling (FW) of the rotor in the first flapwise

DOF across the rotor speed range. Plot layout as in Figure 5.
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Figure 10.Harmonic modal components for the 3-bladed turbine mode dominated bybackward whirling (BW) of the rotor in the edgewise

DOF. Plot layout as in Figure 5.
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Figure 11. Harmonic modal components for the 3-bladed turbine mode dominated byforward whirling (FW) of the rotor in the edgewise

DOF. Plot layout as in Figure 5.
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Figure 12. Harmonic modal components for the 3-bladed turbine mode dominated bybackward whirling (BW) of the rotor in the second

flapwise DOF. Plot layout as in Figure 5.
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Figure 13. Harmonic modal components for the mode dominated by forward whirling(FW) of the rotor in the second flapwise DOF. Plot

layout as in Figure 5.
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Figure 14. Harmonic modal components for the mode dominated by symmetric deflection of the rotor in the second flapwise mode. Plot

layout as in Figure 5.
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Figure 15.Harmonic modal components for the mode dominated by symmetric deflection of the rotor in the edgewise mode. Plot layout as

in Figure 5.
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4.5 Periodic mode shapes of 2-bladed turbines

Figures 16 – 23 show the dominating modal components of selected DOFs in the periodic mode shapes of the 2-bladed turbine.

The scaling of DOF amplitudes, plot layout, and color codingare the same as for the 3-bladed turbine. The amplitudes of rotor

motion are again computed from the periodic eigenvector using Eq. (38).

A general observation for the 2-bladed turbine modes is the larger amplitudes and higher order of the harmonic components5

compared to the 3-bladed turbine. Another observation is that symmetric rotor components always have frequencies thatare

even number of 1/rev away from the principal frequency, whereas frequencies for anti-symmetric components are shiftedan

odd number.

Looking at the individual mode shapes, the increased numberof harmonics also increases the number of couplings between

the different DOFs in each mode. The tower fore-aft mode in Figure 16 couples again with±1/rev asymmetric rotor motion10

as for the 3-bladed turbine. But couplings to higher harmonic components of the blade DOFs are much more dominant at

rotor speeds where their frequency crosses the corresponding blade frequency. Such resonant couplings occur for the sym-

metric +4/rev and +6/rev components and anti-symmetric +3/rev and +5/rev components of the first flapwise DOF when their

frequencies are close to the first flapwise blade frequency 0.61 Hz, and for the anti-symmetric +5/rev component of the first

edgewise DOF when its frequency crosses 0.93 Hz.15

The tower side-side mode in Figure 17 is similar to the same mode of the 3-bladed turbine with the coupling to the generator

rotation and the±1/rev harmonics of asymmetric rotor responses.

The symmetric and anti-symmetric flapwise modes in Figures 18 and 19 interchange mode shapes at low rotor speeds;

however, they are here named after their dominating components at the higher rotor speeds. The anti-symmetric flapwise mode

couples with tower fore-aft motion around 6.5 rpm where the frequency of the -4/rev component of this DOF is crossing the20

tower fore-aft frequency of about 0.28 Hz. A similar coupling is seen for the -6/rev component of the tower fore-aft DOF in

the anti-symmetric edgewise mode in Figure 20 at 8.2 rpm. This mode also contain 0/rev and -2/rev components of the tower

side-side DOF such that the±1/rev splitting known from 3-bladed rotors appears in the ground-fixed frame.

For the second anti-symmetric flapwise mode in Figure 21, theanti-symmetric +1/rev components of the two flapwise

blade DOFs are the two largest components with an almost constant frequency of around 1.46 Hz (a combination of the two25

flapwise blade modes as for the 3-bladed turbine). The blade motion also contains smaller anti-symmetric -1/rev and +3/rev

components of the two flapwise blade DOFs, which frequenciesare decreasing and increasing with 2/rev in the rotating blade

frame. Resonant couplings with symmetric +6, +8, and +10/rev second flapwise DOF and +6/rev first edgewise DOF are

observed when their frequencies are crossing the principalfrequencies of the first symmetric edgewise and second symmetric

flapwise turbine modes around 1.75 Hz. These two symmetric modes in Figures 22 and 23 are similar to the corresponding30

modes of the 3-bladed turbine (cf. Figures 14 and 15); exceptthat the second symmetric flapwise mode of the 2-bladed turbine

contains resonant couplings of the anti-symmetric -3/rev and -5/rev components of the two flapwise blade DOFs when their

frequencies are crossing the frequency of the second anti-symmetric flapwise mode (cf. Figure 21) around 1.46 Hz.
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Figure 16.Harmonic modal components for the 2-bladed turbine mode dominated bytower fore-aft motion. Plot layout as in Figure 5.
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Figure 17.Harmonic modal components for the 2-bladed turbine mode dominated bytower side-side motion. Plot layout as in Figure 5.

27



10

50

Modal frequencies [Hz]

2

0.5

0

M
od

al
 a

m
pl

itu
de

s
1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

1

Rotor s
peed [rp

m]

Anti Flap 1 -3/rev
10 x Fore-aft -2/rev
Anti Flap 1 -1/rev
10 x Fore-aft +0/rev
Sym Flap 1 +0/rev
Anti Flap 1 +1/rev

0 2 4 6 8 10

Rotor speed [rpm]

0

0.5

1

1.5

2

M
od

al
 fr

eq
ue

nc
ie

s 
[H

z]

0 2 4 6 8 10

Rotor speed [rpm]

0

0.2

0.4

0.6

0.8

1

M
od

al
 a

m
pl

itu
de

s

Figure 18.Harmonic modal components for the 2-bladed turbine mode dominated bysymmetric deflection of the rotor in the first flapwise

DOF across the rotor speed range. Plot layout as in Figure 5.
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Figure 19. Harmonic modal components for the 2-bladed turbine mode dominated byanti-symmetric deflection of the rotor in the first

flapwise DOF across the rotor speed range. Plot layout as in Figure 5.
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Figure 20.Harmonic modal components for the 2-bladed turbine mode dominated byanti-symmetric deflection of the rotor in the edgewise

DOF. Plot layout as in Figure 5.
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Figure 21. Harmonic modal components for the 2-bladed turbine mode dominated byanti-symmetric deflection of the rotor in the second

flapwise DOF. Plot layout as in Figure 5.

30



10

50

Modal frequencies [Hz]

2

0.5

0

M
od

al
 a

m
pl

itu
de

s
1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

1

Rotor s
peed [rp

m]

10 x Gen rot +0/rev
10 x Shaft tors +0/rev
Sym Flap 1 +0/rev
Sym Edge 1 +0/rev
Sym Flap 2 +0/rev

0 2 4 6 8 10

Rotor speed [rpm]

0

0.5

1

1.5

2

M
od

al
 fr

eq
ue

nc
ie

s 
[H

z]

0 2 4 6 8 10

Rotor speed [rpm]

0

0.2

0.4

0.6

0.8

1

M
od

al
 a

m
pl

itu
de

s

Figure 22.Harmonic modal components for the 2-bladed turbine mode dominated bysymmetric deflection of the rotor in the edgewise DOF

for the higher rotor speeds. Plot layout as in Figure 5.
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Figure 23.Harmonic modal components for the 2-bladed turbine mode dominated bysymmetric deflection of the rotor in the second flapwise

DOF. Plot layout as in Figure 5.
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4.6 Comparison of modal dynamics of 2- and 3-bladed turbines

The modal dynamics of the turbines with 2- and 3-bladed rotors show several similarities but also significant differences:

– The rigid body drivetrain rotation mode (trivial and therefore not shown) is identical for the two turbines.

– Tower bending modes are similar in frequencies and shapes, except that the fore-aft mode for the 2-bladed turbine may

contain large components of the first flapwise blade mode whenthe rotor speed is such that these frequencies of the5

higher harmonic components are crossing the modal frequency of this blade mode.

– The first symmetric edgewise rotor mode are very similar in frequency and shape because its reaction forces does not

coupled to other DOFs through large periodic terms in the system matrix.

– The symmetric flapwise rotor modes are similar in frequencies and shapes, except that the first symmetric flapwise mode

of the 2-bladed turbine in Figure 18 has a small -2/rev component of the tower fore-aft DOF, and the second symmetric10

flapwise mode in Figure 23 has resonant couplings to anti-symmetric flapwise mode.

– Asymmetric rotor modes: the anti-symmetric modes for the 2-bladed turbine and the whirling mode pairs of the 3-bladed

turbine, may seem similar when observed from the ground-fixed frame such as a top tower acceleration signal, where the

well-known±1/rev splitting of the frequency peaks is seen. For example,the tower side-side responses at±1/rev around

the blade edgewise frequency is observed for both the anti-symmetric edgewise mode in Figure 20 and for the edgewise15

whirling mode pair in Figures 10 and 11. This similarity has probably caused the misinterpretation of the simulated and

measured 2-bladed responses in Kim et al. (2015) and Larsen &Kim (2015), but rotor modes of a 2-bladed turbine will

often have more frequency peaks in both the ground-fixed frame and the rotating blade frame.

The additional modal couplings that exist for 2-bladed turbines have the effects that there are additional ways that themodes

can be excited either by resonances or interactions with external forces, and that it becomes difficult to interpret frequency20

spectra from simulations and measurements. To illustrate these effects, the harmonic components of the tower side-side DOF

in all modes are plotted in three-dimensional periodic Campbell diagrams for both turbines in Figure 24. These plots show

qualitatively the response in a tower side-side signal whenall modes are excited equally. There are clear similaritiesbetween

the dominant side-side responses for the two turbines. But where these responses in the ground-fixed frame for the 3-bladed

turbine only occur on the principal modal frequencies plotted in its conventional Campbell diagram (cf. Figure 4), the modes25

of 2-bladed turbine lead to responses in the ground-fixed frame at many other frequencies. The conventional Campbell diagram

containing only the principal modal frequencies of a 2-bladed turbine has therefore little value, and one should be careful when

interpreting frequency response plots for 2-bladed turbines.

5 Conclusions

The modal dynamics of structures with bladed isotropic rotors (identical and equidistantly spaced blades) have been analyzed30

by the periodic mode shapes obtained using Hill’s method on the linear periodic first order system equation. Analytical deriva-
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tion of linear second order equations of motion in a generic form has shown that only 1/rev harmonics occur in the periodic

terms when a rotor has more than two blades, whereas a 2-bladed rotor also has 2/rev terms. Analytical inversion of the periodic

mass matrix has shown that its highest harmonic term 2/rev for an isotropic rotor with more than two blades. The inverse mass

matrix for a 2-bladed rotor have been shown to have an infiniteFourier series of component matrices which norm decreases

with the harmonic order. The periodic system matrix of isotropic rotors with more than two blades can therefore be represented5

by an exact Fourier series with 3/rev being the highest order, whereas it for 2-bladed rotors must be approximated by a truncated

Fourier series of predictable accuracy.

Using the analytic Fourier series of the system matrix to setup Hill’s truncated eigenvalue problem, its principal solutions

have been automatically identified by a novel method applicable to larger systems. The symmetric and anti-symmetric modal

components of rotors with two blades and the additional whirling components of rotors with more blades have been extracted10

directly from the periodic eigenvector corresponding to each principal eigen-solution.

As relevant examples, the generic methods have been used to model and analyze the modal dynamics of both 2- and 3-

bladed versions of a 10MW turbine. The motion of each blade has been described by its three first mode shapes, and the

nacelle motion and drivetrain rotations have been described by seven DOFs. Similarities and significant differences between

the modal dynamics of the turbines with 2- and 3-bladed rotors have been found and summarized in Section 4.6. A differenceis15

that the larger number and magnitudes of the harmonic components in the system matrix of 2-bladed turbines lead to resonant

couplings in the mode shapes that have not been observed for the 3-bladed turbine. These couplings between DOFs arise

when the rotor speed is such that the frequency of a higher harmonic component of one turbine mode is in the vicinity of the

frequency of another blade or turbine mode. Another difference is that a single mode of a 2-bladed turbine can lead to responses
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Figure 24. Periodic Campbell diagrams of all harmonic components of the tower side-side DOF in all investigated modes for the 3-bladed

(left plot) and 2-bladed (right plot) version of the DTU 10MW RWT.
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at several frequencies in both the ground-fixed and rotatingblade frames of reference, which complicates the interpretation of

simulated or measured turbine responses without the theories presented in this paper.

Appendix A: Elements of system matrices

This appendix contains a list of the elements of the block matrices in (13) and (14) related to the inertia forces and derived

by insertion of (10), (8) and (9) into the coefficients (7), and summation over all volumes of the structure, the ground-fixed5

substructureVg and each bladeVb, where several properties of the rotation matrixR and its components have been utilized

(see e.g. Krenk (2009)). The subscriptsg andb are omitted from the DOFsui anduj for brevity.

The elements of the block matrices for the blade DOFs are

mb,ij =

∫

Vb

ρ
∂rTb
∂ui

∂rb
∂uj

dVb

gb,ij =4Ω

∫

Vb

ρ
∂rTb
∂ui

B1
∂rb
∂uj

dVb (A1)10

sb,ij =−Ω2

∫

Vb

ρ

(

∂2rTb
∂ui∂uj

A1rb+
∂rTb
∂ui

A1
∂rb
∂uj

)

dVb

whereA1 =
1
2

(

R1 − R̄1

)

andB1 =
1
2

(

R1 + R̄1

)

are the symmetric real part and the anti-symmetric imaginary part of the

matrixR1. Note thatRT
0 =R0 andR̄1 =RT

1 . The elements of the block matrices for the DOFs of the ground-fixed substruc-

ture are

mg,0,ij =

∫

Vg

ρ
∂rTg
∂ui

∂rg
∂uj

dVg15

+B

∫

Vb

ρ

(

∂rTc
∂ui

∂rc
∂uj

+ rTb R0

(

∂TT
c

∂ui

∂rc
∂uj

+
∂TT

c

∂uj

∂rc
∂ui

)

+ rTb

(

R0
∂TT

c

∂ui

∂Tc

∂uj
R0 +R1

(

∂TT
c

∂ui

∂Tc

∂uj
+
∂TT

c

∂uj

∂Tc

∂ui

)

R1

)

rb

)

dVb

mg,2,ij =







2
∫

Vb
ρrTb R

T
1
∂TT

c

∂ui

∂Tc

∂uj
R1rbdVb for B = 2

0 otherwise
(A2)

gg,0,ij =ı2ΩB

∫

Vb

ρrTb R1

(

∂TT
c

∂ui

∂Tc

∂uj
− ∂TT

c

∂uj

∂Tc

∂ui

)

R1rbdVb

gg,2,ij =







ı4Ω
∫

Vb
ρrTb R

T
1
∂TT

c

∂ui

∂Tc

∂uj
R1rbdVb for B = 2

0 otherwise
20
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The elements of the block matrices that couples the blade andground-fixed DOFs are

mgb,0,ij =

∫

Vb

ρ

(

∂rTc
∂ui

TcR0
∂rb
∂uj

+ rTb

(

R0
∂TT

c

∂ui
TcR0 +RT

1

∂TT
c

∂ui
TcR

T
1 +R1

∂TT
c

∂ui
TcR1

)

∂rb
∂uj

)

dVb (A3)

mgb,1,ij =

∫

Vb

ρ

((

∂rTc
∂ui

TcR1 + rTb

(

R0
∂TT

c

∂ui
TcR1 +RT

1

∂TT
c

∂ui
TcR0

))

∂rb
∂uj

)

dVb

ggb,1,ij =ı2Ω

∫

Vb

ρ

(

∂rTc
∂ui

TcR1 + rTb R0
∂TT

c

∂ui
TcR1

)

∂rb
∂uj

dVb (A4)5

gbg,0,ij =ı2Ω

∫

Vb

ρ

(

rTb R
T
1

∂TT
c

∂uj
TcR1

∂rb
∂ui

− rTb R1
∂TT

c

∂uj
TcR1

∂rb
∂ui

)

dVb

gbg,1,ij =ı2Ω

∫

Vb

ρ
∂rTb
∂ui

R0T
T
c

∂Tc

∂uj
R1rbdVb

sgb,1,ij =Ω2

∫

Vb

ρ

(

rTb R
T
1

∂TT
c

∂ui
TcR0 −

∂rTc
∂ui

TcR1 − rTb R0
∂TT

c

∂ui
TcR1

)

∂rb
∂uj

dVb

Appendix B: Components of inverted mass matrix

The mean and harmonic components of the block matrices (27) of the inverse mass matrix (15) can be computed as10

E0 =M−1
r +M−1

r

(

MH
gr,1H2M̄gr,1

+MT
gr,0H0Mgr,0 +MH

gr,1H0Mgr,1 +MT
gr,1H0M̄gr,1

+MT
gr,1H̄2Mgr,1

)

M−1
r

E2m+1 =M−1
r

(

MT
gr,0H2m+2M̄gr,1 +MH

gr,1H2m+2Mgr,0

+MT
gr,0H2mMgr,1 +MT

gr,1H2mMgr,0

)

M−1
r (B1)15

E2m+2 =M−1
r

(

MH
gr,1H2m+4M̄gr,1

+MT
gr,0H2m+2Mgr,0 +MH

gr,1H2m+2Mgr,1 +MT
gr,1H2m+2M̄gr,1

+MT
gr,1H2mMgr,1

)

M−1
r

and

F2m =−H2mMgr,0M
−1
r20

F2m+1 =−H2m+2M̄gr,1M
−1
r −H2mMgr,1M

−1
r (B2)
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wherem= 0,1, . . . ,Nh, (·)H denotes the conjugate transpose matrix operator, the mean and harmonic components of the block

matrixH (19) can be found in (21) and (22), and the conditionsH2m = 0 for m>NH must be used. Note thatE−n = Ēn

andF−n = F̄n.

Appendix C: Components of system matrix

The components of the system matrix (28) can be written as5

An =









0 A12

A21,11,n A21,12,n

A21,21,n A21,22,n

A22,11,n A22,12,n

A22,21,n A22,22,n









(C1)

whereA12 = I for n= 0 andA12 = 0 for n > 0, and the block matrices can be computed as

A21,11,n =−En (Kr +Sr)−FTn−1Sgr,1 −FTn+1S̄gr,1

A21,21,n =−Fn (Kr +Sr)−HT
n−1Sgr,1 −HT

n+1S̄gr,1

A21,12,n =−FTnKg10

A21,22,n =−HnKg (C2)

A22,11,n =−EnCr −FTnGgr,0 −FTn−1Ggr,1 −FTn+1Ḡgr,1

A22,21,n =−FnCr −HnGgr,0 −Hn−1Ggr,1 −Hn+1Ḡgr,1

A22,12,n =−FTn (Gg,0 +Cg)−En−1Grg,1 −En+1Ḡrg,1

−FTn−2Gg,2 −FTn+2Ḡg,215

A22,22,n =−Hn (Gg,0 +Cg)−Fn−1Grg,1 −Fn+1Ḡrg,1

−Hn−2Gg,2 −Hn+2Ḡg,2

for n= 0,1, . . . ,2Nh+3 using the following properties of the matricesEn, Fn, andHn:

E−n = Ēn, E−n = Ēn, H−n = H̄n, and

En+2 = Fn+1 =Hn = 0 for n > 2Nh20

Note thatNh = 0 for isotropic rotors with more than two blades, whereasNh is selected for two-bladed rotors based on the

required accuracy of the system matrix.
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