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Abstract. The modal dynamics of structures with bladed isotropic nofe analyzed using Hill's method. First, analytical
derivation of the periodic system matrix shows that isatraptors with more than two blades can be represented by an
exact Fourier series with 3/rev as the highest order. Fda@dal rotors, the inverse mass matrix has an infinite Foseges
with harmonic components of decreasing norm, thus the isystatrix can be approximated by a truncated Fourier series of
predictable accuracy. Second, a novel method for autoatigtidentifying the principal solutions of Hill's eigenitge problem

is introduced. The corresponding periodic eigenvectorslEused to compute symmetric and anti-symmetric compsnent
of the 2-bladed rotor motion, and the additional forward aadkward whirling components for rotors with more than two
blades. Finally, the generic methods are used on a simple twibine model consisting of three degrees of freedom foh ea
blade and seven degrees of freedom for the nacelle andrdiiveThe modal dynamics of a 3-bladed 10MW turbine from
previous studies is recaptured. Removing one blade, therland higher harmonic terms in the system matrix lead tmisas
modal couplings for the 2-bladed turbine that do not existtli@ 3-bladed turbine, and that excitation of a single madde o
a 2-bladed turbine leads to responses at several freqeencimth the ground-fixed and rotating blade frames of refsre
which complicates the interpretation of simulated or meadturbine responses.

1 Introduction

A fundamental understanding of the modal dynamics of strestwith bladed rotors is relevant for the design and aisabfs
wind turbines, helicopters, and other rotating machinerganse their vibrational responses are composed of theatstal
modes. It is important to understand how these modes aréedxisy resonances or aeroelastic instabilities, i.e., attwh
frequencies and where on the structure or rotor the indalichodes can be excited. Such knowledge is not only neceksary
the interpretation of design simulations but also for thdarstanding of real measurements.

The modal dynamics of 3-bladed turbines is well understatsy including the interaction with aerodynamic forces and
controller. For isotropic rotors, the Coleman transfoiiora{Coleman & Feingold, 1958) is often used to transfornytieodic
system into a time-invariant system and then solving the@ated eigenvalue problem with the blade motion described
the multi-blade coordinates (Hansen, 2003; Van Engelen&aBr, 2004; Hansen, 2004, 2007; Riziotis et al., 2008; Bb820
Skjoldan & Hansen, 2009; Bergami & Hansen, 2016). The twibimodes may either be dominated by vibrations of the rotor
support structure and drivetrain, e.g. tower bending aaft sbrsion modes, or by blade vibrations which herein aleddhe
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rotor modes The rotor modes of the 3-bladed isotropic rotor consista sfmmetric mode and two whirling modes, where
the order of blade vibration describes a backward (regresaind a forward (progressive) whirling direction relatio the
rotor rotation. Due to the anisotropy of the rotor suppdm, totor modes are not “pure” meaning that for example a backw
whirling mode will also contain symmetric and forward whig components when observed from the rotating blade frame o
reference. The modal frequency obtained from the eigeayaloblem describes the frequency observed from the gréixed-
frame of reference in which the multi-blade coordinatesdbes the rotor motion. In the rotating blade frame, the syatmic
rotor response will be observable at the same frequencyhbutdackward and forward whirling components of a rotor mode
will be shifted by +1/rev and -1/rev, respectively. Sinceotor mode is not pure, its response may therefore be obderaab
three different frequencies in a signal measured on theel{lddnsen, 2003, 2007).

For anisotropic 3-bladed rotors, Floquet theory or Hill'stinod is needed to obtain an eigenvalue problem which lesdtis t
periodic eigenvectors of the principal eigenvalue sohgi¢Skjoldan & Hansen, 2009; Bottasso & Cacciola, 2015; [8kjuy,
2009; Skjoldan & Hansen, 2009). To handle the frequencytérdenacy of the periodic eigenvalue solutions from these
methods, Skjoldan & Hansen (2009) suggest to select theipahsolution such that the harmonic components on thengtou
fixed degrees of freedom are minimized. Bottasso & Caccidldg) introduce the concept afiodal participation factors
in which the norm of the individual harmonic components ofeaiqdic eigenvector determines how much the particular
component contributes to the response of the particulaenibaey also introduce the conceptpafriodic Campbell diagrams
to plot the frequencies of these harmonic components aldthgtiae principal frequency. All studies show that periodiode
shapes of turbines with 3-bladed anisotropic rotors camadomarmonic components which frequencies can be shiftee m
than+1/rev from the principal modal frequency. The size of theigdaér harmonic components depend on the size of rotor
anisotropy.

The modal analysis of structures with 2-bladed rotors is@ated by the strong periodicity of the system. The use of
Floquet theory or Hill's method is unavoidable, unless hatior and support structure are isotropic with respect tatian
(Coleman & Feingold, 1958). Early studies (Warmbrodt & Briann, 1980; Wendell, 1982; Kirchgal3ner, 1984) have used
Floquet theory to investigate the aeroelastic stability2dfladed rotors without focusing on their modal dynamicewH
ever, Kirchgalner (1984) introduces the concepdahinant eigenfrequencidsr the harmonic components of the Floquet
solutions with the largest magnitude in the correspondiggrevector, and he plotted the frequencies of all harmoniopn-
nents with magnitudes larger than a threshold relative eadtiminant component in a periodic Campbell diagram sinblar
Bottasso & Cacciola (2015). A later study by Stol et al. (206@nsiders the dynamic stability of a teetered 2-bladeliner
using Floquet theory on a model with up to seven degrees efline. Their focus is mainly on the parametric excitatiorhef t
system and less on its modal dynamics. Recent studies afdadlturbines have focused on their aero-servo-elastitaton
(Solingen, 2015; Wang & Wright, 2016; Solingen et al., 2018aand on their design loads (Kim et al., 2015). In the latter
study, Kim et al. (2015) plots the spectrogram of the towprdignal obtained from nonlinear time simulations of a 2dblh
turbine and compares it to the spectrogram of a 3-bladedovecs the same turbine. There are similarities betweenethes
spectrograms which lead the authors to conclude that 28lagbines have similar modes as 3-bladed turbines. Inriexpe
mental study of a scaled turbine, Larsen & Kim (2015) coneltitht asymmetric rotor modes split into backward and fogwar
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whirling modes with4-1/rev, similar to whirling modes of 3-bladed turbines exdbjat there also are components at multiple
of the rotor speed.

In this paper, the modal dynamics of structures with rotat trave two and more blades is considered; first from a generic
model-independent perspective, and then with focus oniffexehces between the modal dynamics of 2- and 3-bladed tur
bines. In Section 2, analytical derivations of the lineanatgpns of motion in a generic form and analytical inversidrihe
mass matrix show that the periodic system matrix for isatrogtors with more than two blades have a finite and exactiEour
series with 3/rev being the highers harmonic order. Theegyshatrix for structures with 2-bladed rotors has an infirgarier
series of harmonic components that decrease in norm foeasarg order. Using Hill's method to obtain the periodic mod
shapes of the principal eigen-solutions, it is shown in iB8ac® how the modal amplitudes for rotating blade degreesea-f
dom in the periodic eigenvectors can be used to decomposedttir motion into symmetric and anti-symmetric composent
for 2-bladed turbines and additional whirling componemisrbtors with more than two blades; noting that anti-synrinet
components do not exist for odd number of blades and whidargponents do not exist for 2-bladed turbines. In Sectian 4,
low-fidelity kinematic model of a 10MW turbine consistingtbfee blade modes and seven degrees of freedom for theaacell
and drivetrain is used to exemplify the differences betwlbermodal dynamics of 2- and 3-bladed turbines using thespted
generic methods. It is shown that although a 2-bladed tardmnot have whirling modes, the response of an anti-synumetr
rotor mode observed from a ground-fixed signal, such as at@eeeleration or moment, looks similar to thé/rev frequency
splitting from the a whirling mode pair for a 3-bladed turbirThis similarity explains the incorrect conclusions madthe
previous studies (Kim et al., 2015; Larsen & Kim, 2015). Thesent analytical study also shows that the additional baits
observed for 2-bladed rotors lead to several significantahooluplings when the frequencies of higher harmonic coraptn

in a periodic mode shape coincide with other modal frequesnci

2 Analytical system matrix for isotropic rotors

Analytical expressions for the harmonic components of #goplic system matrix for structures with an isotropic rctoe
derived in this section. The first order state-space equédioa periodic system with the periddis given by

%= A(t)x @)

where() = d/dt andA(t) = A(t+T) is theT-periodic system matrix of dimensi@iNp x 2Np, whereNp, is the number of
degrees of freedom (DOFs). Ordering the state vectar-agu,1}” whereu andu are the DOFs and their time derivatives,
the system matrix can be derived from linear second ordeat&ms of motion as

A(t) = (2)
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wherel is a identity matrix, andI, C, andK are thel'-periodic mass, gyroscopic/damping, and stiffn®ssx N matrices,
respectively. Periodicity of these matrices ensures tleasystem matrix can be written as a Fourier series

A(t) = i A, e 3

n=—oo

where: = /—1 andQ2 = 27 /T is the constant mean rotational speed. Note that the meapar@nt of the system matri&,
is a real matrix, and the complex matrices of the harmonicpmrants come in conjugated pairs

A, =A,, n=123,... (4)

where the bar denotes the complex conjugated operator. ditred matrices of the second order equations of motion are

derived in the next section. In Section 2.2, the mass matrirverted analytically to obtain its Fourier series. Theamand
harmonic component matrices of the periodic system mateiXinally presented in Section 2.3.

2.1 Equations of motion
Let the Lagrangian for a structure with a rotor be written as
L="T(t,u,0) —V(u) (5)

where itis assumed that the potential energy of the cones\farces is time-independent and only depends on thergkzred
coordinates” = V' (u), e.g. the elastic forces. The total kinetic energy is givgrab integral of the kinetic energy of each
particle over the entire volumg of the structure as

T:/%prde (6)
%

where(-)T denotes to the transpose matrix operator, &aigithe velocity vector of the particle given as the time datiixe of
its position vector = r(¢,u), which for the rotor part of the structure will be explicitiyne-dependent.

Substitution of the Lagrangian (5) with (6) into Lagrangetgiations and linearization about a steady state defleatitire
structureu = uy andu = 0, the coefficients of the matrices of Eq. (2) can be writterMsiiovitch, 1970)

orT or
%
) orT 9 [or orT 0 [Or 02D
i = gt / p (aui Bu; <8t> o, o, <8t>>dv+8uiauj 0
%
o [or! 9?r 0%V
/ ? o, (8u8t> Wt St
%

where all derivatives are evaluatedat uy andD is Rayleigh’s dissipation function. Note that only the time derivatives

of the position vector is needed, not the full velocity, oceleration vectors.



10

15

20

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-27, 2016 WIND

Manuscript under review for journal Wind Energ. Sci. Dy ENERGY
Published: 23 August 2016 e We \ SCIENCE
(© Author(s) 2016. CC-BY 3.0 License. ouropsan academy of wind eneroy

Letu, denote the DOFs for the ground-fixed substructurewdienote the DOFs for rotating blade numbeblades are
in this paper always numbered in the direction of the rotgtithen the position vectarin the ground-fixed inertial frame to
a particle point on the substructure is written as a funatibn, as:

r=ry(uy) (€
and on the blade numbéras
r=rq(uy)+ Te(uy,) (Ro + Ry e™F + Rle*“’”k) rp(up, ) 9)

where the vector. and the rotation matrisf". describe the position of the rotor center and the oriematiothe rotational
axis, respectively, both functions of the ground-fixed D@EsThe local position vectar, of a particle on blade numbéris
a function ofu,, , which is the same function for all blades due to the isotritye rotor and its discretization. The prescribed
rotation of the blade is given by the angle = Qt + 27 (k — 1)/B, whereB is the number of blades. The rotation matrix
is written on exponential form using a real matRg and a complex matriR,, which are constant and given by the initial
orientation of the rotational axis.

Let the conservative and dissipative forces be linear apémtonly on the local DOFs and their time derivatives, shah t
the potential energy and Rayleigh’s dissipation functian be written as

B B
V=ulKyu,+ > uf Kyuy, and D=1 Cyii, + Y it} Cyiny, (10)
k=1 k=1

whereC, andK, are local damping and stiffness matrices for the groundifsbstructure, an@;, andK, are local and
identical damping and stiffness matrices for each bladeefdotropic rotor.

Insertion of (10) and the position vectors (8) and (9) inte toefficients (7) and summation over all volumes of the entir
structure, the linear equations of motion can be written gergeric matrix form as

M, Mg | . C. Gy . K,+S, 0

u-+ u+ u=0 (11)
M, M, Gy, Gg+Cy Sor K,

where theNp DOFs are order as

u:{ur,ug}T with uT:{ubl,...,ubB}T (12)
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Note thatNp = N, + BN,, whereN, and N, are the number of DOFs on the substructure and each blagectagly. The
block matrices of (11) can be written as

M, = diag{M;,M,,--- ,M,} , C, =diag{C;,Cy,---,Cs},

K, =diag{K;,Ks,--- , K} , S, =diag{Ss,Ss,---,Sp},

Mg (t) _ Mg70 + Mg,geﬂm + Mg,2€722ﬂt

Gy (t) = Ggo+ Gyoe® + Gy e 2

M, (1) = Mgro + Mg 1 + Mg, e,

Gy (1) =Gyro+ Ggr,16mt + Ggr,1€_mt7 (13)
Gy (t) = Grg,lemt + Grg,leﬂm,

Sgr (t) _ Sgr,lezsn + Sgr,leils”
where the time-dependent coupling matrices can be sulediffigrther into constant single blade components as

M0 = [Mgs,0 Mgp,0 -+ Mgp,o],
M1 = [Mgp Mgb’leiQﬂ/B Mgb’leiQW(B—l)/B} 7

Ggr,O = [ng,O ng,O ng,O} )

ngl = ng,l ng,lemﬂ/B ngvle&ﬂ(B_l)/B} ’ (14)

- T
_ [t T i2n/B T i2n(B—1)/B
Grg1= |Gl GI, e /B .. G[, e ( )/ ] 7

127/ B 27(B—1)/B
Sgr1 = |Sgb1 Sgp1e™ P - Sy 1T E/ }

The matrices in (13) and (14) related to inertia forces atediin Appendix A. Note that the 2/rev components of the raads
gyroscopic matrices for the ground-fixed substructure erlgts in case of a 2-bladed rotor.

2.2 Inversion of mass matrix

The inverse of the mass matrix in (11) can be written as

» E F7
M= (15)
F H

where

E=M;"+M;'M] HM, M, ', F = -HM,M; ",

H= (M, - M,,M; ‘M) (16)
Using (13) and (14), it can be shown that the invers&lafan be written as

H—l _ QO + Q2612Qt + Q2e—z29t (17)
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where the mean and 2/rev components fét-bladed isotropic rotor are
Qo = My,0 — B (Mgs,oM, "M, o+ Mgs, 1 M, "My, + Mg 1M, ' Mg, ;)

-1 T —
Q2 _ M972 — QMgb}le Mng forB=2 (18)
0 for B > 2
Thus,H = le is a real, symmetric, and constant matrix for isotropic reteith more than two blades. Using (16) and (13),
this property implies that the inverse mass matrix of su¢brschave a finite Fourier series with 2/rev as the higheshbaic
component. Note that the second harmonic component foa@ellrotors is also symmeti@. = Q,,

For 2-bladed rotor§1~! is periodic andH can therefore be written as a Fourier series

H= > H,e"" (19)

n=—oo

whereH_,, = H,,. Insertion into the equaticH ' H = I and collection of terms of equal harmonics yields

QoHo + QoHs + QH, =1 mean terms (20a)

QoH, + Q2H;3 + Q;H, =0 1/rev terms (20b)

QoHapi1 + QoHaopys + QeHop 1 =0 (2m+1)/rev terms (20c)
QoHay, + QoHopro + QoHap 2 =0 (2m)/rev terms (20d)

wherem =1,2,... is a positive integer. The equations for odd terms are homeages and regular, thus all odd harmonic

components vanisHly,, 1 =0form=1,2,....

To solve the equations for the even terms, the mean compéhgistobtained from (20a) as a linear function of the second

harmonic componerifl; and a constant matrix

Hy=Q;'— Q' (Q:Ha+ Q.H,) (21)

The remaining even equations can be solved recursivelHigy, by insertion of the solution foHs,,, - into the 2m/rev

equation. It is convenient to split the equations into real Enaginary parts and solve for each part to obtain

Re(Hzm) e T Re(H2m+2)
- i By - P,.Q, f =12, 22
Im(H,,,) (;H ( +Q; )> ’ Q Im(Hop,2) o 2

where the following real matrices have been introduced:

—1

Q| @) m@Q)| o |Q 23)
-Im(Q.) Re(Q.) 0

and the recursive matrices

P,=(1-Q;'Q"P, 1Q.) ' Q;" for k=12, .. (24)
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whereQ, = diag{ Qo, Qo } andP, = diag{2le,0} are2 x 2 block diagonal matrices. Symmetries@Qf, and Q- and the
resulting anti-symmetry of), causes the matricd®; to be symmetric. Note thal), is a regular matrix due to the positive
definiteness of the mass matrix.

If ||Q51Q5Pk_1Qs|| < 1 then an inequality for the-norm of the producP,Q” can be derived (Golub & Van Loan,
1996) as

Q' QY|
Q' QTP,_.1Q.]

|PLQI < - for k=1,2,... (25)

where]| - || here and subsequently denotes amorm of a matrix. The conditiofQ; ' QT P, Q.|| < 1 is fulfilled for & > 1
if HleQfPonH < 1. It is not straight forward to prove this inequality, busitalidity for a given model can easily be
checked. Intuitively, the-norm of the constant pa), of the mass matrix for the ground-fixed coordinates shoulchbeh
larger then the-norm of the second order harmonic p&#. It is therefore also assumed IHB?;CQSTH <lfork=1,2,...
based on the inequality (25). From the recursive soluti@), (this assumption is sufficient (but not necessary) to renthat

the p-norm of harmonic componenid,,,, decreases with their order

m
[Hap |l < <H ||quz||> Boll 4 IP Qs |l [[Hom 2| — 0 for m — oo (26)
k=1

Thus, closure to the recursive equation (22) can thereferebiained by choosinBlay,, +2 = 0, where2Ny is the highest
harmonic component used in the Fourier series (19). Thesieusolution of (22) is computed backward starting vy,
and ending wittH, given by Eq. (21).

Truncation of (19) t& Ny and insertion into (16) shows that the block matrices of tiverise mass matrix are

2N}, +2 2Np+1 Np
E= > E., F= Y F,e™ and H= ) Hype™" (27)
n=—(2N,+2) n=—(2N,+1) m=—Np,

where the component matric®s, andF,, are written out in Appendix B. Thus, the highest order of thentonics in the

inverse mass matrix for a 2-bladed rotoRi¥ 5 + 2 and involves only the rotor coordinates.
2.3 Harmonic components in system matrix

Insertion of (15) with (27) into the system matrix (2) withetgyroscopic/damping and stiffness matrices of (11) shbas t
the Fourier series of the periodic system matrix (3) can tectted to the orde¥ as

N
Alt)= ) Apem (28)
n=—N

where

2N 3 forB=2
N T (29)
3 forB>2
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and the matriced\,, can be found in Appendix C. This analytical derivation of flystem matrix is exact for isotropic rotors
with mode than two blades. In fact, if the anisotropy of thords only related to the stiffnesses of the blades and ret th
mass distributions or rotor geometry, as in previous studig. (Skjoldan & Hansen, 2009; Skjoldan, 2009), then tistegsy
matrices for such rotors also have finite Fourier series.2Holaded isotropic rotors, the series converges when tlieidfo
series of the inverse mass matrix converges; sufficient buhacessary criteria for convergence are given in the pusvi

section.

3 Modal analysis using Hill's method

This section contains a description of Hill's method and hibean be applied for modal analysis of structures with biade
rotors. First, the concept of periodic mode shapes andsHiilincated eigenvalue problem is introduced. Then, a nogéhod
for automatic identification of the principal solutions amyall eigen-solutions of this eigenvalue problem is bripfigsented.
The section ends with a description of the modes of bladearspincluding the identification of the different rotor neod
components based on the periodic eigenvectors of Hillsreiglue problem.

3.1 Periodic mode shapes and Hill's truncated eigenvalue pblem

Floquet theory defines that the eigen-solution of the lipeairodic system (1) consists of an eigenvalue and a cormespg
periodic eigenvector. A homogenous solution to (1) canetoee be written as

X = Z Vet A (30)

m=—o0

wherev,,, are harmonic components of the periodic eigenvectoraizdthe complex eigenvalue. Insertion into (1) with the
2N, x 2Np periodic system matrix written as the infinite Fourier se(i@) and collecting terms of equal harmonics yields an
infinite set of2Np equations

> AnVim— A+ mQ) vy, =0 YmeZ (31)

n=—o0
These equations constitutes the algebraic eigenvaludgpnadf infinite dimension that forms the basis of Hill's methiill,
1886; Xu & Gasch, 1995). The eigenvalue\ignd the eigenvector can writtenas= {...,vL,, vl vl vI vI .. }T and

is of infinite dimension. If the harmonic index in the eigecter is shifted by an integes then the resulting vectov =
{ooovhy  vI o vE vE v 3T and the complex number+ 152 are also an eigen-solution. Thus, although the
eigenvalue problem has infinitely many eigen-solutionstatare onl\2 N, principal solutions from which all other solutions
can be constructed. This construction is also clear whearting the shifted eigen-solution into (30)

%) o o
x = E Vm_sezmﬂt 6()\+ZsQ)t _ E Vmel(mfs)ﬂt 6(>\+259)t _ E Vmezmﬂt e)\t (32)

This arbitrarys/rev shift between the periodicity of the eigenvector arelftequency of the eigenvalue is identical to the fre-
quency indeterminacy in Floquet analysis due to the ldgariof the complex Floquet multipliers (Skjoldan & HansenQ20



10

15

20

25

Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-27, 2016 WIND

Manuscript under review for journal Wind Energ. Sci. Dy ENERGY
Published: 23 August 2016 e We \ SCIENCE
(© Author(s) 2016. CC-BY 3.0 License. ouropsan academy of wind eneroy

Bottasso & Cacciola, 2015). The advantage of Floquet aizalyshat there is onlg N solutions and the frequency indeter-
minacy can be chosen arbitrarily for each of them; here the&ut ofparticipation factorsntroduced by Bottasso & Cacciola
(2015) is helpful. In Hill's method, the problem is to linkl @igen-solutions int® N, sub-sets in which a principal eigen-
solution can be used to construct all eigen-solutions irprécular sub-set. A novel method for this linking into ssdts and
identification of the principal solutions to Hill's eigeriu@ problem is presented in the next section.

To numerically solve Hill's eigenvalue problem (31) is toated. When the periodic system matrix has a finite Fourigeser
(28), the periodic eigenvectors can also be representedibigeaFourier series (Curtis, 2010) in the homogenous gmiut

M
X = E Vet A (33)
m=—M

whereM is the number of harmonics. The infinite eigenvalue problgh) ¢an then be truncated to finite dimension as

V- AV — A+mQ)v,, =0 Yme [—M : M| (34)
n=—N,,
where N,,, = min(N,|M —m]|) is the limit for the summation over the product of the harneotémponents of the system
matrix and the eigenvector. This limit is lower than the ne@mbf harmonics in the system matiix for the matrix equations
where|m| > M — N, showing that truncation errors are introduced in tha¥eof the 2M + 1 matrix equations in Eq. (34).
The truncation error has been investigated by SkjoldanqRQ@e et al. (2007) and they show a convergence of the jpahci
eigen-solutions of the truncated Hill's matrix for theirrpeular systems whe/ > 2N. This finite matrix can be easily set
up from (34) by arranging the harmonic components of theop@ieigenvector as

v={vl,, . v VI~ T (35)
The2Np(2M +1) solutions to the truncated eigenvalue problem (34) willfstilow the above rules for index shift, except that
the eigen-solutions with the largest harmonic componerttsir eigenvectors closest to the “edges?al/ will be affected by
the truncation error. There still exi3fV sub-sets oM + 1 eigen-solutions that can be constructed from a princigatism;
however, these solutions with periodic eigenvectors ohé&g harmonic order will be less accurately constructede Nuat
the eigenvector (35) can be given a norm of 1, such f{kat|| is the participation factor of the:'th harmonic component
(Bottasso & Cacciola, 2015).

3.2 Automatic identification of principal solutions

The identification of the principal solutions can for smaitems be done manually (Skjoldan, 2009; Christensen &Sant
2005; Lee et al., 2007; Kim & Lee, 2012). More systematic apph is to select th&V , eigen-solutions among th2eV, (2M +

1) solutions that have periodic eigenvectors where the haicrammponents are most centered around the mean component,
different methods of this concept can be found in (Xu & Gad&95; Ertz et al., 1995; Lazarus & Thomas, 2010). However,

these methods do not always ensure that the identified pahsblutions2N, can construct all N (20 + 1) solutions,
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because two selected principal solutions may come fromdheessub-set, whereby one sub-set is not represented. A novel
method is therefore suggested, where the principal solsitoe identified in three steps:

1. Remove half the eigen-solutions with eigenvectors dateth by harmonic components of the highest order.
2. Link the remaining eigen-solutions 7V, sub-sets based on a Modal Assurance Criterion.
3. Pick the principal solution in each sub-set that has tfgekt mean component in its eigenvector.

Step 1 ensures that the eigen-solutions with the largestation errors are removed. Step 2 ensures th&tM}lj sub-sets
are represented. The choice of the particular solutionép 8tas the principal one in each sub-set is less importamt (si
ilar to Floquet analysis). If the eigenvector with the lageorm of its mean ground-fixed componetits, ,|| is chosen,
then the frequency of the principal eigenvalue will also be tlominating frequency observed in the ground-fixed frame
(Skjoldan & Hansen, 2009). For drawing of Campbell diagraitnis convenient to link the sub-sets across the variation o
rotor speed. Step 3 is therefore only done for one rotor speetputation, and the selection of the principal solutioneach

sub-set for subsequent rotor speeds is based on a ModalaissguCriterion with the previous speed.
3.3 Modes ofB-bladed isotropic rotors

Modes of a structure with a bladed rotor may be dominated bynthtion of the sub-structure and therefore named after its
dominant component of the periodic eigenvector, e.g. ‘tdaee-aft’ or ‘drivetrain torsion’ modes of wind turbineshe name
of a rotor mode dominated by blade motion will depend on thalmer of blades.

The naming conventions of symmetric and whirling rotor nede&3-bladed rotors deduced from the modal analysis using
the multi-blade coordinates (Hansen, 2003) can be gemedaliThe Coleman transformation will for isotropic rotorghw
more than two blades render the system matrix time-invaviéh constant eigenvectors described in multi-blade do@tes
(Skjoldan & Hansen, 2009). The Coleman transformation @awiitten on a complex form, where the cosine and sine parts
of the multi-blade coordinates are combined into backwandl farward whirling coordinates, similar to complex wave co
ordinates for vibrations of spinning disks (Lee & Kim, 19%%ansen, 1999). Let the modal response in these coordinates b
written asz,.e*! then the Coleman transformed responses in rotating blantelioates will be given as

I —I TIe¥r Te~ %1 ... Ieszl Ie_,,gwl
I I T2 Te—2 ... IeB¥2 [e—tBve

u.=| 1 -1 Tes  Te—¥s ... Ieléwa Iefléws 7,0t (36)
I I Iew¥s Iews ... IetBvs Je—Bus

whereB = (B—1)/2for odd andB = B/2—1 for even number of blades, = Qt+2n(k—1)/B is the azimuth angle of blade
numberk, the second column in the matrix is only present for even ramolb blades, and the harmonic azimuth dependent

parts are omitted for 2-bladed rotors. These harmonic gare in pairs for each harmonic order with plus and minus on
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the blade azimuth angle, defining the direction of the wingyliThe constant eigenvector in complex whirling coordésatan

H T T T T T T
be written asz, = {A] ADABw AR Ay 5 A s

response of blade numbkrof the isotropic rotor can be written as

T, which by substitution into (36) shows that the modal

2np(k—1)

2 k—1
t617ﬂp(

B B
)
w, = (Ao + (1) Ap) e+ 3 Agw,y VTS 1N Mgy etV

p=1 p=1

(37)

showing thatA, are symmetric componenta,p are anti-symmetric components, aAgw,, andAry, , are backward (BW)
and forward whirling (FW) components of the blade motion ie thode. The direction of the whirl is given by the sign
of the phase shifté’%p(k — 1) for each blade. Note that for BW components, the angulamugeqyp/rev is added to the
eigenfrequency, and it is subtracted for FW modes. As explained in Hanse@322007), the eigenfrequencies of a 3-bladed
rotor system described in multi-blade coordinates are nredsn the ground-fixed frame, in which the frequencies ofieep
BW modewgy and pure FW mode gy, decrease and increase with 1/rev, respectively, suchhbatfrequencies in the
rotating blade frame given by (37) are close to the frequaidie corresponding blade modg ~ wpw + Q ~ wprw — Q.
Equation (37) shows that generally there will be whirlingdedgairs that split with up t@B/rev in the ground-fixed frame,
where the general relationship ~ wpw +pQ ~ wry — pf2 to the blade frequencies holds. Note that the phase s@e«ﬂf
the rotor whirling will a factop higher. Note also that the frequencies of anti-symmetnamanents for even number of blades
(except for two) are unchanged by the transformation froougd-fixed to rotating blade frame. This properties shayethé
symmetric components is caused be the fact that the redctioes due to these components of rotor motion is neutrdl wit
respect to the rotation; the center of gravity of the entiterris only moved axially by symmetric components and resai
stationary for anti-symmetric components.

Each harmonic component of each DOF of a rotor mode may treree named

— Symmetric

— Anti-symmetric (exist only forB even)
— Backward whirling (exist only fo3 > 3)
— Forward whirling (exist only for3 > 3)

followed by the name of the DOF. For rotors with more than folades, the whirling components must also have the phase
speed indey = 1,2, ... B added to the name of the particular component. The symmatricsymmetric, and whirling com-
ponents of the rotor motion given by (37) can be derived byiiting the transformation (36). Inserting the rotor motion
u, = v, e e of them'th harmonic of the periodic eigenvector into (36) and settine time to zere = 0, the symmet-
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ric, anti-symmetric, and whirling components of this hanieacan be derived as

Ao 1 I I 1]
Ap ~I I -1 I
Apw, I Te27/B | Te2n(B-1)/B 1
AFw, =é I Ie?/B L IeB-D/E Ty (38)
Agw,s I TIe*B2/B | IeB2r(B-1)/B 7
Arw s . ! Ie!B27/B [eB2m(B-1)/B | |

wherev,, , is the rotor part of a harmonic componeny, of the eigenvectoy, and the last row of matrices is omitted for rotors
with odd number of blades. The harmonic ordeof each component is also relevant for its naming, but agaiimg that it is
directly dependent on the choice of the principal solutidate that 2-bladed rotors only have symmetric and anti-sgtnm
components.

4 Modal analysis of 2- and 3-bladed wind turbines

The theories presented in the previous sections are aplgita structures with isotropic rotors with any number addss
higher than one. In this section, the modal dynamics of 2- Zubthded turbines are investigated because they are of the
highest interest to the wind turbine industry, but also bseahe finite Fourier series of the system matrix shows liesetare

no qualitative difference between turbines having threlgaming more identical blades.

The turbine used for the analysis is the DTU 10MW referenaeiirbine (RWT) by Bak et al. (2012) with three identical
blades. For the sake of comparability of the modal dynanties2-bladed version is obtained by reusing the same blade. |
reality, the optimal aerodynamic solidity of the rotor woukquire a redesign (Bergami et al., 2014); the blades woeld
larger chord and the increased absolute thickness (asguh@rsame relative thickness of the airfoils) would be usegither
decrease the blade mass, increase the blade stiffnessndr¢lep same bending stresses), or combine these two algigchn
any cases, the blade for the 2-bladed turbine will have rdiffeblade modal frequencies and possible mass distrigutibich
would complicate the direct comparison of turbine mode&éo3-bladed version.

The turbine model derived in the next section is based onithpls model presented in Hansen (2003), except that the
bending of the main shaft is here omitted and the generatation has been added as a new DOF. The model parameters
are tuned such that the modal frequencies of the first elevesemof the three-bladed turbine are closest possible to the
modal frequencies computed for the 10MW RWT with the higheelifig linear model of the software HAWCStab2 using
beam elements and the method of the Coleman transformatanmsén, 2004). Minor modifications of the turbine have been
introduced such that the center of gravity in the blade esessions coincide with the pitch axis and the coning is akdato
zero.

The convergence of the Fourier series of the system matrbhé2-bladed turbine is analyzed in Section 4.2. The Cathpbe
diagrams of the principal modal frequencies are presentedtfand 2-bladed turbines in Section 4.3. The well-knownokéc
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Figure 1. lllustration of the simple turbine model.

mode shapes of 3-bladed turbines are repeated in Sectiparti4nore complex periodic mode shapes for 2-bladed twsbine
are presented in Section 4.5. The section ends with a discuskthe differences between the modal dynamics of the two

turbine types.
4.1 Model kinematics and parameters

Figure 1 shows an illustration of the structural turbine elo@he nacelle and tower motions are described by five DORs. T
nacelle can translate in the two horizontal directions dleed in the ground-fixed inertial frameX( Y, Z) by u, (side-side)
andu, (fore-aft). It can tilt, roll and yaw described by the anglesd,,, andd., respectively. The azimuthal angle of the blade
number one ig); = Qt+,+1,, whereQ) is the constant mean speed, andandy, are the torsional and rigid-body rotations
of the drivetrain, respectively. The generator is rotatihthe speefl + ¢g.

The blade motion is described in their own rotating frameg (z), where thez-axis is the blade axis and theaxis at rest
coincides with thé’-axis. The local position vector for the center of gravityldade numbek is described by an expansion
in the first three blade modes at standstill as

b1, (2) Pur,e(2) Ga, 15 (2)
ry (ubk) = ¢y,f1 (Z) qf17k(t> + @by,e(z) qe,k(t) + d)y,fz (Z) quJv(t) (39)
z z z

for z € [Ry, : R] andr, = {0,0,2}7 for z € [0: R], whereR,, and L, are the hub radius and blade length, respectively. The
outer rotor radius iR = Rj, + L;. The edgewise and flapwise deflections in the first flapwisdebtaode are, ;, (z) and
oy, 1. (2), respectively, andy, , is the DOF of this deflection shape for blade numbeBimilar, the subscriptsand f, denote

the contributions from the first edgewise and second flapdéflection shapes. All shape functions are obtained by pofyal

fits to the isolated blade mode shapes computed with the blesneet model of HAWCStab2, see Figure 2.
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The vector containing the system DOFs is defined accordiigt@12) as

T
u= {q‘f1,17qe,laqf2,17" . ,qfl,Baqe7B7qf2,Bauw7uya9$>9ya027,¢)g5w8} (40)

where the number of DOFs is dependent on the number of blad¥s a= 3B + 7. To obtain the linear equations of motion
using the derivations of Section 2.1, the blade mass mosiorritten on the form of (9) using (39) and the following rotor
center position and orientation of the rotational axis

1 -6, o, 0

re=| 6, 1 -6, L,
0, 0. 1 || o
(1 6. 6, | [ coswstdy) 0 sin(dtuy)

T.=| 6. 1 -6, 0 1 0 (41)
| =0, 0. L || —sin(¥s+1y) 0 cos(vs+1y)

and constant rotation matrices

1 00 1/2 0 —i/2
Ro=|0 0 0 and Ri=| 0 0 0 (42)
00 1 /2 0 1/2

These vector and matrix functions of the DOFs are insertdthe volume integrals for the matrix elements in Appendjx A
which reduce to line integrals overe [0 : R]. The mass distribution of hub is definedrasz) = M,/ B/ Ry, for z € [0 : R}],
where M), is the total hub mass. The mass distribution of the bladeoigqul in Figure 2.

The ground-fixed substructure are modeled as a lumped nma$sha inertia forces from the nacelle and effective tower

masses and the generator rotational inertia are derivedtfie kinetic energy:
Ty = §M (iia + i) + 5107 + 51,05 + § 162 + 3105 (43)

such that the first term ofy, o ;; in Eq. (A2) is replaced b@y*T, /9u;01u ;. The potential energy for the linear elastic stiffnesses
of the nacelle/tower motion, shaft torsion and blade dedastis written as

B
V= 1Kl + 1 K,ul + 1Go02 + 1G 07 + 1G.07 — guy0aty + goyOyua + G002+ Vi, (44)
k=1

whereV,, is the potential energy of blade numbdegiven as

Phss\>  [0? ? ’
kaz Y IMpwiah+ Q0 Y /(( aiiﬂ) +< 5(;:2;’5) )qé,k/m(s)ds‘lz (45)

=[f1,e,f2] B=[f1,e,f2]

wherelMz andws are the modal mass and frequency of the orthogonal bladesyiodé f1, e, f2]. The last term is the potential
energy of the centrifugal forces proportional to the sqdaotor speed.
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Figure 2. Edgewise (dashed curves) and flapwise (solid curves) deflections iabe mode shapes (left plots) and the blade mass distri-
bution (right plot) for the blade of the DTU 10MW RWT. Circles in the left plote eesults from the beam element model of the software

HAWCStab2 and the curves are polynomial fits used in the present model.

The damping matrices of Rayleigh’s dissipation functiorflif) for the blade<C, and the nacelle/tower motion and shaft
torsionC, are setup using a spectral damping model (Clough & Penz&t§)1The first and second flapwise blade modes are
set to have logarithmic decrements of 20 % and 10 %, respdctivhereas all other modes are damped 2 — 5 %. These choices
of damping are simply crude approximations to the aerdeldamping of the turbine in operation (Bak et al., 2012), drey
have no significant effect on the results of Hill's methodnipéng is very important for solutions using Floquet theotyere
the system is time integrated.

The linear equations of motion (11) can be derived from Epafid the integrals in Appendix A using the above kinematic
description of the blade motion, the kinetic energy of theatla/tower and generator inertia, the total potentiatgnend the
spectral damping matrices. The block matrices of (11) ateerplicitly included for brevity. All parameters (exceprfthe
blade properties in Figure 2) of the tuned model are listethinie 1.

4.2 Convergence of Fourier series for 2-bladed rotor

Convergence of the Fourier series for the system matrixtdfged isotropic rotors is ensured if the constant part@ftiass
matrix for the ground-fixed DOFs is sufficiently larger thée second order harmonic part. Using Eqg. (23) and (24), ibean
computed thaf|Q, ' QTP Q,|| ~ 0.22 < 1 and ||P,QY|| < 0.67 for k =1,2,..., i.e., the inverse mass matrix and therefore
the system matrix have finite Fourier series for the 2-bladéat.

Figure 3 shows the 2-norms of the Fourier components of tkeesy matrices for the models with the 2- and 3-bladed
isotropic rotors. The convergence for the 2-bladed rotobiserved and for the following analysis the number of hatiois
chosen to beV = 7. The largest norm for the 1/rev component is 46,480 and the largest norm of an omitted component
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Parameter description Symbol Value
Blade length Ly 86.366 m
First blade flap frequency we 0.610 Hz
First blade edge frequency We 0.934 Hz
Second blade flap frequency wy, 1.738 Hz
Hub radius Ry 2.8m

Hub mass M, 105,520 kg
Tower to rotor distance Ls 7.1m
Generator inertia on LSS I 3,751,000 kgrh
Drivetrain stiffness G, 0.668 GNm/rad
Nacelle/effective tower mass M 446,040 kg
Nacelle tilt inertia I, 4,106,000 kgrh
Nacelle roll inertia I, 410,600 kg
Nacelle yaw inertia I. 4,106,000 kgrh
Tower top side-side stiffness K, 7.4 MN/m
Tower top fore-aft stiffness K,y 7.4 MN/m
Tower top tilt stiffness Gy 7.462 GNm/rad
Tower top roll stiffness Gy 7.462 GNm/rad
Tower top coupling stiffness  gay 0.2035 GN
Tower top yaw stiffness G- 3.5 GNm/rad

Table 1. Tuned parameters of simple model to fit the modal properties of the DDNOAL RWT up till its 11th mode.

=
o
o

5O T T T

4 o O 2-bladed rotor
o o O 3-bladed rotor
o

=
o
=)
T
m}

.
e
&
T
o
I

1010 o i

2-norm of harmonic component [s'l]

[N

e
N
o

2 4 6 8 100 12 14 16 18 20 22 24
Number of harmonic [-]

Figure 3. The 2-norms of the Fourier components of the system matrices for gned23-bladed simple models of the DTU 10MW RWT.

(9/rev) is 0.03 s*. For the 3-bladed rotor alV = 3 harmonic components are used although the third harmoeiteistively

Zero.
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4.3 Campbell diagrams of 2- and 3-bladed turbines

The number of harmonics in the periodic eigenvectors useHifts truncated eigenvalue problem is sett$ = 2N for both
rotors, thusM = 14 andM = 6 for the 2-and 3-bladed rotor, respectively. The eigenvphoblem is solved for 33 equidistant
rotor speeds ranging from 2 rpm to 10 rpm (nominal speed oDffild 10MW RWT is 9.6 rpm). The principal solutions at
the lowest speed of 2 rpm are selected among the sub-sethitibgs as the one that has the largest mean component on the
ground-fixed DOFs (cf. Section 3.2). For the remaining refeeds, the principal solutions are selected as the ondsabea

the largest Modal Assurance Criterion relative to the ppalcsolutions selected at the previous rotor speed.

Figure 4 shows the Campbell diagrams of principal modaluesgies versus rotor speed for the 3-bladed (left) and 2-
bladed (right) versions of the DTU 10MW RWT. The mode nameglatkiced from the analysis of the periodic mode shapes
presented in the next sections. For the 3-bladed rotor, riheipal modal frequencies computed with Hill's method ¢tes)
are in close agreement of the modal frequencies computddtiét high-fidelity software HAWCStab2 (crosses). It shows
that the simple model combined with the automatic identificaof the principal solutions is able to predict the samealaio
frequencies in the ground-fixed frame as computed using then@n transformation method.

Comparison of the two Campbell diagrams shows that the tomagtes of the 2-bladed turbine have slightly higher fre-
quencies due to the lighter rotor. THel/rev frequencies splitting for the pairs of whirling rotmodes in the ground-fixed
frame is clear for the 3-bladed turbine (noting that ouplaine blade deflections are stiffened by the centrifugalesy. For
the 2-bladed turbine, there are no whirling modes but thesgmimetric modes are still either increasing (first edge famp)
or decreasing (second flap) with 1/rev, because the prinegbations are selected as the solutions with the largeanmaem-
ponents on ground-fixed DOFs. Campbell diagrams contaiaimyg the principal frequencies are not very informative for
2-bladed turbines, instead the periodic mode shapes oéthetsd principal solutions are now analyzed, first for tHea@led
turbine. Note that first mode of both turbines is the trivigid body rotation of the drivetrain, which is omitted fromig

analysis.
4.4 Periodic mode shapes of 3-bladed turbines

Figures 5 — 15 show the dominating modal components of sldeOFs in the periodic mode shapes of Modes 2 — 12 of
the 3-bladed turbine as functions of rotor sp&kdnd the frequency of the particular componept+ mS2, wherewy is the
principal modal frequency ana is the harmonic order of the component (cf. Eq. (33)). A thodd for plotted amplitudes is
set to 10 % of the overall maximum. The generator rotationsivadt torsion angles are multiplied by 10 for better scaling
the same scaling is used on the tower translations to shol emplings for some modes. The plot layout is the same in all
figures: A three-dimensional plot in the top and its projatsi onto the amplitude-rotor speed (left) and frequentyrigpeed
(right) planes in the lower plots. The principal frequescig are always denoted by black bullets in the frequency-rqieed
planes. The color coding of the modal components is alsoaime $n all figures: Black markers denote amplitudes of greund
fixed DOFs. Red, green, and blue markers denote amplituddseabtor components in the first flapwise, first edgewise,
and second flapwise deflection shapes, respectively. Tléseamplitudes are computed for each harmonic component of
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Figure 4. Campbell diagrams of the principal modal frequencies of the 3-blééé&dplot) and 2-bladed (right plot) version of the DTU
10MW RWT computed with Hill's method (circles) and with the software HAW®@técrosses) for the 3-bladed turbine.

the periodic eigenvector using Eq. (38). Note that the femgy-rotor speed plane (lower right) are similar to the quiid
Campbell diagrams in Bottasso & Cacciola (2015), exceptaheh curve represent the magnitude of the harmonic compone
for a particular DOF and not the vector norm of all DOFs like garticipation factors.

The naming of the modes shown in Figure 4 is deduced from tigesacomponents of the periodic mode shapes observed
in Figures 5 — 15. Note that Modes 5 and 6, the first flapwise sgtmoand forward whirling modes, interchange their mode
shapes at low rotor speeds, which happens when the resobftibe rotor speed is so low that the sorting routine basea on
Modal Assurance Criterion cannot distinguish these styoogupled modes from each other.

Looking at all figures with, no harmonic component for theorathirling motion is more thar-1/rev from the principal
frequency, and lowering threshold for the plotted ampbtido 0.1 % of the overall maximum amplitude does not change
this observation. It agrees with Eq. (37) and previous swdf isotropic 3-bladed turbines using the Coleman transiton
method (Hansen, 2003, 2007): an inverse Coleman transfiomfeom the ground-fixed frame with a single modal frequenc
back to the rotating frame shows that symmetric componeitthave the same frequency as in the ground-fixed frame, but
BW and FW components will have frequencies that are +1/relv-afrev, respectively, from a principal frequency defined i
the ground-fixed frame. If the 3-bladed rotor would be amgguit then secondary harmonics will arise which magnitueids
depend on the magnitude of the anisotropy (Skjoldan & Hari2g00).

Looking at the individual mode shapes, there are couplifigeendifferent DOFs in each mode of 3-bladed turbines. The
tower fore-aft mode (Figure 5) contains symmetric, BW and &dhponents in the first flapwise blade mode. Similarly, the
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tower side-side mode (Figure 6) contains BW and FW compariarthe first edgewise blade mode and generator rotation due
to the nacelle roll. The first BW flapwise mode (Figure 7) is pote and contains also symmetric and FW components. The
strongly coupled first symmetric (Figure 8) and FW (Figuréd&wise modes are also not pure and contain other components
as well. Note that a BW edgewise component (in green) appedrs first FW flapwise mode at the highest rotor speeds where
its BW flapwise component approaches the edgewise bladggney of about 0.93 Hz. Similarly, the FW flapwise components
appears in the first BW edgewise mode (Figure 10) at higher sgteeds. The first FW edgewise mode (Figure 11) contains a
small BW edgewise component and a larger FW flapwise compo8anilar couplings can be seen for the remaining modes.
The second flapwise whirling modes (Figure 12 and 13) havéatigest blade response at a frequency of about 1.5 Hz (the
+1/rev for BW and -1/rev for the FW components). The ampktuakio of these flapwise DOFs are almost constant indicating
that the rotor modes are constructed as a combination oihelade modes with the isolated modal frequencies 0.61 ldz an
1.74 Hz. Note that the first symmetric edgewise mode (Figbjeduples with both the generator rotation and the shadidor

This rotor mode is neutral with respect to the rotor rotadod does therefore not contain any dominant whirling corepts

The second symmetric flapwise mode (Figure 14) containdimfpicomponents that are just below the selected thresloold f
the plotted amplitudes and therefore not shown.
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Figure 5. Dominating harmonic modal components for Mode 2 for the 3-bladed DOMW RWT. Top plot: Modal amplitudes plotted
versus rotor speed and frequency of the particular harmonic coenpdrower left plot: Projection onto the plane of modal amplitudes and
rotor speed. Lower right plot: Projection onto the plane of componequincies and rotor speed (periodic Campbell diagram). Bullets show
the principal modal frequencies in the frequencies and rotor sperdspl®nly modal components with amplitudes larger than 10 % of the
overall maximum amplitude are plotted.
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Figure 6. Dominating harmonic modal components for Mode 3 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 7. Dominating harmonic modal components for Mode 4 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 8. Dominating harmonic modal components for Mode 5 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 9. Dominating harmonic modal components for Mode 6 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 10. Dominating harmonic modal components for Mode 7 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 11. Dominating harmonic modal components for Mode 8 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 12. Dominating harmonic modal components for Mode 9 for the 3-bladed DOMW RWT. Plot layout as in Figure 5.
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Figure 13. Dominating harmonic modal components for Mode 10 for the 3-bladed DOAMW RWT. Plot layout as in Figure 5.
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Figure 14. Dominating harmonic modal components for Mode 11 for the 3-bladed DOAMW RWT. Plot layout as in Figure 5.
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Figure 15. Dominating harmonic modal components for Mode 12 for the 3-bladed DOAMW RWT. Plot layout as in Figure 5.
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4.5 Periodic mode shapes of 2-bladed turbines

Figures 16 — 23 show the dominating modal components ofteel€2OFs in the periodic mode shapes of Modes 2 — 9 of the
2-bladed turbine. The threshold for the plotted amplitudel % of the overall maximum amplitude. Generator rotatind
shaft torsion angles are multiplied by 10 for better scalany the tower translations are also scaled to show weakiogsp

in some modes. The plot layout and color coding are the samb@ge. The amplitudes of rotor motion are computed from
the periodic eigenvector using Eq. (38).

Looking at all figures, there are many more dominating comnptsiand also higher harmonics compared to the 3-bladed
turbine. A general observation is that symmetric rotor congmts always have frequencies that are even number ofaliay
from the principal frequency, whereas frequencies for-aymtimetric components are shifted an odd number.

Looking at the individual mode shapes, the increased nuwidfgarmonics also increases the number of couplings between
the different DOFs in each mode. The tower fore-aft mode gufgé 16 couples again with1/rev asymmetric rotor modes as
for the 3-bladed turbine, but couplings to higher harmooimponents of blade DOFs are much more dominant at rotor speed
where their frequency crosses the corresponding bladadrexy. Such resonant couplings occur for the symmetrie¥4/nd
+6/rev components and anti-symmetric +3/rev and +5/revpmmants of the first flapwise DOF when their frequencies are
close to the first flapwise blade frequency 0.61 Hz, and foratite symmetric +5/rev component of the first edgewise DOF
when its frequency crosses 0.93 Hz.

The tower side-side mode in Figure 17 is similar to the sameenod the 3-bladed turbine with the coupling to the generator
rotation and thet1/rev harmonics of asymmetric rotor responses.

Modes 4 and 5 in Figures 18 and 19 interchange mode shapesrattéo speeds such that they are named the first symmetric
and anti-symmetric flapwise modes, respectively, at thbdrigotor speeds. The anti-symmetric flapwise mode coupits w
tower fore-aft motion around 6.5 rpm where the frequencyhef-é/rev component of this DOF is crossing the tower fote-af
frequency of about 0.28 Hz. A similar coupling is seen for-feev component of the tower fore-aft DOF in the anti-syrtnioe
edgewise mode in Figure 20 at 8.2 rpm. This mode also contegn @nd -2/rev components of the tower side-side DOF such
that the£1/rev splitting known from 3-bladed rotors appears in theugid-fixed frame.

For the second anti-symmetric flapwise mode in Figure 21 atitesymmetric +1/rev components of the two flapwise
blade DOFs are the two largest components with an almostamrfsequency of around 1.46 Hz (a combination of the two
flapwise blade modes as for the 3-bladed turbine). The blam@malso contains smaller anti-symmetric -1/rev and ex8/r
components of the two flapwise blade DOFs, which frequeratieslecreasing and increasing with 2/rev in the rotatingebla
frame. Resonant couplings with symmetric +6, +8, and +¥0gexond flapwise DOF and +6/rev first edgewise DOF are
observed when their frequencies are crossing the prinfripgliencies of the first symmetric edgewise and second syrieme
flapwise turbine modes around 1.75 Hz. These two symmetridesion Figures 22 and 23 are similar to the corresponding
modes of the 3-bladed turbine (cf. Figures 14 and 15), exbepthe second symmetric flapwise mode of the 2-bladedrerbi
contains resonant couplings of the anti-symmetric -3/ral -®/rev components of the two flapwise blade DOFs when their
frequencies are crossing the frequency of the second ymitirgtric flapwise mode (cf. Figure 21) around 1.46 Hz.
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Figure 16.Dominating harmonic modal components for Mode 2 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 17.Dominating harmonic modal components for Mode 3 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 18.Dominating harmonic modal components for Mode 4 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 19.Dominating harmonic modal components for Mode 5 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 20.Dominating harmonic modal components for Mode 6 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 21.Dominating harmonic modal components for Mode 7 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 22.Dominating harmonic modal components for Mode 8 for the 2-bladesiarenf the DTU 10MW RWT. Plot layout as in Figure 5.
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Figure 23.Dominating harmonic modal components for Mode 9 for the 2-bladesiorenf the DTU 10MW RWT. Plot layout as in Figure 5.
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4.6 Comparison of modal dynamics of 2- and 3-bladed turbines

The modal dynamics of the turbines with 2- and 3-bladed sobiow several similarities but also significant difference

— The rigid body drivetrain rotation mode (trivial and thexed not shown) is identical for the two turbines.

— Tower bending modes are similar in frequencies and shapespethat the fore-aft mode for the 2-bladed turbine may

contain large components of the first flapwise blade mode wvithemotor speed is such that these frequencies of the
higher harmonic components are crossing the modal freguatibis blade mode.

The first symmetric edgewise rotor mode are very similar @gfiency and shape because its reaction forces does not
coupled to other DOFs through large periodic terms in thé&esysnatrix.

The symmetric flapwise rotor modes are similar in frequenaied shapes, except that the first symmetric flapwise mode
of the 2-bladed turbine in Figure 18 has a small -2/rev corepbof the tower fore-aft DOF, and the second symmetric

flapwise mode in Figure 23 has resonant couplings to antisstmic flapwise mode.

Asymmetric rotor modes: the anti-symmetric modes for theied turbine and the whirling mode pairs of the 3-bladed
turbine, may seem similar when observed from the groundtfiseene such as a top tower acceleration signal, where the
well-known=+1/rev splitting of the frequency peaks is seen. For exantipéetower side-side responsestdt/rev around

the blade edgewise frequency is observed for both the gmtivetric edgewise mode in Figure 20 and for the edgewise
whirling mode pair in Figures 10 and 11. This similarity hashkmbly caused the misinterpretation of the simulated and
measured 2-bladed responses in Kim et al. (2015); Larsem& (Ri015), but rotor modes of a 2-bladed turbine will

often have more frequency peaks in both the ground-fixeddranda the rotating blade frame.

The additional modal couplings that exist for 2-bladed itueb have the effects that there are additional ways thanthaes
can be excited either by resonances or interactions witkreat forces, and that it becomes difficult to interpret frexcy

spectra from simulations and measurements. To illusthegeet effects, the harmonic components of the tower siceBF

in all modes are plotted in three-dimensional periodic Caetipdiagrams for both turbines in Figure 24. These plotsasho

qualitatively the response in a tower side-side signal wdlemodes are excited equally. There are clear similarfietsveen

the dominant side-side responses for the two turbines. Betevthese responses in the ground-fixed frame for the &¢blad

turbine only occur on the principal modal frequencies plidtin its conventional Campbell diagram (cf. Figure 4), thedes
of 2-bladed turbine lead to responses in the ground-fixeddrat many other frequencies. The conventional Campbegjtalia
containing only the principal modal frequencies of a 2-bhtlrbine has therefore little value, and one should bddamaen
interpreting frequency response plots for 2-bladed twin

5 Conclusions

The modal dynamics of structures with bladed isotropicnofa@entical and equidistantly spaced blades) have beayzed
by the periodic mode shapes obtained using Hill's methodherihear periodic first order system equation. Analyticaivh-
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tion of linear second order equations of motion in a genenimfhas shown that only 1/rev harmonics occur in the periodic
terms when a rotor has more than two blades, whereas a 2dhiaie also has 2/rev terms. Analytical inversion of theqdic
mass matrix has shown that its highest harmonic term 2/mearfésotropic rotor with more than two blades. The inversesna
matrix for a 2-bladed rotor have been shown to have an infifotgrier series of component matrices which norm decreases
with the harmonic order. The periodic system matrix of igpic rotors with more than two blades can therefore be repted

by an exact Fourier series with 3/rev being the highest ovdeegreas it for 2-bladed rotors must be approximated byrecated
Fourier series of predictable accuracy.

Using the analytic Fourier series of the system matrix taupeltill's truncated eigenvalue problem, its principal s@ns
have been automatically identified by a novel method apiplécto larger systems. The symmetric and anti-symmetricahod
components of rotors with two blades and the additional ivigitcomponents of rotors with more blades have been exttact
directly from the periodic eigenvector corresponding tohegrincipal eigen-solution.

As relevant examples, the generic methods have been useddel lmnd analyze the modal dynamics of both 2- and 3-
bladed versions of a 10MW turbine. The motion of each bladel®en described by its three first mode shapes, and the
nacelle motion and drivetrain rotations have been destiilyeseven DOFs. Similarities and significant differencesvben
the modal dynamics of the turbines with 2- and 3-bladed sdtave been found and summarized in Section 4.6. A differisnce
that the larger number and magnitudes of the harmonic coemgsiin the system matrix of 2-bladed turbines lead to regona
couplings in the mode shapes that have not been observele@-bladed turbine. These couplings between DOFs arise
when the rotor speed is such that the frequency of a highendvdc component of one turbine mode is in the vicinity of the

frequency of another blade or turbine mode. Another diffeeds that a single mode of a 2-bladed turbine can lead tonsgs
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Figure 24. Periodic Campbell diagrams of all harmonic components of the towersgiideDOF in all investigated modes for the 3-bladed
(left plot) and 2-bladed (right plot) version of the DTU 10MW RWT.
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at several frequencies in both the ground-fixed and rotdtiade frames of reference, which complicates the intesioat of
simulated or measured turbine responses without the trepresented in this paper.

Appendix A: Elements of system matrices

This appendix contains a list of the elements of the blockrices in (13) and (14) related to the inertia forces and @elriv
5 by insertion of (10), (8) and (9) into the coefficients (7)daummation over all volumes of the structure, the grounefix
substructure’, and each blad®,, where several properties of the rotation malixand its components have been utilized
(see e.g. Krenk (2009)). The subscriptandb are omitted from the DOFg; andw; for brevity.
The elements of the block matrices for the blade DOFs are

T
my, i =/ %%d]}b

u;
0 0
10 9b,ij 4Q/ azb Blﬂdvb (Al)
o2rT orf  ory,
Sb,ij /P <8ui8uj 1T + au, M auj> dVy
Vb

whereA; = 1 (R; —R4) andB; =  (R; + R;) are the symmetric real part and the anti-symmetric imagipart of the
matrix R,. Note thatROT =Ry andR; = RT. The elements of the block matrices for the DOFs of the grefixedl substruc-

ture are

orl 9
15 mgﬁoyij :/p g idvg

orT or OTT or. OTT or,
B C T C C c C
* / (a u; T Ro(aui ou; | ou, 8ui>

oTT oT. oTT oT. OTT OT

R ¢ — ¢ <SRy |1y | dVy

i < O Ou Ou; 0t <8ui Ou; * Ou; 8ui> 1) r1> :
2 J,, i RY Go TRV, for B =2

My.2.ij = (A2)
$o 0 otherwise

orr or, oTr oT
. =12QB R cToc e T ) Riryd
99,0,i7 = /prb ! ( 8ul 8uj 8uj (’)uz ) 1t Vb

Vb

1482 fvbprTR1T %’z 8T° R1I‘deb for B=2

0 otherwise

20 gg2.45 =
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(OMOM

The elements of the block matrices that couples the bladgamohd-fixed DOFs are

(’9rCT (')rb
Mgb,0,ij :/p <8u- TcR0%
1 J

oTT oTT oTT
Ro—T.Ro+R{ —<T.R{ +R, T R1> > Vo
J

T
ou; ~ ¢ Ou; ~ 1t u;

Jry,
0 d
oTT oT or,
mgb,l,ij:/p( CTR1+rb (Ro CTR1+RT CTR0>>8)dVb

or”
Ou;
C 8T? Brb
9gb,1,ij =20} T R1 + r, RO 8 T R1 6uj dV

Ou;

aTC ory, oTt ory,
Gbg.0.ij =129 / p( RY o, S TeRi52 n —r/R; < D TcRi5= ) dV
VI)

orT oT
G147 =120 / R

8T 8rT 8TT 81‘1,
i =02 TRT CTR ~—<T.R -1t/ Ry—T.Ry | —2dV
Sgb,1,ij / ( 0~ o, 1— I, Iy O, 1 auj b

Appendix B: Components of inverted mass matrix

WIND
ENERGY
SCIENCE

(A3)

(A4)

The mean and harmonic components of the block matrices (2 anverse mass matrix (15) can be computed as

Eo =M, '+ M, (M} HoM,,.,

+ MST’QHOMQT,O + MfT,lHoMgm + Mgr’lHOMgr,l
+ M, HoM )M

Eopi =M, * (Mgr,oﬂgmﬂmg,«,l + ML Hop s Mg,
+ M, Hap Mgp,t + M2, Hop Mo )M

Eopmio =M, ! (M£,1H2m+4Mgr,1
+ M roHam+2Mgr o + M raHam2Mgr1 + Mgr 1Hom oM,y
+ MWHMMW) M;!

and

F2m = HZmMgr Olv[fl

T

F2m+1 = H2m+2Mg7',1Mr - HQmMg’r lM_l

r
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wherem = 0,1,..., Ny, (-)* denotes the conjugate transpose matrix operator, the medraamonic components of the block
matrix H (19) can be found in (21) and (22), and the conditi®hs, = 0 for m > Ny must be used. Note th&_, = E,,
andF_, =F,,.

Appendix C: Components of system matrix

The components of the system matrix (28) can be written as

An=1| Asii1n Azi12n A1 Ao (C1)
A21,21,n A21,22,7L A22,21,n A22,22,n

whereA >, =1forn=0andA;, =0 for n > 0, and the block matrices can be computed as

Asi11n=—E, (K, +8S,)— Fz:—1sgr,1 - F£+1SQT»1
Asio1n=—F,(K,+8S,)-H! S, —H! S,
Asiion=-F1K,
Ao 200 =—H, K, (C2)
A1, =—E,C, —F Gy o—F_ Gy —Fp Gy
Apoin=—F,C.,—H,G,0—-H, 1Gy1—H, 111Gy
A2, =—FL(Gyo+Cy)—E, 1Gry1 —Epi1Grga
—FL ,Gg2—F} ,Gyo
Ass 2o =—H,(Gyo+Cy)—F, 1Gry1 —Fp1Gry1
—H, G, —H,,,G,,

forn=0,1,...,2N} + 3 using the following properties of the matricEs, F,,, andH,,:

E_,.= Ena E_,= Eny H_,= I:Ina and
En+2 = Fn+1 =H, =0forn> 2N,

Note that/NV;,, = 0 for isotropic rotors with more than two blades, wher@asis selected for two-bladed rotors based on the
required accuracy of the system matrix.
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