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Abstract. Wind turbines installed in the cold climate regions accumulate ice on the blades affecting their aeroelastic 

behavior and turbine power output. It is essential to detect icing in the early stages to start the deicing systems so that the 

losses due to icing can be minimized. The increase in mass distribution of the blade due to icing reduces its natural 

frequencies and how much these frequencies reduce depends on the amount of ice mass and their location on the blade. Ice 

detection systems like BLADEControl (Bosch Rexroth) and fos4blade IceDetection (fos4X) systems detect ice based on the 10 

deviations in blade natural frequencies, but cannot identify the location and amount of ice mass. In this work, the authors 

propose a method to detect average ice mass accumulated along three zones defined along the blade based on its natural 

frequencies using Artificial Neural Networks (ANN). Different ice masses are added on a wind turbine blade and their 

natural frequencies are simulated using a finite element model of the blade vibrations. ANN is trained with the natural 

frequencies of the iced blade as inputs and corresponding ice mass distributions used in the three zones as outputs. ANN 15 

approximates the non-linear function between inputs and outputs in the training process. After training with a large data set 

of possible ice mass distributions, ANN model can be used to predict ice mass distributions in the three zones for any set of 

natural frequencies (input to ANN) of the iced blade. NREL 5 MW wind turbine blade is considered in this study to 

demonstrate the proposed method. Various cases of ice mass distributions are tested by the trained ANN model and the 

predicted ice mass distributions are compared against actual ice mass distribution values. ANN model is able to predict ice 20 

mass distributions exactly if they are similar to the ice mass distributions used in the training data, otherwise the ice masses 

are predicted with an error. Overall, the proposed method is able to approximately detect average ice mass accumulated 

along the blade which is not possible before.   

I. INTRODUCTION 

Wind turbines are increasingly installed in the northeastern and the mid-Atlantic US, Canada, and Northern Europe due to 25 

good wind resources and land availability. In these regions, humidity along with low temperatures in the winter increases the 

risk of ice accumulation on wind turbine components. The global wind energy installations in cold climate regions reached a 

capacity of 69 GW at the end of 2012 and an additional capacity of 45-50 GW installations are forecasted between 2013 and 

2017 (Navigant Research, 2012). Icing of the rotor blades results in reduced turbine power output as icing reduces the lift 
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force and increases drag force (Turkia et al., 2013; Rindeskär, 2010). Nacelle vibration amplitudes increase during icing 

conditions, so icing can be detected more reliably using power curve analysis along with measuring nacelle vibrations 

(Skrimpas et al., 2015). Etemaddar et al. (2014) investigated the effects of atmospheric ice accumulation on the aerodynamic 

performance and structural response of the wind turbines and they predicted a bigger change in relative mean value of the 

dynamic response quantities for iced blades. Rissanen et al. (2016) proposed simulation parameters for predicting dynamic 5 

behavior of wind turbines with icing to generate icing design load cases for the new IEC 61400-1 ed4. Ice accumulation on 

the blades is not uniform and its distribution changes under different stages of icing, ice shedding during operation. Ice mass 

on the blade reduces its natural frequencies and raises the risks of resonance. This shift in natural frequencies can be used to 

detect ice and monitor its growth on the wind turbine blades both in operating and standstill conditions (King, 2008; 

Brenner, 2015; Brenner, 2016). Lorenzo et al. (2013) investigated the influence of ice mass on the natural frequencies of 10 

NREL 5 MW turbine by extracting model parameters through operational modal analysis. Alsabagh et al. (2015) considered 

different ice mass distributions as defined in ISO 12494:2001 (2001) standard on a multi megawatt wind turbine blade. They 

analyzed the influences of ice mass on natural frequencies and dynamic magnification factors, by considering only the mass 

changes in the blade.  

Gantasala et al. (2015) investigated the influence of 3 different mass distributions (constant, linearly decreasing and 15 

linearly increasing mass densities) along a rotating beam on its first in-plane bending mode natural frequency. The natural 

frequency of the beam at different rotational speeds varies as shown in Figure 1 (Gantasala et al., 2015). They considered 

constant beam stiffness to show the lone influence of mass density changes on the natural frequency. The rate of change in 

the natural frequency with rotational frequency is influenced by the nature of mass density variation along the beam. Ice 

accumulation on the blade reduces its natural frequencies and how much they reduce depends on the location and amount of 20 

ice mass along the blade axis.  

 
Figure 1. First in-plane bending mode natural frequency variation with increasing rotational frequency of a rotating beam (X and 
Y axis values are non-dimensionalized using the natural frequency of the uniform cross-section beam at zero speed) (Gantasala et 
al., 2015) 25 
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Different ice detection systems consisting nacelle and blade based systems are evaluated in Cattin et al. (2016). Out of 

the blade based systems, Bosch Rexroth BLADEControl system (Brenner, 2015; Brenner, 2016) and fos4blade IceDetection 

(fos4X data sheet, n.d.; Cattin et al., 2016) systems detect ice based on the deviations in blade natural frequencies. The 

spectral vibration response of a wind turbine blade during the ice growth is shown in Figure 2 (Brenner, 2015; Brenner, 

2016) where blade natural frequencies are reduced with the ice growth. The current ice detection systems cannot identify the 5 

amount of ice mass and their location along the blade.  

 

Figure 2. The spectrum of blade vibration response during the ice growth (Brenner, 2015; Brenner, 2016) 

The most widely used anti-icing and de-icing systems works on the basis of heating resistance or hot air techniques 

(Ilinca, 2011). Both these systems require external power and consume 1-4% of annual energy production, depending on the 10 

icing severity (Peltola et al., 2003 in Ilinca, 2011). The required power to remove ice can be minimized if the location of ice 

mass is determined approximately so that the relevant energy needed at the appropriate locations of the blade can be supplied 

to remove ice. This has motivated authors to pursue the idea to determine the location of ice mass and the amount of ice 

mass accumulated on the blade. The authors propose a method based on the Artificial Neural Networks (ANN) model to 

detect ice mass accumulated on the blade by dividing its length into three zones as shown in Figure 3. The inner half of the 15 

blade is considered as Zone-1 and the outer half of the blade is divided into two zones, Zone-2&3 which accumulate more 

ice than the Zone-1. This is due to the fact that the aerofoil sections in this part of the blade sweep more area in the rotation 

and also experience wind at higher relative velocity. The natural frequencies of the blade change differently with the amount 

of ice mass and their location. Different ice masses are considered in the three zones defined along the blade and their natural 

frequencies are simulated using a finite element model of the blade vibrations. The ANN model is trained with blade natural 20 

frequencies as inputs and the corresponding ice masses in the three zones used in the simulations as outputs. ANN’s are 

widely used in many areas for function approximations, pattern recognitions. Their applications in wind energy are mainly 

focused on wind power forecasting and wind speed prediction, wind turbine power control, identification and evaluation of 
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faults (Ata, 2015). The first application of ANN to identify average ice mass accumulated on the blade is proposed in this 

work. The advantage of using ANN for ice mass detection is that it only requires a data set of iced blade natural frequencies 

(input to ANN model) and ice mass distributions (output of the ANN model) associated with them. ANN approximates non-

linear function between inputs and outputs which can be used to predict ice mass distributions for any given set of iced blade 

natural frequencies. NREL 5 MW wind turbine blade structural data is considered in this study and a data set of blade natural 5 

frequencies for different ice mass distributions is created to train the ANN model. Finally, few ice mass distribution cases are 

considered along the blade whose natural frequencies are given as input to the trained network model and the predicted ice 

masses are compared with the actual values of ice masses used. 

 

Figure 3. Division of blade length into different zones for ice mass prediction 10 

This paper is organized as follows: the first section gives introduction and discusses objectives of the paper, second 

section explains the derivation of governing equations of motion of the blade vibrations, third section explains different ice 

mass distribution guidelines, fourth section gives introduction to the ANN model and fifth section consists of results and 

discussions of the paper.  

II. STRUCTURAL MODEL 15 

Wind turbine blades are made of aerofoil cross sections which are twisted and tapered along the blade axis. The vibration 

behavior in bending and torsion are therefore coupled. Kim and Lee (2008) analyzed wind turbine blade modal 

characteristics using the assumed mode method. Partial differential equations governing blade in-plane (edgewise), out-of-

plane (flapwise), axial and torsional vibrations are derived in this section using Hamilton’s principle based on the derivation 

in Kim and Lee (2008). These equations are then analyzed using finite element method (FEM). A rotating coordinate system 20 

OXYZ fixed at the hub center as shown in Figure 4 is considered to derive governing equations of the blade vibrations. Pitch 

axis of the blade (the line joining quarter chord points of the aerofoil sections) coincides with the X axis of the coordinate 

system. Blade vibrations degrees of freedom (DOF) in axial (u), edgewise (v), flapwise (w) and torsional (φ) motions are 

considered in this study.   
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Figure 4. Schematic diagram of the wind turbine blade with vibrations DOF 

The position vector of the center of gravity (G) of aerofoil section at a distance x from the blade root is given in 

Equation (1), its velocity and angular velocity vectors are given in Equations (2) and (3) which are used to calculate the 

kinetic energy of the blade.  5 
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where, η is the hub radius; eη, eξ are the distances from the pitch axis to the center of gravity along the chord line and 

perpendicular to the chord line; θ is the sum of blade twist and pitch angles; Ω is the blade angular velocity; (·) refers to the 

temporal differentiation.   15 

The equations of kinetic energy, strain energy and potential energy (due to the centrifugal and gravitational forces) of 

the whole blade are given in Equations (4)-(6). 
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 −+−Ω= ρρ 222

2
1  is the axial force acting on the blade section which is at a 

distance of x from the blade root; T, ΠE, ΠC+G are the blade’s kinetic energy, strain energy and potential energy; ρA, JP are 

the linear mass density and polar mass moment of inertia of the blade section; l is the blade length; EIY, EIZ, EIYZ are the 5 

blade flexural rigidities and GJ is the torsional rigidity of the blade; g is the acceleration due to gravity; (' ) refers to the 

spatial differentiation with respect to x.  

Work done by the generalized forces fu, fv, fw, fφ corresponding to the u, v, w, φ DOF is given below.  

ϕϕfwfvfufW wvuE +++=                                                                      (7) 

Linear partial differential equations governing the vibration behavior of wind turbine blade are derived using the 10 

Hamilton’s principle given in Equation (8) by assuming small amplitude vibrations and resulting equations are given in 

Appendix.   
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NREL 5 MW wind turbine (Jonkman et al., 2009) blade structural details are considered in this study. Partial 

differential equations (given in Appendix) obtained from the Equation (8) are discretized and analyzed using finite element 15 

method (FEM). Eigenvalue analysis is carried out to find natural frequencies of the blade vibration modes. First few natural 

frequencies of the stationary blade and the blade rotating at its rated speed 12.1 rpm are given in Table 1. These values are 

compared with those predicted using the BModes tool (Gunjit, 2008). Natural frequencies calculated using the current FEM 

model closely matches with those predicted using the BModes tool and the error between these frequencies are shown in 

Figure 5. Most of the frequencies are predicted within +1% error except the torsional frequency. This large difference in the 20 

torsional frequency may be due to different modeling approaches used in the derivation of equations of motion; however 

torsional frequency is not used in the proposed ice detection method.  

III. ICE ACCRETION ON THE BLADE 

Two types of icing occur in wind turbines: glaze and rime ice. Glaze ice is caused by freezing rain or wet in-cloud icing, and 

normally causes smooth evenly distributed ice accretion. Rime forms through the deposition of super-cooled fog or cloud 25 

droplets and is the most common form of in-cloud icing. Rime tends to form vanes on the windward side of the blades. Ice 

formation on the blades depends on parameters like wind velocity, ambient temperature, liquid water content (LWC), 

median volume diameter (MVD) or droplet size and duration of the icing event. All these parameters vary stochastically in 

space, time and these parameters are different for different wind  turbine sites   and they even change for turbines  within the  
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Table 1: Natural frequencies of the NREL 5 MW wind turbine blade 

Vibration 
mode 

Natural frequencies (Hz) 
At 0 rpm At 12.1 rpm 

BModes 
(Gunjit, 2008) 

Current study 
BModes 

(Gunjit, 2008) 
Current study 

1st Flapwise 0.6755 0.6770 0.7275 0.7196 

1st Edgewise 1.0850 1.0843 1.0938 1.1303 

2nd Flapwise 1.9451 1.9541 2.0043 2.0168 

2nd Edgewise 3.9955 3.9898 4.0183 4.0302 

3rd Flapwise 4.4994 4.5529 4.5509 4.6110 

1st Torsion 5.8281 5.5548 5.8332 5.5520 

4th Flapwise 7.9744 8.0679 8.0278 8.1313 

3rd Edgewise 9.3693 9.2590 9.3921 9.2947 

 
Figure 5. Error between natural frequencies predicted using current FEM model and BModes tool 

site. Ice accumulation on the wind turbine blades is not same across the blade length. Blade accumulates more ice away from 

the blade root as it sweeps through a larger area in rotation and collects more ice. Three different guidelines for the ice mass 5 

calculation are available in the literature: ISO 12494:2001 (2001), GL (Germanischer Lloyd, 2010) and VTT (Rissanen et 

al., 2016) formulas. Rissanen et al. (2016) calculated ice mass distributions based on these three formulas on a wind turbine 
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blade which is shown in Figure 6. These guidelines specify maximum ice mass that can be accumulated based on the 

dimensions of turbine rotor and the duration of icing event. The ice mass estimation in ISO 12494:2001 depend on the 

duration of icing event, the width of the blade section and wind speed. The ice mass predicted using this guideline increases 

with the duration of icing event and also predicts more ice near the root due to the higher width of blade section. Ice on the 

blades causes more loads and vibrations in the turbine. In order to certify wind turbines and its components for the cold 5 

climate operation, GL (Germanischer Lloyd, 2010) proposed a guideline that defines the maximum ice mass distribution on 

the blade to calculate loads acting on the turbine in various design load cases. The actual ice mass may be lower than this 

limit, but the turbines are certified for loads corresponding to this mass limit. In the GL guideline, ice mass density linearly 

increases from zero at the blade root to a value μE till the blade’s half-length and thereafter a constant ice mass density 

towards the tip. The value of μE is calculated as follows (Germanischer Lloyd, 2010):  10 

( )minmaxminEE ccck += ρm                                              (9) 

where, ρE is the ice density (700 kg/m3); 








−

+= 1

320
30006750 R

R.
e..k , R is the rotor radius in meter unit, R1 = 1 m; cmax, 

cmin are the maximum and minimum chord lengths of the blade in meter unit. A new linearly increasing ice mass distribution 

guideline is developed by VTT (Rissanen et al., 2016) in terms of the blade chord length at 85% of radius, rotor radius and a 

variable determined from turbine load measurements.  15 

 
Figure 6. Different ice mass distributions defined in the literature (Rissanen et al., 2016) 

Mass distribution of the NREL 5 MW wind turbine blade considered in this study is shown in Figure 7(a) along with 

the iced blade mass distribution estimated using GL formula. The μE value for this turbine blade is 40.73 kg/m and the 

maximum ice mass on the blade according to GL formula is calculated to be 1878 kg (10.66% of blade mass). The 20 

distribution of the GL ice mass in the three zones divided along the blade length is shown in Figure 7(b). 
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(a) 

 

 
 

 
(b) 

Figure 7. (a) NREL 5 MW blade mass distribution with ice, (b) GL ice mass distribution  

To find the influence of ice mass location on blade natural frequencies, an ice mass of 100 kg (which is about 0.58% 

of blade mass) in considered in one zone at a time on this wind turbine blade and it is distributed with constant linear mass 

density. The ice mass value used above is well below the GL limit shown in Figure 7(b). The natural frequencies of iced 

blade rotating at 12.1 rpm are given in the Table 2. The reduction in natural frequencies is sensitive to the ice mass location 5 

and the frequencies reduce more when the ice mass is located away from the blade root. In this work, this behavior is used to 

predict the average amount of ice mass accumulated in the three zones defined on the blade based on its blade natural 

frequencies using Artificial Neural Networks explained in the next section.   

Table 2: Changes in the blade natural frequencies with the location of ice mass: 100 kg ice mass is considered in three zones with 
ice present in one zone at a time  10 

Vibration 
mode 

Ice mass in Zone 1 Ice mass in Zone 2 Ice mass in Zone 3 

Frequency 
(Hz) % change Frequency 

(Hz) % change Frequency 
(Hz) % change 

1st Flapwise 0.7196 0.00 0.7169 -0.37 0.6979 -3.01 

1st Edgewise 1.1300 -0.03 1.1233 -0.62 1.1069 -2.07 

2nd Flapwise 2.0146 -0.11 2.0045 -0.61 1.9775 -1.95 

2nd Edgewise 4.0225 -0.19 4.0173 -0.32 3.9529 -1.92 

3rd Flapwise 4.6020 -0.19 4.5917 -0.42 4.5234 -1.90 

4th Flapwise 5.5488 -0.06 5.5022 -0.90 5.4614 -1.63 

3rd Edgewise 8.1183 -0.16 8.0969 -0.42 7.9794 -1.87 
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IV. ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Networks are inspired from the biological neural networks, where artificial nodes known as neurons are 

connected together to form a network. ANN can be used to estimate or approximate functions that depend on multiple 

variables. The network receives inputs from the neurons in the input layer, and the output of the network is given by the 

neurons in the output layer. There may be one or more intermediate hidden layer. The neurons in the network are connected 5 

with each other and associated with some weights. These weights are determined in the training process where the relation 

between input and output variables is determined (Ata, 2015). The backpropagation algorithm is the most widely used 

algorithms to determine the weights of neurons organized in layers. In this algorithm, the network signal travels in the 

forward direction and the errors are propagated backward. The algorithm is provided with a set of inputs and outputs; the 

error (difference between actual and expected results) is calculated for each input and corresponding output. The network 10 

training begins with random weights, and then adjusted till the error is minimal. Once the network is trained, it can be used 

to identify output variables for any given input variables. The prediction can be improved by increasing the number of 

neurons and training the network with large data set that covers a wider range of input variable combinations. The advantage 

of ANN is that it only needs inputs and outputs of the process to approximate underlying complex nonlinear functions. In 

this study, a nonlinear function which considers blade natural frequencies as input and the ice mass accumulated in the three 15 

zones as output is approximated using ANN.  

In this study, different ice mass values between zero and a maximum value of ice mass (626 kg, defined by GL limit 

shown in Figure 7(b)) are considered in each zone. This range is divided into n equally spaced values, so ( )1+n  values are 

possible for ice mass in each zone. Then, ( )31+n  combinations of ice masses in the three zones are possible; these ice 

masses are distributed with corresponding constant linear mass densities (mass per unit length). Each guideline defines ice 20 

mass distribution differently in the three zones in Figure 6, instead of considering any of these mass distributions, ice masses 

are distributed with different linear mass densities in the three zones and used to simulate natural frequencies of the blade 

using the FEM model of the blade. Thus a data set of size ( )31+n is created to train the ANN with blade natural frequencies 

as inputs and corresponding ice mass values in the three zones as outputs. The dataset is randomly divided into three groups: 

70% for training, 15% for validation and 15% for testing. Levenberg-Marquardt backpropagation algorithm (MATLAB 25 

Neural network toolbox, n.d.) is used in this study to identify ice masses in three different zones (3 output variables) defined 

along the blade length with first 3 flapwise and 2 edgewise natural frequencies as the inputs (total 5 input variables). The 

neural network model used in this study is shown in Figure 8 with input and output layers. The backpropagation algorithm 

determines the weights of the neurons so that the error between outputs of the neural network model and the actual output 

values of the training data set is minimized. The algorithm achieves an acceptable mean square error of 0.0014 at the end of 30 

1000 epochs (In the neural network terminology: one epoch means one forward pass and one backward pass of all the 

training data) in Figure 9. The neural network model is now well fitted to the training data and it is tested for some ice mass 

distributions in the next section.    
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Figure 8. Artificial Neural Network diagram with inputs and outputs 

 
Figure 9. Mean squared error convergence of the training data 

V. RESULTS & DISCUSSIONS 10 

In this section, ten ice mass validation cases as shown in Figure 10 are considered along the blade and simulated their natural 

frequencies. These frequencies are used as inputs to different neural network models to identify: the minimum detectable ice 

mass; the influence of neural network variables like number of blade natural frequencies used in the input, the number of 

samples used in the neural network training and number of neurons used in the hidden layers on the prediction accuracy. The 

ANN model described in the Section IV used 5 natural frequencies of the blade as input, a new network model with 7 natural 15 

frequencies (4 flapwise + 3 edgewise vibration modes) as input is considered in this section. The range between minimum 

and maximum ice mass values in each zone is divided into 20 (i.e., n=20) divisions in the last section which generated a data 

3 Flapwise + 2 Edgewise  
Natural frequencies 

Ice mass  
in 3 zones number of 

neurons 
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set of size 9261 samples, in this section it is divided into 25 divisions which generates a data set of size 17576 samples. To 

check the influence of number of neurons on the prediction accuracy, they are increased to 20 in this section from 10 in the 

last section. Different ANN models are created by changing one parameter in each model as defined in Table 3 and trained 

with data sets of blade natural frequencies and the ice masses considered on the blade. These network models are then given 

blade natural frequencies corresponding to the ice mass validation cases as inputs. The ice mass values predicted by neural 5 

network models created with different input parameters are compared in Table 4 with the actual ice mass values used in the 

validation cases. 

 
Figure 10. Ice mass distributions along the blade considered in the validation cases 

Table 3: Input parameters used in different network models 10 

Neural network 
inputs 

Network model number 

1 2 3 4 5 

No. of neurons 10 20 10 10 20 

Training data size 9261 9261 17576 9261 17576 

No. of input 
frequencies 

5# 5# 5# 7* 7* 

#
 3 flapwise + 2 edgewise natural frequencies, * 4 flapwise + 3 edgewise natural frequencies 
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In ice mass validation cases 1-6, small ice masses (approximately 50 kg, 100 kg, i.e., 0.28% and 0.56% of blade 

mass) with constant linear mass densities are considered along the blade as shown in Figure 10. The network models created 

with input parameters defined in Table 3 are accurately predicting these small ice masses as all network models are trained 

with similar ice mass distributions (constant linear mass densities) along the blade. Whereas in the cases 7 and 8, ice mass is 

not well predicted in Zone-1. In these cases, the ice mass distribution in Zone-1 is linearly increasing from the blade root to 5 

middle of the blade length similar to the GL ice mass distribution, but the training data (input to neural network models) are 

generated considering ice mass with constant linear mass density in Zone-1. This introduced some error in the ice masses 

predicted in Zone-1. Ice mass is distributed randomly in cases 9 and 10 which is close to the reality, all network models are 

only able to predict ice masses in the three zones approximately. ANN approximates non-linear function between ice masses 

distributed with constant linear mass densities and blade natural frequencies used in the training data, ice masses can be 10 

accurately predicted using the trained model only if the input natural frequencies correspond to ice masses distributed with 

constant linear mass densities. But, the actual ice mass distribution in cases 7-10 is quite different from the ice mass 

distributions used in the training data, so ice masses are predicted with an error which are shown in Figure 11. The error 

decreases with increase in ice mass i.e., from case 7 to case 8 and case 9 to case 10 (see Figure 11).  

Table 4: Ice masses predicted using different network models in the ice mass validation cases 15 

Ice mass 
validation  
case no. 

Actual ice mass  
values (kg) 

Predicted ice mass values (kg) 

Network model no. 

1 2 3 4 5 

1 

Zone 1 50 50 50 50 50 50 

Zone 2 1 0 0 0 0 0 

Zone 3 0 0 0 0 0 0 

2 

Zone 1 100 100 100 100 100 100 

Zone 2 2 0 0 0 0 0 

Zone 3 0 0 0 0 0 0 

3 

Zone 1 0 0 0 0 0 0 

Zone 2 48 48 48 48 47 47 

Zone 3 3 0 0 0 0 0 

4 

Zone 1 0 0 0 0 0 0 

Zone 2 96 96 96 97 95 94 

Zone 3 7 0 0 1 0 0 

5 
Zone 1 0 0 0 0 0 0 

Zone 2 0 6 6 3 0 13 
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Zone 3 47 49 48 47 50 46 

6 

Zone 1 0 0 0 0 0 0 

Zone 2 0 9 11 5 0 23 

Zone 3 93 99 96 95 100 92 

7 

Zone 1 81 23 6 24 70 12 

Zone 2 118 131 138 125 104 150 

Zone 3 165 167 163 161 169 157 

8 

Zone 1 269 209 170 195 302 180 

Zone 2 235 243 277 235 192 279 

Zone 3 382 391 382 377 395 372 

9 

Zone 1 133 103 93 101 140 96 

Zone 2 112 146 154 145 130 164 

Zone 3 107 111 108 105 110 102 

10 

Zone 1 492 517 485 505 648 492 

Zone 2 466 481 519 472 390 503 

Zone 3 450 446 436 431 457 424 

 

 
Figure 11. Error between ice masses predicted and actual ice mass values used in the validation cases 7 to 10 
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Neural network models created in this section differ either in the number of neurons or the weights associated with 

them because of different input parameters, so ice masses predicted in each case are slightly differing from one another. 

Network models created with each set of input parameters defined in Table 3 are approximately predicting ice masses in the 

three zones. It is not possible to estimate the ice mass exactly for whatever parameters chosen to create network models if the 

ice mass distribution in validation cases (like cases 7-10) is different from the ice mass distribution used to generate the 5 

training data. So, any set of input parameters in Table 3 can be used to create the network model. In general, network model 

parameters considered in this study are not significantly changing the predicted ice mass values. Neural network model 4 

predicts ice masses relatively better than the other models. The neural network models trained with data generated using 

constant linear mass densities along the blade are predicting random ice mass distributions reasonably. The nature of ice 

mass distribution differs from site to site based on the cloud heights, hub height and rotor diameter, so site specific ice mass 10 

distributions can be captured using automatic cameras installed on nacelle or spinner (Cattin, 2012). Training data with 

similar ice mass distributions can be generated to improve the accuracy of ice mass detection. This paper demonstrates the 

idea to detect average ice mass accumulated in three different zones defined along the blade using the information about 

blade natural frequencies. These frequencies can be measured using ice detection systems currently available in the market 

like BLADEControl and fos4blade IceDetection systems. The authors are planning to try this idea on, a scaled down wind 15 

turbine by adding different ice masses along the blade.  

VI. CONCLUSIONS 

Ice accumulation on the blade reduces its natural frequencies and these frequencies reduce differently with the amount of ice 

mass and their location. This behavior is used in the current work to identify average ice mass accumulated in the three zones 

defined along the blade using an Artificial Neural Networks model. The network model is trained with a data set of iced 20 

blade natural frequencies (first few flapwise and edgewise modal frequencies obtained from simulations) as input and ice 

masses used in the three zones as output. The trained network model is then used to find the ice masses in ten validation 

cases. The ANN models predict even ice mass of 50 kg which is equal to 0.28% of the mass of the NREL 5 MW wind 

turbine blade in all the three zones when the ice mass in validation cases is distributed in the same way as used in the training 

data set, otherwise ice masses are predicted with an error. Overall, the proposed technique predicts the ice mass distribution 25 

along the blade approximately which is otherwise not possible before. The technique is only demonstrated using simulation 

data by considering different ice masses along the blade and this technique needs to be validated with experimental data. The 

results shown in this study encourage continuing this work as it only needs measurements of the ice detection systems 

currently available in the market. Another advantage of this technique is that it only needs a data set of simulated blade 

natural frequencies with different ice masses along the blade which can be provided by the turbine manufacturer.  30 
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APPENDIX 

Coupled partial differential equations governing wind turbine blade axial, edgewise, flapwise and torsional 

vibrations are given below. 5 

( ) ( ) ( ) ( ) uftcosAgηxAuEAuavuA +Ω++Ω=′′−Ω−Ω+Ω− ρρϕρ 22
222   

( ){ } ( ) ( ) ( ) vaxyzz ftsinAgaAvFwEIvEIavuavA +Ω−Ω=′′−″′′+′′+−Ω−Ω+− ρρϕϕρ 1
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2
2

2 2   
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2

2
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2
212

2
2

2
1 2 

 

where, θθθθ ξηξη cosesinea;sinecosea +=−= 21 . 10 
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