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Abstract.

In this work we relate uncertainty in background roughness length (z0) to uncertainty in wind speeds, where the latter

are predicted at a wind farm location based on wind statistics observed at a different site. Sensitivity of predicted winds to

roughness is derived analytically for the industry-standard European Wind Atlas method, which is based on the geostrophic

drag law. We consider roughness statistically and its corresponding uncertainty, in terms of both z0 derived from measured5

wind speeds, as well as that chosen in practice by wind engineers. We show the combined effect of roughness uncertainty

arising from differing wind-observation and turbine-prediction sites; this is done for the case of roughness bias, as well as for

the general case. For estimation of uncertainty in annual energy production (AEP), we also develop a generalized analytical

turbine power curve, from which we derive a relation between mean wind speed and AEP. Following from our developments

we provide guidance on approximate roughness uncertainty magnitudes to be expected in industry practice, and also find that10

sites with larger background roughness incur relatively larger uncertainties.

1 Introduction

Microscale flow models have been employed for decades in wind energy assessment, for estimation of resources at one location

based on wind measurements at a different site (Troen and Petersen, 1989). Further, it has become increasingly popular in

the past decade to use mesoscale model output to drive microscale models, for the same purpose (e.g. Badger et al., 2014).15

Such flow modeling relies on characterization of the surface, including terrain elevation and surface roughness. As input to

atmospheric flow models, both terrain elevation and roughness have uncertainties associated with their assignment. In practice,

terrain elevation uncertainty tends to be dominated by the resolution of elevation maps (e.g. Sørensen et al., 2012).1 In contrast,

there are a number of significant uncertainties associated with roughness, which do not (necessarily) depend on resolution; these

include determination of roughness length z0 from measurements, and assignment of z0 in industrial practice (based on e.g.20

land-use/terrain type and/or experience). Overall, uncertainty related to roughness tends to be dominant over elevation-related

1 Currently (2016), microscale models typically have computational resolutions finer than elevation maps; commonly available elevation maps in most of

the world today have typical resolutions of ∆x∼10–90 m, whereas quasi-linear (e.g. WAsP) and Reynolds-averaged Navier-Stokes (RANS) models employed

for wind are most often run with resolutions (much) finer than 10 m. There are a growing number of exceptions, stemming from the advent of airborne laser-

based terrain measurements which can offer resolutions less than one meter (e.g. Zhang et al., 2005; Danish Geodata Agency, 2015).
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uncertainty, particularly in wind-energy applications. In this work we develop a practical treatment of the effect of roughness

uncertainty upon wind resource estimation, providing a formulation for estimation of roughness-induced uncertainty in annual

energy production.

First we review the definition of roughness length, introducing and demonstrating the statistical character of z0—i.e. dis-

tributions of z0 from measurements, and the behavior of such; we connect this statistically to a practical uncertainty metric.5

Then we present the theoretical framework which is used for wind resource estimation, based on the geostrophic drag law (as

used in the European Wind Atlas methodology, Troen and Petersen, 1989) and including its relation to roughness. In section 3

we introduce uncertainty; this includes basic characterization of the uncertainties inherent in [1] the roughness definition and

observed distributions of z0 (§3.1.1), and [2] the variations in z0 prescribed in the wind energy industry (3.1.2). We continue by

showing how uncertainty in the background roughness can be translated into uncertainty in predicted wind distributions, within10

the European Atlas framework (§3.2.1); here we provide derivations of the sensitivity of predicted winds to input roughnesses

at observation and prediction sites, respectively. Consequently we examine the effect of user-assigned biases in roughness

assignment, and more generally the combined effect of (independent) roughness uncertainties on predicted wind speeds. For

practical use we also develop an analytical relation between rated power, mean wind speed (Weibull-A parameter), and AEP;

this is accomplished via convolution of a generalized analytical power curve form and Weibull wind distribution. Thus we15

translate z0-uncertainty into uncertainty of annual energy production [AEP].

Though there are different methods possible for determining or calculating roughness length, we concentrate here on the

propagation of uncertainty in background roughness to predicted wind speeds and annual energy production. More details

about and issues arising from alternate methods of roughness length calculation are beyond the scope of this article, and are

the basis of concurrent work to be included in a separate paper(s).20

Lastly we discuss approximate roughness uncertainty magnitudes expected in practice, and the consequences of such. This

also includes, for example, the result that sites with larger background roughness tend to give larger relative uncertainty (i.e. %)

in predicted wind speeds and significant uncertainty in AEP. We also discuss implications on the use of mesoscale simulation

data for driving microscale models, i.e. generalization of wind statistics.

2 Basis and framework25

Physically, this work simply considers the use of wind measurements (statistics) at some height above ground level at one lo-

cation, in order to predict wind statistics at another location and height. Starting with ideal (uniform flat) terrain, this prediction

can be broken into components, commonly labeled within the wind resource assessment community as vertical and horizontal

‘extrapolation,’ respectively. Subsequently the theoretical foundation of this work involves the two basic components related

to the physics modeled by such ‘extrapolations’: these are the wind profile for vertical extrapolation, and the geostrophic drag30

law (‘GDL’) for relating the wind statistics at different sites; they are covered in sub-sections 2.1 and 2.2, respectively. The

vertical wind profile form (of which the simplest is the logarithmic law) requires a surface roughness length, and the GDL also

requires a characteristic (background) roughness length. Because we wish to relate uncertainty in roughness to uncertainty in
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wind energy estimates, i.e. finding the uncertainty in accounting for the effect of the surface—we first begin by examining

roughness length, both in theory (i.e. definition) and in practice (e.g. its statistical character).

2.1 Roughness length: theory and practice

The concept of roughness length began with characterization of the velocity profile in ideal engineering flows (e.g. pipes),

where roughness has a direct physical interpretation (Nikuradse, 1933; Tripp, 1936); it was further adopted to describe the5

wind profile in the atmospheric surface layer (ASL), whereby it has an implicit (and not directly physical) definition (Monin

and Yaglom, 1971). The basic role of roughness length, and its definition, can be seen through the ideal expression for the

mean wind profile U(z) over a homogeneous flat surface in neutral conditions (without thermal stability effects):

U(z) =
u∗
κ

ln

(
z

z0

)
. (1)

In (1) z0 is the roughness length and z the height above (distance normal to) the surface, expressed in the same units; κ is10

the von Kármán constant, generally accepted to be 0.4 (Högstrom, 1996). The friction velocity u∗ is defined by u2
∗≡−〈u′w′〉,

i.e. as mean momentum transport towards the surface through turbulent stream-wise (u′) and vertical or surface-normal (w′)

velocity fluctuations. The roughness z0 can also be seen as an integration constant, since (1) results from integrating dU/dz=

u∗/(κz); the latter is typically derived via dimensional analysis, through the Buckingham Pi theorem (e.g. Stull, 1988; Wyn-

gaard, 2010). The logarithmic wind profile (1) depends upon a number of assumptions: u∗ is effectively constant from the15

surface up to height z (i.e. du2
∗/dz�σ2

u/`ABL Wyngaard, 2010), the surface is flat and uniform, there is horizontal homogene-

ity (no variations parallel to the surface), there is no height-dependence in the forcing of the flow, and there are (no effects due

to) temperature variations; i.e. the only variables determining dU/dz are u∗ and z.

2.1.1 Calculation of roughness length from wind measurements

From (1) one can see that for U measured at two heights {z1,z2}, the roughness can be calculated by20

ln(z0) =
U(z2) lnz1−U(z1) lnz2

U(z2)−U(z1)
. (2)

While one can also obtain the roughness via the shear exponent (e.g. Kelly et al., 2014a) that is oft-used in wind energy, Equa-

tion 2 does not involve approximations, and directly follows from the definition of roughness. One can also use friction velocity

measured in the surface layer and wind speed from one (or more) height(s) to derive roughness (e.g. z0 =z exp[−κU(z)/u∗]

from Eqn. 1), but doing so requires sonic anemometers, which are not yet commonly used in the wind energy industry. Thus25

we use (2) for the ‘observed’ roughness data analyzed and shown in this paper, and leave alternate z0-estimation methods for

concurrent work/dissemination that focuses solely upon roughness. This choice is further supported by the focus of the present

article—we are concerned here with the impact of roughness length on wind energy estimates—and because we develop and

use an uncertainty-estimation framework that is generally applicable to z0, regardless of whether z0 is derived from (2) or

via U/u∗.30
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2.1.2 Roughness as a statistic

Even in seemingly ideal conditions—such as measuring wind profiles in the surface layer at a site where the terrain is flat

and appears uniform, with non-neutral cases excluded—in practice one still observes a broad range of roughnesses. This is

demonstrated in Figure 1, which shows the roughness length calculated from 10 m and 40 m measurements at the Danish

National Wind Turbine Test Station at Høvsøre, for upwind directions corresponding to flat and homogeneous surface (east of5

the meteorological measurement mast). Here we have filtered out non-neutral conditions by keeping only cases unaffected by

thermodynamic stability by using z/|L|< 0.001, i.e. for Obukhov lengths L much greater than the heights of measurement.

Figure 1 starkly demonstrates that, even at a “homogeneous,” well-studied and presumably simple site, roughness length has

Figure 1. Lower-left (a): Distribution of z0 for ‘homogeneous’ land sectors (30◦ wide) east of Høvsøre. Right (b): Joint distribution of z0 and

wind direction φ; darker represents most common values, white is no occurrence. Calculation follows (2) with z1=10 m and z2=40 m, and

is limited to neutral conditions (|L|−1<0.001m−1). Upper-left (c): visual map east of site (red pointer; southern border of ‘homogeneous’

zone at ∼130◦ denoted by yellow line).

a distribution of significant width. Note that we plot the distribution of roughness length in logarithmic space; this is done

because it is ln(z0) which directly affects the wind profile, as in (1). This also highlights the breadth of the distribution (several10

orders of magnitude), and that we must subsequently approach roughness uncertainty in a multiplicative (dimensionless) way

and not in an additive way. We also remind that the roughness lengths generally used in wind flow modeling and resource

assessment actually correspond to some geometric mean, which should be based on the z0-distribution (alternately one can
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express wind profiles in terms of the distribution P (lnz0) and corresponding arithmetic mean, c.f. Kelly and Gryning, 2010);

unfortunately z0 are not (yet) defined explicitly as such in typical wind engineering practice. We thus focus in this paper on

roughness uncertainty within the ‘implied mean-roughness’ framework implicit in standard wind engineering.

In addition to the relatively wide distribution apparent for roughnesses obtained from 30-minute averages shown in Fig. 1

(and slightly wider for 10-minute averages, not shown), one can also see some local—and non-ideal—details. One sees the5

minor effects of a barn and a small building located roughly 800 m upwind at ∼80◦ and ∼110◦ respectively, as well as

the larger effect of the seasonally-varying marsh/fjord coastline 800–900 m to the southeast (∼130–135◦). Such roughness

changes tend to violate the assumptions behind the logarithmic profile, over a range of observation heights falling within the

non-equilibrium internal boundary-layer (IBL) transition region (Sempreviva et al., 1990; Bou-Zeid et al., 2004; Calaf et al.,

2014).2 The more drastic semi-coastal roughness change ‘contaminates’ the shear measured between 10–40 m enough to give10

the larger apparent z0 shown in Fig. 1b as φ→ 135◦ and subsequently wider distribution P (z0) shown in Fig. 1a for the

120◦ sector.

Because neutral conditions tend to be encountered most often (stability distributions have their peak around L−1 =0,

c.f. Kelly and Gryning, 2010), the distribution of shear exponent P (α) can also be related in terms of an effective rough-

ness length without filtering stability to exclude non-neutral conditions (Kelly et al., 2014a). Thus the wind profile can indeed15

give information about the surface, though the shear at higher z includes the effect of increasingly more terrain further up-

wind (potentially including hills as well as roughnesses).3 Avoiding substantial changes in surface characteristics/land use, this

can be useful towards the aim of gauging background z0.

One can also calculate a more ‘local’ roughness length via (1) using measurements of U and u∗ within the surface layer

(filtering out non-neutral conditions via measured heat fluxes), but doing so requires sonic anemometers, which are not (yet)20

commonly used in the wind industry. For example, using U and u∗ measured at z=10m for the case above gives P (z0,φ) that

is insensitive to the inhomogeneities described above, i.e. it does not ‘jump’ as φ increases above ∼130◦. But although the

resultant z0(U/u∗) tend to better conform to the assumptions behind surface-layer theory and (1), they are consequently limited

to ASL heights—which in stable conditions (e.g. nighttime, winter) only extend to ∼10–20 m. Further, the z0 derived from

U/u∗ in the ASL are local, only pertaining to the nearest several hundred meters, perhaps less in stable conditions. However,25

the widths of P (lnz0) derived from U/u∗ (not shown) are on par with those obtained from U at two heights and displayed in

Fig. 1.

Thus in the present article concerned about uncertainty, we do not address the implications of surface-layer theory nor

its conditional violation, but rather focus on the effect of roughness uncertainty—as it would be measured (or assigned) in

industrial practice—upon resource assessment, particularly through ‘horizontal extrapolation’ from an observation mast to a30

separate turbine location(s).

2The IBL develops downwind from a roughness change with expansion slope (z:x) of roughly 1:100, and the top of the associated transition region expands

at a variable rate of 1 to ∼12–15. For the example noted here this corresponds to the flow measured by anemometers at both 10 m and 40 m being affected.
3 The increasing area of surface affecting winds at increasing heights, and also associated averaging issues, are beyond the scope of the current article (con-

sult e.g. Lettau, 1969; Garratt, 1978; Hasager and Jensen, 1999).
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2.2 Geostrophic drag law: Wind Atlas method

The geostrophic drag law (GDL) allows wind statistics observed at one site to be applied at potential wind farm sites nearby

that may have different surface characteristics (i.e. roughness and terrain elevation); it is the basis of the European Wind

Atlas [‘EWA’] Method (Troen and Petersen, 1989) used widely for wind resource estimation. The GDL arises from matching

the dimensionless surface-layer profile of mean wind in neutral conditions (i.e. the log-law divided by u∗) to dimensionless5

solutions of the mean horizontal equations of motion away from the surface, as affected by the Coriolis force (Ellison, 1956;

Krishna, 1980; Walmsley, 1992). The mean atmospheric boundary layer (ABL) flow is driven by a large-scale mean pressure

gradient∇P , expressible also as the geostrophic wind G≡−k̂×∇P/(fρ) = {−∂P/∂y,∂P/∂x}/(fρ) where k̂ is the vertical

unit vector and f is the latitude-dependent Coriolis parameter; the pressure gradient force is balanced (vectorially) by the

Coriolis force and momentum transfer to the surface. So the GDL basically relates the large-scale forcing (expressible as the10

geostrophic wind above the ABL) to the surface-layer momentum flux (friction velocity), depending on the surface roughness.

The geostrophic drag law can be simply expressed in scalar form as

G=
u∗
κ

√[
ln

(
u∗/f

z0

)
−A0

]2

+B2
0 , (3)

where A0 and B0 are empirical constants (taken e.g. by the EWA to be 1.8 and 4.5, respectively). Thus for two sites which

can be assumed to have the same large-scale forcing (distribution of G), then the wind statistics at one site can be translated15

to wind statistics at the other. From the wind profile relation (1) one can obtain u∗ from measured U over one roughness z0,1,

and subsequently G from (3); then at the prediction site one can solve (3) to get u∗ at a potential turbine site, and subsequently

find U there over a roughness z0,2. Below, we will show the impact of roughness uncertainty upon wind speed and AEP

estimates via (1) and (3).

3 Uncertainty20

3.1 Roughness and uncertainty components

In general, uncertainty can be classified into two types (Kiureghian and Ditlevsen, 2009): aleatoric uncertainty, and epistemic

uncertainty. First, aleatoric (sometimes called “statistical” or “random”) uncertainty is the variability in a quantity that arises

from randomness inherent the process(es) which impact said quantity. Epistemic or “systematic” uncertainty is that which

arises due to lack of knowledge about a quantity (imperfect understanding of it in the ‘real world’).25

The aleatoric (random) uncertainty inherent in roughness length can be said to include that associated with the width of

the ‘observed’ distribution of z0 shown in section 2.1.2. This tends to be due to variability in the system being described;

the ‘system’ in this case is the atmospheric surface layer and the surface nearby the measurement point which influences the

flow. However, there is also an epistemic component containted within the distributions P (z0) shown in Figure 1; it is due

to effects which were neglected in the derivation of the theory used, namely the logarithmic law (1). Physically, this includes30

inhomogeneities in the surface upwind, and dependence of surface characteristics upon wind speed (i.e. water or flexible
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vegetation, c.f. Monin and Yaglom, 1971); within the context of the turbulent surface layer as described by turbulence theory,

it tends to be manifested via turbulent transport (Kelly et al., 2014a; ?).

When performing resource assessment, wind engineers in practice characterize the surface via roughness length (as well

as terrain elevation, which we do not treat in this paper). Roughness characterization can occur via assignment of z0 values

chosen by the wind engineer, or through roughness values (or land-use types) ‘inherited’ from maps acquired from a third5

party. Typically the former has dominated the wind industry, though the latter is becoming more common; land-use types and

classes are contained in some geographical data products, but these have not yet been shown to be consistently or universally

translatable to roughness lengths for different parts of the world (see e.g. Marticorena et al., 2006; Torbick et al., 2006). Either

way, epistemic uncertainty arises due to our ignorance of the appropriate representative roughness length4 and is introduced

when characterizing the surface via a single roughness; this uncertainty exists regardless of whether the characteristic z0 is10

chosen by an algorithm assigning values to a map based on look-up tables for various land classifications, or by a wind

engineer who has visited the (potential) site.

The epistemic components associated with the theory used to ‘convert’ wind observations into ‘observed’ z0 tend to manifest

via turbulent transport, and subsequently behave randomly, arising to a good degree from variability of the surface itself (hence

being debatably aleatoric). These are in contrast to the uncertainty arising from selection of z0 by engineers, or the uncertainty15

inherent in (usage of) a relatively small number of widely-used sources for roughness-maps—which can contain significant

bias and are not (directly) related to measurement. Thus here we group the former, observationally-related uncertainty together

with the aleatoric uncertainty, and then consider separately the epistemic uncertainty implicit in assignment of roughness values

by wind engineers in practice.

3.1.1 Uncertainty in observation-based z020

For the observation-based roughness lengths displayed in Section 2.1.2 (Fig. 1), the distributions are best described (and thus

plotted) as P (lnz0)—again consistent with both the ln(z0) behavior expected within the wind profile, and with the geometric

(multiplicative) averaging needed to obtain a characteristic ‘mean’ roughness. The width of the ln(z0) distributions shown in

Fig. 1 gives indication of the variability in lnz0 over many 30-minute (or 10-minute) periods. In particular the P (lnz0) for

30◦-wide directional sectors can be considered, that is P (lnz0|ϕ), since sectors of this width are commonly used in resource25

assessment. The homogeneous 60◦ and 90◦ sectors at Høvsøre (Fig. 1) have similar shapes, and both exhibit half-peak widths

of roughly one-half order of magnitude (a factor of ∼3); i.e. for a given sector’s background roughness z0, the width of the

distribution can be seen as that defined roughly between z0/3 and 3z0.

However, the uncertainty in determining a representative roughness length—via the appropriate (geometric) mean—is not

the same as the width of the ln(z0) distribution. Rather, the uncertainty in the mean roughness is the width of the distribution of30

expected means calculated for a given site and sector. For this purpose we use a basic ‘bootstrap’ resampling method (Varian,

2005; Wu, 1986): simply re-sampling randomly from the diagnosed (30-minute) roughness lengths, we synthesize a distribution

4 As shown in the section above, the representative roughness length should be based on a geometric mean, due the ln(z0) behavior exhibited by the

surface-layer wind profile in neutral conditions.
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of 105 values of geometric-mean roughness (〈z0〉g) per sector. This results in a log-normal distribution of mean z0 (Gaussian

distribution of lnz0); this distribution P (exp[〈lnz0〉]) is centered around a value equal to the geometric mean that had been

found for each sector by operating directly on the wind data. The width of each (sector-wise) distribution of mean-roughnesses

from resampling depends on the number of re-sampled points used to create each mean in the synthesized distribution. For a

number equivalent to one year’s worth of data (based on the sector-wise frequency of occurrence), the mean-distributions are in5

fact much narrower than the distributions shown in Figure 1. The bootstrapped mean-roughness distribution is almost perfectly

fit by a log-normal form; the half-width w〈z0〉RS for this form can be simply expressed non-dimensionally (i.e. effectively

normalized by the expected mean) via the standard deviation of mean-lnz0 from resampling (σ〈lnz0〉RS ), as

w〈z0〉RS〈
〈z0〉RS

〉
g

= exp
{
σ〈ln[z0/〈z0〉g]〉RS

}
= exp

{
σ〈lnz0〉RS

}
− 1. (4)

For the Høvsøre ‘homogeneous’ land sectors treated here and the bootstrapped means each calculated from one-year’s worth of10

resampled data, the w〈z0〉RS of the sector-wise distributions of these means are about 5% of the expected mean roughness length

(specifically, 5.4%, 4.1%, and 5.3% of the respective
〈
〈z0〉RS

〉
in each sector from Eq. 4). Thus, considering only calculation

of z0 from wind speeds measured at two (10 and 40 m) heights via (2) from one year of data, the roughness uncertainty for the

three sectors shown in Figure 1 is about 5%. For longer data sets, the uncertainty decreases; for example, randomly drawing

from the entire 10-year set leads to half-widths of 1–2%.15

We do remind that there are other methods to calculate z0, such as using the surface-layer friction velocity u∗ and wind

speed at one (or more) measurement height(s) via (1)—which may result in different values of estimated mean/characteristic

roughness length. For example, repeating the analysis above using (1) with U and u∗ measured at 10 m height, we again obtain

well-behaved distributions of bootstrapped mean roughness whose half-widths are about 5%; one might take this as the implied

uncertainty. However, the mean values (for a given sector) can actually differ between the two methods, by an amount which20

can greatly exceed 5% (in these Høvsøre land sectors they can differ by a factor of ∼3!). This difference is related to the flow

physics at increasing distances from the mast (the momentum flux footprint), the details of which are beyond the scope of this

paper; we defer further discussion of such differences to section 4.

3.1.2 Uncertainty and ensembles of user-input

Even for an ideal homogeneous landscape, the wind industry, which is a collection of wind engineers and companies, will25

as a group assign different roughnesses to characterize the surface (whether actively or inherited via acquired maps). This

results in a distribution of z0 assigned to predict the wind for any given site, and in effect to an (epistemic) uncertainty—and

subsequently industry-wide variation in predicted AEP, even at the most simple sites.

We provide a simple practical example of gauging such epistemic uncertainty, based on a systematic exercise: we asked

separate groups of wind resource assessment experts to individually evaluate the surface roughness length for two commonly-30

encountered land surface types. The groups of participants in this exercise were polled at meetings of the Danish Windpower

Network ‘Vindkraft-Net’ (Kelly and Jørgensen, 2014) and of the Meteorology section of the Department of Wind Energy

(Risø lab/campus) in the Danish Technical University, respectively; their work and foci range from wind engineering and
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commercial site assessment to research in boundary-layer meteorology and wind resource calculation. The participants were

Figure 2. Image of the two areas (grassy and forested) used in roughness survey exercise.

shown a picture containing both a grassy area and a forested area (the latter specified as having a mean tree height of 15 m),

and asked to give z0 for each of these two areas; the picture is replicated in Figure 2. The “raw” results of the roughness survey,

which consisted of 19 and 28 participants, respectively, are shown in Table 1.

geom. mean, 〈z0〉g arith. mean, 〈z0〉 exp{σln[z0/〈z0〉g]} std. deviation, σz0

Group Grass Forest Grass Forest Grass Forest Grass Forest n

Vindkraft-net 4.0 cm 0.87 m 5.6 cm 1.6 m 124% 162% 6.4 cm (115%) 2.5 m (158%) 28

DTU Wind 4.2 cm 0.82 m 5.5 cm 1.0 m 112% 113% 4.7 cm (86%) 0.57 m (57%) 19

Combined 4.1 cm 0.85 m 5.6 cm 1.3 m 117% 141% 5.7 cm (103%) 2.0 m (146%) 47

Table 1. Means (geometric and arithmetic) and corresponding deviations in z0, surveyed from two groups of wind resource experts for the

two terrain types shown in Fig. 2. For conventional (linear) standard deviation σz0 , number in parenthesis is σz0/〈z0〉, given for comparison

with the logarithmic standard deviation (exp{σln[z0/〈z0〉g]}).

5

Note that Table 1 includes not only a geometrically-defined mean 〈z0〉g ≡
[ n∏

i

(z0)i
]1/n

= exp
[ n∑

i

ln(z0)i/n
]

and associated

dimensionless standard deviation exp{σln[z0/〈z0〉g ]} that are consistent with the logarithmic definition of roughness, but also the

commonly-used arithmetic mean and (normalized) standard deviation of user-estimated z0. The latter statistics are included

for comparison, and because (in contrast to the flow physics) there is some tendency for wind engineers to ‘think linearly’

rather than logarithmically. As can be seen in Table 1, the arithmetic (linear) mean of z0 is unsurprisingly larger than the10

properly (logarithmically) averaged z0, by ∼30–40% for grass and ∼20–80% for forest. Arithmetic calculation of z0 statistics

subsequently tends to give a smaller normalized deviation compared to the proper log-rms statistic for the raw surveyed data,

particularly as the z0-distribution is dominated by values smaller than 1 m (expected from the mathematical character of

geometric [lnz0] versus arithmetic averages). Overall the variability in polled roughness lengths for the two cases is on the
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order of but larger than the expected roughness length itself, i.e. by a factor of ∼1.1–1.3 times the estimated mean z0 for grass

or ∼1.1–1.6 times the mean for the forest case. This might be taken as an estimate for uncertainty in z0 for such cases.

The variability in the user data differs between the polled groups, and might be affected by the limited sample size. Due

to the limited distributions of polled roughness lengths (not shown) gathered from each of the two expert groups, an alternate

estimate of collective user-uncertainty (i.e. industry-wide) is provided by again applying a resampling method to the distribution5

of surveyed z0. Following the averaging of expert-elicited z0 and the uncertainty characterization of the previous section,

‘bootstrapping’ (Varian, 2005; Wu, 1986) is used to resample the elicited z0 values and construct a distribution of the means.

Calculating each mean from n non-unique random data samples and repeating 106 times, we generate distributions of z0

for the two cases. For n&3 we find log-normal distributions for the bootstrapped geometric mean (z0 = 〈z0〉g), as expected

from the central limit theorem (lnz0 becomes Gaussian). In the limit of the sample data set being perfectly representative10

of wind industry practices, the bootstrapped distribution for a given n is equivalent to the P (z0) expected when any given

wind engineer uses n values to calculate the mean roughness for a site such as the grass or forest case used here. The means

of the resampled distributions are the same as for the raw roughness samples in Table 1, regardless of n. The deviation,

however, decreases with n. For n= 1 the deviations converge to those in in Table 1, while the values of the effective geometric

deviation w〈z0〉RS behave as approximately 1 +n−0.53 (the deviations fall slightly more rapidly than n−1/2 due to the slightly15

irregular sample/survey). As an example, Table 2 shows the geometric means and deviations for these mean-distributions using

n= 3, for the two groups and cases considered.

From Table 2 one infers the seemingly obvious result that, for users taking an average of three ‘industry-accepted’ roughness

geom. mean, e〈ln〈z0〉g,RS〉g eff.dev., w〈z0〉RS

Group Grass Forest Grass Forest

Vindkraft-net 4.0 cm 0.87 m 58% 73%

DTU Wind 4.2 cm 0.82 m 53% 53%

combined 4.1 cm 0.85 m 56% 65%

Table 2. Bootstrapped statistics of mean roughnesses, from (resampled) user-provided z0 given by two groups of wind resource experts,

using 3 resampled values per mean calculation; data is for the two terrain types shown in Fig. 2.

estimates (assuming those span the sample taken)—instead of just one—the expected (industry-wide) uncertainty is reduced;

we point out that such a conclusion depends on having reasonably representative roughness values to choose from.20

To summarize, in this subsection we saw that the equivalent (normalized logarithmic) standard deviation from surveys of

engineer/user-assigned roughness is of the order of the expected roughness itself, as shown in Table 1. In terms of (4), we expect

an uncertainty equal to the half-width of the (expected user input) distribution of lnz0, to be approximately w〈z0〉g∼ 〈z0〉g . In

the following section we would like to show, in general, how uncertainty in z0—whether due to user-input or measurement—

propogates into wind speed and AEP estimates.25

10



3.2 Propagation of roughness uncertainty

The uncertainty in roughness length has an effect on a number of key variables needed for wind resource assessment. Since

the geostrophic wind depends upon the surface friction velocity u∗, in practice one must use a wind profile form (model) to

translate measured wind statistics (e.g. Weibull-A or mean wind speed) into the corresponding u∗-analogue. This is typically

accomplished by using the log-law (1), which is valid in statistically neutral conditions, and approximately ‘in the mean’ (Kelly5

and Gryning, 2010; Kelly and Troen, 2016). Further, to relate u∗ at the prediction site to the (mean) geostrophic wind G,

equation 3 must somehow be solved for u∗. A direct analytical solution for u∗(G) via (3) is not possible, so Jensen et al.

(1984) developed the approximate “reverse geostrophic drag-law” form

u∗G =
0.485G

ln(G/fz0)−A0
. (5)

We adopt (5) and use it along with (1) and (3) in order to relate wind speeds and roughness lengths for a given pair of prediction-10

and measurement-sites.

3.2.1 Sensitivity of predicted wind speed to background roughnesses

By using the logarithmic wind profile (1) at both measurement and prediction locations, along with the ‘forward’ and ‘re-

verse’ geostrophic drag-law forms (3) and (5), one can write the predicted wind speed Upred in terms of the prediction-site

roughness z0,2 and geostrophic wind G. The geostrophic wind is further expressible in terms of the measured wind Uobs,15

measurement height zobs, and background roughness z0,1 for the measurement site. The resulting expression for Upred can be

differentiated with respect to any of {Uobs,zobs,zpred,z0,1,z0,2}, in order to find the sensitivity of predicted wind speed Upred to

these quantities. We would like to know the effect of roughness uncertainty upon Upred; taking its derivative with regard to the

roughness lengths at observation and prediction heights, and re-arranging, we obtain the useful expressions

∂ lnUpred

∂ lnz0,1
'

1

ln(zobs/z0,1)

[
1− 1

ln[G/(fz0,2)]−A0

]{
1−
[

Uobs/G

ln(zobs/z0,1)

]2 [
ln

(
κUobs

fz0,1

)
−A0

][
ln

(
zobs

z0,1

)
−1

]}
(6)20

and

∂Upred

∂ lnz0,2
'
(
cGG

κ

)
A0 + ln(zpredf/G)

[ln(G/(fz0,2))−A0]
2 . (7)

Here we have made the expression compact, by writing G(Uobs,zobs,z0,1) simply as G. Inspection of the two sensitivity

expressions (6) and (7) reveals that Upred is more sensitive to the background roughness at the observation site (z0,1) than the

roughness z0,2 at the prediction site. Further, it is seen that Upred also has some sensitivity to observation height zobs, while z0,125

dominates.
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From (A1)–(A2), which follow from equations 6–7 (see Appendix A for details), we arrive at an (implicit) expression relating

the uncertainty in predicted hub-height wind speed to the uncertainty in background roughness at the observation site (∆z0,1):

∆Upred

Upred

∣∣∣∣
∆z0,1

' exp

{
1.1

(
1 +

zobs

80m

)−1/7 [
li
{

(zobs/a1z0,1)−1/7
}
− li

{
(z1/z0,1)−1/7

}]}
(8)

where li(x) is the log-integral function (e.g. Abramowitz and Stegun, 1972, see appendix also). In (8), a1 is the fractional

uncertainty in observation-site background roughness length,5

a≡ z0 + ∆z0

z0
= 1 + ∆z0/z0 (9)

evaluated at z0 = z0,1. Thus roughness uncertainties can be described geometrically (as they should be): for a given background

roughness we then have a range of log-roughness described by ln(z0,1)± ln(a), corresponding roughness lengths ranging from

z0,1/a to az0,1.

Just as (8) was derived above for variations in roughness at the measurement site, we similarly derive the uncertainty in10

predicted wind speed due to uncertainty in the prediction-site roughness z0,2, from (7):

∆Upred

Upred

∣∣∣∣
∆z0,2

'
[
1− lna

ln(zpred/z0,2)

]/[
1 +

lna

A− ln[G/(fz0,2)]

]
. (10)

This follows from (A3), which includes details of the derivation (Appendix A).
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Figure 3. Error in predicted wind speed due to error in background roughness at measurement site via Eq. (8), for observation height

zobs =60 m and prediction (hub) height of zpred =100 m. Left (a): error versus ratio (= a) of estimated to actual background z0. Right (b): error

vs. background z0 at observation mast; uncertainties of {−67%,−50%,50%,100%,200%} correspond to a={ 1
3
, 1
2
,1.5,2,3}.

The sensitivity of hub-height (predicted) wind speed to z0,1, via (8), is shown in Figure 3 for the case of zobs =60 m obser-

vation height and a hub height of 100 m. Similarly, the uncertainty in predicted wind speed due to uncertainty in prediction-site15

roughness z0,2, via (10), is displayed in Figure 4.
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Figure 4. Error in predicted wind speed due to error in background roughness at prediction site via Eq. (10), for observation height zobs =60 m

and prediction (hub) height of zpred =100 m. Left (a): error versus ratio (= a) of estimated to actual background z0. Right (b): error vs.

background z0 at observation mast; uncertainties of {−67%,−50%,50%,100%,200%} correspond to a={ 1
3
, 1
2
,1.5,2,3}.

The estimated relative uncertainty in predicted wind speed (∆Upred) is first plotted versus fractional roughness uncertainty a

for a number of different measurement-site background roughnesses (z0,mast), and then also plotted against z0,mast for different

relative roughness uncertainty (∆z0,mast/z0,mast = a−1), expressed as a percentage. For small background roughnesses one

can see less effect on predicted wind speed for a given roughness-error or uncertainty, with a nearly linear dependence of

relative windspeed uncertainty upon z0,mast for measurements taken over smooth land or water (z0,mast<∼1 cm). For larger5

magnitudes of roughness uncertainty, as expected, one sees larger expected uncertainty in wind speed as well; this effect is

reduced for smooth measurement sites (in conjunction with the previous statement). Also, for higher background roughnesses,

the sensitivity of wind speed to (relative) roughness error is amplified, as shown by the green lines in the left-hand (’a’) plots

or the right-most (high z0) part of the right-hand (’b’) plots of Figs. 3–4. Comparing Figure 4 to Figure 3, one also sees that

the effect of a given change (or uncertainty in) z0,2 has the opposite sign of the corresponding effect due to an equal change10

in z0,1, but with the measurement/mast location’s roughness z0,1 having a larger effect than the prediction site roughness z0,2.

That is, the magnitudes of ∆Upred(∆z0,1) in Figure 3 are larger than the magnitudes of ∆Upred(∆z0,2) displayed in Figure 4.

Roughness bias and combined effect of z0-sensitivities at measurement and prediction sites

Above we saw that wind speeds predicted via the GDL (3) with roughness-affected (logarithmic) wind profile (1) can be more

sensitive to z0,1 than to z0,2. Thus, for an overall bias in roughness estimates, we should expect a net bias in wind speed15

predictions via wind-atlas methods. In other words, for roughnesses that are systematically overestimated (or underestimated)

by the same factor abias at measurement and prediction sites, we then expect a corresponding bias in predicted mean wind speed.

This effect is shown by Figure 5, which displays the fractional change in predicted wind speed as a function of fractional change

in measurement and prediction-site z0, for combinations of {z0,1,z0,2} that span typical application (colored lines).
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Figure 5. Total error in predicted wind speed due to a bias (abias) in background roughness at both prediction and measurement sites, for

different combinations of background roughness at the sites. As in Figs. 3–4, observation height is zobs =60 m and prediction (hub) height

is zpred =100 m.

As one might expect, for measurement and observation sites having similar background roughness, the change ∆Upred/Upred

is relatively small, especially for systematically underestimated roughness lengths (abias < 1). Figure 5 also shows that for

small biases (abias→ 1), the wind speed prediction error is larger when the roughnesses at measurement and prediction sites are

dissimilar. However, for roughness errors of a factor of∼2 or more, the nonlinearity of (3) with (1) complicates the dependence

of ∆Upred on abias. In addition to the typical range of z0 used in wind resource estimation (colored lines) Figure 5 also shows the5

gross effect of measurement over forest (or effectively more complex terrain, i.e. with effective roughness z0,1=1 m, denoted

by grey lines); one can see the corresponding increase in ∆Upred/Upred for such cases when there is overestimation of z0—even

if z0,2 and z0,1 are both 1 m.

In contrast to a possible bias in roughness assignment, one can imagine a ‘worst case’ scenario having a negative error in

z0,1 and positive error in z0,2 (or vice-versa), e.g. a1 = 1/a2. In this scenario the result resembles the plots in Figure 5, but10

rotated 45◦ with the y-axis stretched by a factor of 2: cases with z0,1 = z0,2 no longer have small error, but all the lines show a

large uncertainty for a far from 1 (e.g. ±40% at a±1
1 = a∓1

2 =0.1 for z0,1=1 cm, z0,2=1 m, corresponding to solid green line),

and all lines have ∆Upred=0 for a= 1.

A more general situation is that of independent errors in roughness assignment at different sites. In this limit, one forsees

a distribution of ∆Upred, given uncertainties in z0,2 and z0,1 (basically P (z0,2) and P (z0,1)). Two examples of this are given15

in Figure 6. The figure shows P (∆Upred/Upred) for the cases of winds observed over grass but predicting winds over grass or

forest, where the grass and forest z0 have log-normal distributions P (a) with means and widths given for the combined samples

in Table 1. Following the earlier examples, the observation height is taken as 60 m and prediction (hub) height is 100 m. In the

figure one can see the combined effect of different roughness distributions and uncertainties, particularly for the case of grass-
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Figure 6. Distribution of error in predicted wind speed, given distributions P (z0,2/〈z0,2〉) and P (z0,1/〈z0,1〉) at prediction and measure-

ment sites. Left: prediction from grass to grass; right: from grass to forest. Input P (z0) follow from elicited samples in Table 1; see text.

Blue line is normal distribution based on calculated mean and standard deviation. As in Figs. 3–5, zobs =60 m and zpred =100 m.

to-forest (right plot in Fig. 6). For this case the half-width of the grass P (z0,1) corresponds to 117% (where 〈z0,1〉=4 cm)

and that for the forest corresponds to 141% of 〈z0,2〉=0.85 m following Table 1. The combined effect gives wider error

distributions P (∆Upred) for the grass-to-forest case than for the grass-grass case, as expected from e.g. Figure 5; the standard

deviations corresponding to the z0-induced mean-wind error distributions in Figure 6 are 1% and 4% for the predictions over

grass and forest, respectively (and both error distributions are nearly Gaussian, with skewnesses of 0.02 and −0.2). To be5

yet more conservative, if we follow section 2.1.2 using a gross estimate of observational z0-uncertainty equivalent to a half-

width (roughness uncertainty factor) of w〈z0〉RS∼3, the uncertainty σ∆Upred/Upred (distribution widths) for the two cases shown

in Figure 6 grow to 8.6% and 14%, respectively. Towards practical consideration for wind engineers, we also point out that

for prediction over water (again from zobs=60 m to zpred =100 m with z0,1=4.1 cm), again using the conservative roughness-

uncertainty estimate a= w〈z0〉RS∼3 leads to uncertainty in Upred that exceeds 6% and an error distribution that is somewhat10

non-Gaussian (skewness≈0.6, plot not shown); we provide this number to demonstrate the roughness-induced uncertainty

expected when using land-based measurements for off-shore predictions.

3.2.2 Sensitivity of predicted energy production to background z0

The uncertainty in background roughness can also be translated into AEP uncertainty, by employing a relation between wind

speed and AEP—i.e. via a turbine (or perhaps windfarm) power curve. The propagation of z0-uncertainty to AEP follows that15

derived for wind speed above, but with some assumptions. First, we assume Weibull-distributed winds, which is standard prac-

tice in wind energy, and also facilitates analytical derivation of a bulk relation between AEP and mean wind speed 〈U〉. Because

power curves in practice do not have a ‘kink’ at rated wind speed, but rather a smooth transition from the ideal 〈U〉3-regime to

the maximum (rated) power regime of operation (e.g. Wagner et al., 2011), we can derive an analytical effective power-curve
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form, expressible as a function of 〈U〉/Vrat, i.e. Eqn. B1 (shown in Appendix B). To accomplish analytical integration and

readily relate mean wind speed (or Weibull-A parameter) per turbine rated speed, some mathematical approximations are used,

wherein we also assume that the Weibull-k parameter is close to a value of 2 (within 10-20%). The analytical power-curve

form PC(U/Vrat) then leads to a power-law relation between normalized AEP and wind speed: AEP∝ (〈U〉/Vrat)
p, where the

power-law exponent p is also a function of 〈U〉/Vrat, as shown in Appendix B.5
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Figure 7. Sensitivity of (error in) predicted normalized power due solely to error in background roughness at measurement site, versus ratio

of estimated to actual background z0 at observation mast (i.e. 1+relative error, Eq. 9), for various values of actual z0,1. Observation height

is 60 m and hub height is 100 m, as in Figs. 3–6.

Figure 7 shows an example of AEP sensitivity to fractional roughness uncertainty of the observation site (ratio of estimated

to actual z0,1, i.e. a= ∆z0,1/z0,1 + 1 as in Eqn. 9), for the case of 〈U〉= 0.7Vrat; the latter translates to a power exponent

of p'1.85 for the analytical power curve form elucidated in Appendix B (c.f. Fig.12b). For Figure 7 we consider the same

situation as used for Figs. 3–5 (zobs=60 m and zpred=100 m). As one might expect, the AEP uncertainty—due to uncertainties in

z0,1, z0,2 or their combined effect with a common bias—simply resembles the wind speed uncertainty plots shown in Figures 3–10

5: the vertical axis of the plot appears stretched by a factor of p ('1.85). An analogous plot of the distribution of AEP error

follows similarly; for a given value of p (here 1.85) the horizontal (x-) axes in the plots of Figure 6 are stretched by a factor

of p to give the distribution of ∆AEP.

3.3 Effect of uncertainty in background roughness upon wind resource predictions

In order to give examples (and realistic numbers) useful to wind engineers, in this section we translate the observation-15

based (sec. 3.1.1) and user-based (sec. 3.1.2) roughness uncertainties into uncertainties of predicted mean wind speed and

AEP, for the observation and user-survey examples treated in sections 3.1.1 and 3.1.2, respectively.
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3.3.1 Uncertainty in predicted mean wind speeds

The relative uncertainties implied by roughness lengths calculated via surface-layer wind speed measurements were outlined

in section 3.1.1, for the seemingly ideal grassy terrain east of Høvsøre. The half-widths of the roughness distributions for

the homogeneous sectors were found to be on the order of a factor of 3 times 〈z0〉, while the uncertainty in obtaining a

mean (representative) roughness was found through bootstrap-resampling to be much smaller, about 5%; this result came5

whether z0 was calculated from speeds at multiple heights in the ASL or from sonic anemometer measurements of U and

u∗ in the ASL. However, despite similar distribution widths and similar apparent uncertainty in mean-estimation, the 〈z0〉
themselves differed by roughly one-half order of magnitude, i.e. a factor of ∼3 when determined in these two different ways.

Thus we first consider (conservatively) a relative uncertainty of a∼ 3±1 for z0, for the typical resource-assesment heights

(zobs=60 m,zpred=100 m) used in Figs. 3–7. As seen in Figure 5, for systematic (bias) overestimates of a≡∆z0/z0 and a10

mean roughness length at the observation site of 1 cm, this translates into wind-speed uncertainty values of less than 1%

when predicting 100-m winds over the same roughness, and gives ∆Upred of {2%,−2%,−6%,−10%} for predictions over

roughnesses of z0,2 = {0.2 mm, 3 cm, 30 cm, 1 m}. For the same magnitude of systematic underestimate (a∼1/3) the corre-

sponding ∆Upred/Upred are {−1%,2%,5%,9%} for these z0,2, and an uncertainty of 1% for 100-m winds predicted over the

same roughness as the measurement site. Thus we see about 1% uncertainty in Upred for these typical heights and the same15

observation/prediction roughness, while using such observations to predict winds over e.g. nearby forested land incur higher

uncertainties, with magnitudes of 5–10%—without yet considering modeling the flow over such terrain. To get estimates of

∆U(∆z0) for other observation/prediction heights and roughnesses, we remind the reader that these can be obtained from

(8)–(10).

For the uncertainties inherent in user-provided roughness lengths, we address the two cases treated in section 3.1.2. The20

grass case is similar to that considered in the Høvsøre analysis above, with a mean roughness of about 4 cm. If we take

the half-width of the expected user-input distribution of z0, i.e. exp{σln[z0/〈z0〉g]} from Table 1, then we can again arrive

at estimates for the wind-speed uncertainty (this is also a bit conservative, because it gives larger uncertainties than the

bootstrap-derived half-width). Again assuming ‘typical’ application heights (zobs=60 m,zpred=100 m), for predictions over site

roughnesses z0,2 = {0.2 mm, 1 cm, 30 cm, 1 m} and a z0-bias of 2.2±1 (±120% from Table 1) we obtain Upred uncertain-25

ties of +{3%,1%,−3%,−6%} and −{2%,0.4%,−3%,−5%} respectively. These roughly correspond to (a proxy of) the

industry-wide uncertainty in predicted wind speeds (with this zobs,zpred) for observations over a background roughness like

the grass in Figure 2. For the surveyed ‘forest’ roughness in that figure, we get corresponding ∆Upred following Table 1 for

the case of all-site biases (±141%→ a≈ 2.4±1 applied to both z0,1 and z0,2). For predictions from observations over such

a site, applied to turbine sites having z0,2={1 cm, 10 cm, 1 m} we get ∆Upred ≈ (+){11%,9%,3%} for systematic overesti-30

mates and (−){6%,4%,0.3%} for systematic z0-underestimation. The latter finding is rather significant, as it implies that an

underestimation of forest roughness lengths is safer than overestimating z0 when using EWA-based methods for wind resource

estimates (e.g. WAsP and similar). This is consistent with common practice: while recent evidence from direct LIDAR scans
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of forests suggests z0 should be at least several meters there (Boudreault et al., 2015), industrial practice has been to use z0 of

1 m or less (e.g. Troen and Petersen, 1989; Mortensen et al., 2014).

3.3.2 Uncertainty in predicted energy production

The magnitude of z0-induced AEP uncertainty for typical simple sites depends in general on the ratio of 〈U〉/Vrat (for

‘classically-behaved’ turbines), because the relationship between 〈U〉 and AEP depends on this ratio; this dependence is most5

simply expressed via the exponent

p=
ln(AEP)

ln〈U〉
for a power-law relation AEP = 〈U〉p, (11)

detailed in Appendix B. As mentioned in the previous section, with regards to uncertainty in the background roughness of

either the observation or prediction site (or for a bias across both sites), the sensitivity plots of ∆〈U〉 per given roughness

errors are simply translated into analagous AEP-sensitivity figures via stretching the vertical axes by a factor p (as was done10

to get Figure 7 from Fig. 3a); similarly the horizontal (∆U ) axis in Figure 6 is stretched by a factor p. Since p basically varies

between ∼0.8 and 2.5 (over the reasonable range of 〈U〉/Vrat ∼0.5–0.9), then the mean wind speed uncertainties quoted in

the previous subsection can be simply multiplied by a factor of ∼0.8–2.5, depending on the expected turbine power curve and

subsequent p.

For most general practical use, we ultimately consider roughness error distributions and the consequent AEP error distri-15

butions, such as those shown in Figure 6. For independent roughness error distributions at measurement and prediction sites,

and assuming log-normal distributed ∆z0 (as demonstrated in subsections 3.1.1 and 3.1.2 for measured and user-estimated

distributions), via (8) and (10) we can obtain distributions of ∆AEP. The uncertainty in z0 can be expressed in terms of the

dimensionless width wz0/〈z0〉; for a given width we can synthesize distributions of z0,1 and z0,2, and then find the standard

deviation of the resulting distribution of ∆AEP. We do such Monte Carlo simulations over the range of dimensionless widths20

from 5% to 500%, for the same {z0,1,z0,2} pairs and observation/prediction heights as used in Fig. 5; the results are shown in

Figure 8.

Figure 8 shows AEP uncertainty versus roughness uncertainty; the latter is expressed as the dimensionless width wz0/〈z0〉
of the z0-distribution, calculated via the standard deviation of ln(z0/〈z0〉) as in Eq. 4. Following the previous sub-section’s

analysis (where zobs=60 m,zpred=100 m and p= 1.85), Fig. 8 shows that for actual measurement-site roughness z0,1 ≈1–10 cm,25

given a relative z0-uncertainty of 100% (corresponding to wz0 ∼z0 as in subsection 3.1.2), the GDL/z0-induced AEP uncer-

tainty ranges from ∼5% (for 〈z0,1〉=1 cm, predicting over water) to 15% (for 〈z0,1〉=10 cm, 〈z0,2〉=1 m). For the statistical

uncertainty example of (mostly) homogeneous flat farm/grassland shown previously in Fig. 1 (section 2.1.2), taking the the rel-

ative background roughness uncertainty factor to be equivalent to the width of the ln(z0)-distribution (centered around∼1.4 cm

for wind directions from∼45–120◦), i.e. a∼ 3±1, leads to a similar AEP uncertainty range, roughly 6–16% for predicion sites30

ranging from water to forest/urban. However, such an uncertainty estimate seems large, and may be explained considering

Table 2. For industrial use, wind engineers (e.g. in medium or large companies) in effect assign a kind of ensemble-average

roughness length for any given land-use type; considering e.g. the case of taking three ‘community-accepted’ values for the
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Figure 8. Uncertainty in AEP versus (relative) roughness uncertainty, due to the combined effect of observation/prediction site roughness-

uncertainty; independent log-normal roughness distributions assumed, with dimensionless widthwz0/〈z0〉. Standard deviation of AEP shown

for different combinations of 〈z0,1〉,〈z0,2〉. Case shown for p= 1.85, i.e. AEP= U1.85 as in Fig. 7.

grass site as in Table 2, i.e. a relative z0 uncertainty of roughly 50%, then from Figure 8 one sees that the AEP uncertainty

drops to 4–10%. We remind that these AEP uncertainty values correspond to the case of observation and prediction heights

of 60 m and 100 m, respectively: the slight dependence of ∆AEP on zobs and zpred modifies the uncertainty for other heights.

Aside from the weak dependence on measurement/prediction heights, one also sees a basic power-law form emerging for the

AEP estimates:5

σAEP

〈AEP 〉
∝ ∼ wz0

〈z0〉
, (12)

particularly for relative roughness uncertainties (i.e. widths of the distribution P (lnz0/ ln〈z0〉)) that are wz0/〈z0〉<∼1–2.

We also note again that we have focused here on the AEP uncertainty caused by uncertainty in background roughness, rather

than the z0 uncertainty itself. Further details of the latter are the subject of ongoing work and another paper, and here we point

to Figure 8 as the significant result: for a given uncertainty in z0, one can find the corresponding uncertainty in AEP due to use10

of the GDL/EWA method.

4 Conclusions

We remind first of the context of this work, i.e. the ‘European Wind Atlas’ (EWA) method (Troen and Petersen, 1989),5 that em-

ploys the geostrophic drag law (3) to do ‘horizontal extrapolation’: mean wind speed measured at a site with some background

5The EWA method is implemented in ‘WAsP’ and related software (e.g. WindPRO, WindFarmer, etc.).
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roughness(es) can be used to predict the mean wind at another location having potentially different surface characteristics,

assuming the sites are forced by the same pressure gradient (geostrophic wind). For separate measurement/prediction sites

where the EWA method is valid,6 resource assessments that account for background roughness length (z0) tend to be better

than assessments that ignore z0 (such as those based only on observed shear exponent, c.f. Kelly, 2016). This is especially

true for sites in terrain with different background roughness; consequently the EWA method has been used in wind energy5

for decades. The need for and justifaction of this method is also implied by Figure 4, which displays the sensitivity of EWA-

predicted winds to turbine-site roughness (z0,2); it can thus be used also to show how much the predicted mean wind changes

due to z0,2 differing from the measurement-site roughness z0,1. For z0,2/z0,1 deviating significantly from 1 (taking the x-axis

of Fig. 4a as this ratio), a significant ∆Upred can result—and the EWA method is needed to account for such. One can see that

if z0,2 differs from z0,1 by a factor of 5, the predicted mean wind may be affected by ∼5–25%; subsequently the AEP could10

change by a factor of up to ∼2.5 times this, i.e. as much as ∼60%.

Using the EWA method, uncertainty in z0 leads to uncertainty in resource predictions that can be significant, as shown in

section 3. Both user-implicit (§3.1.2) and definition-related (§3.1.1) uncertainties in roughness length are found to effectively

be (treatable as) roughly of the same order of magnitude, and they lead to an uncertainty in prediction of mean wind speed

and AEP. The uncertainty in prediction is slightly more sensitive to measurement-site roughness z0,1 than prediction-site15

roughness z0,2, as seen in equations 8–10 and displayed in e.g. Figs. 3–4. However, there is also a minor dependence on

measurement and prediction heights via the vertical wind profile used within the EWA method (log-law implicit in Eqs. 8, 10),

shown by Fig. 10 in Appendix A.

As mentioned in section 3.1.1, even in ideal (steady, neutral) conditions, the mean roughness 〈z0〉 obtained from observations

and (1) via different calculation methods in the surface layer, such as using wind speeds at multiple heights or alternately20

wind speed with friction velocity, differs by an amount that appears to greatly exceed the uncertainty derived for any given

method. For example, boot-strapped distributions of 〈z0〉 for the homogeneous flat grassland sectors at Høvsøre had relative

widths (approximate uncertainty) well under 10% when using (1) and Uobs in the surface layer, whether calculated with or

without u∗; but the ratio of the means (or peaks of P (〈z0〉)) from the different calculation methods was roughly 3. In contrast,

the uncertainty of z0 estimated from polls of two groups of wind resource assessment experts (for grassland and forest) in25

section 3.1.2 was on the order of z0 itself, i.e.w/〈z0〉 ∼1 when estimated from single values of z0 as in Table 1; such uncertainty

shrinks, however, if assuming that wind engineers gauge roughness from a collection of accepted sources, as in the example of

Table 2.

We note that more exact quantification of ‘measured’ roughness uncertainty involves consideration of numerous other fac-

tors, from ABL physics and fluid dynamics to inhomogeneous boundary conditions and turbulent transport. Likewise, more30

accurate characterization of epistemic user-based (industry-wide) uncertainty would likely require a much wider survey, for a

greater number of roughnesses. Here we have made a basic evaluation of the main roughness uncertainty components and their

6The GDL applies to sites having approximately the same latitude and geostrophic-scale forcing (roughly the distribution of geostrophic wind); the scale

of spatial variations in the geostrophic wind depends on the terrain complexity, and can vary from a several tens of kilometers in simple terrain down to just a

few kilometers in very complex terrain or near coasts; c.f. Troen et al. (2014), Hahmann et al. (2015).
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approximate magnitudes—focusing first on what resultant uncertainty can be expected in a wind resource prediction, given

some level of roughness uncertainty. The latter focus leads to analysis culminating in Figure 8, which visualizes a primary

result of this work: the uncertainty in AEP (or scaled mean wind) predicted via the EWA method, for a given uncertainty

in background roughness length and pair of surface types (roughnesses) at separate prediction and measurement sites. From

Figure 8 we see the basic trend for uncertainty in mean wind speed or AEP behaves as approximately (w/〈z0〉)6/7 in the5

dimensionless roughness uncertainty regime w/〈z0〉<∼200%, i.e. just within the range we have estimated.

There are other sources of uncertainty implicit in use of the EWA method, in addition to the roughness lengths. Additional

uncertainties include the applicability of the GDL (see footnote 6), the the constants (A,B) within (3), and the actual form

and/or use of (3) with arguments averaged in an ensemble (or spatial) sense. These are beyond the scope of the current paper.

However, as for applicability of the GDL, regarding the distance between measurement and prediction sites, we remind the10

reader that (fine-resolution) mesoscale models give an indication of the spatial extent (and direction) of variations in the

geostrophic wind, and refer the reader to e.g. Hahmann et al. (2015) and Troen and Petersen (1989). As to the distance over

which one may ‘horizontally extrapolate’ in more complex terrain, this depends upon the observation and prediction heights

along with the terrain complexity [as e.g. ruggedness index (‘RIX’, Mortensen et al., 2006) or local elevation variability (Kelly

et al., 2014a; Kelly, 2016)]; we point the reader to Clerc et al. (2012) and Troen et al. (2014) for uncertainty in complex terrain.15

The minor uncertainties due to GDL constants (A,B) are the subject of ongoing work (e.g. Floors et al., 2015), and the GDL

averaging issue is currently seen to be secondary due to the well-behaved nature of (8) and (10) and the magnitude of z0

variations expected.

Additional uncertainties can also arise due to the use of a (mean) wind profile expression, such as the simple “log-law” (1)

invoked here. One uncertainty is due to the applicability of a given profile model. Following Troen and Petersen (1989) and20

due to the the statistical dominance of neutral conditions (Kelly and Gryning, 2010), we have used the (surface-layer) form (1)

applicable in neutral conditions; further, we limit our observational analysis to neutral steady conditions, and observations to be

within the surface-layer, where the logarithmic profile is valid and the roughness length is simply defined. However, deviations

from logarithmic may occur above the surface layer, such as for the prediction height considered in the figures (100 m), in the

case of very shallow ABL depths (i.e. depths less than ∼2zpred, Pedersen et al., 2014, or 200 m in this case) that occasionally25

occur (Liu and Liang, 2010). This ABL-depth effect is negligible for zpred close to zobs (and z0,1/z0,2 near 1), and is minor

for the heights considered. However, an additional uncertainty dependent upon the ABL depth could be modelelled following

Kelly and Gryning (2010) and Liu and Liang (2010), or alternately a better profile form (e.g. Kelly and Gryning, 2010) could

be invoked along with the GDL, particularly to reduce uncertainties for predictions well above 100 m or in areas where lower-

level jets are expected. Another uncertainty arising implicitly from the profile model, as analyzed here, is due to considering the30

same z0 for use in both the profile model and the GDL. That is, the wind profile reacts to a more local roughness, whereas the

GDL reacts to a geostrophic-scale z0. In Troen and Petersen (1989) the latter is obtained by taking a weighted geometric spatial

average of z0, where lnz0 is integrated upwind from a given location with a weighting function that decays with distance;7 thus

7The EWA roughness-averaging weighting function is prescribed as exp(−r/`r), where r is the distance upwind, `r is a length scale generally taken to

be 10 km (as e.g. default WAsP value), and the integration is carried out to 20–30 km (roughly half the Rossby radius).
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the local and geostrophic z0 can differ slightly. This is not likely to have a major effect in the analysis here, since the Hovsore

sectors considered were ideal and without significant inhomogeneity, such that the upwind-averaged roughness is within 10%

of the local z0. However, it is worth noting that for large roughness-changes (e.g. coastlines) within ∼10 km upwind of a site,

the geostrophic z0 will differ from the site’s z0; equations 8–10 can be re-cast for such. The effect on roughness-uncertainty

incurred through such spatial averaging is expected to be (much) smaller than the crude factor w/〈z0〉 ∼3 (200%) found and5

presented above, though systematic evaluation of this effect is still a subject of ongoing research. Analogously, the height-

dependent effect of inhomogeneities upon roughness (i.e. above the ASL)—in particular its uncertainty—is also under study,

but is expected to be minor for simple terrain.

Vertical extrapolation has not been treated explicitly here, though it is implicit in the vertical profile used to estimate u∗ from

observed wind for use in the GDL. Such treatment, in conjunction with taking the ‘profile roughness’ and geostrophic-scale10

roughness to be the same, is a choice that we have made to facilitate systematic modeling of roughness-induced uncertainty;

thus we have been able to estimate the effect of roughness, which occurs through both the wind profile (‘vertical extrapolation’)

and through invocation of the GDL (‘horizontal extrapolation’). A separate model for the uncertainty in vertical extrapolation

using a logarithmic-based profile (as in the EWA/popular wind software, e.g. WAsP), but without considering roughness uncer-

tainty, is given in Kelly and Troen (2016) and Kelly (2016). Treating the z0-related uncertainties separately, per the geostrophic15

drag law and wind profile, is the subject of continuing work beyond the scope of the current article.

4.1 Applications and implications

In increasingly complex terrain the actual surface roughness becomes less significant compared to terrain slope, with regards

to affecting the flow. However for horizontal extrapolation, the aggregate effect of the (complex) terrain-induced drag leads

to an increase in the effective geostrophic-scale roughness (Beljaars et al., 2004; Kelly et al., 2014a). Thus the geostrophic-20

drag and roughness uncertainty analysis given in this work can also be applied towards improved use of microscale models in

complex terrain, when horizontal extrapolation is involved. In particular, computational fluid dynamics solvers (e.g. RANS and

LES), when employed using different simulation domains for measurement and windfarm sites, are typically used to calculate

terrain-induced flow perturbations (‘speed-up’ factors) at the respective sites. But for domains having different degrees of

complexity (or potentially different resolutions)—and thus different large-scale drag—then the use of the geostrophic drag25

law (or any analogous empirical algorithm/method) demands that measured wind statistics must additionally be transformed

properly, accounting for differences in the effective domain-scale mean roughness in the two domains (per wind direction).

So uncertainty in characterizing the effective roughness due to terrain drag can be translated into a corresponding uncertainty

in mean wind (or AEP) via the framework presented here. Alternately, for a given pair of (observation, prediction) sites, the

uncertainty in mean wind prediction due to neglect of terrain drag can be estimated: a bias is introduced, whereby the effective30

geostrophic roughness is underestimated. From Figure 5 one can see for example that, for sites having the same effective

roughness (‘complexity’) of z0,eff ∼1 m and with an underestimation of one order of magnitude (abias ' 0.1), a positive error

∆Upred ∼2% is incurred.
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Another implication of this work applies to assessment in forested regions. Some work on characterizing profile-amenable

roughness over forest (e.g.Bosveld, 1997; Tian et al., 2011; Boudreault et al., 2015) implies that z0 over forest is larger than

what has been typically assigned in wind resource assessment (i.e. z0 >1, not z0.1), despite such underestimates being used

for decades in the wind industry (Troen and Petersen, 1989; Mortensen et al., 2001; Emeis, 2013; Landberg, 2016). We now

see an explanation for this, looking at Figure 5: systematic underestimation leads to smaller errors in wind speeds predicted via5

the EWA method, compared to a positive bias on z0, particularly for typical application where both measurement and turbine

sites are in high-roughness areas (dash-dot line in Fig. 5) such as forest.

The roughness sensitivity/uncertainty analysis delveloped here also has application to—and implications on—the treatment

of mesoscale model output for use in microscale wind flow models. In so-called meso-to-microscale ‘downscaling’ or wind

climate ‘generalization’ (Hahmann et al., 2013; Badger et al., 2014), mesoscale wind output (or statistics of such) is treated10

in order to avoid “double-counting” of local surface-induced effects by the microscale model that have already been included

in the mesoscale modelling. Additionally, the meso-micro downscaling procedure facilitates driving of the microscale flow

simulation with mean winds that are appropriate as per the roughness input to both the microscale and mesoscale models, i.e.

an effective geostrophic wind via the EWA method. Since any given planetary-boundary layer (PBL) scheme in a mesoscale

model can react differently, for a given model resolution, it may be necessary to scale input roughnesses used in the general-15

ization procedure (Kelly and Volker, 2016). For (homogeneous ideal) output wind profiles from a particular PBL scheme and

resolution, the ratio of profile-implied z0 to input z0 can be used with the analytic sensitivity relations developed herein, to

systematically adjust the input roughness map and/or to scale the wind inputs to microscale models.

An additional application following from the roughness analysis herein—and consequently ongoing research—involves a

limitation inherent in using a single characteristic (mean) roughness length. Due to the statistical nature of roughness and the20

significant width of measured roughness distributions (e.g. Fig. 1), an improvement would be to use P (z0) instead of mean z0

in wind assessment and atmospheric flow modeling, following the suggestion of Kelly and Gryning (2010). This becomes yet

more significant (and complicated) considering that the width of P (z0) tends to depend on direction and vary from site to site,

and it also involves correlations with other variables (e.g. stability, Zilitinkevich et al., 2008). Given the limited applicability

of the EWA method to time series (the GDL was not explicitly derived in a statistical mean sense), refined wind resource25

estimates—which are essentially statistical atmospheric fluid mechanics—using (joint) distributions of roughness and stability

offer potential improvement over current mean methods and are a subject of continued study.

One final application follows from the analytical form introduced here to approximate common production power curves,

in a general/universal way under the assumption of Weibull-distributed wind speeds. From this, the exponent in the power-law

expression relating annual energy production and mean wind speed was derived, allowing us to relate uncertainty in roughness30

length to uncertainty in AEP. More flexible power-curve forms can also be made from logistic functions (e.g. generalizing

those of Villanueva and Feijoo, 2016) as well. Regardless of the exact form, such analytical treatment also facilitates quick

computation of power for a given set of Weibull parameters, applicable to large datasets such as the Global Wind Atlas (Badger

et al., 2015). Lastly we re-iterate that issues in the definition of roughness length, and specific limits of its validity, are beyond

the scope of this article. However, current ongoing work includes closer examination of the (turbulent) mechanisms involved35
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in the ‘observation’ of roughness length from wind measurements and heterogeneity; subsequent links to refined uncertainty

characterization may follow such investigation.

4.2 Summary of conclusions and implications

• EWA method (e.g. WAsP) exploits surface roughness information to improve resource predictions at one site based on

measurements at another, but there is uncertainty wz0 in the roughness length;5

• uncertainty in z0 leads to uncertainty in predicting resources using the EWA method;

• uncertainty in EWA-predicted mean wind depends upon wz0 , and to a lesser extent also upon {z1,z2};

• wz0 (half-width of P (z0)) is of the same order as the mean, i.e. wz0 ∼ 〈z0〉 for both user- and observation-derived z0;

• for modest z0 uncertainties (w . 2〈z0〉), the uncertainties {∆U,∆AEP} ∝ [wz0/〈z0〉]6/7;

• in complex terrain/forest, ignoring the effect of form-drag causes a positive bias in predictions;10

• underestimation of aggregate forest roughness leads to smaller error than overestimation;

• analytical form for power curve PC(U/Vrat) gives AEP (〈U〉) and thus uncertainty in AEP, i.e. ∆AEP (∆〈U〉);

• EWA/GDL sensitivity expressions applicable to treatment of WRF output for wind resources.

Appendix A: Geostrophic-roughness sensitivity relations: analytical forms and simplification

Here we elucidate the relations and approximations which allow translation of the partial derivatives of hub-height wind speed15

with regard to roughness (i.e. Eqn. 6) into sensitivity and uncertainty relations such as (8).

A1 Sensitivity to measurement-site roughness z0,1

First we approximate (6) by a modified power-law form that accounts for the strongest dependences (z0,1 and zobs), which we

find to be

∂ lnUpred

∂ lnz0,1
' 1.1

[(zobs/z0,1)(1 + zobs/80m)]
−1/7

ln(zobs/z0,1)
. (A1)20

This approximation is shown by the dotted lines in Figure 9 below, which also shows that it closely matches (6). Because

the roughness uncertainty (in lnz0,1 space) may easily correspond to three or more times the reported (mean) z0,1, one must
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Figure 9. Equation 6 (solid) and its approximation, Eq. A1 (dotted), for different (correctly observed) background roughnesses z0,obs.

Cyan:z0,1=0.001 m; magenta:z0,1=0.01 m; orange:z0,1=0.1 m; green:z0,1=1 m.

integrate over lnz0,1 to find the relative uncertainty. Using (A1) and the substitution x≡ zobs/z0,1 we have

∆lnUpred

∣∣∣∣∣
az0,1

z0,1

=

az0,1∫
z0,1

∂ lnU2

∂ lnz0,1
d lnz′0,1 '

az0,1∫
z0,1

1.1

zobs

(zobs/z
′
0,1)6/7

ln(zobs/z′0,1)

dz′0,1

(1 + zobs/80m)
1/7

= 1.1
(

1 +
zobs

80m

)−1/7
zobs/z0,1∫

zobs/(az0,1)

x−8/7

lnx
dx

=
1.1

(1 + zobs/80m)
1/7

{
li

[(
zobs

z0,1

)−1/7
]
− li

[(
zobs

az0,1

)−1/7
]}

. (A2)

Here a is the fractional uncertainty in observation-site background roughness as in (9), i.e. a≡ (z0,1 + ∆z0,1)/z0,1 so that

∆z0,1 = (a−1)z0,1. The analytical logarithmic integral function li(x)≡
∫ x

0
(dt/ ln t) can be evaluated using typical contempo-

rary mathematical programming libraries, scientific analysis programs, or via lookup-tables (Abramowitz and Stegun, 1972).85

A2 Sensitivity to prediction-site roughness z0,2

Just as above for the observation site background roughness, we can also express the uncertainty in predicted wind speed due to

uncertainty in the roughness length for a prediction site. Following a similar procedure as above, using (7) and the substitution

8 The error-scaling function can also be written in terms of the exponential integral function Ei(x)≡−
∫∞
−x(e−td ln t), i.e. Ei(lnx−1/7) evaluated at the

same limits as in (A2).
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y ≡ lnz0,2 we obtain

∆(lnUpred)

∣∣∣∣∣
az0,2

z0,2

=

ln(az0,2)∫
ln(z0,2)

∂ lnU2

∂ lnz0,2
d lnz′0,2 '

y+lna∫
y

A+ ln(zpredf/G)

[y′+ ln(f/G) +A](lnzpred− y′)
dy′

=− ln

[
A+ ln(f/G) + y′

y′− lnzpred

]∣∣∣∣y+lna

y

= ln

{[
1− lna

ln(zpred/z0,2)

]/[
1 +

lna

A− ln[G/(fz0,2)]

]}
. (A3)

A3 Sensitivity to heights of measurement and prediction

Above it was written that predictions of wind speed (and thus AEP) were relatively insensitive to observation and measurement

height, compared to the sensitivity to roughness. The minor dependence upon zobs in (A2) and upon zpred in (A3) is shown5

in Figure 10 for the case of grassland at measurement and observation sites (z0,1=z0,2=4 cm) as a function of roughness

uncertainty in the form of z0-bias. As one can see from the figure, the EWA method, i.e. via the geostrophic drag law, predicted
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Figure 10. Total uncertainty versus bias in background roughnesses z0,1 and z0,2, due to different combinations of measurement and predic-

tion heights, for the case of grassland (z0=4 cm) at both measurement and prediction sites.

U has increased sensitivity to {zobs and zpred} for large uncertainties in roughness length (biases in Fig. 10). However, even

for a bias abias ∼ 3±1 (+200% or −67%), the resultant 〈U〉-uncertainty spans a range smaller than −1% to 2%. For the case

of independent uncertainties in z0,1 and z0,2, then the half-width of the associated ∆U distribution expands slightly, becoming10

roughly 3% for an ‘input’ roughness uncertainty (∆z0/〈z0〉 distribution half-width) of 3.

These height-induced uncertainty values are small enough that one could use Figure 8 for AEP-uncertainty (where zobs=60 m

and zpred=100 m), and approximate the effect of varying {zobs,zpred} from {60 m, 100 m} over simple terrain, by taking the
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difference between the curve for the desired {zobs,zpred} and the {60 m, 100 m} curve in Fig. 10, and multiplying this by the

effective AEP(〈U〉) exponent p (where the latter is detailed in the next appendix).

Appendix B: Analytical power-curve forms for scalable calculation of AEP

To propagate the uncertainty in mean wind speed into the annual energy production (AEP), it is necessary to have a model

for AEP in terms of mean wind speed. Assuming a Weibull distribution for wind speeds, we are able to relate the Weibull5

parameters to AEP, for a given power curve. In this appendix we produce a ‘universal’ power curve formulation, which allows

us to derive an expression for conversion of Weibull-A parameter (or mean wind speed) into AEP for any given turbine rated

speed Vrat. The forms we provide here apply for wind speed distributions having Weibull-shape (k) parameter of roughly 2;

such ‘Rayleigh-distributed’ mean winds tend to be the most commonly found (i.e. k≈2 tends to be most likely, c.f. Troen and

Petersen, 1989; Kelly et al., 2014b).10

A canonical form for power-curves including the smooth transition from ‘ideal’ to maximum power for mean winds ap-

proaching rated speed Vrat is:

PC(U/Vrat) = P0×
{

1

2
+

1

2
tanh

[
π
(
U/Vrat−n−1/2

)]}n

, n= 3. (B1)

We choose the ‘order’ n to be 3, matching the ideal U3 behavior in the regime for wind speeds above cut-in and below rated

wind speed. Convolving (B1) with the Weibull probability density for wind speed15

f(U) =
k

U

(
U

A

)k

exp

[
−
(
U

A

)k
]

(B2)

gives the normalized AEP, but this is not quite amenable to (simple) analytical relation. Thus in order to find a useful (closed)

expression for the AEP, we make an approximation to the convolution
∫
f(U)PC(U)dU via (B1) and (B2):

AEP

AEP0
' 0.3

{
1 + tanh

[
π

(
A

Vrat
− 1√

2

)]}
. (B3)

The closed-form approximation (B3) for normalized AEP is shown in Figure 11, along with the numerically integrated product20

of (B1) and (B2) which it approximates, for the case of Rayleigh-distributed wind speeds (k=2). The left-hand plot (Figure 11a)

gives AEP/AEP0 as function of mean wind speed 〈U〉9 for a single value of Vrat, and also displays the results corresponding

to use of either a simple P ∝U3 power curve, or an ideally-limited power curve that has PC(U)/PCrat = {(U/Vrat)
3,1}

for {U <Vrat,U≥Vrat}. Figure 11b again shows the numerically integrated and approximated nominal power, but as a function

of Weibull-A and for different Vrat. One can see from Figure 11 that the approximation (B3) works well for mean wind speeds25

and rated speeds typical of multi-megawatt turbines (and associated hub-heights), i.e. 〈U〉∼6–14 m s−1 and Vrat∼12–15 m s−1.

Most succinctly, given a Weibull-A value (or mean wind speed) and turbine-rated speed Vrat, the AEP can be simply estimated

by (B3) as a function of A/Vrat; this is shown in Figure 12a.

9 For Rayleigh-distributed wind speeds (Weibull, with k = 2), the mean wind is simply 〈U〉= AΓ(1+1/k)' 0.89A.
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Figure 11. Left (a): normalized power versus mean wind speed, for k=2, Vrat=12 m s−1; blue is for ideal truncated (sharp) power-curve,

red is via numerically integrated ‘universal’ power-curve form (B1), black-dashed is approximation (B3) to universal form, and (green)

dotted line is for simple U3 form. Right (b): Normalized power (convolution of Eq. B1 and Weibull distribution) as a function of Weibull-A

parameter, for rated speeds of 10 m s−1 (pink), 12 m s−1 (red), and 15 m s−1 (purple); dashed lines indicate analytic approximation as in (B3).
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Figure 12. Left (a): Normalized AEP versus mean wind relative to rated wind speed. Right (b): AEP effective power-law exponent versus

mean wind over rated speed, obtained via integrable power-law form (B1) and subsequent dimensionless AEP (B3) for Weibull-distributed

wind with k = 2.

The effective wind-power exponent p defined by AEP = Up can be now be found analytically from the corresponding

analytical form (B3) for normalized AEP:

p=
lnAEP

ln〈U〉
=
∂ lnAEP

∂ ln〈U〉
=
π(A/Vrat)sech2

[
π(A/Vrat− 2−1/2)

]
1 + tanh

[
π(A/Vrat− 2−1/2)

] . (B4)

The power-law exponent derived in (B4) is displayed in Figure 12b, for the case of Weibull-shape parameter k = 2. Evident

from the figure is the optimal choice of sites having mean winds at hub-height that are ∼60–80% of rated speed, as well as the5
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diminishing returns which can result from using turbines having rated speeds not much higher than the mean wind speed; this

is consistent with common industrial practice, synthesized in e.g. the empirical study of Svenningsen (2015).

For a given value of 〈U〉/Vrat, via AEP ∝Up and (B4), we are able to translate uncertainty in mean wind speed estimates

(due e.g. to background roughness) into AEP uncertainty.
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