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Abstract.

Understanding uncertainties in wind resource assessment associated with the use of the output from Numerical Weather

Prediction (NWP) models is important for wind energy applications. A better understanding of the sources of error reduces

risk and lowers costs. Here, an intercomparison of the output from 25 NWP models is presented for three sites in Northern

Europe characterized by simple terrain. The models are evaluated using a number of statistical properties relevant to wind5

energy and verified with observations. On average the models have small wind speed biases offshore and aloft (<4%), and

larger biases closer to the surface over land (>7%). A similar pattern is detected for the inter-model spread. Strongly stable and

strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found

that using a grid spacing larger than 3 km decreases the accuracy of the models, but we found no evidence that using a grid

spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm10

highlights the importance of capturing the correct distributions of wind speed and direction.

1 Introduction

Numerical Weather Prediction (NWP) models are increasingly being used in wind energy applications, e.g. wind power re-

source mapping and site assessment, for planning and developing wind farms, power forecasting, for electricity scheduling,

maintenance of wind farms, and energy trading on electricity markets. In site assessment, NWP models are commonly part of15

the model chain used to estimate the Annual Energy Production (AEP) and are responsible for a large part of the uncertainty

of this estimate.

The extensive use of NWP models, and the vast customization-space of each model, means that a strong demand exists for

quantification of a) the overall model uncertainties, and b) the sensitivity of the uncertainties to the choice of sub-components

and parameters. Understanding the sensitivities and uncertainties of the NWP model output can reduce their associated risks,20

and improve decision making. Model users aware of the sensitivity of individual model components will be able to optimize

the model setup for specific applications.

In the following, the NWP models will be referred to as "mesoscale" models, signifying that they partly resolve atmospheric

phenomena in the mesoscale range, defined as the range of horizontal length scales from about one to several hundreds of

kilometers (Orlanski, 1975).25
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A common way to assess NWP model uncertainties is to use an ensemble approach, where a number of parallel model

runs, referred to as ensemble members, are run with slightly perturbed initial conditions (Warner, 2004). The magnitude of

the perturbations is typically limited by the uncertainty associated with the particular perturbed variable, in the expectation

that the ensemble of solutions will cover the solution-space arising from the uncertainties of the input parameters. Ensemble-

based techniques are used for many meteorological application, including: precipitation forecasting (Gebhardt et al., 2011;5

Bowler et al., 2006), wind power production forecasting (Constantinescu et al., 2011). However, one would not expect that

the ensembles of any particular modeling system fully represent the uncertainties of another modeling system. This was also

demonstrated in the DEMETER project (Development of a European multi-model Ensemble for seasonal to inTERannual

climate prediction) (Palmer et al., 2004), where a multi-model ensemble approach, consisting of a number of different modeling

systems, each split into a number of ensembles, provided a better representation of the overall uncertainties than any single10

model ensemble.

Mesoscale model uncertainties in wind speed near the ground are particularly sensitive to some model components, e.g.

the choice of Planetary Boundary Layer (PBL) scheme, the spin up and simulation time, and the grid spacing. In the last

couple of decades these sensitivities have been studied in great detail. Vincent and Hahmann (2015), Draxl et al. (2014),

and Hahmann et al. (2014)
::::::::::::::::::::
Hahmann et al. (2015b) studied the sensitivities of the Weather Research and Forecasting (WRF)15

model (Skamarock et al., 2008) in offshore and coastal areas in Northern Europe. Vincent and Hahmann (2015) studied the

effect of grid nudging, spin-up time, and simulation time, on near-surface and upper PBL wind speed variance. They showed

that: 1) spatial smoothing is observed when nudging is used, but the impact is small in the lower part of the atmosphere,

and 2) nudged longer simulation times (11 days) only have slightly lower variance than short simulations (36 hours), which

makes longer simulations appropriate for climatological wind energy studies. Draxl et al. (2014) studied the ability of the WRF20

model to represent the wind speed and wind shear profiles at a Coastal site in Denmark using seven different PBL schemes.

They showed that the Yonsei University (YSU) (Hong et al., 2006) scheme represents the profiles best for unstable atmospheric

stability conditions, while the Asymmetric Convective Model version 2 (ACM2) (Pleim, 2007b), and the Mellor-Yamada-Janjic

(MYJ) (Janjić, 1994) PBL schemes had more realistic profiles for neutral and stable conditions respectively. Using the WRF

model for wind resource assessment, Hahmann et al. (2014)
::::::::::::::::::::
Hahmann et al. (2015b) showed that the choice of PBL scheme25

and spin up time has the greatest impact on the simulated mean wind speed for a number of offshore sites, while the number

of vertical levels, and the source of initial conditions had a smaller impact.

Several studies have investigated the WRF model sensitivities in regions of complex terrain. Carvalho et al. (2012) studied

the sensitivities related to the choice of initialization frequency, grid nudging, and suite of Surface Layer (SL) scheme, PBL

scheme, and Land Surface Model. They observe that using grid nudging and frequent starts (every second day) gives the best30

agreement for wind speed with several masts located in complex terrain in Portugal. Carvalho et al. (2012) and García-Díez

et al. (2013) found a seasonal dependency of the optimal suite of SL-PBL-LSM for simulating PBL winds and temperature.

Carvalho et al. (2014b) investigated the sensitivities related to the SL and PBL scheme in WRF model at both land and offshore

sites in and near Portugal. They showed that the PX SL scheme (Pleim, 2006) combined with the ACM2 PBL scheme (Pleim,

2007b) gave the smallest errors for wind speed, and wind energy production estimates, across the sites, while the QNSE-35
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QNSE (SL-PBL) scheme (Sukoriansky et al., 2005) gave smaller errors for offshore sites. In a similar study Gómez-Navarro

et al. (2015) analysed the sensitivities of the WRF model to the choice of PBL scheme, and grid spacing, in complex terrain

in Switzerland. They found that using a modified version of the YSU PBL scheme, that account for effects of unresolved

topography (Jiménez and Dudhia, 2012), in combination with the smallest grid spacing (2 km), and Analysis Nudging, gave

the best agreements with measurements during a number of wind storms. Carvalho et al. (2014a) studied the sensitivities of5

simulating the local wind resource with the WRF model at several masts in Portugal, to the choice of data set used for initial

and boundary conditions. They show that using the ERA-Interim reanalysis data set (Simmons et al., 2007) gave the smallest

errors, compared to NCEP (National Centers for Environmental Prediction) R2 (Kanamitsu et al., 2002), CFSR (Saha et al.,

2010), FNL, and GFS data sets, as well as the NASA (National Aeronautics and Space Administration) MERRA data set

(Rienecker et al., 2011).10

Sensitivities to the choice of modeling system have also been studied for wind energy applications. Horvath et al. (2012)

compared the MM5 (Grell et al., 1994) and WRF models for a site in west-central Nevada characterized by complex terrain.

Both models were run in a grid nesting setup from 27 kilometers to 333 meters grid spacing, and the near surface wind was

compared to wind observations from several 50-meter tall towers. The study showed that the WRF-derived winds were in better

agreement with mean wind speed observations, but thermally-driven flows were overestimated in both intensity and frequency.15

Hahmann et al. (2015a) compared two downscaling methodologies: the KAMM-WAsP (Badger et al., 2014) and WRF Wind

Atlas (Hahmann et al., 2014)
::::::::::::::::::::
(Hahmann et al., 2015b) methods, both based on a model chain approach between a NWP model

and a linearized flow microscale model, for a number of mast sites in South Africa. The study showed that the WRF-based

method gave smaller biases than the KAMM-based approach, which underestimated the wind speeds.

Community-driven model intercomparison projects provide an opportunity to study both model uncertainties, and sensitiv-20

ities to model components. In the last decade, several intercomparison projects have been successfully carried out based on

model output submitted by modelers from the wind energy community. The Bolund experiment (Bechmann et al., 2011) was

an intercomparison of flow models, from simple linearized flow models to Computational Fluid Dynamics (CFD) models.

The models were compared to measurements around the small island Bolund in Denmark. The Comparison of Resource and

Energy Yield Assessment Procedures (CREYAP; Mortensen et al., 2015) was an intercomparison of energy yield assessment25

procedures based on four case-studies. The study revealed a large spread amongst the different procedures, and highlighted the

need for further studies into the uncertainties associated with the models themselves. A similar intercomparison of NWP mod-

els is attractive for a number of reasons. First, it offers an opportunity for model developers, model users, and stake-holders, to

get a better understanding of the model uncertainties. Secondly, a collaborative intercomparison project, which utilizes model

data crowd sourced from the wind energy community, increases the scalability of the study compared to traditional sensitivity30

studies, by distributing the workload and computational cost among participants. Finally, if sufficient meta-data is collected, it

offers a unique insight into the "common-practices" in mesoscale modeling within the wind energy community.

In this paper, a blind intercomparison of the output from 25 different NWP simulations is presented for three locations

in Northern Europe. The study is based on model output submitted by the modeling community to an open call for model

data for a benchmarking exercise co-organized by the European Wind Energy Association (EWEA, now WindEurope) and35
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the European Energy Research Alliance, Joint Programme Wind Energy (EERA JP WIND). The three chosen sites represent

some of the simplest terrains: offshore, inland near the coast and inland in flat terrain, where the smoothing of the terrain

representation is not an issue. The three sites have quality observations from tall meteorological masts with many heights.

The main objectives of this study are: 1) To highlight and quantify the uncertainties of the models and serve as motivation for

future analysis of model uncertainties. 2) To identify model setup decisions that have an impact on the model performance.5

The models are evaluated using simple metrics relevant to wind energy applications.

The structure of the paper is as follows. In sect. 2 we present a detailed description of the methodology used, including a

description of the three study sites and the models used by the participants. Sect. 3 presents the intercomparison results, and

finally sect. 4 contains the summary and conclusions of the study.

2 Methodology10

2.1 Sites and observations

Three sites with quality measurements from tall meteorological masts with different terrain characteristics were chosen for this

study: (1) FINO3, an offshore mast in the North Sea, (2) Høvsøre, a land mast near the Danish west coast, and (3) Cabauw, a

land mast in the Netherlands. The mast locations are shown in Fig. 1, and the coordinates and characteristics of each site are

provided in Table A1. Long-term measurements are available from each of the masts, but a single year (2011) was selected as15

the study period due to its excellent data availability.

FINO3 (Fabre et al., 2014a)
:::::::::::::::::
(Fabre et al., 2014b) is a marine platform located in the North Sea 80 kilometers off the coast

of Denmark, with a meteorological mast reaching 120 m above mean sea level (AMSL). We used measurements at 40, 60 and

90 m AMSL in this study. The Høvsøre (Peña et al., 2014) mast is located about 2 km east of the coastline in western Jutland,

Denmark. Apart from the sharp surface roughness change at the coastline, and the presence of a small coastal escarpment, the20

surrounding terrain is homogeneous and flat. We used measurements at 10, 40, 60, 80, 100 m at this site. The Cabauw mast

(Ulden and Wieringa, 1996)
:::::::::::::::::::::::
(Ulden and Wieringa, 1995) is located 40 km inland near the small towns of Cabauw and Lopik in

the Netherlands. The surroundings are flat and characterized by fairly homogeneous agricultural fields, although with patches

of forest and buildings. Here we used measurements at 10, 20, 40, 80, 140, and 200 m.

Figure 2 shows availability of wind speed observations for 2011 at the three meteorological masts. At Cabauw, the data was25

gap-filled by simple interpolation as the missing values were few (less than 2% missing data per month) and the gaps short.

The time series from the two other sites were not gap-filled.

At FINO3, the wind speed measurements at three of the heights, 50, 70, 90 m, are a combination of the measurements from

three anemometers at three separate booms 120◦ apart. This procedure minimizes the effects of the mast flow distortion. At

the other two heights, 40 and 60 m, only one anemometer is available, and the wind measurements are therefore susceptible30

to flow distortion. Thus, instead of using the single-anemometer data from 40 and 60 m, the measurements from 50 and 70 m

were vertically interpolated in log height to 40 and 60 m. This assumes that the errors due to interpolation and extrapolation

are much smaller than those caused by mast flow distortion.
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Figure 1. Map of Northern Europe with the three site locations used in the model intercomparison: (1) FINO3, in the North Sea. (2) Høvsøre,

Denmark. (3) Cabauw, The Netherlands.

2.2 Submission procedure and models

EWEA issued an open call for data and the submission procedure consisted of a template spreadsheet and a questionnaire

downloadable from the EWEA website. The participants filled the spreadsheet with the time series of the required variables at

each location and height. The questionnaire contained details about the setup of the modeling system used. The participants

returned the spreadsheet to EWEA, whom passed it on to the authors in an anonymized version.5

The requested model variables were hourly wind speed and direction, air temperature, and atmospheric stability. The ques-

tionnaire asked about the modeling setup, i.e. the model code and version, the surface and planetary boundary layer schemes,

the Land Surface Model (LSM), the grid nests size(s) and spacing(s), the vertical levels, the land use data, the length of the

simulation and spin-up time, as well as the source of the initial and boundary conditions. The participants were also asked to

comment on any additional modifications made to the model, including assimilation, ensemble or other methods used.10

Table A3 lists the various groups participating in the exercise. It includes representatives from private companies, univer-

sities, research centres, and meteorological institutes. Table A4 summarizes the models and the different model setup options

used. The WRF model is by far the most commonly used model in the study, with 18 out of 25 models (Table A4). The Noah

LSM was the most common LSM used, and the Era-Interim Reanalysis the most common source of boundary and initial con-

ditions. The PBL scheme used and the source of land cover data were more varied amongst the participants. Most models used15

a maximum simulation length of less than 100 hours, including the spin-up time (most typically 12 hours spin-up and 36 hours
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Figure 2. Availability of wind speed and direction observations for (a) FINO3, (b) Høvsøre, and (c) Cabauw given as the fraction of com-

pleteness for each month of the year 2011 for each height.

of total simulation). The simulation and spin-up length ranged from 1 hour
::::::
spin-up

:
and 7 simulation to

::::
hours

:::::::::
simulation

::
to

:::
24

::::
hours

:::::::
spin-up

:::
and

:
continuously running for the full year.

For reference, wind time series from the ERA-Interim reanalysis (Dee et al., 2011) were included in the comparisons when-

ever possible. The ERA-Interim reanalysis data set is a global data set based on extensive assimilation of surface and upper-air

observations. The data is available on a grid spacing of about 80 km in the horizontal with 60 vertical levels, with values at5

approximately 10, 34, 69, 118, 187 and 275 m above the model surface. We used bilinear interpolation to interpolate to the

sites coordinates, and linear interpolation in the vertical. The data set is available in 6 hour intervals, thus linear interpolation

in time was used to obtain hourly samples.

2.3 Statistical methods

This study is based on direct comparison between the observations and model output at collocated positions, as well as inter-10

comparison of the modelled output. The sampling frequency for the study was chosen to be one hour. For the observation data

this means hourly mean values; for the mesoscale models the inter-hourly variation is small, so instantaneous values were used.

To ensure temporal consistency between observations and modelled output, instances of missing data from the observations

were removed from the modeled output. Furthermore, to get consistent vertical profiles, only instances where all heights for a
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particular mast had available data were used. The model output submitted were assumed to be quality checked by the submitter,

but it was also checked by the authors for obvious non-physical or inconsistent behavior, and not used in that case.
:::
The

:::::::
number

::
of

::::::
models

::::::::
excluded

:::
was

:::::::
between

::::
two

:::
and

::::
four

::
at

::::
each

::
of

:::
the

:::::
sites,

:::
but

::
no

::::::
model

:::
was

::::::::
excluded

:::::
from

::
all

:::::
three

::::
sites.

:

Inter-model mean and inter-model variations

The emphasis of this study is on the wind speed, u, and wind direction, as they are the most important variables for wind5

energy applications. In the following, a subscript m signifies the temporal mean of a variable, i.e. um is the temporal mean

wind speed. This is not to be confused with the mean value of the model-ensemble, also referred to as the inter-model mean,

which is denoted with a tilde. For example, the mean of the model-ensemble for the temporal mean wind speed is denoted ũm,

and calculated as:

ũm =
1

N

N∑
i

um,i (1)10

Here i is the model index, and N is the total number of models. Likewise, it is useful to define its standard deviation:

σ̃um =

√√√√ 1

N

N∑
i

(um,i− ũm)
2
, (2)

which is the standard deviation of the inter-model variation between the temporal model means. Since ũm and σum
are both

sensitive to outliers, we used the following procedure:

1. Calculate ũm and σ̃um
15

2. Remove models whose mean |um,i− ũm|> 3.5 σ̃um

3. Recalculate ũm and σ̃um
with the new subset of models

The value of 3.5 σ̃um
was chosen somewhat arbitrarily to ensure that only "extreme" outliers were removed. The procedure

included only models with output available at all the heights, to ensure a vertically consistent profile of the mean and its

variation. Typically, only one or two models were removed by this criteria.20

Coefficient of variation

Variations in wind speed often scale with the mean wind speed. Thus, to allow for intercomparison of wind speed variation

intensity across vertical levels we define the coefficient of variation, Cv,u. It is defined as the ratio of the standard deviation

and the mean, σu/um, and is a unit-less measure of the relative variation at the sampling time scale. At timescales of seconds

it is known as the turbulence intensity, but in this case, with a sampling frequency of one hour, it represents the intensity of25

variations of synoptic- and mesoscale weather phenomena.
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Wind speed shear exponent

To diagnose the wind sheer
::::
shear in the boundary layer, we use the wind sheer

::::
shear

:
exponent, α, which uses the wind speed

u1 and u2 at two heights z1 and z2, given by the expression:

u2 = u1

(
z2
z1

)α
(3)

In the surface layer α is strongly influenced by the surface roughness and the atmospheric stability. By comparing the modelled5

to the measured α it is thus possible gain insights into how the model captures these effects.

Error metrics

The Root Mean Squared Error (RMSE) and the Normalized RMSE (NRMSE) were used as error metrics to obtain single value

measures of the error across heights at a site. The RMSE and NRMSE are defined as:

RMSE =

√√√√ 1

n

n∑
j=1

(
xMj −xOj

)2
, (4)10

NRMSE =

√√√√ 1

n

n∑
j=1

(
xMj −xOj
xOj

)2

, (5)

for a set of n modelled values xMj and observed values xOj . The RMSE was used for variables that do not scale with height

in the surface layer, e.g. wind speed shear exponent; the NRMSE was used for variables that do scale with height, e.g. wind

speed.

2.4 Wind energy application15

To investigate the errors associated with the use of each model in wind energy applications, we performed a simple wind

resource assessment exercise, using both measurements and modelled time series at FINO3.

A typical approach to resource assessment is to run a mesoscale model for a number of years, followed by a downscaling

process where the wind-climate statistics obtained from the mesoscale model are used as input to a microscale model (Badger

et al., 2014; Hahmann et al., 2015a). In simple terrain, the microscale model usually consists of a flow model like the one20

used by the Wind Applications and Analysis Program (WAsP). WAsP uses a linearised flow model based on Jackson and

Hunt (1975). The procedure in WAsP consists first of an upscaling, where local effects from variations in orography, surface

roughness, and obstacles, are removed from the wind-climate statistics. This is referred to as "generalisation" of the wind

climate, which makes it representative for a larger area than the site specific wind climate. The size of this area depends on

the complexity of the surface roughness, and orographic variations in that area. To obtain a site-specific wind climate at a new25

site in this area, the generalised wind climate is downscaled by "reversing" the generalization process, i.e. by introducing the

site-specific effects of orography, surface roughness, and obstacles of the new site.
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Given the wind-climate and the turbine power curve, the expected power output can be calculated for any site. Since the

participants in this intercomparison were not requested to submit the model-specific orography and roughness maps near each

site, it is not possible to go through the generalization procedure, and subsequent downscaling process at the inland sites.

However, for the offshore site FINO3 there are no effects of orography, and the differences in roughness between the models

can be assumed to be negligible. Therefore, we can use the raw model output at this site to estimate the wind resources5

estimated by each of the models, without the generalisation procedure.

We performed the wind resource exercise at 90 m at FINO3, assuming first a single Vestas V80 turbine at the site, and then

repeated for the wind farm of Horns Rev, which is a 80 turbine wind farm located near FINO3. The resource estimations for

the wind farm includes the simple wake parametrization present in the WAsP model, which was used to estimate the power

losses.10

3 Results

3.1 Mean quantities and distributions

The following subsection is dedicated to the general performance of the models, and their ability to capture the mean and the

distributions of a number of wind-related quantities. As previously stated, the goal is to highlight the weaknesses of the models

to encourage further analysis of model sensitivities.15

3.1.1 Mean
:::::::
Annual

:::::
mean wind speed

Figure 3 shows the vertical profiles of mean wind speed (um) at the three sites. At FINO3 (Fig. 3a), most Mesoscale Models

(MMs) underpredict um at all heights. However, the bias on average is less than 0.27ms−1 (∼ 2.8%). This is a small bias

compared to that of the ERA-Interim data, which shows a larger bias than all the mesoscale models. The inter-model variance

σ̃um
at FINO3 is 2.7–3.1% of the inter-model mean, and decreases with height. That is the lowest combined inter-model20

variance of any of the three sites.

At Høvsøre (Fig. 3b), the MMs generally have small wind speed biases above 10 m. The error of the inter-model mean of

the models is smaller than ±0.16ms−1 (∼ 1.9%), and the inter-model variance is 3.0–5.2%, decreasing with height, which

is low compared to the biases at the other site on land (Fig. 3c). At 10 m, most MMs overpredict the mean wind speed. The

inter-model mean has a positive bias of 0.54ms−1 (∼ 8.4%). The largest inter-model variance is also seen at 10 m (7.8%).25

The ERA-Interim also overpredicts the mean wind speed at 10 m, with a larger bias than ũm. Above 10 m, ERA-Interim has

smaller errors, but the shape of the profile is not well captured. Signs of a "kink" in both the observed and modelled profiles are

present, which could indicate the transition from the low surface roughness of the sea to the higher surface roughness inland.

At Cabauw (Fig. 3c), most of the MMs overpredict um. Only one of the models and the ERA-Interim shows a significant

underprediction, and in the case of the reanalysis, this underestimation increases with height. The overprediction by the rest of30

the MMs varies in magnitude, but the average of the models, excluding the outliers, is in the range 4–9% across the different
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Figure 3. Vertical profiles of mean wind speed (um) at the three sites for: the observations (black), the ERA-Interim data set (green), the

Mesoscale Models MMi (red), and the inter-model mean M̃M (blue line) and its standard deviation ±σ̃ (blue shade).

heights. The largest relative errors are at the lowest levels. The inter-model variance (σ̃um
) at Cabauw varies between 3.3–8.1%

across the different heights, and is largest at the lowest levels. The decrease of wind speed bias with height was also observed

by Jiménez et al. (2016), whom associated this with excessive turbulent mixing, which may be caused by a misrepresentation

of the surface roughness length.

3.1.2 Frequency distribution of wind speed5

Figure 4 shows that, on average, the MMs capture the wind speed distributions well compared to the observations. The only

exception is a slight shift towards higher wind speeds at Cabauw, corresponding to the positive bias in mean wind speed

observed in Fig. 3. The ERA-Interim data set captures the distribution well at Høvsøre, but it has distributions that are shifted

towards lower wind speeds at FINO3 and Cabauw, corresponding to the bias in Fig. 3.

3.1.3 Distribution of wind direction10

Figure 3 shows that the MMs generally capture the mean wind speed well, this is also true for the wind direction distributions,

commonly called "wind roses". The distributions are split into 15◦ sectors at heights of either 80 or 90 meters. Figure 5 also

shows that the models are in good agreement. In all three sites the MMs capture the distribution better than the reanalysis data.

At all sites, but most markedly at Cabauw, the ERA-Interim distribution is rotated clockwise relative to the distribution from

the observations and MMs. This rotation might result in a different wind farm layout if its power is optimized according to the15

wind roses from MMs or the ERA interim.

3.1.4 Annual wind speed cycle

Figure 6a shows the monthly distribution of the mean wind speed for the MMs, and the measurements. Apart from a few

models outside the 3x quartile range, most models capture the diurnal cycle well. Interesting, the figure also reveals that both

10
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Figure 4. Wind speed distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m and Cabauw at 80 m), for: the observations (black), the

ERA-Interim data set (green), the Mesoscale Models MMi (red), and the inter-model mean (blue line) and its standard deviation M̃M ± σ̃

(blue shade).
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Figure 5. Wind direction distributions at the three sites (FINO3 at 90 m, Høvsøre at 80 m and Cabauw at 80 m), based on 24 sectors, for: the

observations (black), the ERA-Interim data set (green), the Mesoscale Models MMi (red), and the inter-model mean M̃M (blue line) and

its standard deviation ±σ̃ (blue shade).
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the overestimation by the models at Cabauw and the underestimation at FINO3, seen in Fig. 3, is evenly distributed throughout

the year. At Høvsøre, a mix of under- and overestimations are observed.

Figure 6. (a) Monthly distributions of mean wind speed for the MMs (boxplots) and observations (star), at each location (colors). (b) Monthly

distributions of the models for the Mean Absolute Error (MAE) for wind speed at each location (colors).
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Figure 6b shows the monthly distribution of the Mean Absolute Error (MAE) for wind speed for the MMs. Summer and

spring are generally associated with larger deviations between the modeled and observed wind speeds. It is well established

that fall and winter weather in Northern Europe is governed by large-scale planetary and synoptic weather phenomena, that is5

well captured by mesoscale models. During spring and summer, meso- and thermally induced phenomena (e.g. sea breezes and

convection) have a larger impact on the flow, which is more difficult for the models to correctly capture. The lowest MAE is

observed at FINO3 in February, October and November with most MAE values near 10%. The largest MAE are in November

at Cabauw (values in the range 30–45%). For June and July FINO3 shows

3.1.5 Effect of atmospheric stability10

It is generally acknowledged that non-neutral atmospheric stability conditions pose one of the greatest challenges for MMs

::::::::::::::::::::::
(Fernando and Weil, 2010). To study the performance of the models in different stability regimes, the stability parameters

supplied for each model (inverse Obukhov length or bulk Richardson number) were used to group the hourly samples into

12



five stability classes
::::
based

:::
on

:::::::::::::::::::::
Gryning et al. (2007) and

::::::::::::::::::::::
Mohan and Siddiqui (1998), shown in Table A2. Because the models

represent atmospheric stability in different ways, the number of samples in each stability group varies for the different models.

However, the number of samples in each group was never below 150 hours (out of 8760 hours), and it was more than 400 in

most cases. The MAE for wind speed was calculated for each of groups and for all models. The results are shown in Fig. 7.

Figure 7. Distribution of Mean Absolute Error (MAE) for wind speed at the three sites for five stability classes: Very Unstable (VU
::
U),

Unstable
::::::::::
Near-Unstable

:
(U

::
NU), Neutral (N), Stable

::::::::
Near-Stable

:
(S

:::
NS), Very Stable (VS

:
S). See definitions in Table A2.
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At all three sites, the smallest deviations between modelled and measured wind speeds are found when the models perceive5

the surface layer stability from unstable (U) to stable (S). The MAE in these cases typically range from 10% to 35%, with just

a few models outside of 3x quartile range. The largest deviations are found when the models estimate very stable conditions

(VS) or very unstable conditions (VU) (typical values in the range 15–45% MAE). The site where the largest errors are found

is Cabauw, and the smallest is FINO3. This is in agreement with the results in section 3.1.

3.1.6 Coefficient of variation of wind speed10

Figure 8 shows the mean coefficient of variation (Cv,u) for wind speed, at the three sites. At FINO3, the average of the MMs

C̃v,u is similar to the observations, with a bias of less than 1% at all three heights. Ignoring one "outlier", the inter-model

variance ranges between 3.0% and 3.5% at the three heights. The "outlier", which shows much lower values, is a consequence

of the low variance for that model compared to the other models. It was removed by the filtering method described in sect. 2.3

when calculating the mean of the models (C̃v,u) and the inter-model variance (σ̃Cv,u
). The ERA-Interim data set also captures15

the magnitude of Cv,u well.

At Høvsøre, Cv,u decreases with height for both the observations and most of the MMs. The inter-model mean of the models

(C̃v,u) agrees well with the observations, but underestimates it by about 2%. The ERA-Interim data set does not capture this
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Figure 8. Vertical profiles of the coefficient of variation for wind speedCv,u at the three sites, for: observations (black), ERA-Interim (green),

the mesoscale models MMi (red), and the mesoscale models mean and inter-model variance M̃M ± σ̃ (blue).

behavior, and instead shows an increase with height. At the highest levels, however, it reaches the average of the models and

the observed values. The spread of the MMs (σCv,u
) is slightly higher than at FINO3 (3.6–4.4%), and is highest at the lowest

levels.

At Cabauw, Cv,u at 10 m is the largest value found across all sites. Above 10 m a sharp drop-off is found up to 80 m, where

is starts to slowly increase up to 200 m. Most of the MMs capture this behavior, which is reflected in the mean of the models5

(C̃v,u). However, the models underestimate the magnitude and the drop-off of Cv,u at the lowest levels with a bias up to 12%

at 10 and 20 m. Above 80 m the models agree with the observations. The ERA-Interim data set is nearly constant with height,

and underestimates Cv,u below 40 m, and overestimates it above. The inter-model variance (σ̃Cv,u
) of the MMs is largest at

the lowest levels, 8.0% at 10 m, and gradually decreases to less than 4% at 200 m.

Effect of upstream conditions on the variation of wind speed10

The coastal site Høvsøre and the offshore site FINO3 is used to investigate whether there is a dependency o the coefficient

of variation for wind speed (shown in Fig. 8) on upstream surface conditions. With a nearby coastline aligned north-south,

Høvsøre represents the case with anisotropic surface roughness conditions: westerly winds comes from the sea (onshore flow),

and easterly winds from land (offshore flow). In contract
:::::::
contrast, the offshore site FINO3 has isotropic upstream surface

roughness. To study the differences, the coefficients of variation were binned according to four wind direction sectors, each15

spanning 90 degrees: north, east, south, and west. The values for the east and west sectors were then extracted and analyzed.

Figure 9 shows the profiles of Cv,u for the two wind directions at FINO3 and Høvsøre.

At FINO3, the coefficient of variance is almost constant with height and slightly lower for easterly winds than for westerly

flow. This is true for both models and observations. The sample size for easterly winds is smaller, about half, than for westerly

flow. However, both sample sizes are large (N > 1000), so the influence from sample sizes is expected to be small. The average20
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Figure 9. Coefficient of variation for wind speedCv,u for easterly (top) and westerly (bottom) winds at FINO3 (left) and Høvsøre (right), for:

the observations (black), the ERA-Interim data set (green), the MMs MMi (red), and the mesoscale models mean and inter-model variance

M̃M ± σ̃ (blue).

of the MMs captures the observed behavior well for both westerly and easterly winds, and the inter-model variance is similar

for the two sectors. The ERA-Interim agrees better with the observations during easterly flow at FINO3.

At Høvsøre, the coefficient of variation is larger for westerly than for easterly winds. Easterly winds show larger coefficients

of variation at 10 m than higher up. The reduction of Cv,u with height up to 40 m for easterly flow is underestimated by most

of the mesoscale models, and completely missed by the ERA-Interim data set. For westerly winds, the mean of the models and5

the observations agree, but is underestimated by ERA-interim.

The dependence on height of Cv,u is only present at Høvsøre for easterly winds, and points to the influence of upstream

surface conditions on the variation. The observed pattern is captured by the MMs, but the models show a more "smooth"

vertical transition than do the observations. The ERA-Interim does not capture the pattern.

3.1.7 Distribution of wind speed shear exponent10

Figure 10 shows the distributions of wind speed shear exponent (α) for each of the three sites calculated between 40 and 80

or 40 and 90 m. Under neutral atmospheric stability conditions and isotropic surface roughness, a sharp distribution centered

around a single value is expected. This means that for an offshore sites such as FINO3, the spread in shear exponent comes

15



primarily from variations in atmospheric stability. With this in mind, the distributions show that most MMs capture the stability

well at the site. The ERA-Interim data set does not capture the strongest shear situations well. This can be easily explained by

the low data frequency (6 hours).
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Figure 10. Frequency of occurrence of the shear exponent (α) at the three sites, for: the observations (black), the ERA-Interim data set

(green), the Mesoscale Models MMi (red), and the inter-model mean (blue line) and standard deviation M̃M ± σ̃ (blue shade).

At Høvsøre and Cabauw, the distributions of α reflect the combined effect of both the non-homogenous upstream surface

roughness, and the variations in atmospheric stability. At the coastal site, the wind speed profile changes depending on whether5

the fetch is from land or from the sea, which is also reflected in the distribution ofα (Hahmann et al., 2014)
:::::::::::::::::::
(Hahmann et al., 2015b).

Figure 10 also shows that while the shear distributions are generally also well captured at Høvsøre and Cabauw, a slight shift

towards lower values is observed at both sites. This points to an underestimation of the surface roughness, a misrepresentation

of the atmospheric stability, or a combination of the two. Just like at FINO3, the ERA-Interim data set does not capture the

weak and strong shear cases at Høvsøre and Cabauw.10

3.2 Relating performance to model setup

To identify what model setup choices lead to better model performance, the statistics of each model across all heights are re-

duced to just two values at each site: NRMSE for wind speed (NRMSEu) and RMSE for wind speed shear exponent (RMSEα).

The shear exponent was calculated between pairs of nearby levels, e.g. at FINO3 two values were calculated, one between 40

and 70 m, and one between 70 and 90 m. The RMSEα was then calculated as described in section 4 between modelled and15

observed values of the shear exponent across all height-pairs.

Figure (11) shows NRMSEu and RMSEα for all MMs at all three sites. It shows, similarly to section 3.1, that the models

generally have smaller mean wind speed and mean shear exponent errors at the offshore site FINO3. But, as previously shown,

errors are larger near the surface, and the three levels used at FINO3 is at 40 m and above, unlike Høvsøre and Cabuaw where

levels below 40 m are included.20
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Figure 11. RMSE for wind speed shear exponent (RMSEα) versus Normalized RMSE for wind speed (NRMSEu) at the three sites.

The models were then grouped according to specific model components. Given the range of setup choices that influence the

model performance, large groups were needed to obtain useful statistics. With this in mind, three setup options were chosen

for analysis: PBL scheme, grid spacing, and simulation lead-time, and statistics of NRMSEu and RMSEα were computed for

each group. The choice of groupings was based mainly on two criteria: 1) it was possible to form groups with at least six

members in each group. 2) each of the options were highlighted in the literature as being important for model performance5

(Hahmann et al., 2014; Gómez-Navarro et al., 2015; Carvalho et al., 2012; Draxl et al., 2014)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hahmann et al., 2015b; Gómez-Navarro et al., 2015; Carvalho et al., 2012; Draxl et al., 2014).

Several other setup options were considered: MM, LSM, land cover, spin-up time, and data set used for initial and boundary

conditions, but either it was not possible to group them in a meaningful way, or they were deemed of too little importance

based on previous studies. Models missing information about particular setup options, or missing output at some heights, were

excluded from this analysis.10

3.2.1 PBL scheme

The PBL scheme in a MM ensures an accurate representation of thermodynamic and kinematic structures of the lower tropo-

sphere (Cohen et al., 2015).
:::
Two

:::::::::
important

::::::::::::
characteristics

::
of

:::
the

::::
PBL

::::::::
schemes

:::
are

::::
their

:::::
order

::
of

::::::
closure

::::
and

:::::::
whether

::::::
mixing

:::::::
happens

:::::::
through

:
a
:::::
local

::
or

::
a
::::::::
nonlocal

:::::::
process.

:::::::::
Equations

:::::::::
describing

::::::::
turbulent

::::::
motion

:::
of

:::::
order

::
n

:::::::
contains

:::::
terms

:::
of

:::::
order

:::::
n+1.

::::
The

::::
order

::
of

:::::::
closure

::::::::
describes

::
the

:::::::
highest

::::
order

:::
of

::::::::
equations

::::::::
included,

:::::
higher

::::::
orders

:::
are

:::::::::::
parametrized.

::
In

::::
local

::::::::
schemes15

:::::::
variables

:::
are

::::
only

::::::::
affected

::
by

::::::::
adjacent

::::
cells,

:::::
while

::::::::
nonlocal

:::::::
schemes

::::::
relate

:::::::
changes

::
to

::::::::
gradients

::
in

:::
the

::::::
whole

::::
PBL

:::::::
column

::::::::::::::::
(Cohen et al., 2015).

:

To study the influence of the PBL schemes used, the MMs were split into three groups: YSU, MYJ, and Other. The statistics

of NRMSEu and RMSEα for these groups are shown in Table A5. The YSU group consists of six models that used the YSU

PBL scheme (Hong et al., 2006),
:::::
which

::
is
::
a

:::
first

:::::
order

:::::::
nonlocal

:::::::
scheme. The models in this group span a range of grid spacings20

and lead-times, but models with larger than average grid spacing and longer than average lead-times dominate the group. The

17



MYJ group contains six models that used the MYJ PBL scheme (Janjić, 1994), most of them
:::::
which

::
is

:
a
:::
1.5

::::
order

:::::
local

:::::::
scheme,

::::
most

::
of

:::
the

:::::::
models use a short lead-time limit, and a grid spacing that is close to the average for the MMs in this study. The

last group labeled ’Other’ contains nine models that used a mix of different PBL schemes (see Table A4)
:
,
::::
with

:::::::
different

:::::
order

::
of

:::::::
closures

:::
and

::
a

:::
mix

:::
of

::::
local

:::
and

::::::::
nonlocal

:::::::::::
formulations. These models have a wide representation of different grid spacings

and lead-times.5

At FINO3, the group consisting of models not using either the YSU or MYJ PBL schemes generally have smaller wind speed

errors; even though the group also contains the model with the largest NRMSEu. The models using the MYJ PBL scheme have

smaller wind shear exponent errors, and on average also smaller wind speed errors than YSU. But the median model in the

YSU and MYJ groups have similar wind speed errors.

At Høvsøre, the three groups have very similar mean wind speed error-statistics, with YSU showing only slightly smaller10

errors. However, for wind shear exponent the models in the YSU group have the smallest errors, both on average and for

the median model. Draxl et al. (2014) studied similar error-statistics at Høvsøre for the WRF model run with a number

of different PBL schemes during October 2009. They, unlike this study, found that MYJ gave slightly smaller errors than

YSU. However, Draxl et al. (2014) used a version of the YSU scheme with a bug that was corrected in WRF version 3.4.1

(Hahmann et al., 2014)
::::::::::::::::::::
(Hahmann et al., 2015b).15

At Cabauw, the YSU group has smaller errors than the other groups for both wind speed and wind shear exponent, but the

errors for the median model in the YSU and MYJ groups are quite similar. The single most accurate model is found in the

’Other’ group, but that group as a whole has larger errors.

3.2.2 Grid spacing

A mesoscale model should be able to explicitly resolve smaller and smaller phenomena as the grid spacing is decreased.20

Skamarock (2004) illustrated that the effective resolution of the WRF model is approximately seven times the grid spacing

used. However, mesoscale models, as the name suggests, have been developed to simulate the ’meso’-scale, they are often

not capable of simulating weather at scales that lie between the micro- and mesoscale, i.e. between approximately 100 and

2000 m. To study the importance of the grid spacing, the models were ranked by grid spacing, similar to table A4. The models

were then split into three groups: Fine, Moderate, and Coarse. The Fine group consists of seven models that all have a grid25

spacing below 3 km. The Moderate group consists of eight models at exactly 3 km, and the Coarse group consists of six models

above 3 km. The Fine group contains models that are well distributed in terms of PBL schemes and simulation lead-time. The

Moderate models also has a good representation of different PBL schemes and lead-time limits, but the MYJ PBL scheme and

short lead-times are most common. The Coarse group contains no models using the MYJ PBL scheme, and half of the models

use a short lead-time.30

Table A6 shows the statistics for NRMSEu and RMSEα. At FINO3, the Fine group has the smallest wind speed errors.

For the wind shear exponent, the smallest error is found in the Coarse group, but, on average, the Fine and Moderate groups

have smaller errors. At Høvsøre, the Fine and Moderate groups have similar errors for both wind speed and shear exponent.

However, the model with the smallest shear exponent error is found in the Coarse group. At Cabauw, the Moderate group
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shows the smallest errors for both metrics, followed by the Fine group. But, just as for Høvsøre, the model with the smallest

RMSEα is found in the Coarse group.

3.2.3 Simulation time

As the solution in mesoscale models is integrated forward in time, the uncertainties associated with the errors in the initial

conditions increase (Yoden, 2007). This can cause the model solution to drift away from the true solution. Furthermore, ampli-5

fication errors can reduce the variance, which reduces the accuracy of the model in a statistical sense. To study the influence of

the simulation time on the model performance, the models were ranked and split into three groups: Short, Medium, and Long.

The Short group consists of nine models with a lead-time below 48 hours. Four models in the group use the MYJ scheme,

and one the YSU scheme. The Short group has a good representation of models with different grid spacings. The Medium

group includes eight models with a lead-time between 48 and 335 hours. The group has a good representation of different PBL10

schemes and grid spacing. The Long group consists of seven models with a lead-time limit above 335 hours. Five of the models

use the YSU PBL scheme, and most of the models use a larger than average grid spacing.

Table A7 shows the errors statistics for the three simulation-time groups. At FINO3, the median model from the Short group

has the lowest NRMSEu and RMSEα, but because one model has large errors, the lowest mean errors are found in the Medium

group. The Medium group has smaller errors across all metrics compared to the Long group.15

At Høvsøre, the Short and Long groups have similar error statistics for wind speed, and both measures are lower than those

for the Medium group. For RMSEα the median model from the Short group has the smallest error, while, on average, the errors

are smallest in the Medium group.

At Cabauw, the smallest errors for both wind speed and shear exponent are, on average, found in the Long group, while the

median model with the smallest errors are in the Short group. It is worth noting that five of the seven models in the Long group20

use the YSU PBL scheme, and in section 3.2.1 the models using the YSU PBL scheme were shown to have smaller errors at

Cabauw, so it cannot be ruled out that the small errors in the Long group at Cabuaw is related to the over representation of the

YSU scheme and not the simulation length.

3.3 Wind energy application

As described in sect. 2.4, the output from the mesoscale models was applied to a simple wind energy exercise. The 90-m wind25

resource of a Horns Rev wind farm was estimated using the output from the various MMs at FINO3. Figure 12 shows the errors

for four metrics: 1) error in mean wind speed um, 2) error in mean power density Pm, 3) error in mean power density using a

single power curve Pm,pc, and 4) error in the mean power density of a wind farm of 80 turbines Pm,wf , including wake effects.

Figure 12 shows that the majority of the models have less than ±5% error in mean wind speed. The errors are mostly under-

estimations, and, in a few cases, severe underestimation of more than 10% (outside the scale of the Figure). For the mean30

power density, the spread of the models is, as expected, much larger due to the "third power" dependence on the wind speed.

However, when the power density is calculated using a turbine power-curve, where the highest wind speeds (>14 m s−1) are

less important, the inter-model variance is comparable that for mean wind speed. For the wind farm case, where the power
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Figure 12. Distributions of errors from the model’s output at 90 m at FINO3 for the following errors: 1) the mean wind speed um (blue), 2)

the power density Pm (green), 3) the power density with an implied power curve Pm,pc (red), and 4) the averaged power density of a wind

farm including the same implied power curve as 3) and the wake effects (purple). Outliers are not shown; the most extreme ones are −25%

for um, −60% for Pm, −37% for Pm,wf , and −35% for Pm,pc

density depends on the wind direction distribution, because of the wake losses, the variance is comparable in size to that of the

mean wind speed and Pm,pc, and most models have errors smaller than ±2%. The improvement seen for Pm,wf is caused by

the under estimation of the wake effects by most models, leading to a relative increase in mean power density, off-setting the

underprediction from the modelled wind speed distribution. However, the relative effect of over- or underprediction the wake

effects may just as well enhance the total power density errors, given slightly different wind direction distributions.5

4 Summary and conclusions

The mesoscale models in this study are able to reproduce well the observed mean wind speed profiles, and the distributions of

wind speed. At FINO3 and above 10 meters at Høvsøre, the average of the models has a bias of 3% or less. The largest mean

wind speed biases (7–9%) are found at the lowest levels at Høvsøre and Cabauw. Similarly, the MMs were able to reproduce

the relative variations of wind speed well in most cases (Fig. 8), but underestimated the relative variations at the lowest levels10

at Cabauw. A simple analysis of the impact of upstream surface roughness conditions on the relative wind speed variations,

suggested that the models may be misrepresenting the surface characteristics (Fig. 9), which could be a misrepresentation of

either the landuse classification, the conversion of landuse classes into surface roughness lengths, or in the PBL scheme. This

problem highlights the need for: 1) further analysis of the representativeness of the surface characteristics in mesoscale models,

and 2) downscaling the mesoscale results using a coupled microscale model to capture subgrid-scale influence from variations15

in orography and surface roughness. The modeled distributions of the wind direction showed only minor differences compared

to the observed ones.
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For future benchmarking exercises, our study shows that the focus should be on the model representation of surface char-

acteristics, such as orography and landuse, and their associated surface roughness. An attempt was made here to include these

details, but because only a subset of the participants supplied this information, it was not feasible. Further studies could also

benefit from including more land masts with low to moderate complexity, where capturing the surface characteristics is impor-

tant, but still manageable by mesoscale models.5

The impact of choosing specific model sub-components was studied in some detail. To allow this, the output from the models

was reduced to two metrics at each site, one related to the wind speed bias (NRMSE for wind speed), and one related to the

shape of the wind speed profile (RMSE for wind speed shear exponent). The models were then separated into large groups

according to their model setup for three setup choices: PBL scheme, grid spacing, and simulation lead-time. At FINO3, the

grouping revealed that the models using the MYJ PBL scheme had smaller wind speed and shear exponent errors than those10

that use the YSU scheme. At Høvsøre and Cabauw, the opposite was true. However, the differences between the two groups

were not significant and the median model from the two groups had similar errors. Grouping the models according to grid

spacing showed that the models with 3 kilometer grid spacing or smaller had lower errors than the group with the largest grid

spacings. No
:::
For

:::::
these

::::
sites,

:::
no conclusive evidence was found that reducing the grid spacing below 3 kilometers results in

smaller errors. For simulation lead-time, the median model from the group with short lead-times had the smallest errors at all15

sites, with the exception of the shear exponent error at Høvsøre. However, no significant difference between the mean of the

groups were found, which suggests that the PBL scheme and grid spacing may be of greater importance for the performance

at these sites. Future studies should include many more runs to provide more robust statistics, which can provide a basis for

"best-practice" guidelines for wind energy applications using NWP models.

Last, we used the observed and modelled time-series for a classical wind energy application, the estimation of power pro-20

duction at a hypothetical wind farm at FINO3. The power production, including wake losses, was estimated for both a single

turbine and for a wind farm, using a standard power curve. The exercise showed that while a large spread exists between the

modeled power density, it is reduced when the power is calculated using a power-curve. It also showed the importance of

accurately estimating the wind direction distribution, since a small deviation in the distributions might induce large changes in

the power production, because of its sensitivity to the wind farm layout.25

5 Data availability

The output data from the mesoscale models have been submitted to the European Wind Energy Association (EAWE) for the

mesoscale benchmarking study under an agreement that ensures that individual participants are anonymized in the reported

results, and that the model output was not publicly shared. The measurements from the meteorological masts FINO3, Høsøre,

and Cabauw are provided by the data owners under an agreement of not sharing the data with any third party.30
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Table A1. Site description, including latitude and longitude coordinates, classification of the site, and the height of the mast zs as well as the

location terrain elevation relative to sea-level zasl and prevailing wind direction.

Nr. Name Latitude [◦] Longitude [◦] Type zs [m] zasl [m] Prev. wind direction

1 FINO3 55.195 7.158 Offshore 120 0 WSW

2 Høvsøre 56.441 8.151 Coastal 116 2 WSW

3 Cabauw 51.970 4.926 Land 213 -1 SW

Table A2. Ranges of inverse Obukov length (1/L) and bulk Richardson number (Rib) used in the stability classification.
:::
The

:::
1/L

::::::
classes

::::
were

:::
used

::
in
:::::::::::::::::::
Gryning et al. (2007) and

:::
the

:::
Rib :::::

classes
::
in

:::::::::::::::::::::
Mohan and Siddiqui (1998).

::
In

::::
both

::::
cases

:::
the

::::::
original

::::
"very

::::::::
unstable"

:::
and

:::
the

::::::
"stable"

:::::
classes

:::
has

::::
been

:::::::
combined

:::
into

:::
the

:::::::::
open-ended

::::::
"stable"

::::
class.

::::
The

::::
same

:
is
::::

true
::
for

:::
the

::::::
original

::::
"very

:::::::
unstable"

::::
and

:::::::
"unstable"

::::::
classes

:::::
which

::
has

::::
been

::::::::
combined

:::
into

:::
the

:::::::::
open-ended

:::::::
"unstable"

:::::
class.

Stability class Class name 1/L interval [m−1] Rib

VU
:
U
:

Very unstable
::::::
Unstable 1/L < −0.005

:::::::::
Rib < −0.2

:::::
−0.011

U
::
NU

:
Unstable

::::::::::
Near-Unstable −0.005 ≤ 1/L < −0.002 −0.2

::::::::
−0.011 ≤ Rib < −0.05

::::::
−0.0036

N Neutral −0.002 ≤ 1/L < 0.002 −0.05
::::::
−0.0036 ≤ Rib < 0.05

::::
0.0072

:

S
::
NS

:
Stable

:::::::
Near-Stable

:
0.002 ≤ 1/L < 0.005 0.05

:::::
0.0072 ≤ Rib < 0.2

:::
0.42

VS
:
S
:

Very stable
::::
Stable 0.005 ≤ 1/L 0.2

:::
0.42

:
≤ Rib :::

Table A3. Participants in the study in alphabetical order.

Participant Institution Country

3E Company Belgium

Anemos GmbH Company Germany

ATM Pro Company Belgium

CENER Research Center Spain

CIEMAT Research Center Spain

DEWI Company Germany

DTU Wind Energy University Denmark

DX Wind Technologies Company China

EMD International Company Denmark

ISAC-CNR Research Center Italy

KNMI Meteorological institute The Netherlands

Met Office Meteorological institute United Kingdom

RES ltd. Company United Kingdom

Statiol ASA Company Norway

University of Oldenburg University Germany

Vestas Company Denmark

Vortex Company Spain
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Table A4. Setup description of the 25 model setups ranked by horizontal grid spacing of the finest grid. The columns are: the model name

and version (Model), the PBL scheme (PBL), the land surface model (LSM), whether nesting was used (Nest.), the horizontal grid spacing

(∆), the land cover source, Simulation and spin-up time (Sim. time), and initial and boundary condition data (B.C.).

Nr. Model PBL LSM Nest. ∆ [km] Landcover Sim. time [h] B.C.

1 WRF V3.6.1a Custom - yes 1 CORINEb 48-24 Era-Ic

2 MAESTRO V15.01 - - no 1 CORINE - Era-I

3 WRF V3.6.1 MYJd Noahe yes 2 USGSf 78-6 Era-I

4 WRF V3.3.1 MYJ - yes 2 GlobCoverg 11064-24 Era-I

5 WRF V3.5.1 YSUh Noah yes 2 CORINE 30-6 Era-I

6 WRF V3.5.1 YSU Noah yes 2 - 264-24 Era-I

7 HARMONIE V37h1.1i SURFEXj ISBAk yes 2.5 ECOCLIMAPl 7-1 Era-I

8 WRF V3.6 ACM2m Noah yes 3 USGS-MODIS 84-12 FNLn

9 WRF V3.4 MYJ Noah no 3 USGS 28-4 Era-I

10 WRF V3.6.1 YSU Noah yes 3 CORINE 672-96 CFSRo

11 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36-6 CFSR

12 WRF V3.6.1 MYNNp Noah yes 3 USGS 816-72 Era-I

13 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36-12 MERRAq

14 WRF V3.0.1 MYJ Noah yes 3 GlobCover 36-12 Era-I

15 WRF V3.1 MYJ Noah yes 3 MODISr 54-6 FNL

16 WRF V3.6.1 YSU Noah yes 3 CORINE 336-96 CFSR

17 WRF V3.5.1 MYJ Noah yes 4 IGBP-MODISs 264-24 Era-I

18 UM V8.4t Locku JULESv yes 4 IGBP-MODIS 36-6 Era-I

19 WRF V3.5.1 YSU Noah yes 5 USGS 2424-24 Era-I

20 SKIRON V6.9w MYNN OSUx no 5 USGS 51-3 GFSy

21 WRF V3.5.1 YSU Noah yes 5 USGS 2424-24 Era-I

22 WRF V3.5.1 YSU Noah yes 6 IGBP-MODIS 264-24 Era-I

23 HIRLAM V6.4.2z CBRaa ISBA no 11 USGS 9-3 IFSab

24 RAMS V6.0ac MYNN LEAFad no 12 CORINE 36-12 IFS

25 MM5 V3ae YSU - no 20 CORINE 744-24 MERRA
aSkamarock et al. (2008) bBossard et al. (2000) cDee et al. (2011) dJanjić (2002)
eNiu et al. (2011) fGarbarino et al. (2002) gArino et al. (2008) hHong et al. (2006)
iSeity et al. (2011) jMoigne and Boone (2009) kNoilhan and Mahfouf (1996) lChampeaux et al. (2005)
mPleim (2007a) nNCEP Final analysis oSaha et al. (2010) pNakanishi and Niino (2006)
qRienecker et al. (2011) rFriedl et al. (2010) sLoveland and Belward (1997) tLean et al. (2008)
uLock et al. (2000) vCox et al. (1999) wKallos et al. (1997) xPan and Mahrt (1987)
yGlobal Forecast System zKallberg (1989) aaCuxart J, Bougeault P (2000) abIntegrated Forecasting System
acPielke et al. (1992) adWalko and Tremback (2005) aeGrell et al. (1994)
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Table A5. Statistics of NRMSE for wind speed (NRMSEu) and RMSE for wind speed shear exponent (RMSEα) associated with the groups

of PBL schemes across all heights at each site. The number of models in each group is: 6 in the "YSU", 6 in the "MYJ", and 9 in the "Other"

group. The smallest value for each metric is in bold.

FINO3

Metric PBL Mean Median St.d. Min Max

YSU 0.047 0.029 0.028 0.018 0.091

NRMSEu MYJ 0.032 0.029 0.011 0.020 0.055

Other 0.028 0.014 0.045 0.001 0.154

YSU 0.029 0.019 0.034 0.004 0.116

RMSEα MYJ 0.010 0.010 0.007 0.004 0.025

Other 0.057 0.019 0.120 0.003 0.396

Høvsøre

Metric PBL Mean Median St.d. Min Max

YSU 0.061 0.058 0.037 0.024 0.144

NRMSEu MYJ 0.063 0.064 0.013 0.045 0.090

Other 0.062 0.059 0.026 0.027 0.100

YSU 0.035 0.018 0.029 0.005 0.087

RMSEα MYJ 0.049 0.044 0.011 0.030 0.061

Other 0.086 0.051 0.100 0.027 0.365

Cabauw

Metric PBL Mean Median St.d. Min Max

YSU 0.058 0.049 0.033 0.021 0.127

NRMSEu MYJ 0.066 0.053 0.037 0.038 0.146

Other 0.124 0.086 0.106 0.007 0.389

YSU 0.025 0.022 0.007 0.018 0.036

RMSEα MYJ 0.045 0.023 0.036 0.020 0.117

Other 0.064 0.075 0.036 0.015 0.113
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Table A6. Statistics of NRMSE for wind speed (NRMSEu) and RMSE for wind speed shear exponent (RMSEα) associated with the group

model grid spacing across all heights at each site. The number of models in each group is: 7 in "Fine", 8 in ’Moderate’, and 6 in ’Coarse’.

The smallest value for each metric is in bold.

FINO3

Metric Grid spacing Mean Median St.d. Min Max

Fine 0.024 0.020 0.015 0.001 0.055

NRMSEu Moderate 0.037 0.027 0.025 0.007 0.080

Coarse 0.044 0.025 0.046 0.002 0.154

Fine 0.013 0.013 0.008 0.005 0.025

RMSEα Moderate 0.015 0.011 0.008 0.004 0.028

Coarse 0.067 0.019 0.121 0.003 0.396

Høvsøre

Metric Grid spacing Mean Median St.d. Min Max

Fine 0.057 0.057 0.026 0.024 0.093

NRMSEu Moderate 0.054 0.057 0.012 0.027 0.064

Coarse 0.075 0.068 0.034 0.028 0.144

Fine 0.040 0.040 0.021 0.015 0.076

RMSEα Moderate 0.047 0.048 0.010 0.030 0.060

Coarse 0.088 0.055 0.109 0.005 0.365

Cabauw

Metric Grid spacing Mean Median St.d. Min Max

Fine 0.086 0.064 0.056 0.007 0.178

NRMSEu Moderate 0.048 0.046 0.015 0.021 0.078

Coarse 0.146 0.107 0.115 0.049 0.389

Fine 0.052 0.030 0.036 0.016 0.117

RMSEα Moderate 0.031 0.021 0.017 0.020 0.066

Coarse 0.063 0.060 0.041 0.015 0.113
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Table A7. Statistics of NRMSE for wind speed (NRMSEu) and RMSE for wind speed shear exponent (RMSEα) associated with each group

of simulation lead-time across all heights at each site. The number of models in each group is: 9 in the ’Short’, 8 in the ’Medium’, and 7 in

the ’Long’. The smallest value for each metric is in bold.

FINO3

Metric Sim. length Mean Median St.d. Min Max

Short 0.032 0.020 0.044 0.001 0.154

NRMSEu Medium 0.028 0.025 0.014 0.007 0.055

Long 0.051 0.031 0.028 0.025 0.091

Short 0.052 0.010 0.122 0.003 0.396

RMSEα Medium 0.016 0.016 0.006 0.003 0.025

Long 0.029 0.022 0.036 0.004 0.116

Høvsøre

Metric Sim. length Mean Median St.d. Min Max

Short 0.058 0.059 0.023 0.024 0.100

NRMSEu Medium 0.070 0.068 0.016 0.044 0.093

Long 0.062 0.057 0.039 0.027 0.144

Short 0.081 0.044 0.102 0.018 0.365

RMSEα Medium 0.044 0.056 0.023 0.009 0.076

Long 0.046 0.048 0.025 0.005 0.087

Cabauw

Metric Sim. length Mean Median St.d. Min Max

Short 0.088 0.058 0.108 0.007 0.389

NRMSEu Medium 0.103 0.097 0.058 0.043 0.178

Long 0.068 0.064 0.035 0.021 0.127

Short 0.046 0.021 0.038 0.015 0.113

RMSEα Medium 0.058 0.054 0.038 0.018 0.117

Long 0.031 0.025 0.012 0.020 0.052
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