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Abstract. For offshore wind farms wake effects are among the largest sources for losses in energy production. At the same 

time wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake 

model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the 10 

magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met 

masts, buoys or LiDARs (Light Detection and Ranging). In offshore conditions these measurements are expensive and 

scarce. However, every wind farm permanently produces SCADA (Supervisory Control and Data Acquisition) 

measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA 

data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. 15 

Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, 

turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this 

paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) 

measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms 

with met mastsThe method is established with data from two offshore wind farms, which have a met mast nearby each. A 20 

correlation is established between the stability classification from the met mast and signals within the SCADA data from the 

wind farm. have been used to establish a correlation between met mast stability classification and new aggregated artificial 

signals. The significance of these new signals on power production is demonstrated with datafor from two wind farms with 

met masts and measurements from a long range LiDAR measurements. Additionally the methodand is validated against with 

data from one furtheranother wind farm without a met mast. The proposed signal consists of a good correlation between the 25 

standard deviation of active power divided by the average power of wind turbines in free flow, with the ambient turbulence 

intensity TI, We found a good correlation between the standard deviation of active power divided by the average power of 

wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load. It 

allows to distinguish between conditions with different magnitude of wake effects. The proposed signal is very sensitive to 

increased turbulence due toinduced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor 30 

diameters. away. It allows to distinguish between conditions with different magnitude of wake effects. 
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1 Introduction 

Wake effects are one of the largest sources of losses in offshore energy yield assessment. This makes wake modelling very 

important and much research is ongoing to improve wake model predictions. In the latest offshore CREYAP  benchmark 

exercise (Comparative Resource and Energy Yield Assessment Procedure) wake modelling was found to be the prediction 

with the highest variation among the participants (Mortensen et al., 2015). 5 

In order to be able to use a wake model for validating the performance of an operating offshore wind farm (Mittelmeier et 

al., 2017)(Mittelmeier et al., 2016) prediction uncertainties need to be reduced. Hansen et al. (2012) studied wake effects at 

the offshore wind farm Horns Rev in different atmospheric conditions and revealed an influence on the wake magnitude. 

They also compared turbulence intensities for different stability classes as a function of the wind speed. Below 7 m/s a clear 

increase in turbulence intensities can be noticed. Above 7 m/s neutral-unstable conditions are distinguishable from more 10 

stable conditions with a constant threshold up to nominal wind speed. Dörenkämper et al. (2014) draw a link from stability 

via shear to turbulence intensity motivated by the studies of Tambke et al. (2005) and showed its impact on wake effects. 

Sanz Rodrigo et al. (2015) compared different stability classification methodologies with data from FINO 1 and presented 

the behavior of shear and turbulence intensity for the proposed atmospheric stability classes. The authors concluded, that in 

this particular case TI correlates well for stable cases but at near neutral and unstable cases, shear is supposed to enable 15 

better distinction between their proposed nine classes.  Atmospheric stability as well as turbulence intensity hasve been 

identified as being one main drivers for the variation in power production under waked conditions (Dörenkämper et al., 

2012,; Westerhellweg et al., 2014;, Iungo and Porté-Agel, 2014). and Therefore state of the art engineering wake models for 

industrial application like Fuga or FarmFlow are able to take stability effects into account (Özdemir et al., 2013, Ott and 

Nielsen, 2014). 20 

Stability classification is based on measurements from met masts, buoys or is assisted by remote sensing devices such as 

Light Detection and Ranging (LiDAR) or Sound Detection and Ranging (SoDAR). For offshore use, these devices are very 

expensive and therefore often not permanently available. In several studies, LIDAR’s have been used to assess the wind 

speed recovery behind the turbine and wake models have been tuned to match the measured wind speed (Beck et al., 2014, 

More and Gallacher, 2014).  25 

  

The purpose of this paper is to investigate wind farm operational data and establish methods of identifying correlations 

between SCADA statistics and wind turbine wake behaviour caused by different atmospheric conditions. 

2 Wind farms and measurements 

For this investigation, we select three offshore wind farms, i.e. alpha ventus, Nordsee Ost and Ormonde. The first two wind 30 

farms have a well-equipped met mast and provide high quality measurements of hub height wind speed, wind direction, 

shear and turbulence intensity as well as water temperature. 
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2.1 alpha ventus 

The wind farm alpha ventus (AV) is located about 45 km north of the island of Borkum in the North Sea. It consists of 

twelve turbines of the 5 MW class with a rotor diameter of 126 m and has been commissioned in April 2010. The six 

northern turbines (AV1 – AV6) have been manufactured by Senvion. The six turbines in the southern part of the wind farm 

(produced are manufactured by Adwen) are and not considered in our this analysis. The FINO1 research met mast is located 5 

only 3.2 D (rotor diameters) west of turbine AV4. 

The layout of the northern part of alpha ventus (See Fig. 1) allows for investigating the wake behaviour in single and double 

wake conditions for westerly wind directions. No dData after the periodwas used from 3/2011 to 1/2015. is usedAfter 1/2015 

no data was used, because the installation of the Trianel wind farm in the west is supposed suspected to have changed the 

environmental conditions of alpha ventus by adding extra turbulence to the inflow. 10 

 
Figure 1: Scematic Layout of the Nnorthern part of alpha ventus wind farm (circles) and FINO1 met mast (red square) layout 
with free flow sector and distance in rotor diameters 

 

2.2 Nordsee Ost 15 

The wind farm Nordsee Ost (NO) is located about 35 km north-west of the island of Helgoland in the North Sea. The 48 

Senvion turbines have a rated power of 6 MW each and a rotor diameter of 126 m. The met mast is located in the south-

western corner of the wind farm (See Fig. 2). In the south, the neighbouring wind farm Meerwind Ost/Süd reduces the sector 

of free flow for the met mast as well as the possibilities to study multiple wakes higher than triple wake condition without 

disturbing effects from Meerwind. 20 

The wind farm Nordsee Ost has been fully commissioned in 2015. So far not enough dataData for this analysis is selected 

from (11/2015 – 11/2016.) has been collected to investigate the full wake behaviour based on SCADA data. For this reason, 

a  A correlation analysis (described in SectionSect. 3.2) is performed and the data from the a ClusterDesign long range 

LiDAR measurement campaign is analysed. This LiDAR measurement campaign took place within the European Research 

Project “ClusterDesign”. 25 

N 
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Figure 2: Nordsee Ost wind farm (blue cyclescircles) with neighbouring wind farm Meerwind Süd (green triangles) and ,met mast 
(red square) and distance in rotor diameter (D). Orange area indicates the Plan Position Indicator (PPI) scan from the Windcube 
200S, mounted on the helicopter platform of NO48. (Described in Sect. 2.5) 5 

 

2.3 Ormonde 

The Ormonde wind farm consists of 30 Senvion turbines with a rated power of 5 MW each and a rotor diameter of 126 m. 

The wind farm is located in the Irish Sea 10 km west of the Isle of Walney. The selected data is from 1/2012 – 1/2014. 

During this period, neighbouring wind farms were operational. Located Iin the south west, there are is Walney  1 (51 x 10 

SWT-3.6-107 Siemens) and Walney 2 (51 x SWT-3.6-120 Siemens), located in the south there is West of Duddon Sands 

(SWT-3.6-120 Siemens, fully commissioned 30.10.2014) and in the south east there is Barrow (V90 3.0MW Vestas). 

The farm layout displayed in Fig. 3 is structured in a regular array which allows for comparing several multiple-wake 

situations. The inner farm turbine distance for the investigated wake situation from south west is 6.3 D and from north west 

is 4.3 D. 15 

N 
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Figure 3: a) Ormonde and neighbouring wind farms and its neighbours. Two wind directions are selected for the analysis of wake 
effects at different turbulent classes. b) Ormonde wind farm layout with distances in rotor diameters (D) and sectors selected for 
the analysis. 

 5 

2.4 SCADA and meteorological data 

The SCADA data from all wind farms and the meteorological data consist of 10-min statistics. Each turbine provides wind 

speed, wind direction, active power, yaw position, and pitch angle. The operational condition of the wind turbine which is 

used for the correlation with the met mast turbulence intensity is categorized by the minimum active power > 10kW, the 

maximum pitch angle < 3 ° and the standard deviation of the yaw position < 5 °. These filter criteria’s ensure that no stand 10 

stills, curtailments or too large yaw activities are included in the data. Furthermore any succeeding 10-min measurement 

period after a turbine restart is deleted to give the flow enough time to develop. SCADA data are also deleted if the waked 

turbine produces more power than the free flow turbine. Implausible met mast data is are removed and wind directions is are 

corrected for bias by using the orientation of the maximum wake deficit. For the correlation, only sectors of free flow 

conditions is are used. Averages of 30-min water temperature are recorded by buoys at FINO1 and linearly interpolated into 15 

the SCADA data. 

2.5 Long range LiDAR measurements 

Within the “ClusterDesign” research project, funded by the European Union, a long-range LiDAR measurement campaign 

was realized. A Windcube 200S (WLS200S) LiDAR with scan head was placed on the helicopter platform of NO48 (See 

Fig. 2Fig. 2) from 11/2015 – 5/2016. A differential GPS system composed by three antenna GNSS-Systems of type Trimble 20 

SPS855 / SPS555H allowesallows for additional measurements of turbines`s yaw and nacelle`s pitch and roll angle. One 

LiDAR measurement cycle takes about 200 s. It includsincludes five plan Plan position Position indicator Indicator (PPI) 

scans followed by one range Range height Height indicator Indicator (RHI) scan. Both scans cover a sector of 30 ° on the 

38 D 
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Kommentar [RC2-4]: Page 4, lines 11 
and 12 There are two instances where ‘is’ 
should be ‘are’. 

Kommentar [RC2-5]: Page 4, lines 17 
and 18 There are two spelling errors: 
‘allowes’ and ‘includs’. Also the possessive 
is not necessary for ‘turbine’ and ‘nacelle’.  
 

Formatiert: Deutsch (Deutschland)

Formatiert: Deutsch (Deutschland)



6 
 

horizontal and vertical plane respectively and are centred on the rotor axis. The scan trajectories have an angular resolution 

of 1 ° and measured the wind speed component along the measuring direction every 25 m from 100 m to 2500 m. The 

LiDAR data is filtered excluding measurements with a poor signal intensity, or affected by hard targets , orand considered 

outliers.  
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Figure 4: Upper-plot: Visualization of the horizontal plan position indicator (PPI) scans downstream of NO48. Wind speed is 

normalized with the inflow wind speed, measured at the met mast. The black crosses are the locations of the wind speed minima’s 
derived from a Gaussian fitting for each measurement distance. Bottom-plot: Normalized wind speed as function of the distance in 5 

rotor diameters, extracted from the top-plot for the Gaussian fitted minima’s (black crosses).  
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The horizontal 10-min average wind speed is calculated on a well-defined grid under the assumption of a negligible vertical 

component of the wind. The average of the wind component measured by the LiDAR during the considered time interval is 

included in the region of interest of the addressed grid point. The average 10-min wind direction is provided by the met mast. 

When the latter measurement is not available, the turbine yaw provided by the differential GPS system is used to estimate 5 

the wind direction. A detailed description of the LiDAR data pre-processing can be found in Schneemann et al. (2016). 

 

For the assessment in this paper we are using averages of 10-min periods of horizontal wind speed data evaluated from PPI 

scans of the wake behind NO48 (See Fig.2). A multiple wake situation can be observed at a wind direction of 236237.5 °, 

when NO45 is in the wake of NO44 and NO48. In Fig. 4 (top) an example for a PPI scan at hub height with averages of 10-10 

min periods of the horizontal wind speed data is displayed. Hard targets like blades and nacelle prevent reasonable wind 

speed measurement. Wind speeds at these blind regions and between the beam directions are linearly interpolated. The 

distance from turbine NO48 is normalised by its rotor diameter and the wind speeds are normalized with the corresponding 

wind speed measured at the met mast. The different colours represent the wind speed relative to the wind speed at the given 

met mast location. The black crosses display the locations of the estimated wind speed minima for each measured distance 15 

equal or greater than 2 D. These minima are supposed to represent the centre of the wake. They are derived at each 

downstream cross-sectionsection with a Gaussian smoothing (Hamilton, 2015) applied to the LiDAR data before fitting a 

double-Gaussian-type velocity deficit at the near wake (≤2.5 D2 D - 5 D) and a single-Gaussian-type in the far wake. This 

distinction prevents an overestimation of the deficit in the near wake where the nacelle still has an influence on the flow 

shape (Keane et al., 2016). The Gaussian minima (black crosses) do not follow a straight line for the entire scan. This should 20 

not be interpreted as meandering as we are looking at averages of 10- min periods. 

The lower graph of Fig. 4 shows the resulting, normalized wind speeds over the normalized distance from NO48. The black 

line with the corresponding black crosses refers to the fitted values of the Gaussian fits.  

3 Data analysisMethod 

Following the objective to propose a signal based on SCADA data that enables to identify the magnitude of wake effect, we 25 

first establish stability classification based on Monin-Obukhov surface-layer theory (Monin and Obukhov, 1954) and met 

mast turbulence intensity. Both approaches can be found in many  publications and their influence on the magnitude of 

wake effects is reported. Secondly, SCADA signals which are effected by turbulence intensity are proposed and the ability of 

these signals to classify low, medium and high wake effects is analysed.  
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3.1. Turbulence, stability and its impact on power productionStability and turbulence intensity classification 

For the determination of atmospheric stability we follow the approach suggested by (Ott and Nielsen, (2014). Their iterative 

method is implemented in the software AMOK and derives the inverse Monin-Obukhov-Length 1/𝐿 from air temperature 

and wind speed measured at 𝑧 [𝑚] and water surface temperature. Many different thresholds for stability classification have 

been published and breakdowns from three to nine different classes can be found in the literature (Archer et al., 2016); (Sanz 5 

Rodrigo et al., 2015). Dörenkämper (2015) and Rajewski et al. (2013) have suggested a classification into unstable, neutral 

and stable classes (Table 1) based on turbulence intensity (TI) and the dimensionless Monin-Obukhov-LengthA stability 

classification according to the Richardson number expects wind speed and temperature measurements in 10 m and 30 m 

height. As both met masts fail to fulfil this requirement and as the available temperature measurements have a too large 

uncertainty to provide reliable stability estimates via the bulk Richardson approach (Saint-Drenan et al., 2009), the 10 

simplified classification using turbulence intensity at hub height as proposed by Dörenkämper et al. (2012, 2015) is used for 

this investigation. 

SCADA and LiDAR data is divided into three subsets based on  𝜁 = 𝑧
𝐿
 . the turbulence intensity from the met mast. 

Dörenkämper (2015) has suggested a classification into unstable, neutral and stable classes (Table 1). The power production 

for the different subsets, normalised by free flow power production, is compared for single wake and double wake conditions 15 

with data from alpha ventus and FINO1. This kind of analysis reveals the impact only at turbine positions but the wind speed 

behaviour in-between turbines is not covered. Therefore at Nordsee Ost, wind speed recovery in single, double and triple 

wake situations measured by the LiDAR is analysed.  

To determine the influence of turbulence and stability on wake effects all available PPIs are analysed and the results of the 

Gaussian fitted minima’s are divided into the same subsets as described in Table 1 based on the turbulence intensity 20 

measured at hub height with the met mast. 

Table 1: Definition of stratification with turbulence intensity and the dimensionless Monin-Obukhov-Length 𝜻  by met mast 
turbulence intensity at hub height at alpha ventus and Nordsee Ost 

Classification Turbulence Intensity 
(TI)(Dörenkämper, 2015) 

(Rajewski et al., 2013) 

Unstable TI > 6 % 𝜁 < -0.05 
Neutral 6 4 % ≥ < TI ≥ < 4 6 % -0.05 ≤  𝜁 ≤  0.05 
Stable 4 % > TI < 4% 𝜁 > 0.05 

 

Both classifications and their impact on wake effects are compared with FINO1 data in Sect. 4.1 and alpha ventus data in 25 

Sect. 4.2.The power production for the different subsets, normalised by free flow power production, is compared for single 

wake and double wake conditions with data from alpha ventus and FINO1. This kind of analysis reveals the impact only at 

turbine positions but the wind speed behaviour in-between turbines is not covered. Therefore at Nordsee Ost, wind speed 

recovery in single, double and triple wake situations measured by the LiDAR is analysed.  
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To determine the influence of turbulence and stability on wake effects all available PPIs are analysed and the results of the 

Gaussian fitted minima’s are divided into the same subsets as described in Table 1 based on the turbulence intensity 

measured at hub height with the met mast. 

 

3.2 Correlation analysis 5 

At wind farms with no met mast we have to rely on other signals to describe the differences in power production under 

different atmospheric conditions. To find the best substitute for a met mast measured turbulence intensity several SCADA 

signals that are affected by turbulence are correlated to the met mast turbulence intensity  which is defined as 

𝑇𝐼𝑚𝑚𝑚𝑚 =  
𝜎𝑢𝑚𝑚𝑚𝑚
𝑢𝑚𝑚𝑚𝑚���������

 .           (1) 

Analogous to Eq. 1 we define  10 

𝑇𝐼𝑊𝑊 =  
𝜎𝑢𝑊𝑊
𝑢𝑊𝑊�������

            (2) 

as the turbulence intensity measured with the wind speed anemometer on top of the nacelle with 𝑢�  being averages of 10-min 

periods of horizontal wind speed and its standard deviation 𝜎𝑢 . Göçmen and Giebel (2016) evaluated 1Hz data from 

Lillgrund and Horns Rev I and found good turbulence estimators by using a turbine derived “WindEstimate” from look-up 

tables. When only 10-min statistics are available the signals of interest are the standard deviation of the turbine power 15 

𝑃𝑂𝑠𝑠𝑠 =  𝜎𝑃,            (3) 

and the normalisation of this signal with the average power 𝑃� . This leads to  

𝑃𝑂𝑇𝑇 =  𝜎𝑃
𝑃�

.            (4) 

All SCADA signals can be obtained under free flow conditions or in waked conditions.Turbulence intensity is dependent on 

wind speed (Türk and Emeis, 2010). Wake effects are most pronounced at partial load and in this range, shear and 𝑃𝑂𝑇𝑇  are 20 

even more related to wind speed. The relationship between 𝑃𝑂𝑇𝑇 and the wind speed can be approximated with a third order 

polynomial,  

𝑦 = 𝛽0 + 𝛽1𝑢 + 𝛽2𝑢2 + 𝛽3𝑢3 + 𝜀 .          (5) 

𝑦 is the predicted outcome of the model, 𝛽𝑖 are constants and 𝑢 the wind speed. 𝜀 is the residual being normal distributed. 

Adjusting 𝑃𝑂𝑇𝑇  with this model 25 

𝑃𝑂𝑇𝑇𝑛𝑛𝑛𝑛(𝑢) = 𝑃𝑂𝑇𝑇
𝛽0+𝛽1𝑢+𝛽2𝑢2+𝛽3𝑢3

           (6) 

enables to select constant thresholds. For the wind speed range in partial load, the polynomial is always greater than zero.  

(At AV4 the constants of the third order polynomial are 𝛽0 = 99.9, 𝛽1 = −32.5, 𝛽2 = 3.9  and 𝛽3 = −0.16. See Sect. 4.4) 

 

 30 
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3.3 New cClassification and validationof wake magnitude 

In this Section, we describe the methodology to establish thresholds for sub-setting the measurements into weak, medium 

and strong wake effects. The new artificial SCADA signal with the highest correlation to the met mast turbulence intensity is 

used to classify different stratifications. The thresholds are estimated with a twothree-step approach. At first we select the 

normalized power (waked turbine, normalized by the power of a free flow turbine) for a small sector (10°) in the full wake 5 

for the relevant wind speed range (8 ± 1 m/s) (Fig 5a). Secondly we eliminate the dependency on wind direction by 

subtracting from the normalized Power 𝑃𝑛 its mean value of each wind direction bin (binwidth = 2°) and obtain 𝑃𝑛𝑛 (See Fig. 

5b).  

 

 10 

Figure 5: a) Power of AV5 normalized with the power of AV4 for 10° sector around the full wake for wind speed range 8 ± 1 m/s. 
b) Wind direction dependency corrected normalized power. Each 2° bin is normalized with its bin average. Data is classified in 
high and low wake effects. c) Density distribution of the turbulence intensity from the met mast for each data subset with median. 

 First, the power of a turbine in the wake is normalized with the power of a turbine in free flow conditions. This normalized 

power from a narrow sector of 10° centred at the full wake is divided into three groups. Medium wake effects are ±5 % 15 

around the median of the normalized power. High wake effects are 5 % below and low wake effects are 5 % above the 

median of the normalized power. In the second step the density distribution of the new SCADA signal is plotted for all three 

groups and the thresholds are selected to achieve best distinction between the three data sets.The third step divides the data 

set into high wake effects (values < 0) and low wake effects (values >= 0). The median of each data subset is proposed to 

allocate the thresholds (See Fig. 5c). 20 

Fi
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The quality of the established relationship in terms of dependency on turbine type, layout and location of the wind farm is tested 
by applying the same classification on a different wind farm where no met mast is available.  

4 Results and Discussion 

4.1 Stability and tTurbulence stability  intensity classification and its impact on power production 

For the selected period at alpha ventus, Fig. 6 shows the stability distribution with the proposed thresholds of 𝜁 = 33/𝐿 from 5 

Table 1. There is a clear tendency of having more stable conditions with increasing wind speed. This trend is also visible 

with turbulence intensity measured at FINO1. The strong wind speed dependency of 𝑃𝑂𝑇𝑇  leads to an overestimation of this 

behaviour. The proposed normalization as described in Eq. (6) reduces this information. 

 

Figure 6: Distribution of stability based on 𝜻 as a function of wind speed for different parameters of interest. 10 

Figure 7 presents the data from FINO1 with bin averaged met mast turbulence intensity measured at 100 m  (TI_100), 

turbulence intensity from the turbines nacelle anemometer at hub height (AV4_TI), power law coefficient from 40 m and 

90 m heights (alpha_40_90) and the standard deviation of the power divided by the average power (AV4_POTI). Each signal 

is plotted as function of the wind speed for the three proposed stability classes based on 𝜁 = 33
𝐿

.  
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Figure 7: a) Turbulence intensity at FINO1, b) Turbulence intensity at AV4, c) Power Law coefficient for shear at FINO1 hights at 
40m and 90m and d) Standard deviation of the power divided by the average power for free flow conditions at AV4. All four 
measurements are provided as function a of the wind speed for three stability classes based on 𝜻 = 𝟑𝟑

𝑳
. 5 

For all signals in Fig. 7 the differences between the stability classes is visible. Whereas shear (See Fig. 7c) has problems in 

light winds, it gives the best results for the higher wind speeds. Turbulence intensity (See Fig. 7a) is the most constant signal 

for the selected wind speed range. The turbulence intensity measured at the nacelle (See Fig. 7b) is much higher due to the 

location of the anemometer behind the rotor. This comprises the variation and weakens the ability to distinguish between the 

stability classes. The relationship between the standard deviation of the power divided by the average power (See Fig. 7d) 10 

and the wind speed is very dominant and can be approximated with a third order polynomial. 
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4.2 Impact on power production 

Alpha ventus data from almost four years of operation is used to evaluate the influence of atmospheric stability estimated 

from theand turbulence intensity and its influence on the wake development. Figure 8Figure 5 proves shows the different 

wake behaviourbehaviour under different turbulence conditions. The top row of plots shows arethe  single wake condition of 

turbine AV5 in the wake of AV4. The second row displays the same evaluation but for the double wake condition of AV6 in 5 

the wake of AV4 and AV5. The left side is a normalised power deficit as function of the wind direction for a wind speed 

range from 7 m/s to 9 m/s. On the right side, there is the normalised power as function of the wind speed for a sector width 

of 10 °. Each graph states the total number 𝑁 of data points which have been split into stable (blue dots), neutral (green 

diamonds) and unstable (red triangles) data sets. Each symbol is the average of a 2 ° bin (2 m/s bin) and the error bars 

indicate the standard error of the mean. 10 

For the single wake, a clear distinguishable difference between the stable and unstable power deficit is visible. The largest 

deviation is found in the full wake. The second wake has a less pronounced difference in power which can be explained by 

the fact, that the first turbine operating in the wake supports the mixing with the ambient wind speed. Another interesting 

effect is noticeable in the top left plot. The difference in power for the different stabilities is higher at the right hand side of 

the deficit in downstream direction. This right drift of the wake in stable conditions has also been observed in LES 15 

simulations by Vollmer et al.(2016). This effect is even more pronounced when the data is distinguished with 𝜁 = 33/𝐿 (See 

Fig. 9). The total magnitude of wake effects is better distinguished by the classification with turbulence intensity. For this 

reason we will consider from now on turbulence intensity as reference. 

The turbulence intensity for this classification has been measured at 100 m which is the largest height at the FINO1 met 

mast. The second height of the FINO1 met mast (90 m) is closer to hub height (92 m), but the strong mast structure and the 20 

boom orientation of 135 ° causes disturbance for wind directions within the selected sector for our investigation. No further 

correction, e.g. to account for the difference in height was necessary according to the findings of Tuerk (2008). 

 

For the wind farm Nordsee Ost (NO) only one full year of SCADA data and six month of LiDAR data is available for this 

investigation. Fifteen Eighteen PPI scans (as described in SectionSect. 2.5) at wind direction from 236 ° - 242 °with full 25 

wake conditions are available and categorized according to the classification in  Table 1Table 1. Fig. 106  displays the wind 

speed measured with the LiDAR normalized with the inflow wind speed measured at the met mast. The wind speed recovers 

faster for the unstable turbulence class than for the neutral and stable class. The second and third turbine in the row for the 

investigated wind direction are marked with blue vertical lines. The decreased wind speed in the induction zone in front of 

each downstream turbine is clearly visible. The error bars indicate the standard error of the mean. For the stable class 30 

𝑇𝑇 ≤ 4% only one set of PPI scans is available. 

Formatiert: Überschrift 2

Formatiert: Englisch (USA)

Feldfunktion geändert

Formatiert: Englisch (USA)

Kommentar [RC2-13]: Page 8, line 7 
Please avoid use of the word ‘prove’ in this 
context.  
 

Formatiert: Englisch (USA)

Formatiert: Englisch (USA)

Formatiert: Englisch (USA)

Formatiert: Englisch (USA)

Formatiert: Englisch (USA)

Feldfunktion geändert

Formatiert: Englisch (USA)



15 
 

 
Figure 8: Wake effects in alpha ventus (AV) under different atmospheric conditions classified by met mast turbulence intensity. 
Power of downstream turbine normalised with free flow turbine. Upper row: single wake, bottom row: double wake. Left column: 
Normalised Power as function of wind direction, right column: Normalised power as function of wind speed.  Kommentar [RC2-14]: Page 9, fig 5, 

bottom left One point just right of the centre 
for the stable curve is clearly an outlier. 
Any comment? Tables 2–5 The large 
variation in thresholds suggests that the 
approach is not general and more details 
regarding how these thresholds are 
determined is needed. 
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Figure 9: Wake effects in alpha ventus (AV) under different atmospheric conditions classified by 𝜻 = 𝟑𝟑/𝑳. Power of downstream 
turbine normalised with free flow turbine. Upper row: single wake, bottom row: double wake. Left column: Normalised Power as 
function of wind direction, right column: Normalised power as function of wind speed.  
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Figure 10: Wind speed recovery at wake centre on hub height behind NO48 for different turbulence stability classes. The wind 
speed is normalized with the inflow wind speed and the distance from the LiDAR on NO48 downstream is displayed in multiples of 
rotor diameters 

4.32 Correlation analysis 5 

In the next step, we correlate the SCADA signals described in SectionSect. 3.2 with the turbulence intensity measured at the 

mast. In Fig. 7 a panel plot is displayed. The graphs on the diagonal present the histogram and density distribution for the 

respective variable. The panels above the diagonal provide the Pearson correlation coefficients. The lower panels are scatter 

plots for the two variables with a fitted linear regression line. The colours of the points indicate the three stability 

classifications (blue: stable, green: neutral, red: unstable) determined with the met mast turbulence intensity.  10 

The correlation between met mast and turbine TI in subplot (1 , 2) equals to 0.55. This poor result can be explained by the 

nacelle wind speed measurement position behind the rotor, which induces additional disturbance to the flow.  

The highest correlation with the met mast TI is obtained with the standard deviation of the turbine power divided by its 

average active power (𝑃𝑂𝑇𝑇,𝐴𝐴4) in subplot (1 , 5). Although a correlation of 0.66 is not perfect, it is still better than the 

turbulence measured with the nacelle cup anemometer. Especially in the low turbulence region, the scatter plot proves to be 15 

denser. Very similar results are obtained when applying the same analysis to AV1 and AV2. 
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the data are sorted only according to the 
turbulence intensity or also to the wind 
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 20 
Figure 11: Correlation matrix. Turbulence intensity from met mast (𝑻𝑰𝟏𝟏𝟏) is correlated with the TI measured with the nacelle 
anemometer of AV4 (𝑻𝑰𝑨𝑨𝟒), the standard deviation of the 10 min power of AV4 (𝑷𝑶𝒔𝒔𝒔,𝑨𝑨𝟒), the standard deviation of the 10min 
power of AV5 (𝑷𝑶𝒔𝒔𝒔,𝑨𝑨𝟓 ) and the standard deviation of the power divided by the average power of AV4 (𝑷𝑶𝑻𝑻,𝑨𝑨𝟒 ). All 
dimensions are in [%] except for the standard deviation of the power which is in [kW]. 
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To check the validity of these results, we use data from Nordsee Ost (NO). Figure 8Figure 12 provides the information 

corresponding to Fig. 711 but for a different turbine type, met mast and a different location in the North Sea.  

The correlation reveals the best result for the 𝑃𝑂𝑇𝑇,𝑁𝑁47signal (0.62). 𝑇𝐼𝑁𝑁47 derived from the nacelle cup anemometer gives 

0.60 . The difference between these two signals is much smaller than in alpha ventus. A different blade design and the 

distinct turbine nacelle met mast layout might be the reason for this.  5 

Both correlation analyses show that the new artificial SCADA signal, derived from the standard deviation of the power 

divided by its average active power 𝑃𝑂𝑇𝑇 is the most suitable among the selected signals to substitute a met mast 𝑇𝐼𝑚𝑚𝑚𝑚  for 

our purpose. In the next sectionSection, we check the influence of this new signal on the estimated power production in the 

wake. 

 10 
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Figure 12: Correlation analysis for Nordsee Ost. Turbulence intensity (𝑻𝑰𝒎𝒎𝒎𝒎) measured at hub height is correlated with the TI 
measured with the nacelle anemometer of NO47 (𝑻𝑰𝑵𝑵𝑵𝑵), the rotor estimated wind speed (𝑻𝑰𝑵𝑵𝑵𝑵𝒖𝒆𝒆), the standard deviation of 
the 10 min power of NO47 (𝑷𝑶𝒔𝒔𝒔,𝑵𝑵𝑵𝑵), the standard deviation of the 10 min power of NO48 (𝑷𝑶𝒔𝒔𝒔,𝑵𝑵𝑵𝑵), the standard deviation 
of the power divided by the average power of NO47 (𝑷𝑶𝑻𝑻,𝑵𝑵𝑵𝑵). All dimensions are in [%]except for the standard deviation of the 5 
power which is in [kW]. 

 

4.3 4 New classification and validation 

In SectionSect. 4.2 we demonstrated the correlation of the SCADA signal (𝑃𝑂𝑇𝑇) derived by the standard deviation of the 

power divided by its average power with the turbulence intensity measured at a met mast in free flow conditions. In Fig. 7d a 10 

strong wind speed dependency for the range of interest prevents a constant threshold establishment. Therefore the adjustment 

with Eq. (6) is proposed. Figure 13 shows 𝑃𝑂𝑇𝑇𝑛𝑛𝑛𝑛 as a function of wind speed for the three stability classes based on 𝜁. 

The error bars are 1 standard deviation. 

For AV4 the constants of the third order polynomial are 𝛽0 = 99.9, 𝛽1 = −32.5, 𝛽2 = 3.9  and 𝛽3 = −0.16. 

. 15 

 

Figure 13: Normalized SCADA signal (𝑷𝑶𝑻𝑻𝒏𝒏𝒏𝒏) for the classification of the magnitude of wake effect. 
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Figure 14: The thresholds are displayed as vertical lines representing the median of the density distribution for the signal of 
interest. 

 
With the methodology from Sect. 3.3 we obtain different density distributions for high and low wake effects (See Fig. 14). 5 

The thresholds are derived from the median of the data distribution. For 𝜁 we obtain exactly the same values as proposed in 

Table1. 

Comparing the two turbulence intensities in Fig. 14 a) and c) one can clearly see the increased turbulence behind the rotor 

especially for low TI values. The distribution for the nacelle measurement is compressed in a way, that the low 

measurements have up to 4% difference but the high turbulence intensities are more or less comparable. This effect reduces 10 

the ability of the nacelle turbulence intensity to distinguish between the wake magnitude. A more clear separation between 

the wake classes can be achieved with the new proposed 𝑃𝑂𝑇𝑇𝑛𝑛𝑛𝑛. 

The quality of the established relationship in terms of dependency on turbine type, layout and location of the wind farm is 

tested by applying the same classification on a different wind farm where no met mast is available.  

 15 

 In the next stepSections, the ability of this new signal to distinguish between different environmental stratification is 

analysed. Table 2 Table 2 to Table 5 shows the proposed thresholds for the different parameters under investigation. 

 

Table 2: Summary of thresholds for the different classes of interest at alpha ventus: 

Category 𝜻 =  𝒛/𝑳 [-] TI100 [%] AV4TI [%] 𝐴𝐴4_𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 [-] 
Weak wakes 𝜁 < −0.05 TI100 >  6.5 AV4TI >  6.5 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 < 0.8 
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Medium wakes −0.05 ≤ 𝜁 ≤ 0.05 5.4 ≤ 𝑇100 ≤ 6.5 5.4 ≤ 𝐴𝐴4𝑇𝑇 ≤ 6.5 0.8 ≤ 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 ≤ 1.1 
Strong wakes 𝜁 > 0.05 𝑇100 < 5.4 𝐴𝐴4𝑇𝑇 < 5.4 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 > 1.1 
 

 

 

 

 5 

 

 

 

 

 10 

 

 classifications for each wind farm (also corresponding to different turbine types). 

4.34.1 alpha ventus (AV) 

The classification of wake effects by the 𝑃𝑂𝑇𝐼𝑛𝑛𝑛𝑛 signal is illustrated in Fig. 915 analogous to Fig. 5 8 where the turbulence 

intensity 𝑇𝐼𝑚𝑚𝑚𝑚is used. 15 

Kommentar [RC1-18]: - §4.3.1 New 
classification and validation on Alpha 
Ventus. By applying the new classification; 
discrepancies in the power production due 
to the assessed stability is rather small and 
difficult to interpret. By comparing Fig 5 
and Fig 9, one notice that the frequency of 
occurrence of each stability class is also 
totally dependent of the classi- fication 
method. For instance, on the top-right plot, 
the unstable case occurrence is 13% of 
samples for the new classification, instead 
of 56% with the classification based on 
turbulence intensity. It show again the poor 
correlation between both information.  
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Figure 15: Stability classification with the 𝑷𝑶𝑻𝑰𝒏𝒏𝒏𝒏  value. Power of waked turbine normalised with free flow turbine. Upper row: 
single wake, bottom row: double wake. Left column: Normalised Power as function of wind direction, right column: Normalised 
power as function of wind speed. 

A clear difference in power production between stable and unstable cases can be identified in the single wake. The 5 

differences in double wake are again less pronounced. Compared to the TI classification, the curves for the neutral case are 

not as clear as in-between the stable and unstable curves and in the normalized power curve plots (right column) the stable 

conditions can only be highlighted up to the wind speed of rated power for the free flow turbine. This can be explained with 

the fact, that at rated power the pitch controller rather than the power variation is governing the turbine reaction on 

turbulence intensity. This leads in Eq. (4) to a significant decrease of the numerator and keeps the denominator constant.  10 

Table 2: Definition of stratification by power intensity: alpha ventus 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 13 % 
Neutral 13 % ≥ 𝑃𝑂𝑇𝑇 ≥ 7 % 
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Stable 7 % > 𝑃𝑂𝑇𝑇 

4.34.2 Nordsee Ost (NO) 

The classification of wake effects in Fig. 10 16 is based on 𝑃𝑂𝑇𝑇_𝑛𝑛𝑛𝑛 and analogous to Fig. 6 10 where turbulence intensity 

𝑇𝐼𝑚𝑚𝑚𝑚  has beenis used. For these plots the Gaussian fitted minima’s of the normalized wind speed (wake centres) measured 

by the LiDAR are plotted for each distance behind NO48.  

 5 
Figure 16: Wind speed recovery behind NO48 for different 𝑷𝑶𝑻𝑰𝒏𝒏𝒏𝒏 classes. The wind speed is normalized with the inflow wind 
speed and the distance from the LiDAR on NO48 downstream is displayed in multiples of rotor diameters. 

Again, tThis result states stronger wake effects for stable cases compared to unstable situationsthe ability of 𝑃𝑂𝑇𝑇𝑛𝑛𝑛𝑛 to 

distinguish between different wake effects. The single wake has a less pronounced difference between the three classes and 

the slope of the wind speed recovery is smaller than the double wake case. E.g. 5D behind the first turbine, the wind speed 10 

has recovered to approximately 70% of the free flow wind speed and in the second wake 5D behind NO44 we see already 

more than 75%. This fact leads to the performance increase at the third turbine (NO45) compared to the second turbine 

(NO44). Wake added turbulence of NO48 is helping to recover the wind speed.  

Table 3: Definition of stratification by power intensity: Nordsee Ost 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 16 % 
Neutral 16 % ≥ 𝑃𝑂𝑇𝑇 ≥ 12 % 
Stable 12 % > 𝑃𝑂𝑇𝑇 
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4.34.3 Ormonde (OR) 

Finally the transferability of classification boundaries to other wind farms where no met mast is available is of interest.  

First we have a look at the sensitivity of the proposed signal 𝑃𝑂𝑇𝑇  in terms of turbulence from neighbouring turbines and 

wind farms. In Fig. 1117, the directional bin averaged 𝑃𝑂𝑇𝑇  from OR24 is able to identify the location of its neighbours. The 

magnitude allows to determine which turbine is next (OR25 at 4.2D) and which is further away (OR22 at 6.7D, OR23 at 5 

6.6D and OR21 at 9.1D).  

 
Figure 17: The new proposed signal 𝑷𝑶𝑻𝑻 is sensitive to wake-induced turbulence from neighbouring turbines and wind farms. 
With 𝑷𝑶𝑻𝑻 from turbine OR24 it is even possible to rank the distance of the neighbours being OR25 the closest with 4.2D and 
OR21 the farthest with 9.1D. 10 

The grey area represents the geometrical location of the neighbouring wind farms Walney 1 and 2. The closest distance to 

OR24 has Walney 1 with approximately 38.8D (SWT-3.6-107 Siemens). The two peaks at 208° and 255° are wind directions 

for which multiple turbines of the neighbouring wind farm are aligned in a clear row of full wake situations. The increase 

from 345° to 15° can be explained with the coastline that gets quickly closer in clockwise direction. 

Secondly we have a look at the influence on the wake recovery. With south westerly wind direction, we focus on single 15 

wake, double wake and triple wake conditions behind turbine number OR27 for a sector of 10° around the full wake 

situation. And for north westerly wind directions we investigate the rows of turbines behind OR23. The main differences 

between these two directions are the average level of inflow turbulence intensity and the different spacing between the 

turbines. In Fig. 17 11, the inflow turbulence level from north west (sector of 302 ° to 322 °) is much lower (bin average 

Walney1 wind farm 

in 38 D 
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𝑃𝑂𝑇𝑇������ ≈ 12.5 %) than from south west (sector of 192 ° to 222 °, bin average 𝑃𝑂𝑇𝑇������ ≈ 17.5 %) due to the wake effects from 

Walney 1 in more than 38D distance.  

 

It was not possible to use exactly the same thresholds for the classification which is on the one hand a result of the usage of 

different turbines and controller versions in alpha ventus, Nordsee Ost and Ormonde. On the other hand there seems to be a 5 

dependence on the ambient turbulence level. Table 4 and Table 5 provides the new thresholds for the different classifications 

in Ormonde, estimated as described in Section 3.3. 

 
Figure 18: Normalized power for each turbine along the row behind OR23 for a wind direction of 312 ° and a 10 ° sector width 
and 8 m/s ±1. Stability classes distinguished with the signal 𝑷𝑶𝑻𝑰𝒏𝒏𝒏𝒏  from OR23. 10 

For north westerly wind direction, Fig. 18  12 provides a view on different wake effects for the proposed classificationat 

different stability classes. The normalized power for each turbine in the row behind OR23 is displayed (wind from left to 

right). Wind speed is filtered for 8 ± 1 m/s7 - 9 m/s  and the wind direction is 3162 ° with a sector width of 10 °. The largest 

wake effects are detected at OR22. This underlines the observation from the LiDAR measurements in NO. The first wake is 

the strongest and all consecutive wakes are better mixed due to wake added turbulence. The difference in power production 15 

between stable high and unstable low turbulence conditionscases is in the range of 10%, which also demonstrates the 

importance of this effect for wake model developers to take it into account.  

The south westerly wind direction is analyzed in Fig. 19 13, which is a similar illustration as Fig.  5 8 and Fig.  9. The 

𝑃𝑂𝑇  signal is on a higher level due to the wind farm wake effects from Walney 1 and 2. It is still possible to identify 

different wake behaviour for the different classes but the effect is less pronounced than in the previous examples. A higher 20 
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level of inflow turbulence intensity contributes to the mixing of the wake with free wind. Hence at lower inflow turbulence 

levels the effect of the wake added turbulence is larger.  

Further investigations are necessary to account for controller properties and to fill the normalized wind speed range [0.75 – 

1], beyond the rated wind speed of the turbine in free flow conditions.  

 5 

Table 4: Definition of stratification by power intensity: Ormonde for south westerly winds 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 18 % 
Neutral 18 % ≥ 𝑃𝑂𝑇𝑇 ≥ 13 % 
Stable 13 % > 𝑃𝑂𝑇𝑇 

 

Table 5: Definition of stratification by power intensity: Ormonde for north westerly winds 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 9 % 
Neutral 9 % ≥ 𝑃𝑂𝑇𝑇 ≥ 7 % 
Stable 7 % > 𝑃𝑂𝑇𝑇 

 

In performance monitoring of offshore wind farms the newly aggregated SCADA signals can be used as an auxiliary 10 

quantity to classify different atmospheric stability conditions. Advanced engineering wake models which are able to take 

turbulence intensity or stability parameters into account, may be parameterized by these artificial turbine signals in order to 

improve their prediction of wind turbine power production under waked conditions. 
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Figure 19: Wake effects in Ormonde (OR) under different atmospheric conditions. Power of downstream turbine normalised with 
free flow turbine. First row: single wake, second row: double wake and third row: triple wake. Left column: Normalised Power as 
function of wind direction, right column: Normalised power as function of wind speed. 

 5 
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5 Conclusions 

Measured data from three different offshore wind farms, two met masts, one buoy and one long range LiDAR has been 

analysed to identify different influence on power production at turbines operating in the wake. We have validated the method 

described in Dörenkämper (2015), which proposes to use the turbulence intensity, to describe the power production in the 

wake and compared it with the atmospheric stability evaluation proposed by (Ott and Nielsen, 2014).. In this case, turbulence 5 

intensity could better distinguish between the magnitude of wake effects. A correlation analysis was performed and for wind 

speeds in partial load operation, the standard deviation of the power divided by its average power (𝑃𝑂𝑇𝑇) was identified 

having similar behaviour than the turbulence intensity. A sensitivity check for 𝑃𝑂𝑇𝑇  reviled revealed very detailed 

responsiveness to increases in turbulences due to neighbouring turbines and wind farms. Effects from wind farm neighbours 

are detectable even more than 38 rotor diameter away. A strong wind speed dependency of this signal can be eliminated by 10 

normalization with a third order polynomial fitted to the data. A classification of different turbine behaviour based on this 

adjusted 𝑃𝑂𝑇𝐼𝑛𝑛𝑛𝑛  was analysed and compared to the classification with turbulence intensity TI.  

Both signals can distinguish between stronger and weaker wake effects. A transferability of the findings from one turbine to 

the next is only possible under the prerequisite of having the same turbine type and controller version. The magnitude of 

influence of the 𝑃𝑂𝑇𝐼𝑛𝑛𝑛𝑛 signals on wake effects is dependent on the level of inflow turbulence intensity. Higher inflow 15 

turbulence has already a higher wake mixing and therefore the wake added turbulence has a less pronounced contribution. 

Using 𝑃𝑂𝑇𝐼𝑛𝑛𝑛𝑛 to predict wakes more accurate is a promising approach, but further investigations are necessary to take 

controller properties into account and to fill the wind speed range beyond the rated wind speed of the turbine in free flow 

conditions.  

 20 

Acknowledgements 

The presented work is partly funded by the Commission of the European Communities, Research Directorate-General within 

the scope of the project “ClusterDesign” (Project No. 283145 (FP7 Energy)). We would like to thank Deutsche Offshore-

Testfeld und Infrastruktur GmbH & Co. KG (DOTI), Research at alpha ventus (RAVE), Forschungsplattformen in Nord und 

Ostsee (FINO1), Innogy SE, Vattenfall Wind Power and Senvion SE for making this investigation possible. Furthermore a 25 

special thanks to the R Core Team for developing the open source language R (R_Core_Team, 2015). 

 

References 

Archer, C. L., Colle, B. A., Veron, D. L., Veron, F. and Sienkiewicz, M. J.: On the predominance of unstable atmospheric 

conditions in the marine boundary layer offshore of the U.S. northeastern coast, J. Geophys. Res. Atmos., 121(15), 8869–30 

Kommentar [RC2-23]: Page 18, line 7 
Typo: ‘reviled’ should be ‘revealed’. 
 



30 
 

8885, doi:10.1002/2016JD024896, 2016. 

Beck, H., Trabucchi, D., Bitter, M. and Kühn, M.: The Ainslie Wake Model An Update for Multi Megawatt Turbines based 

on State-of-the-Art Wake Scanning Techniques, in Proceedings of the European Wind Energy Association, Barcelona, 

Spain, 10-13 March., 2014. 

Dörenkämper, M.: An investigation of the atmospheric influence on spatial and temporal power fluctuations in offshore wind 5 

farms, PhD Thesis, University of Oldenburg, Oldenburg., 2015. 

Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D. and Kühn, M.: Influence of marine boundary layer 

characteristics on power curves of multi megawatt offshore wind turbines, in Proceedings of 11th German Wind Energy 

Conference, Bremen, Germany, 7-8 November., 2012. 

Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D. and Kühn, M.: Atmospheric Impacts on Power Curves of Multi-10 

Megawatt Offshore Wind Turbines, J. Phys. Conf. Ser., 555(1), 12029, doi:10.1088/1742-6596/555/1/012029, 2014. 

Göçmen, T. and Giebel, G.: Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I 

offshore wind farms, Renew. Energy, 99, 524–532, doi:10.1016/j.renene.2016.07.038, 2016. 

Hamilton, N.: Functions Relating to the Smoothing of Numerical Data, CRAN R, 1–5, 2015. 

Hansen, K. S., Barthelmie, R. J., Jensen, L. E. and Sommer, A.: The impact of turbulence intensity and atmospheric stability 15 

on power deficits due to wind turbine wakes at Horns Rev wind farm, Wind Energy, 15(1), 183–196, doi:10.1002/we.512, 

2012. 

Iungo, G. V. and Porté-Agel, F.: Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs 

under different atmospheric stability regimes, J. Phys. Conf. Ser., 524, 12164, doi:10.1088/1742-6596/524/1/012164, 2014. 

Keane, A., Aguirre, P. E. O., Ferchland, H., Clive, P. and Gallacher, D.: An analytical model for a full wind turbine wake, J. 20 

Phys. Conf. Ser., 753(3), 32039 [online] Available from: http://stacks.iop.org/1742-6596/753/i=3/a=032039, 2016. 

Mittelmeier, N., Blodau, T. and Kühn, M.: Monitoring offshore wind farm power performance with SCADA data and an 

advanced wake model, Wind Energy Sci., 2(1), 175–187, doi:10.5194/wes-2-175-2017, 2017. 

Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Inst. Contract 

Number, 24(19604), 163–187 [online] Available from: http://mcnaughty.com/keith/papers/Monin_and_Obukhov_1954.pdf 25 

(Accessed 21 May 2017), 1954. 

More, G. and Gallacher, D.: Lidar Measurements and Visualisation of Turbulence and Wake Decay Length, in Proceedings 

of the European Wind Energy Association, Barcelona, Spain, 10-13 March., 2014. 

Mortensen, N. G., Nielsen, M. and Ejsing Jørgensen, H.: Offshore CREYAP Part 2 – final results, European Wind Energy 

Association (EWEA), Helsinki, Finland, 2.Juni 2015., 2015. 30 

Ott, S. and Nielsen, M.: Developments of the offshore wind turbine wake model Fuga, E-0046 Report 2014, DTU Wind 

Energy, Lyngby, Denmark., 2014. 

Özdemir, H., Versteeg, M. C. and Brand, A. J.: Improvements in ECN Wake Model, in Proceedings of the ICOWES2013 

Conference, Lyngby, Denmark, 17-19 June., 2013. 



31 
 

R_Core_Team: R: A Language and Environment for Statistical Computing, [online] Available from: https://www.r-

project.org/, 2015. 

Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S., Prueger, J. H., Horst, T. W., Rhodes, M. E., Pfeiffer, R., Hatfield, 

J. L., Spoth, K. K., Doorenbos, R. K., Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S., Prueger, J. H., Horst, T. 

W., Rhodes, M. E., Pfeiffer, R., Hatfield, J. L., Spoth, K. K. and Doorenbos, R. K.: Crop Wind Energy Experiment (CWEX): 5 

Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm, Bull. Am. Meteorol. Soc., 

94(5), 655–672, doi:10.1175/BAMS-D-11-00240.1, 2013. 

Sanz Rodrigo, J., Cantero, E., García, B., Borbón, F., Irigoyen, U., Lozano, S., Fernande, P. M., Chávez, R. a, Rodrigo, J. S., 

Cantero, E., García, B., Borbón, F., Irigoyen, U., Lozano, S., Fernande, P. M. and Chávez, R. a: Atmospheric stability 

assessment for the characterization of offshore wind conditions, J. Phys. Conf. Ser., 625, 12044, doi:10.1088/1742-10 

6596/625/1/012044, 2015. 

Schneemann, J., Trabucchi, D., Trujillo, J. J. and Voß, S.: Long range scanning lidar measurement campaign report, 

ClusterDesign Deliverable 7.1, ClusterDesign, Project No. 283145 (FP7 Energy)., 2016. 

Tambke, J., Claveri, L., Bye, J. A. T., Poppinga, C., Lange, B., Bremen, L. Von and Wolff, J.: Marine Meteorology for 

Multi-Mega-Watt Turbines, 2005. 15 

Tuerk, M.: Ermittlung designrelevanter Belastungsparameter für Offshore-Windkraftanlagen, PhD Thesis, Universität zu 

Köln., 2008. 

Türk, M. and Emeis, S.: The dependence of offshore turbulence intensity on wind speed, J. Wind Eng. Ind. Aerodyn., 98(8–

9), 466–471, doi:10.1016/j.jweia.2010.02.005, 2010. 

Vollmer, L., Steinfeld, G., Heinemann, D. and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in 20 

different atmospheric stabilities: An LES study, Wind Energ. Sci, 1, 129–141, doi:10.5194/wes-1-129-2016, 2016. 

Westerhellweg, A., Cañadillas, B., Kinder, F. and Neumann, T.: Wake Measurements at alpha ventus – Dependency on 

Stability and Turbulence Intensity, J. Phys. Conf. Ser., 555(1), 12106, 2014. 

 

 25 

Formatiert: Deutsch (Deutschland)



Wind Energ. Sci. Discuss., doi:10.5194/wes-2016-60-RC1, 2017 © Author(s) 2017. CC-BY 
3.0 License.  

Interactive comment on  

“An analysis of offshore wind farm SCADA measurements to identify key parameters 
influencing the magnitude of wake effects” by Niko Mittelmeier et al.  

Answers to comments of anonymous Referee #1 by 

Niko Mittelmeier et al. April 25, 2017 

 
Dear Referee, 
Thank you very much for reviewing our paper. Your concern, that our results are only usable for the 
selected wind speed bin is valid. The proposed signal is dependent on wind speed and therefore a 
constant threshold is limited useful. We will provide an adjustment to this fact in our answers to your 
comments. We will also follow your suggestion to develop the arguments in a new way. We focus on 
the classification of the magnitude of wake effects and show the ability to predict these conditions 
with the different signals. Your comments helped us to understand where we need to provide more 
clarity and we hope that our answers to your questions will improve the paper. Our responses to your 
comments are marked as ***/ Response /***. 
 
 

The manuscript entitled "An analysis of offshore wind farm SCADA measurements to identify 
key parameters influencing the magnitude of wake effects" deals with the using of operating 
information supplied by the wind turbines to assess the atmospheric stability conditions and 
then to make some conclusions about the wake interaction effects. The objective is fully 
relevant: wind farms, and particularly offshore ones, are not equipped with meteorological 
measurements to determine the real-time and reliable meteorological conditions (wind 
speed, wind direction and particularly atmospheric stability). On the other hand, wind farm 
models need field data to be validated. The authors attempt to find an indirect way to assess 
atmospheric stability in order to determine the magnitude of the expected wake effects, 
according to this parameter. 

On the other hand, the methodology used in this manuscript to obtain the presented 
conclusions does not sound rigorous enough at this stage to be published in a journal. Some 
hypothesis are too strong and the methodology is not validated.  

Please find below the arguments to justify the recommendation:  

- A direct correlation is expected between the turbulence intensity and the atmospheric 
stability. Though, for a fixed stability condition, turbulence intensity can have big scatter and 
particularly at low wind speeds. Reference to the works from Dörenkämper et al. (2012 and 
2015) are used to justify this strong simplification but these references are a PhD thesis and 
a proceeding from a national conference. I would suggest to make references to publications 
in peer-review journals and to develop the arguments that give the possibility to reduce the 
stability effect to a turbulence intensity effect, and particularly at low Wind speeds.  

***/ You are right, using only turbulence intensity (TI) is a very strong simplification for stability. To 
come up to the readers expectations we will add more clarity to the abstract and introduction to make 
the purpose of the paper more defined.  



The idea behind this research is to find a signal that could be used to improve wake model tuning for 
specific operational conditions. This may help to improve the use of a wake model to detect 
underperformance as proposed in Mittelmeier et al. (2017). We will show, that the magnitude of wake 
effect is not only governed by stability but also turbulence intensity and we will show to which extend 
one can expect an overlapping effect. 
For this purpose, we will provide peer reviewed journal publications to base the assumptions on a 
more solid foundation and evaluate new data to be able to compare a stability description defined by 
the Monin-Obukhov similarity theory and the SCADA data. 
 
In Hansen et al. (2012), the authors studied wake effects at Horns Rev in different atmospheric 
conditions. They also compared turbulence intensities for different stability classes as a function of the 
wind speed. Below 7m/s a clear increase in TI can be noticed. Above 7m/s neutral-unstable conditions 
are clearly distinguishable from more stable conditions with a constant threshold up to nominal wind 
speed. Dörenkämper et al. (2014) published their results also at a peer reviewed conference series 
where they draw the link from stability via shear to turbulence intensity motivated by the studies of 
(Tambke et al., 2005). In a later study, Sanz Rodrigo et al. (2015) compared different stability 
classification methodologies with data from FINO 1 and presented the behavior of shear and 
turbulence intensity for the proposed atmospheric stability classes. The authors concluded, that in this 
particular cases TI correlates well for stable cases but at near neutral and unstable cases, shear is 
supposed to enable better distinction between their nine classes.  
 
We investigated new data from FINO1 to be able to use a “real” stability classification and not only TI 
classes. 
With latest calibrated temperature data from DEWI (Richard Fruehmann) we were able to follow the 
approach suggested by Ott and Nielsen (2014) and calculated the dimensionless 𝜁 = 𝑧

𝐿
 for T_air  at 

33m. The plot below shows the data availability for the selected period. 
 

 
 
 
 
 
 



We decided to keep the number of classes at three (“unstable”, “neutral” and “stable”) based on the 
following table:  
 

Category Range 
Unstable 𝜁 < −0.05 
Neutral −0.05 ≤ 𝜁 ≤ 0.05 
Stable 𝜁 > 0.05 

 
(We will add more description of the  methodology for the estimation of thresholds in Section 3.3) The 
estimated thresholds have also been proposed by Rajewski et al. (2013). 
This leads to the following histogram for the three classes. 
 

 
 

In the plot below, we have used the new stability classification based on 𝜁 = 𝑧/𝐿. Bin averaged 
turbulence intensity (TI_100) measured at the met mast and at the nacelle (AV4_TI)  as well as met 
mast shear (alpha_90_40)  and AV4_POTI are plotted for each class as function of the wind speed. 
The selected wind speed bin of 8 ± 1m/s is quite well distinguishable with constant thresholds for all 
the provided variables. But whereas turbulence intensity from the met mast is fairly constant for the 
whole presented range,  shear and POTI are showing a much stronger dependency on wind speed.  
 
    



 
 
The plots above confirm the statement made by Tambke et al. (2005) and Sanz Rodrigo et al. (2015), 
that shear enables a more clear distinction between the atmospheric stability classes. The error bars, 
indicating one standard deviation are not overlapping anymore for stable and unstable class above 8 
m/s. 
 
As you have suggested, we will develop the arguments in a new way. We describe how to classify low 
and high wake effects and use this characteristic to evaluate the predictability based on stability, 
turbulence intensity and turbine SCADA data classes. Then we provide an overview on the different 
occurrences of the described environmental conditions.   
 
Determination of thresholds: 
At first we select the normalized power (waked turbine, normalized by the power of a free flow 
turbine) for a small sector (10°) in the full wake for the relevant wind speed range (8 ± 1 m/s) (Fig 1a). 
Secondly we eliminate the dependency on wind direction by normalizing the normalized power for 
each wind direction bin (binwidth = 2°) with its mean value (Fig. 1b).  
 



 
 

The third step divides the data set into high wake effects (values < 0) and low wake effects (values >= 
0) and the density distribution of the variable of interest is plotted for these two data sets (Fig 2). We 
use the median for each density distribution to allocate thresholds.  

 
 

 
Fig 2. Data density for different variables based on low and high wake effects. The median for each 
distribution is highlighted with a vertical line. The data corresponds to a wind speed bin of 8 ± 1 m/s 
and a sector width of 10° around the full wake.  

Fig. 1a 

Fig. 1b 



 
Note: 
The TI and POTI thresholds have slightly changed compared to our first version of the paper. The 
difference in TI thresholds is due to the fact, that we have used the values from Dörenkämper (2015) 
and now we are suggesting this new methodology. 
POTI thresholds have also slightly changed from the old version of our paper because the criteria was 
visual inspected and now we propose to use the median. In this way, the results should be reproducible 
now. 
 
To overcome the shortfall of AV4_POTI signal having a strong dependency on wind speed, we 
propose a normalization of this signal with a third order polynomial.  

 
When applying the same methodology to AV4_POTI_norm as described above, we obtain density 
distributions as below: 

 
 

The table below summarizes the different classes: 
Category 𝜻 =  𝒛/𝑳 [-] TI_100 [%] AV4_POTI_norm [-] 
Weak wakes 𝜁 < −0.05 TI_100 <  5.4% 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 < 0.8 
Medium wakes −0.05 ≤ 𝜁 ≤ 0.05 5.4 ≤ 𝑇100 ≤ 6.5 0.8 ≤ 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 ≤ 1.1 
Strong wakes 𝜁 > 0.05 𝑇100 > 6.5 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 > 1.1 
 
Looking at the distributions for each class, one can see an improvement from POTI to POTI_norm. 
Latter is much more comparable to the turbulence intensity measured at the met mast. 



 
For z/L, weak wakes cases seem to become less frequent with increasing wind speed. POTI seams to 
overestimate this trend. TI_100 and AV4_POTI_norm provide similar results. Using AV_POTI_norm 
as a classifier, we obtain the following wake plot: 
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  /*** 
 
- LiDAR measurements at Nord See wind farm NO : PPI planes are described as horizontal. 
LiDAR is located on the helicopter platform from the wind turbine NO48. One therefore guess 
that is corresponds to an altitude close to the hub height. Consequently, the laser beam 
should meet the wind turbine rotors NO44 and NO45, leading to unusable data in the vicinity 
of both rotors. On the other hand, on Figure 4, the visualizations of the velocity field, as well 
as the normalized velocity evolution versus the downwind distance do not present any 
unresolved areas close to the rotors. The velocity induction through the rotor is presented 
and discussed. Please explain how these data were reconstructed close to the rotors.  

***/ Yes, you are right. Hard targets like blades and nacelle prevent a reasonable wind speed 
measurement. Due to the fact, that we are using multiple PPI-scans to obtain a 10-min average value, 
there are wind speed measurements available in the rotor plane.  
To derive the wind speeds for Fig. 4 (top), a raster layer was generated. While raster cells with 
multiple measurements are averaged, values with empty cells are linearly interpolated. In this way, the 
blind region at each nacelle and areas between the beam directions show interpolated wind speeds.  
 
We will add the following text: 
“Hard targets like blades and nacelle prevent reasonable wind speed measurement. Wind speeds at 
these blind regions and between the beam directions are linearly interpolated. “ 
/*** 
 



- §3.3 New classification and validation. This part is confusing. The authors determine a 
classification of the wake effect on the basis of the median of the normalized power of a wind 
turbine in wake interaction. It means that the intensity of the wake effect is determined by its 
statistical occurrence and not by its strength. Please elaborate an argumentation to justify 
this strategy of classification  

***/ You are right, this part has been not sufficiently described. In our data example we obtained a 
mean = 0.516 and a median = 0.5108 which is very close together (0.0052). We decided to use the 
median because the mean was effected by some outliers. A deeper analysis of these outliers revealed 
that an additional filter criteria for the data is needed. The new filter removes 10-min intervals when 
one of the turbines has had a downtime in the interval before. In this way the flow throw the wind 
farm gets another 10-min time to develop. Additionally data with a power ratio > 1 meaning that the 
turbine in the wake produces more than a free flow turbine has been deleted (only two values). After 
removing these outliers, mean and median have now a difference of 0.0015. We agree that it is more 
appropriate to use the mean when enough care for outliers has been taken. 
 
We will describe the new filtering in 2.4 and change 3.3 to “mean” instead of median. 
/*** 
 
- §4.2 Correlation analysis. It is not clear whether the data are sorted only according to the 
turbulence intensity or also to the wind speed (as performed in Fig. 5). If the data are not 
sorted according to the wind speed, it means that different operating conditions are plotted 
without distinction in this correlation matrix. How can one expect to get strong correlations 
between data coming from the incoming flow conditions (fully independent of the operation 
parameters) and operation-driven data coming from the wind turbines without any additional 
filters ? Could you please show the evolution of the relative power fluctuation PO_TI with the 
WT power or with the wind speed? Regardless of this crucial point, one cannot state that the 
level of correlation is acceptable in order to use this information as a representation of the 
turbulence intensity, and even less of the atmospheric stability.  

 

***/ You are right. Please find below the requested plots. Within the wind speed range of interest, the 
turbine signal is much more dependent on wind speed than the measured turbulence intensity at the 
met mast. All our wake plots are based on the wind speed bin 8 ± 1 m/s. In this range the correlation is 
higher, than for the other wind speeds.  
 

 
/*** 



- §4.3.1 New classification and validation on Alpha Ventus. By applying the new 
classification; discrepancies in the power production due to the assessed stability is rather 
small and difficult to interpret. By comparing Fig 5 and Fig 9, one notice that the frequency of 
occurrence of each stability class is also totally dependent of the classification method. For 
instance, on the top-right plot, the unstable case occurrence is 13% of samples for the new 
classification, instead of 56% with the classification based on turbulence intensity. It show 
again the poor correlation between both information.  

***/ In Fig. 9 the % values are biased because the “stable” class also contains all data where the 
turbine controller has already started with the main pitch activity which leads to a lower standard 
deviation of the power. We have to filter this part of the operation before displaying the proportions of 
the classes. We will call this part of the data “unclassified”. The corrected plot is provided below: 

 
 
We think this plot is not relevant anymore. We would like to show the new classification based on the 
normalized AV4_POTI_norm. (As provided for the answer of your first comment) 
/*** 
 
- The thresholds used in the new classification are different for each tested wind farms. It is 
justified by the fact that the wind turbines are different. But how can one explain that 
thresholds are different on the same wind farm (Ormonde) but for different wind directions?  

***/We assume that this has been an error due to the fact that POTI was very much dependent on 
wind speed. With the new proposed method to use a normalized values we can stick to the same 
classification even for different turbines, cause the turbine behavior is canceled out. /*** 
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Interactive comment on 

“An analysis of offshore wind farm SCADA measurements to identify key parameters 
influencing the magnitude of wake effects”  by Niko Mittelmeier et al.  

Answers to comments from anonymous Referee #2 by  

Niko Mittelmeier et al. April 25, 2017 

Dear Referee, 
Thank you very much for reviewing our paper. Your comments helped us to understand where 
certainly more explanations is needed and we hope that we could add clarity and additional content to 
answer your questions sufficiently. You are right, when you point out, that it’s a big step from 
SCADA data to stability classification and that strong simplifications have been made. For this reason 
we have accessed more data to close the gap between meteorological stability classification, TI, Shear 
and SCADA signals. We also want to be more precise on the purpose of this work. The main aim is to 
find turbine signals which can describe the magnitude of wake effects that are varying with different 
environmental conditions. With these signals it should be possible to fine tune wake models for more 
accurate predictions. 
Our responses to your comments are marked as ***/ Response /***. 
 
This paper presents a new parameterization of stability classes for the prediction of single 
and multiple wake effects based on met mast and LiDAR data. After reviewing the paper, I 
am fairly convinced that this line of reasoning is worth pursuing. However, there are some 
issues to be addressed before the paper can be recommended for publication. These are 
enumerated below.  

 

Specific comments  

Page 2, line 12 ‘rotordiameter’ is missing a space.  

***/ changed to “rotor diameter” /*** 
 
Page 3, fig 2 caption ‘cycles’ should be ‘circles’.  

***/ changed to “circles” /*** 
 
Page 4, lines 11 and 12 There are two instances where ‘is’ should be ‘are’.  

***/both instances changed to “are” /*** 
 
Page 4, lines 17 and 18 There are two spelling errors: ‘allowes’ and ‘includs’. Also the 
possessive is not necessary for ‘turbine’ and ‘nacelle’.  

***/ Changed to “allows” and “includes” and possessives deleted/*** 
 
 



Page 6, section 3.1 It is surprising that a study specifically considering stability effects is 
relying on a simplified classification technique. This introduces a considerable amount of 
unnecessary uncertainty as an independent variable (i.e. the stability) is not directly 
measured.  

***/ You are right. An acceptable representation of stability is needed and therefore we have accessed 
new data that has been just recently published on the BSH Fino Server. We will also develop our 
arguments slightly different. A new reproducible classification (see your comment from page 8) based 
on the magnitude of wake effects will be used and predictability with the different measured signals 
(𝜁 = 𝑧/𝐿, turbulence intensity and Turbine SCADA) is studied.  
 
With latest calibrated temperature data from DEWI (Richard Fruehmann) we were able to follow the 
approach suggested by Ott and Nielsen (2014) and calculated the dimensionless 𝜁 = 𝑧

𝐿
 for T_air  at 

33m. The plot below shows the data availability for the selected period. 
 

 
We decided to keep the number of classes at three (“unstable”, “neutral” and “stable”) based on the 
following table: (We will add more description of the  methodology for the estimation of thresholds in 
Section 3.3, see also your comment for page 8) The estimated thresholds have also been proposed by 
Rajewski et al. (2013). 
 

Category Range 
Unstable 𝜁 < −0.05 
Neutral −0.05 ≤ 𝜁 ≤ 0.05 
Stable 𝜁 > 0.05 

 
This leads to the following histogram for the three classes. 
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Ott, S. and Nielsen, M.: Developments of the offshore wind turbine wake model Fuga, E-0046 Report 
2014, DTU Wind Energy, Lyngby, Denmark., 2014. 
 
Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S., Prueger, J. H., Horst, T. W., Rhodes, M. E., 
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J. K., Oncley, S., Prueger, J. H., Horst, T. W., Rhodes, M. E., Pfeiffer, R., Hatfield, J. L., Spoth, K. K. 
and Doorenbos, R. K.: Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, 
Boundary Layer, and Mesoscale Interactions with a Wind Farm, Bull. Am. Meteorol. Soc., 94(5), 
655–672, doi:10.1175/BAMS-D-11-00240.1, 2013. 
 
/*** 
 
Page 7, table 1 More discussion for the boundary values for TI is needed. How exactly were 
these values assigned to unstable, neutral, and stable?  

***/ The presented values are taken from Dörenkämper (2015). There is no description how exactly 
these values have been selected. In earlier studies (Dörenkämper et al., 2012, 2014) the authors used 
1min averaged data and therefore also different thresholds than in his 2015 studies.  
With your later comment, requesting a more solid method to reproduce the assessment of the 
thresholds we will use our new classification method (See Comment for Page 8) .  
 
References: 
Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D. and Kühn, M.: Influence of marine 
boundary layer characteristics on power curves of multi megawatt offshore wind turbines, in 
Proceedings of 11th German Wind Energy Conference, Bremen, Germany, 7-8 November., 2012. 
 
Dörenkämper, M., Tambke, J., Steinfeld, G., Heinemann, D. and Kühn, M.: Atmospheric Impacts on 
Power Curves of Multi-Megawatt Offshore Wind Turbines, J. Phys. Conf. Ser., 555(1), 12029, 
doi:10.1088/1742-6596/555/1/012029, 2014. 
 
Dörenkämper, M.: An investigation of the atmospheric influence on spatial and temporal power 
fluctuations in offshore wind farms, PhD Thesis, University of Oldenburg, Oldenburg., 2015. 
/*** 
 
Page 7, eq 4 I suspect, but cannot verify, that the decent correlation between the two may be 
(in part) happenstance. Atmospheric turbulence intensity decreases with wind speed as a 



result of flow physics. The standard deviation of output power to power also decreases with 
wind speed but largely because the turbine controller plays an increasingly active role. The 
authors allude to this later in the paper but more discussion of why eq 4 might be a suitable 
proxy for eq 1 would be of interest.  

***/ This is a very valid point. Therefore we have investigated more on the influence of wind speed.  
In the plot below, we have used the new stability classification based on 𝜁 = 𝑧/𝐿 (See comment for 
Page 6). Bin averaged turbulence intensity (TI_100) measured at the met mast and at the nacelle 
(AV4_TI)  as well as met mast shear (alpha_90_40)  and AV4_POTI are plotted for each class as 
function of the wind speed. The selected bin of 8 ± 1m/s is quite well distinguishable with constant 
thresholds for all the provided variables. Whereas turbulence intensity from the met mast is fairly 
constant for the selected wind speed range,  shear and POTI are showing a strong dependency on wind 
speed.     
 
 

 
For this reason we propose to develop Eq. 5 which takes wind speed measured at the nacelle also into 
account. 
 
We are now proposing a correction for POTI to substitute the wind speed dependency. This can be 
done by normalizing POTI with a third order polynomial. The resulting plot is shown below. 
 



 
 
 
/*** 
 
Page 7, line 26 Why use the median instead of the mean?  

***/ In our data example we obtained a mean = 0.516 and a median = 0.5108 which is very close 
together (0.0052). We decided to use the median because the mean was effected by some outliers. A 
deeper analysis of these outliers revealed that an additional filter criteria for the data is needed. The 
new filter removes 10-min intervals when one of the turbines has had a downtime in the interval 
before. In this way the flow throw the wind farm gets another 10-min time to develop. Additionally 
data with a power ratio > 1 meaning that the turbine in the wake center (±5°) produces more than a 
free flow turbine has been deleted (only two values).  After removing these outliers, mean and median 
have now a difference of 0.0015. We agree that it is more appropriate to use the mean when enough 
care for outliers has been taken. 
 
We will describe the new filtering in 2.4 and change 3.3 to “mean” instead of median. 
 /*** 
 

 

Page 8, line 2 ‘...the thresholds are selected to achieve the best distinction between the three 
data sets.’ As these thresholds are central to the stability classification (and this work in 
general), a mathematical definition of best distinction must be included. Currently, this work 
is unreproducible by a third party.  

***/ This is a very valid point. We will describe the methodology in more detail: 
 
At first we select the normalized power (waked turbine, normalized by the power of a free flow 
turbine) for a small sector (10°) in the full wake for the relevant wind speed range (8 ± 1 m/s) (Fig 1a). 
Secondly we eliminate the dependency on wind direction by normalizing the normalized power for 
each wind direction bin (binwidth = 2°) with its mean value (Fig. 1b).  
 



 
 

The third step divides the data set into high wake effects (values < 0) and low wake effects (values >= 
0) and the density distribution of the variable of interest is plotted for these two data sets (Fig 2). We 
use the median for each density distribution to allocate the thresholds.  
 

 
Fig 2. Data density for different variables based on low and high wake effects. The median for each 
distribution is highlighted with a vertical line. The data corresponds to a wind speed bin of 8 ± 1 m/s 
and a sector width of 10° around the full wake.  

Fig. 1a 

Fig. 1b 



Note: 
The TI and POTI thresholds have slightly changed compared to our first version of the paper. The 
difference in TI thresholds is due to the fact, that we have used the values from Dörenkämper (2015) 
and now we are suggesting this new methodology. 
POTI thresholds have also slightly changed because the criteria was visual inspected and now we 
propose to use the median. In this way, the results should be reproducible now. 
 
To overcome the shortfall of AV4_POTI signal having a strong dependency on wind speed, we 
propose a normalization of this signal with a third order polynomial.  

 
When applying the same methodology to AV4_POTI_norm as described above, we obtain a density 
distribution as below: 

 
 

The table below summarizes different classes of interest: 
Category 𝜻 =  𝒛/𝑳 [-] TI_100 [%] AV4_POTI_norm [-] 
Weak wakes 𝜁 < −0.05 TI_100 <  5.4% 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 < 0.8 
Medium wakes −0.05 ≤ 𝜁 ≤ 0.05 5.4 ≤ 𝑇100 ≤ 6.5 0.8 ≤ 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 ≤ 1.1 
Strong wakes 𝜁 > 0.05 𝑇100 > 6.5 𝑃𝑃𝑃𝐼𝑛𝑛𝑛𝑛 > 1.1 
 
Looking at the distributions for each class, one can see an improvement from POTI to POTI_norm. 
Latter is much more comparable to the turbulence intensity measured at the met mast. 
For z/L, weak wakes cases seem to become less frequent with increasing wind speed. POTI seams to 
overestimate this trend. TI_100 and AV4_POTI_norm provide similar results.  



 
Using AV_POTI_norm as a classifier, we obtain the following wake plot: 

 
 

 



 
 
References: 
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/*** 
Page 8, line 7 Please avoid use of the word ‘prove’ in this context.  

***/ “prove” replaced by “shows”/*** 
 

Page 9, fig 5, bottom left One point just right of the centre for the stable curve is clearly an 
outlier. Any comment? Tables 2–5 The large variation in thresholds suggests that the 
approach is not general and more details regarding how these thresholds are determined is 
needed.  

***/ We have inspected the outlier and added two new filter criteria. The new filter removes 10-min 
intervals when one of the turbines has had a downtime in the interval before. In this way the flow 
throw the wind farm gets another 10-min time to develop. Additionally data with a power ratio > 1 
meaning that the turbine in the full wake (wake center ±5°) produces more than a free flow turbine has 
been removed. 
 
The new plot: 

 
/*** 



 

Page 16, line 19 Why limit the data set to 7–9 m/s? Are these results representative?  

***/We will change the wording from “7-9 m/s” to “8 ± 1 m/s”. In this way it is consistent to the Fig. 
5, Fig. 9 and Fig. 13. /*** 
 
Page 17, line 1 ‘The difference in power production between stable and unstable cases is in 
the range of 10%.’ Stability is only inferred here from TI so the statement should preferably 
refer to differences between high and low TI conditions.  

***/Agreed!  
New wording:  
“The difference in power production between high and low turbulence conditions is in the range of 
10%, …/*** 
 
Page 17, line 8 The paper would be significantly more complete with this range of important 
wind speeds included in the analysis.  

***/ That’s true, we are working on it/*** 
 
Page 18, line 7 Typo: ‘reviled’ should be ‘revealed’. 

***/changed to “revealed”/*** 
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