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Abstract. Traditionally, wind turbine controllers are designed gsfinst-principles, linearized, or identified models. Thmai
of this paper is to show that with an automated, online andehfrde tuning strategy, wind turbine control performanaa
be significantly increased. To this purpose, Iterative Baeld Tuning (IFT) is applied to two different turbine corniteocs:
drivetrain damping and collective pitch control. The résubbtained by high-fidelity simulations using the NREL 5Mwd
turbine, indicate significant performance improvementsrdaseline controllers which were designed using claskiop
shaping techniques. It is concluded that iterative feeklbaming of turbine controllers has the potential to becorwalaable

tool to improve wind turbine performance.

1 Introduction

The control system plays a crucial role in the operation afdnviurbines|(van Kuik et all, 2016). Without properly tuned
control loops, the turbine does not extract the maximum arhofienergy from the wind and loads might not be mitigated
optimally. Typically, wind turbine controllers are deseghusing linearized models obtained from wind turbine safenpack-
agesl|(Bossanyi and Witcher, 2009). The linearized modgisoapmate the nonlinear wind turbine dynamics in the vitiraf
selected operating points for which the controller is desdy To obtain a controller which performs satisfactoryoasrthe
different operating conditions often gain-schedulindgitéques are used. When necessary, the controllers can kwified by
connecting them to the nonlinear wind turbine model usimgnHidelity software packages.

Several factors detriment the controller performance wihgriemented on the actual turbine. First, the controlledés
signed upon the basis of models. This directly implies thete will be modeling errors and, hence, differences wighatttual
turbine. Second, every turbine will be different from theaifications due to for instance manufacturing errors arnaenfiec-
tions (van der Veen et al., 2013a). Third, due to environaladifferences such as varying soil dynamics throughoutredwi
plant, the dynamics of wind turbines vary per turbine (Londbat al.,[2013; Abhinav and Saha, 2015). Finally, due torwea
and tear, dynamics will change over time. All these factongact the (controller) performance of wind turbines andugthbe
addressed during commissioning and periodically durieditetime of a wind turbine.

A wind turbine manufacturer has several opportunities teroeme the aforementioned issues. One of these is by agplyin
system identification techniques (Hjalmarsson, 2005; vwan/den et all, 20134, b; La Cava et al., 2016). With systemtiide
fication, the dynamics of a wind turbine subsystem are obthby exciting a wind turbine input and measuring the respons
thereof, which often yields a more realistic model. By usihg identified models as a basis for the control design, perfo
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mance can be increased. Drawback of this approach is thailit fme time consuming to obtain the dynamics for all oparati
conditions, after which the controller needs to be redexign

In the past decade, research has been conducted on degdlmpihreducing controllers that ‘learn’ the optimal cofigo
settings online (van Wingerden ei al., 2011; HoutzagergP@ll 3) Navalkar et al., 2014, 2015; Xiao et al., 2016). Ehemn-
trollers are typically scheduled on basis functions andeiye mainly target the periodic wind turbine loading. By miizing
a cost function with respect to the controller parametbiespptimal (linear) combination of the basis functions cawbtained
online. The controllers have been successfully demoestitadth in simulation studies as well as in experimental wimshel
testing. However, the main drawback of the majority of thprapches is that the resulting controller operates in fa@difrd.
This means that mainly the deterministic loads are targethile stochastic loads remain roughly unaffected.

Another strategy is to tune the controllers offline by usihg previous mentioned models, and use this as starting point
for an automated online tuning algorithm (which can foramste be ran during commissioning and periodically overuhe t
bine lifetime). One such algorithm is given by Iterative &eack Tuning (IFT)[(Hjalmarsson etlal., 1998; Hjalmars2i02).
With IFT, the parameters of a fixed-structure controlleritgmtively optimized by carrying out two or more experirntgean
the closed-loop system, with which estimates of the grddigth respect to the controller parameters are obtainedatitzely
updating the controller parameters by using the gradidithates then minimizes a user-defined cost function. Theakky
vantage of IFT is that detailed knowledge of the (wind tue)igystem is not needed, while the main requirement is tteat th
initial closed-loop system is stable, implying that it candirectly used for optimization of wind turbine controBetFT has
been successfully applied to various application fieldtuisiog mechatronics (Al Mamun etlal., 2007; Heertjes €12016),
robotics [(Liu et al.| 2011), process industry (Lequin, 19%hd recently also wind turbines (Navalkar and van Winggeyd
2015).

In this paper, IFT is used to optimize the performance of dnedrivetrain damper and of reference tracking using €&nl|
tive Pitch Control (CPC). The main contribution is thereftw show the (practical) application of IFT to existing windbines.
The paper also contributes in showing how IFT can be applisystems that have multiple controllers in the loop. Moszpv
it is shown that IFT can be applied to systems that have aeeferinput with a static offset by performing an additional
experiment. Finally, the impact of several practical cdasations are shown including the experiment length, $itpraoise
ratio, and convergence speed.

The paper is organized as follows. In the next section, thaldef the IFT algorithm, and the closed-loop experiméinéd
are required to obtain gradient estimates, are given. Sulesgly, in Sectionl3, short descriptions of the NREL 5MW avin
turbine and the high-fidelity simulation environment aneegi. An overview of the control system is also provided. Int®a[4
and®, the IFT algorithm is used to optimize the performarf@nactive drivetrain damper and the reference trackingpef t
rotor speed using CPC. Finally, conclusions are drawn ini&s8.
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2 lterativefeedback tuning theory

This section introduces the IFT method. First, the mainildet& IFT are given in Section 2.1, followed by the analysisFer
for systems with a reference input containing an offset ictise[2.3.

2.1 IFT introduction

The basic rationale of IFT (Hjalmarsson et al., 1998; Hjaksan, 2002) is to minimize a cost function, given for insahy
the following quadratic expression

J(p) 2NZE (k.p) = (k) + Mu(k, p)*] (1)

in an iterative manner. The cost functiofip) in (1), depends on the (tunable) controller parameperthe squared error
between the outpuj(k, p) and the desired reference inpyk) (possibly prefiltered with a system reference model), and on
the squared input signal of the systenfik, p), wherek indicates the time instance. The cost function is dividedvytimes

the number of data sampl@g, and involves the expectatidii-] due to noise. Using a gradient search of the type

Pit1 = pi — %Rfl%,fi)v (2)
wherei is the iteration numbef)J(p;)/0p the gradient of the cost functiohnl (1¥; a positive definite matrix (e.g., the Hessian
of (@), an unconstrained optimization problem is obtairfidase note that the objective function can be non-covekyvill
converge to a local minimum.

It is clear that minimizing[{ll) boils down to computing theadientd.J (p;)/dp and HessiarR; at every iteration. Previous
studies (e.g., refer to Hjalmarsson et al. (1998); Hjalmans(2002)) have shown that these quantities can be obt&ioed
the closed-loop system, by conducting a number of expetisndo see this, first consider the partial derivative of tbstc
function J(p) with respect to the controller parameter vegior

ZE[ 2 )+ (k) 5 k)| )

which involves the signal8y/9p(k, p) anddu/dp(k, p). Thus, in each iteration the following signals are required
1. The signals(k), y(k,p;) andu(k, p;);
2. The gradient®y/0p(k, p;) andou/dp(k, p;);
3. Unbiased estimates of the produgts, p;)0y/0p(k, p;) andu(k, p;)0u/0p(k, ;).

The signals of the first requirement can be obtained frominga closed-loop experiment as in Figlie 1.
Obtaining the signals of the latter two requirements ishéligmore involved. In order to derive the required gradsesmd
unbiased estimates, consider the block scheme of the elospdsystem in FigurEl1. From the block scheme, it is readily
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Figure 1. Block diagram of a closed-loop system.
observed that
yl(kvp):Pul(kvp)"_vl(k)v (4)
u(k,p) = C(p) (ri(k) = y1(k.p)), (5)

whereP is the plant(C'(p) the fixed-structure parameterized controller andn unmeasurable zero-mean measurement noise.

Taking the partial derivatives of the latter signals witepect to the controller parametergives

Oy1 S 0u;

By ) =P - hop), ©
B 1. = S 11 () = ) — () 22 . ). @
Substitution of[{¥) in[(B) yields

%_y’j(k,m —(I+ PC(p))*lP%(ﬁ(k) ~ui(k.p)) = S(p)P%(ﬁ(/ﬂ) ~ui(k.p)), ®)

whereS(p) = (I + PC(p))~* is the sensitivity function. The gradient il (8) can be ol by injecting (k) — 1 (k, p) at
the process inputs(k, p) according to Figurgl2. This experiment is the so-cafjeatlient experiment. Notice that Figufé 2
includes a scaled injection signal with a facfomat the process input as well as a factg#” at the output, which will become
clear in the following paragraphs; for now assutfie= 1. It should also be noted that the gradié\@t/ap(k;,p) obtained
through FiguréRR is an estimate bf (8), because it is contamihwith noises. (k), i.e.,

Oy

SL(k.) = S(P (1 (1) = (k. )+ S(0) 5 (©)

ap ap
Finally, note that the subscript indicates the experimemhloer and should not be confused with the iteration numiber
Performing the gradient experiment as in Figure 2 avoidsidesl of an inverse of the controller, which will become ciear
the next section.

The input gradient signﬁﬂ/ap(k,p) can be obtained in a similar way (refei to Hjalmarsson e1&l98) for a derivation).

It can be derived that

o~

g—Z(k,m - s<p>§—f<m<k> plkap)) s<p>c<p>g—fv2, (10)
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Figure 2. Block diagram of the closed-loop gradient experiment.

which means that the gradient can be obtained from Figlre thiblyiplying the process inputs(k,p) with C/dp (or
by 1/F-0C/0pwhen the scaling factadr is applied). Again, this gradient is an estimate, becausedntaminated with (k),
and is therefore denoted lﬁ/?\ﬂ/ap(k,pi).
Under some mild assumptions of the noise properties (zexaamoise and the noise should be uncorrelated in each experi
ment), it can be shown (Hjalmarsson, 2002) tyﬁﬂk,pi)@/ap(/ﬂ,pi) andul(k,pi)éﬂ/ap(k,pi) are unbiased estimates.
The matrixR in @) is often replaced by an approximation of the HessiaheWy(k, p) — r(k) is small, the Gauss-Newton

direction
RNy v . o
_ L 9y 9y ou ou

can be a suitable choice (Hjalmarsson, 2002). However, gheoaimated Hessian in_(11) will be biased because of the dis
turbances. Typically, this will slow down the convergenéé¢he algorithm. In_Solari and Gevers (2004), it is shown tuat
unbiased estimate of the Hessian can be obtained on thedbassadditional closed-loop experiments. In this papewéver,

it was found that the approximated Hessian (11) performéttmntly well and was therefore the preferred choice.

2.2 Improving the signal-to-noiseratio

In order to improve the signal-to-noise ratio in the gratieperiment, it is suggested to replagék) —y1 (k, p) by F(r1(k)—
y1(k, p)) (Hialmarsson, 2002) in Figufeé 2. Consequently, the o@gmp(k,p) should be divided by the scaling factbfF.
The scaling factof” provides a means to influence the signal-to-noise ratioafdscussion on the optimal choice Bf refer
tolHjalmarsson and Gevers (1997).

In the later sections, the gaifi needs not only to be used to improve the signal-to-noise,rhtit also to appropriately
scale the input injection signal (k) — y1 (k, p). In certain cases, the referendg:) and/or measured signajgk,p) can be
orders of magnitude larger (or smaller) than the procesgtinfk, p), which means that injection ef (k) — y1 (k, p) with large
amplitude would lead to an undesired input. Herfcean be used to scale this signal to the desired input level.

2.3 |FT for systemswith offset in referenceinputs

In the previous subsection, the controligrwas subject to IFT where it was assumed th@t) could be set to zero. In this
subsection, the details of iteratively optimizing coneolC' when operating at a non-zero reference ingt) are analyzed.
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Specifically, the details in this part are tailored to theecakoptimizing for instance the CPC. In the CPC loop, the gatoe
speed is tried to be held close to the rated generator speed, the reference input can be used to generate a step sespon
Then, the referencg k) can be written as(k) = r,+r, (k), wherer, # 0 is the constant offset (e.g., the rated generator speed)
andr,, the reference step. Similar to the previous section, theetff, will contaminate the gradient signals and therefore a
third experiment is required to remove this contamination.

The experiments to obtain unbiased gradient estimatessdi@lews (Hjalmarsson, 2002). First, an experiment isiedrr
out where a step change(k) = r, + r,, (k) is applied to the closed-loop system according to FiglireetoRling the process
inputu, (k, p) and the outpuy (k, p)

y1(k,p) = S(p)(PC(p)(ro +rn(k)) +vi(k)), (12)
ur(k,p) = S(p)C(p)(ro+1rn(k) —v1(k)), (13)

gives the first set of signals. Second, an experiment id@ritche first experimentis carried out, except that thenotsa step
change in the reference, heneék) = r. This yields the second set of signals

ya(k,p) = S(p) (PC(p)ro +v2(k)), (14)
ua (k. p) = S(p)C(p) (ro — va(k)). (15)
The third experiment is the experiment where the recordgubss of the first and second experiment are used to obtain an

estimate of the gradient. The control configuration for thedgent experiment is shown in Figurke 3, where it is seenttiat
reference input equats,. For this configuration, the gradient estimate signals (aksb see Appendix A.1)

S .0) = 5 5 (S PF (0 = 1a(kp) + PO+ 0a(8)] ~ (b)), (16)
C k) = 90 (SO = 1 (5:) + Clo)r ~ Clorald)] = ualh)), a7

from which it can be seen that both noise and the referensetoff perturb the estimate. Fortunately, the offgein the gra-

dient estimates can be removed by subtracfinfy (14) ftomgdéYI%) from[(I]7) during the gradient experiment (see FEi@)r
It is noted that the first and second experiment are nearignbut are both required in order f@[(k‘,pi)@/ap(k‘,pi)

andul(k,pi)&;/ap(k‘,pi) to be unbiased (Hjalmarsson, 2002) under the same assumspidefore.

2.4 |FT for systemswith multiple controllers

The IFT method discussed in the previous part cannot dyrdxel applied to control systems where multiple (decoupled)
controllers are working on the same input signal. Considehis case for example the torque controller and the daietr
controller. The torque controller regulates the genermtajue in such a way that the rotor speed provides maximunepow
extraction from the wind. At the same time, a drivetrain damgudds a small torque ripple on the regulated generatanedn
order to reduce drivetrain oscillations (which will be fuet explained in Sectidd 4). Thus, in such case the refeégoalr (k)



10

U2
du
y— 1 0C ap
> > ——
+ F 0p
F(ri—y1) U3 Y2
l i 0 -
To + u3 Yz y— 1 0C ap
C o > S Y P
- 2 g P S R F op

Figure 3. Block diagram of modified closed-loop gradient experimentréference inputs with offsets.
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Figure 4. Block diagram of the closed-loop system which involves iplétcontrollers (representing the scenario of torque rabrend

drivetrain damping).

in Figure[2 cannot be set to zero. Moreover, the torque angontontrollers might have some interaction such thatdalas
estimates are obtained. In order to apply IFT to this kindorftool systems, it is shown that a similar procedure as fectse

with reference offsets can be used.

The basic control system analyzed in this section is showhigare[4. The control system consists of controll€fs
and Cs(p), where the latter is subject to optimization. Controliér works on the error between a referendé) and the
measured output(k, p), while Cs(p) works on the outpuj(k, p) filtered by (s). The role of the high-pass filter will become
clear at a later point. The controllék(p) is without loss of generality implemented with positivedeack.

The first experiment is identical to the single controlleseas described in the previous paragraphs: the closedystgm

in Figure4 is used to obtain the following signals
y1(k,p) = S(p) (PCir1(k) +v1(k)), (18)
ul(k,p) = S(p) (017“1 (k) —Civ1 (k) + Cs (p)Hvl (k)), (19)

whereS = (I + PC, — PCy(p)H) ™' is the sensitivity function. The signalS {18)-[19) detevenihe cost function given iftl(1).
The gradient signal related to the outputk, p) is obtained as follows. First note that

y(k,p) = Pu(k,p) +v(k) (20)
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such that the partial derivative thereof is given by
dy ou
—(k = P—
3 p( ) =P ;

Then, note that the process input, p) in Figure[4

(k. p). (21)

u(k,p) = C1(r(k) —y(k,p)) + C2(p)) Hy(k, p) (22)

has partial derivative

ou _ Oy 0Cs Jy

R (k,p) =—C1 99 (k,p)+ R Hy(k,p) + Cz(p)Hap (k,p). (23)
Substituting[(ZB) in[(21) and manipulating, yields

Oy 00

—= = P— . 24
ap (k,p) =5(p) o Hy(k,p) (24)
Similarly, the gradient related to the input can be founddddee Appendix A.2)

8u (902

it - -2 . 2
R (k,p) =5(p) o5 () Hy(k,p) (25)

Thus, the signal$ (24)-(P5) can be obtained by injectindithk-pass filtered outpdiy(k, p) or simplyy’(k, p) at the process
inputu(k, p) in a gradient experiment according to Figlte 5. Doing so,tbea obtains the following gradient estimates

2 0k = (SO PCLr ) + PP )+ 0a0)] = () ). (26)
Gethp) = 3552 (S Car(0) = Croah) + Calp) M)+ P ()] = vl ) ). @

Comparing the above equations wifh](24)}1(25) and it can keeded that the estimates are biased. Now, by running an
experiment identical to the first experiment, one acquiggé, p) andus(k,p) identical to [I8){(IB). Subtracting these, as
shown in Figurd b, cancels the undesired terms in the gradignals [265){(2]7) such that the desired gradient is obthin
which is only perturbed by noise terms.

The high-pass filtef{ is incorporated for practical consideration. In the gratiexperiment, the signa"Hy, (k,p) is
injected in the system. In the case of drivetrain dampinig,wlould mean to inject the measured generator spegd p) with
a scaling factof”. As the generator speed during operating is larger than g@sowould imply to insert a step change in the
demanded generator torque. High-pass filtering the megispeed causes to inject a signal that varies around zero.

2.5 Including cost function weights

This section shortly discusses weighting filters in the ¢osttion. The cost function i ]1) can be modified to incluiheet
and frequency weights. First, consider the following sthecbzero-weighting mask of the cost function (Lequin et/4099,
2003)

E [(y(k,p) — r(k))* + Mu(k,p)?] (28)

.
S
I
[\
2l
}
M=
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Figure 5. Block diagram of the gradient experiment for the multipl@toller scenario. The controll&?; is fixed and controllet’s(p) is
subject to IFT. The signal&y (k, p), y2(k, p) anduz(k, p) are obtained from two others experiments and are requirebtan unbiased
gradient estimates.

where the index of the summation starts > 1. The motivation for this mask, often used for step respooseg, is
as follows. Typically, the main objective of step responsarg is to move the system quickly from one point to another.
The settling time is an important parameter in this cont@fthout zero-weighting mask, the controller is tuned suwit the
reference is as close as possible matched, while in pramtieeoes not care too much about the trajectory to the neverefe
value, as long as the overshoot is not too large. By zero+ieig the transient trajectory in the cost function, theoailtpm
tries to achieve a fast settling time.

The cost function can also incorporate frequency weightand L.,

N
J(0) = = 3 B[(Ly(yk,p) — r(K)? + MuLu(k,0))?] (29)
k=N,

which filter the errory(k, p) — r(k) and inputu(k) accordingly. With the frequency weights one can emphasizppress
frequency bands in the cost function. For example, in the o&drivetrain damping, the measured output signal willardy
be composed of the drivetrain resonance frequency, butrasty other disturbances with various frequency components
Thus, filtering the drivetrain frequencies in the cost fimtimakes sure the controller will focus on the filtered frecies.

The cost function (29) requires filtering 9tk, p) — r(k) andu(k, p) with L,, andL,, respectively. Moreover, the derivative
of (29) with respect to the control parameters
0. 1 dy ou
570 = 3 2B B g )+ ALl L )| (30)
then involves the filterd,, andLL, as well. Thus, this also requires the gradient signals reebd passed through the frequency
filters.
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Table 1. NREL 5MW wind turbine description_(Bossanyi and WitcherQ9p

Description Value
Rated power 5MW
Number of blades 3

Rotor diameter 126m
Orientation Upwind
Hub height 90m
Gearbox ratio 97

Rated wind speed 11.3ms*!
Rated rotor speed 12.1rpm

Rated generator torque 43.093kNm
Drivetrain natural frequency 10.49rad s

2.6 Stability and convergence

The iterative optimization of the controller parametedescribed in the previous paragraphs can have robustsessislhis

is caused by the fact that, typically, there are no guararitedt the controller remains stable during the iteratiam.tRat rea-
son a number of articles (Heertjes etlal., 2016; Prochazék, £005| de Bruyne and Kammer, 1999; Veres and Hjalmarsson
2002) have appeared on the subject of including stabilitystaints for the optimization procedure. These algoritlare

not considered here, because no stability issues are eecednn this study. However, a safety measure that can lemtak
is lowering the parameter update step sjzebut for this a trade-off between stability and convergemate has to be made.

A technique to improve convergence is to adjust the step-gizdter each iteration, based on a norm of the cost function
gradientd.J (p;)/0p.

3 Wind turbine and simulation environment

In this study, the NREL 5MW reference wind turbine model isdisThe model does not represent an existing wind turbine,
but is considered to reflect typical commercial wind turBinésimilar ratings. The turbine has three blades in an ugwotor
configuration, a rotor diameter ®26 m, and reaches the rated power outpui BV at a wind speed of2.1ms'. A summary
of the most important parameters is listed in Téble 1. Thalwimbine is a variable-speed variable-pitch machine, suatthe
rotor speed in below-rated wind is regulated by means of émerator torque, and in above-rated wind by collectivelgtping
the blades. The natural frequency and damping ratio of tivetdain dynamics, which is important for the drivetraimuazer
that will be designed in Sectidn 4, are = 10.49rads* and¢ = 0.0217, respectively.

The relevant control scheme for the scope of this study isrgim Figure b. The measured generator speggd forms
the input for the controllers. The torque controller pr@sda demanded generator torque setpbjnf to regulate the rotor

10
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Figure 6. Overview of the relevant controller configuration in thiady. The starred controllers will be the subject for IFT.

speed in below-rated wind and drivetrain damping can beeaeli by superimposing;,, with a small torque rippl€y:q,

such that the final demanded generator torque is givefi,by In above-rated conditions, the generator speed is helstaon

at Q.. = Qrated by means of the collective blade pitch setpdirgenerated by the CPC. The drivetrain damper and the CPC
will be optimized using IFT in Sectidd 4 andl 5.

The software package GH Bladé®0 (Garrad Hassan; Garrad Hassan & Partners | id, a, b), whichastified and widely
used wind turbine design software package in industry, éslus simulate the behavior of the wind turbine in response to
supplied wind field. To do so, the structural model of the itmebs modeled by a multi-body approach combined with a modal
representation of the flexible components. The rotor aarachjcs are modeled by combining blade and momentum theory.
Initial (baseline) controllers will be constructed usingssical loopshaping techniques on linear models of tHereifit subsys-
tems, which are obtained from Bladed using the built in lifesion tool. The controllers will subsequently be impkmted on
NREL 5MW Bladed wind turbine model, and optimized using th& klgorithm, as Bladed allows for testing of new control
algorithms by compiling an external controller designed.ig., MATLAB Simulink (Mathworks) to a DLL filel(Houtzager).
The DLL file is then used during the calculations to obtaindlesed-loop dynamics of the wind turbine. The controllaes a
discretized using the Tustin approximation and run at a $amfime of 0.01s. Note that some of the considered subsystem
dynamics are active in a lower frequency range, such thatecesl sampling time would be sufficient. However, in thiskvor
all controllers are designed to operate at the samplingireqy, as commercial turbines typically operate at thigueacy.
The data in the log files is recorded with a sampling tim®.66s. The interested reader is referred to the theory manual of
Bladed (Garrad Hassan & PartnersiLLtd, b) for details on thmuttion methods.

11



10

15

20

25

30

4 |FT of adrivetrain damper

Wind turbines which have a geared drivetrain are known teetalightly damped drivetrain mode. Subjected to turbulent
wind, the rotor speed will vary despite the speed reguldtiptorque control and CPC. The rotor speed variations cdwese t
drivetrain mode to be excited, which can lead to oscillaionthe drivetrain. In order to prevent this, typically avatrain
damping controller is included in the control system (esge Figurél6). This controller adds a small torque rippléhat t
drivetrain frequency (Bossanyi, 2000) to the demandedmg¢mretorque of the torque controller. Doing so, will draioally
reduce the drivetrain oscillations. Several studies inphst have considered the design of drivetrain damping chrg.,
refer to (Bossanyi, 2000; Dixit and Suryanarayanan, 20@8nkg et al., 2011; Wright et al., 2011; Fleming etlal., 2013

In this section, the IFT algorithm c.f. Sectibh 2 is appliedte optimization of the drivetrain damper parametershémrtext
paragraph, the controller parameterization is given abagehe classical design approach. Then, a parameter studyried
out to visualize the cost function. Subsequently, the abletris iteratively optimized for realistic loading sceits as well as
for different algorithm settings. Finally, the results bigt case study are discussed.

4.1 Baseline damping controller design

Typically, the drivetrain controller is chosen to be a baasfpfilter of the form (Bossanyi, 2000; Bossanyi and WitcB@09)

2Kw(s

Caals) = o s+

(31)

where K is the bandpass gain; is the drivetrain frequency ang influences the damping. With a (linearized) model of
the drivetrain dynamics/yyq, this bandpass filter can be tuned to damp the drivetraidlatsens. To this end, a linearized
model of the drivetrain dynamics is obtained from Bladeagghe built in linearization tool. With this model the drivain
damper is designed using classical loopshaping techn{@kesgestad and Postlethwalte, 2006). The resulting Boatgrains
of the drivetrain dynamics, the open-loop (controller tintzivetrain dynamics), and the closed-loop are shown inre(d.
From the open-loop dynamics shown in Bode diagram, it isgeized that the bandpass gdihcan theoretically be increased
infinitely (i.e., because the phase plot never crossi¥)°), however, in practice the controller bandwidth is limitedactuator
and communication constraints and higher-order unmodbfadmics. Hence, during the iterative optimization thetouter
cannot become unstable (for positive values of the coetrplirameters). The bandpass filter which is used in Figuas K h=
2500, ¢ = 0.3, andw = wy = 10.49rads! and is considered as the baseline controller. This filterdesn experimentally
verified to yield satisfactory performance.

4.2 Parameter study for drivetrain damping

Before the IFT algorithm was implemented, first a parametetysusing the linearized drivetrain dynamics was carriad i
order to gain understanding of the optimization problera,dlvsed-loop system including the drivetrain dynandiggy and
the bandpass filtef'4.q is simulated for a range of parametéfs, w, (). A disturbance signal at the drivetrain frequency is
injected at the output. The cost function is taken[as (1), b@th the output and the input are weighted. The cost fandor
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Figure 7. Bode diagrams of the drivetrain dynamics, the open-loopttotier times drivetrain dynamics), and the closed-lopgtam.

combinations ofK’ andw is shown in Figur&l8. The results indicate that the cost fondias a large area where it is almost
optimal and which becomes wider for increasipgrhis means that for this problem many combinationgoéndw exists
which give almost identical results. Moreover, this alsgi¢ates that the parameters are likely to quickly convesgamost
minimum cost values, but will slowly converge to the optimuaiue. It also shows that the baseline damping filter @ith0.3
could be improved (at least for the simulation case) by desing the damping of the filter. Finally, the cost function plot
shows that the phase of the controlled system can be adjogtedreasing/decreasing the frequencgind at the same time
increasing/decreasing the bandpass gaito maintain practically the same compensation performance

4.3 |IFT of drivetrain damping

The input of the drivetrain damping controllér{31) is takerbe the measured generator speed. The generator speat sign
consists of many frequency components arising from theant®mn between the wind turbine system and the wind. For
drivetrain damping one is only interested in the frequenciese to the drivetrain frequency. Hence, the controteeme

is taken to be identical to Figufé 4, whetk is the torque controller an@> the drivetrain damper. The input to the system
is u = Tyen and the outpuy = Q.. The measured generator speed sighal, is passed through the high-pass filter

2

S

= 32
) = o ot T oL (32)
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wherewy, = 0.63rads? is the cut-off frequency andy = 0.7 determines the damping of the filter. In order to make sure
that the cost function is dominated by the drivetrain exicitss, the output component of the cost functioh (1) is f#terThe
weighting filter

Ly(s) =

s2+ 25:253 + w2’ (33)
with w, = 10.49rad s at the drivetrain frequency ang = 0.1, is effectively an inverted notch filter passing through the
frequencies close to the drivetrain frequency and attémgiather frequencies. The input component of the cost fands
also filtered, as one in this case is only interested in thgh'Hrequency part of the generator torque setp®int,. Therefore,

the input component is also filtered with the high-pass f{&). The cost function then becomes

N
Jatd (p) = % ZE [(LyHQgen(kvl)))Q =+ /\HTgen(k7P)2] > (34)
k=1

which thus consists of the measured response of the genspated .., filtered by [32) and(33) and the demanded generator
torqueTy., filtered by [32). These filters are also included in the gnaiBeperiment configuration in Figuré 5 just before the
controller derivatives.

The experiments of IFT for the iterative drivetrain conleobptimization are according to Sectionl2.4 as follows:

First experiment (7: 0 — 20s) In the first experiment, the closed-loop system is operased(s (i.e.,N = 2000 samples),
with C; andC, identical to Figur€®. The outpll,., is filtered by [32) and{33), and the infIiL.,, is filtered by [3P).

Second experiment (7' : 20 — 40s) The second experiment is identical to the first experiment.
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Third experiment (1': 40 — 60s) In the third experiment, the filtered outpHt,., is added to the torque setpoifit.,, and
the recorded signals from the second experiment are stdxdras shown in Figuid 5.

After the third experiment ai”’ = 63s, the controller parametefsare updated by (33) and subsequently the mexare
used for transients, due to the controller parameter uptiatiisappear before the next iteration is started. Thud] @dration
takes70 s seconds. In the results the IFT algorithm is also adjusteditect N = 1000 and N = 3000 per experiment. In these
cases the experiment lengths are adjusted accordinglyhantetations therefore in total tak®s and100s, respectively. In
all cases, the first iteration startsiat= 30 s after the start of the simulation such that all initial si@mts are disappeared.

The generator torque setpoifif;q provided by the IFT algorithm is limited te&-1.8 KNm. Moreover, the generator torque
setpoint is also limited in the rate of change, i.e., a maximnate of=20kNm s is allowed.

4.4 Results
The results for IFT of the drivetrain damper are subdivided four parts each covering a different aspect of the IFTltes
4.4.1 General analysisof results

In the first part, the results for a number of general settofgsT are analyzed. The wind field considered here has a mean
wind speed ofi4m s and a turbulence intensity ab%. The number of data points consideredvis= 2000 corresponding
to 20s of simulated time (recall that the controllers run at a darggime of 0.01s) and the parameter update step sizélof (2)
is set toy = 0.3. The adjustable signal-to-noise ratio paramétas set to2000, which was experimentally found to provide a
good trade-off between the signal-to-noise ratio and thglitzide of the injected signal.

First, the convergence of the cost function and controbeameters for different optimization cases are considénedtal
four cases are considered:

1. Baseline, in the baseline case the controller paramatenseld constant and is given for reference;

2. prase, IN the second case, the initial parametggs,.s. are equal to the baseline parameters (it~ 2500, w =
10.49radst, and¢ = 0.3), from which IFT procedure is started. The input weightiaghosen to ba = 5-10~7;

3. puase,, the third case is identical to the second case except thanpiut weighting is smaller, i.e\=2- 10~7;

4. psubopt, IN the final case, the initial parametefgsunope are chosen to be far from the baseline cdse= 1000, w =
6.28rads?!, and¢ = 0.4. The input weighting is identical to the second case.

The results of the comparison are shown in Fidire 9. Fromhiteetplots related to the cost, it is observed that the raseli
controller is already rather close to optimal controllerfpemance. The controller with suboptimal initial conteslparameters
converges towards the other controller cases in roug@ul'yeration. It is observed that the optimization of the controller
parameters converges in a way that it varies around theysttate result. The variance of the trajectory is correlatethe
turbulence intensity used.

1To support the statement of convergence, an extended aptioni is performed and results are included in Appefidixiguie[T9.
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The main performance improvement is observed in the gesraratjue effort. It can be observed that the bandpassigain
and bandpass dampirqgof the baseline controller should, respectively, be inseglaand decreased in order to improve the
performance. The bandpass frequessagemains close to the drivetrain resonance frequencgturing the optimization. The
influence of the lower input weightin in the case opyasc,» is clearly seen in the bandpass trajectory.

With the controller parameters obtained in the last iterabf the second case, a comparison is made with the baseline
case in a normal design load case according to IEC (2005)fréqaency spectra of the demanded generator tofgueand
the resulting generator spe€.,, are shown in FigureZ10. From the spectrum plotx{,, it can be observed that the IFT
optimized controller yields a higher damping around theetrain frequency,. The optimized parameterization also slightly
increases the frequency contents around the drivetrairemidie demanded generator tordije, displays a similar result.
There is slightly more energy concentrated at and aroundrthetrain frequency, while at low and high frequenciesghergy
has reduced.

4.4.2 Impact of F onresults

In this paragraph, the influence of the scaling fackbon the IFT performance is investigated. To this purpose,|fifie
algorithm is carried out on the drivetrain damper usingsidht values of’. The initial parameters are identical to the baseline
and the step size is chosen toe: 0.3 and the input weight ta = 5-10~". The number of data samples collected is again set
to N = 2000 corresponding to experiment lengths2ofs. The turbulent wind field is identical as in the previousagaaphs.
The results for three cases where F is varied betw&en1000 and F = 2000 are shown in Figurie11.

The first thing that can be observed from the cost functiohiplthat the cost function slightly reduces with increagimg
scaling factolF". The effect off” on the optimization is more recognized in the convergerajedtories of the bandpass gdin
and the bandpass damping coefficiéntlearly, by increasing the scaling fact®r the convergence rate increases. This is also
what one could expect from reasoning, because the excitafithe system increases wiffi, as can also be seen from the
lower plot in Figurd_Ill. The choice df seems to be independent, at least for the considered valu#® final values to
which the controller parameters converge. Thus, when appl¥ T, the scaling factor should be carefully chosen shelhthe
choice forF in that sense becomes a tradeoff between the convergeram@imaximum allowed magnitude of the injected
signal.

4.4.3 Varying experiment length NV

In the previous results, the length of the experiments irh é@ecation wasNV = 2000 (20s). Here, the iterative optimization
results are compared for experiment lengthd@d, 20s and30s. The step size and input weight are sette 0.3 and\ =
5-10~7, and the scaling factor is set fo= 2000. The results are shown in Figure| 12.

It is observed that the experiment length has a clear infeienache variance of obtained results, both for the cost fonct
plots as well as the controller parameters. The resultsiacate that for the drivetrain damping case the expertrtegths
do not dramatically change the optimization outcomes.dtsethat for theV = 1000 case the load reduction performance
is slightly better than in the other cases. Similarly, fiie= 3000 case seems to result in the lowest generator torque effort to
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Figure 10. Comparison of the baseline and IFT optimized drivetrairticier performance.

reduce the drivetrain oscillations. Moreover, for thisectige parameters remain rather close to the original bagadirameters.
It can be argued that th®¥ = 2000 case provides the best tradeoff between the variance rpefce, and convergence time.

4.4.4 Varyingwind conditions

In the final part of this case study, IFT is also applied to adiipeed ol 0m s at below-rated operating conditions. Although
the need for an active drivetrain damper in below-ratedimgryind conditions is strongly turbine dependent, thisecstsidy
will show the ability of the algorithm to optimize controtewhile turbine power control is active. For comparisor,ithm s
wind case is also shown. The step size and input weight are mce set toy = 0.3 and\ = 5- 1077, the scaling factor is
chosen to bé = 3000 for the10m s wind andF = 2000 for the14ms* wind. The experiment length is kept At = 2000
samples. The results are displayed in Figude 13.

It is observed in the plots that the convergence trajectdie both wind speeds are very similar. Them s turbulent
wind case excites the drivetrain mode more thanlthe s ! wind case as is suggested by the increased cost, which slis al
requires a higher input energy. The cost function plots shawmber of iterations with a clearly higher input cost. Tikis
caused by sudden wind speed changes to which the torqueobentesponds. Although the input in the cost function is
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high-pass filtered, these sudden changes remain in the signal. At such occasions, the controller parameters atguay
relatively large changes. This could be overcome by inéngathe cut-off frequency of the high-pass filter that is used
filter the input signal in the cost function, or by increasihg experiment length, such that these effects are ave(agedhe
experiment length acts as low-pass filter on the results).

5 IFT of CPC

This section presents the results of the IFT algorithm &plgh step tuning of the CPC. In the next paragraph, first thealber
structure is given including the details of the IFT methogréof. In the subsequent section the optimization resoittsdveral
cases are discussed.

5.1 CPC design and IFT implementation

The CPC of a wind turbine generally consists of a Proportibrtagral (P1) controller cascaded with some filters thavent
from undesired contributions in the pitch signal. The fahtroller of the CPC loop is given by

K; s+ 2, spwsps + wgp s+ 2C; ,qwas + ws wﬁp
Ccpc = X

K,+— : 35
P $2 4 2(p spwaps + wip 82 +2(p awas + w3 $2+2(p LpwLpS + wip (35)

Notch at 3P frequency Notch at dtr frequency Low —pass filter

where the filter coefficients are listed in Table 2. The CPGtimgludes a notch filter that prevents from working on ife
frequency present in the generator speed signal, simianigtch filter that prevents from reacting to the drivetraggfiency
component, and a low-pass filter removing all frequenciexalh.6Hz. The controller takes as input signal the measured
generator speed,., and outputs a demanded collective pitch sighalee Figurél6.

The IFT algorithm is applied so as to optimize the step respdracking of the controller in (85). As CPC is aimed at
disturbance rejection rather than reference tracking, tight seem an odd optimization objective. However, fos BiSO
case they both target the same sensitivity. So, the frequilspendent performance is dependent on the excitatioalsigimce
the power spectrum of a step could be considered as a weigbtsin of a wind spectrum, with a higher emphasis on the
low-frequency components, meaningful results can be oéthiising this approach. This can be further improved bygusin
reference signal with a power spectrum similar to that of adngignal. The advantage of the approach followed is that the
reference signal is user defined and the wind is uncontielldihe step change is imposed in the rated generator spged, si
i.e., Qrer = Qrated — Ostep- A Negative step chang@s.., is applied to prevent the turbine from going into overspééu
generator speed signal has a constant offset (2,.t.q and therefore the experiments according to Seéfion 2.3Fande[1
and3 are used:

First experiment (7" : 20 — 40s) Inthe first experiment, the step char@ier = Qrated —Qstep IN the reference input is applied
for 20s. The generator speed respofigg, and the high-pass-filtered process infatre recorded.

Second experiment (7" : 0 — 20s) In the second experiment, the closed-loop system is okvéts ..t = Q,ateq- The oOut-
putQ.., and process inputare recorded and used in the next experiment.
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Table 2. Filter parameters of the different controller components.

Description Symbol Value

Low-pass filter

Low-pass filter frequency  wip 10.05rad s

Low-pass filter damping (.1 0.7

Notch filter at3P frequency

Notch filter frequency w3p 3.77rads*
Notch filter damping zero (. s.p 0.0015
Notch filter damping pole (. 3Lp 0.15

Notch filter at drivetrain frequency

Notch filter frequency wa 10.49rad s
Notch filter damping zero (.4 0.002
Notch filter damping pole (.4 0.2

Third experiment (7" : 65 — 85s) In the third experiment, the gradients are obtained by djmgrahe closed-loop system
With Qe = Qrated, iNjecting the error signal’ (Qer — Qgen) from the second experiment at the process ifhuising
the recorded signals of the first experiment at the process of the system according to Section]2.3, and filtering with
controller derivatives (including the high-pass filter fbe input gradient).

The time between the second and third experiment is requiredake sure all oscillations due to the step change have
disappeared. AT’ = 86 s the controller parameters are updated. Then, adteiduring which the transients due to the gradient
experiment and the controller update have disappearet,=ai20s, the next iteration is started. The first iteration starts
at T = 30s. During the optimization, the maximum pitch ratés limited to +8°s!. Notice that the order of the first and
second experiment have been reversed during the optimriziaticomparison to Sectign 2.3.

The cost function is chosen as

Tepe(p) = QNZE Qgen(F, p) = Qret (k))? + ALob(k, p)*] (36)

where the input weighting factdrand the step size in the parameter update ruld (2) are both considered faareifit values.
Note that the input signal in the cost function is high-passréid by Ly, which is identical to[(32). The high-pass filtEp is
required because the optimization procedure should fooukedynamic pitch response rather than on the static pffshto
required to maintain the rated generator speed.
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5.2 Reaultsof IFT for CPC

The first result is obtained by optimizing the CPC for a tuemtiwind field with mean wind speedtms™! and turbulence
intensity of4%. The step change for this result is chosen téhe, = 30rpm. Moreover, the adjustable signal-to-noise ratio
gain F' is set t00.02. The initial PI controller values ar&, =4 - 103 and K; = 1-1073. The results for three cases with
varying input weighting\ and step size are shown in Figurie14.

The trajectory of the cost function values and the contrgligameters are shown in Figlird 14. Note that the perforenanc
objective in this work is expressed by the cost functif{p), and minimization of this function is considered as impibve
performance. Another method for controller performanageparison is the use of Pareto cunies (Odgaard et al., 20} iyta
this technique will not be considered.

It can be observed that the initial controller parametensvseiboptimal and converge in a few iterations to a much bette
performance. The results also show that the convergentegfdrameters behave differently. The proportional dgirhas
converged to its final value after four iterations. The in&gontroller gaink;, on the other hand, slowly increases to larger
values. The difference in trajectory can be explained dubedact that in the step response the proportional gain iemo
dominant. In order to make the integral controller parameigre dominant, one could increase the experiment leigth

The effect of the gains and)\ on the convergence trajectories are apparent in Figure iolbserved that the convergence
of the proportional gairf,, for the cases wherg =5 - 103 is faster due to the higher step sizeThe effect of increasing
the weight\ in the cost function is also clear from Figure 14: the paramsetonverge to smaller values, which is according
expectation.

In Figure[IB, three different step responses are shown. Ilieegoaph displays the response of the initial controllethi®
step change. As can be observed, this response is sloppyftanchiae iterations has improved to a decent response. The
increased weight on the input cost yields a step responsesvidsgs pitch duty is required with only a very limited loss of
tracking performance. In Figute]l6, the generator spegabrese and the collective pitch angle for a full iterationidgrthe
first and ninth iteration are displayed.

The final results involve a comparison between IFT of CPC fffernt two different wind speedd4ms! and18ms!
with 4% turbulence intensity. It is generally known that the coh&uthority of CPC increases when the blades are further
pitched from the wind, which means that less pitch efforteiguired to keep the rotor speed close to rated. The IFT tuning
results also display this behavior. In Figliré 17 it can beshat the proportional gain fd8ms™ is roughly two thirds the
value compared to thetm s case. On the other hand, the integrator gajris somewhat higher for thESm s wind speed.
The cost function converges to a comparable result. Theretgmnses shown for the seventh iteration are also rathédasi

6 Conclusions

In this paper, IFT controllers for wind turbines have beevedigped. The typical controller configurations used foraviumrbine
control require three closed-loop experiments to be chwig. With the data that is collected during these experimigéihas
been shown that IFT can be successfully applied. The readlitsate that starting the optimization from a baselinetcuter
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Figure 14. Reference step tuning using IFT of CPC at a wind spedd ofs* with 4% turbulence intensity.. The results show three different
cases where the step sizeand the input weighting in the cost function are varied.

with decent performance, can improve the performance@redthin a few iterations. It has also been shown that IFT can
be applied to both disturbance rejection and referencéitrgacontrol for wind turbines. This is demonstrated by nsean
of optimizing the drivetrain damping controller and the CA®e methodology could similarly be applied to improve fore
aft and/or side-side tower damping performance. Findllig argued that IFT could provide a valuable tool with whible t

5 performance of wind turbine controllers can be improvedhwiit the need of system identification.
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Figure 17. Reference step tuning of CPC using IFT of CPC at a wind speédmfs™ with 4% turbulence intensity..

Appendix A: Derivation of input gradients
Al Derivation of input gradient for Section[2.3

Before the derivation of the input gradient is given, firstakthat the control system in Sectibn.3 is according guFe1
and therefore the sensitivity functidf{p) and complementary sensitivity functidi{p) are given by

S(p) = (I+PC(p) ", (A1)
T(p) = (I + PC(p))""PC(p). (A2)

Then, note that in Figuifd 1 the inputk, p) is determined by

u(k,p) = S(p)C(p)ro — S(p)C(p)v(k), (A3)
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Figure 18. Comparison of the CPC step responseslfoms ! and18ms ' with 4% turbulence intensity during the seventh iteration.

wherer(k) has been replaced by. The gradient of (AB) with respect jois derived as

ou (8_5

Stk = (S2C) +5(0) 50 ) ro= (G0 + 8V G ) ol (A9

Op Op Op
The derivative of the sensitivity functio$i(p) equals

25 2,00 5, 0C
5, ~ U+ PC) PG =52, (A5)

Substituting for the latter sensitivity derivative [n_(Aields

g—ZUm - S(p% (ro — T(p)ro + T(p)o(k) — v(k). (A6)

Realizing thatT' (p) — I)v(k) = —S(p)v(k) and thatl'(p)r, + S(p)v(k) = y(k, p) gives the input gradient

g—Z(k,m - sw@—f(ro ~y(h0)). (A7)

A2 Derivation of input gradient for Section[2.4

The derivation of the input gradient in Sect{onl2.4 is simitathe derivation in Appendix A.1. Here, the sensitivityp) and

complementary sensitivity'(p) are as follows

S(p) = (I+PCy— PCs(p)H)™", (A8)
T(p) = (I+PC, — PCy(p)H) ' PCy. (A9)

In Figurel4, the input:(k, p) equals

15 u(k,p) = S(p)Crr(k) + S(p)Ca2(p)Hv(k) — S(p)Crv(k), (A10)
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such that the gradient can be derived to be

ou oS oS 0Cs as
where
03 o,

— = (I+PC, — PCy(p)H) 2PH

ap ap

With the derivative of the sensitivity function, the inputgdient becomes

ou 0C5

a—p(k,p) = S(p)a—p?{ (S(p)PClr(k) + (S(p)PCa(p)H — S(p)PCy + I)v(k)) .

Realizing that(S(p) PCa(p)H — S(p) PC1 + I)v(k) = S(p)v(k), yields the final result
ou 0Cy

802 802 /

2 ) = () 2 (T (8) + S(0)0l0) ) = () 52y ) = S(0) G20 ).

dp

29

(A11)

(A12)

(A13)

(A14)



Appendix B: Extended optimization simulation to show convergence

Output cost Input cost
0.04 0.015
.012
0.03 0.0
0.009
= 0.02 -
0.006
0.01 0.003
0 0
0 5000 10000 15000 0 5000 10000 15000
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i 2000 =
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Figure 19. Comparison of IFT performance for different simulationdérs. The simulation settings used are: wind spelad s !, turbulence
intensity10%, step sizey = 0.3, input weighting factoi\ = 5-10~7, and scaling factoF" = 2000.
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