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Abstract. Traditionally, wind turbine controllers are designed using first-principles, linearized, or identified models. The aim

of this paper is to show that with an automated, online and model-free tuning strategy, wind turbine control performancecan

be significantly increased. To this purpose, Iterative Feedback Tuning (IFT) is applied to two different turbine controllers:

drivetrain damping and collective pitch control. The results, obtained by high-fidelity simulations using the NREL 5MWwind

turbine, indicate significant performance improvements over baseline controllers which were designed using classical loop-5

shaping techniques. It is concluded that iterative feedback tuning of turbine controllers has the potential to become avaluable

tool to improve wind turbine performance.

1 Introduction

The control system plays a crucial role in the operation of wind turbines (van Kuik et al., 2016). Without properly tuned

control loops, the turbine does not extract the maximum amount of energy from the wind and loads might not be mitigated10

optimally. Typically, wind turbine controllers are designed using linearized models obtained from wind turbine software pack-

ages (Bossanyi and Witcher, 2009). The linearized models approximate the nonlinear wind turbine dynamics in the vicinity of

selected operating points for which the controller is designed. To obtain a controller which performs satisfactory across the

different operating conditions often gain-scheduling techniques are used. When necessary, the controllers can be fine-tuned by

connecting them to the nonlinear wind turbine model using high-fidelity software packages.15

Several factors detriment the controller performance whenimplemented on the actual turbine. First, the controller isde-

signed upon the basis of models. This directly implies that there will be modeling errors and, hence, differences with the actual

turbine. Second, every turbine will be different from the specifications due to for instance manufacturing errors and imperfec-

tions (van der Veen et al., 2013a). Third, due to environmental differences such as varying soil dynamics throughout a wind

plant, the dynamics of wind turbines vary per turbine (Lombardi et al., 2013; Abhinav and Saha, 2015). Finally, due to wear20

and tear, dynamics will change over time. All these factors impact the (controller) performance of wind turbines and should be

addressed during commissioning and periodically during the lifetime of a wind turbine.

A wind turbine manufacturer has several opportunities to overcome the aforementioned issues. One of these is by applying

system identification techniques (Hjalmarsson, 2005; van der Veen et al., 2013a, b; La Cava et al., 2016). With system identi-

fication, the dynamics of a wind turbine subsystem are obtained by exciting a wind turbine input and measuring the response25

thereof, which often yields a more realistic model. By usingthe identified models as a basis for the control design, perfor-
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mance can be increased. Drawback of this approach is that it might be time consuming to obtain the dynamics for all operating

conditions, after which the controller needs to be redesigned.

In the past decade, research has been conducted on developing load reducing controllers that ‘learn’ the optimal controller

settings online (van Wingerden et al., 2011; Houtzager et al., 2013; Navalkar et al., 2014, 2015; Xiao et al., 2016). These con-

trollers are typically scheduled on basis functions and thereby mainly target the periodic wind turbine loading. By minimizing5

a cost function with respect to the controller parameters, the optimal (linear) combination of the basis functions can be obtained

online. The controllers have been successfully demonstrated both in simulation studies as well as in experimental windtunnel

testing. However, the main drawback of the majority of the approaches is that the resulting controller operates in feedforward.

This means that mainly the deterministic loads are targeted, while stochastic loads remain roughly unaffected.

Another strategy is to tune the controllers offline by using the previous mentioned models, and use this as a starting point10

for an automated online tuning algorithm (which can for instance be ran during commissioning and periodically over the tur-

bine lifetime). One such algorithm is given by Iterative Feedback Tuning (IFT) (Hjalmarsson et al., 1998; Hjalmarsson,2002).

With IFT, the parameters of a fixed-structure controller areiteratively optimized by carrying out two or more experiments on

the closed-loop system, with which estimates of the gradient with respect to the controller parameters are obtained. Iteratively

updating the controller parameters by using the gradient estimates then minimizes a user-defined cost function. The keyad-15

vantage of IFT is that detailed knowledge of the (wind turbine) system is not needed, while the main requirement is that the

initial closed-loop system is stable, implying that it can be directly used for optimization of wind turbine controllers. IFT has

been successfully applied to various application fields including mechatronics (Al Mamun et al., 2007; Heertjes et al.,2016),

robotics (Liu et al., 2011), process industry (Lequin, 1997), and recently also wind turbines (Navalkar and van Wingerden,

2015).20

In this paper, IFT is used to optimize the performance of an active drivetrain damper and of reference tracking using Collec-

tive Pitch Control (CPC). The main contribution is therefore to show the (practical) application of IFT to existing windturbines.

The paper also contributes in showing how IFT can be applied to systems that have multiple controllers in the loop. Moreover,

it is shown that IFT can be applied to systems that have a reference input with a static offset by performing an additional

experiment. Finally, the impact of several practical considerations is shown including the experiment length, signal-to-noise25

ratio, and convergence speed.

The paper is organized as follows. In the next section, the details of the IFT algorithm, and the closed-loop experimentsthat

are required to obtain gradient estimates, are given. Subsequently, in Section 3, short descriptions of the NREL 5MW wind

turbine and the high-fidelity simulation environment are given. An overview of the control system is also provided. In Section 4

and 5, the IFT algorithm is used to optimize the performance of an active drivetrain damper and the reference tracking of the30

rotor speed using CPC. Finally, conclusions are drawn in Section 6.
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2 Iterative feedback tuning theory

This section introduces the IFT method. First, the main details of IFT are given in Section 2.1, followed by the analysis of IFT

for systems with a reference input containing an offset in Section 2.3.

2.1 IFT introduction

The basic rationale of IFT (Hjalmarsson et al., 1998; Hjalmarsson, 2002) is to minimize a cost function, given for instance by5

the following quadratic expression

J(ρ) =
1

2N

N∑

k=1

E
[
(y(k,ρ)− r(k))2 +λu(k,ρ)2

]
(1)

in an iterative manner. The cost functionJ(ρ) in (1), depends on the (tunable) controller parametersρ, the squared error between

the outputy(k,ρ) and the reference inputr(k) (possibly prefiltered with a system reference model), and onthe squared input

signal of the systemu(k,ρ), wherek indicates the time instance. The cost function is divided bytwo times the number of data10

samplesN , and involves the expectationE[·] due to noise. Using a gradient search of the type

ρi+1 = ρi − γiR
−1
i

∂J

∂ρ
(ρi), (2)

wherei is the iteration number,∂J/∂ρ(ρi) the gradient of the cost function (1),Ri a positive definite matrix (e.g., the Hessian

of (1)), an unconstrained optimization problem is obtained. Note that the objective function can be non-convex, and will in

such case converge to a local minimum.15

It is clear that minimizing (1) boils down to computing the gradient∂J/∂ρ(ρi) and HessianRi at every iteration. Previous

studies (e.g., refer to Hjalmarsson et al. (1998); Hjalmarsson (2002)) have shown that these quantities can be obtainedfrom

the closed-loop system, by conducting a number of experiments. To see this, first consider the partial derivative of the cost

functionJ(ρ) with respect to the controller parameter vectorρ

∂J

∂ρ
(ρ) =

1

N

N∑

k=1

E

[
(y(k,ρ)− r(k))

∂y

∂ρ
(k,ρ)+λu(k,ρ)

∂u

∂ρ
(k,ρ)

]
. (3)20

which involves the signals∂y/∂ρ(k,ρ) and∂u/∂ρ(k,ρ). Thus, in each iteration the following signals are required

1. The signalsr(k), y(k,ρi) andu(k,ρi);

2. The gradients∂y/∂ρ(k,ρi) and∂u/∂ρ(k,ρi);

3. Unbiased estimates of the products(y(k,ρi)− r(k))∂y/∂ρ(k,ρi) andu(k,ρi)∂u/∂ρ(k,ρi).

The signals of the first requirement can be obtained from running a closed-loop experiment as in Figure 1.25

Obtaining the signals of the latter two requirements is slightly more involved. In order to derive the required gradients and

unbiased estimates, consider the block scheme of the closed-loop system in Figure 1. From the block scheme, it is readily
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Figure 1. Block diagram of a closed-loop system.

observed that

y1(k,ρ) = Pu1(k,ρ)+ v1(k), (4)

u1(k,ρ) = C(ρ)(r1(k)− y1(k,ρ)) , (5)

whereP is the plant,C(ρ) the fixed-structure parameterized controller, andv1 measurement noise. Taking the partial deriva-

tives of the latter signals with respect to the controller parametersρ gives5

∂y1
∂ρ

(k,ρ) = P
∂u1

∂ρ
(k,ρ), (6)

∂u1

∂ρ
(k,ρ) =

∂C

∂ρ
(ρ)(r1(k)− y1(k,ρ))−C(ρ)

∂y1
∂ρ

(k,ρ). (7)

Substitution of (7) in (6) yields

∂y1
∂ρ

(k,ρ) = (I +PC(ρ))−1P
∂C

∂ρ
(ρ)(r1(k)− y1(k,ρ)) = S(ρ)P

∂C

∂ρ
(ρ)(r1(k)− y1(k,ρ)), (8)

whereS(ρ) = (I +PC(ρ))−1 is the sensitivity function. The gradient in (8) can be obtained by injectingr1(k)− y1(k,ρ) at10

the process inputu2(k,ρ) according to Figure 2. This experiment is the so-calledgradient experiment. Notice that Figure 2

includes a scaled injection signal with a factorF at the process input as well as a factor1/F at the output, which will become

clear in the following paragraphs; for now assumeF = 1. It should also be noted that the gradient̂∂y/∂ρ(k,ρ) obtained

through Figure 2 is an estimate of (8), because it is contaminated with noisev2(k), i.e.,

∂̂y

∂ρ
(k,ρ) = S(ρ)P

∂C

∂ρ
(ρ)(r1(k)− y1(k,ρ))+S(ρ)

∂C

∂ρ
(ρ)v2. (9)15

Finally, note that the subscript indicates the experiment number and should not be confused with the iteration numberi.

Performing the gradient experiment as in Figure 2 avoids theneed of an inverse of the controller, which will become clearin

the next section.

The input gradient signal̂∂u/∂ρ(k,ρ) can be obtained in a similar way (refer to Hjalmarsson et al. (1998) for a derivation).

It can be derived that20

∂̂u

∂ρ
(k,ρ) = S(ρ)

∂C

∂ρ
(ρ)(r1(k)− y1(k,ρ))−S(ρ)C(ρ)

∂C

∂ρ
(ρ)v2, (10)
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Figure 2. Block diagram of the closed-loop gradient experiment.

which means that the gradient can be obtained from Figure 2 bymultiplying the process inputu2(k,ρ) with ∂C/∂ρ (or

by1/F ·∂C/∂ρ when the scaling factorF is applied). Again, this gradient is an estimate, because itis contaminated withv2(k),

and is therefore denoted bŷ∂u/∂ρ(k,ρi).

Under some mild assumptions of the noise properties (zero-mean noise and the noise should be uncorrelated in each ex-

periment), it can be shown (Hjalmarsson, 2002) that(y1(k,ρi)− r1(k))∂̂y/∂ρ(k,ρi) andu1(k,ρi)∂̂u/∂ρ(k,ρi) are unbiased5

estimates.

The matrixR in (2) is often replaced by an approximation of the Hessian. Wheny(k,ρ)− r(k) is small, the Gauss-Newton

direction

R=
1

N

N∑

k=1


 ∂̂y

∂ρ
(k,ρ)

∂̂y

∂ρ

T

(k,ρ)+λ
∂̂u

∂ρ
(k,ρ)

∂̂u

∂ρ

T

(k,ρ)


 (11)

can be a suitable choice (Hjalmarsson, 2002). However, the approximated Hessian in (11) will be biased because of the dis-10

turbances. Typically, this will slow down the convergence of the algorithm. In Solari and Gevers (2004), it is shown thatan

unbiased estimate of the Hessian can be obtained on the basisof two additional closed-loop experiments. In this paper, however,

it was found that the approximated Hessian (11) performed sufficiently well and was therefore the preferred choice.

2.2 Improving the signal-to-noise ratio

In order to improve the signal-to-noise ratio in the gradient experiment, it is suggested to scale the injection signal with a15

factorF (Hjalmarsson, 2002) as shown in Figure 2. Consequently, theoutput ∂̂y/∂ρ(k,ρ) should be divided by the same

scaling factor. For a discussion on the optimal choice ofF , refer to Hjalmarsson and Gevers (1997).

In the later sections, the gainF needs not only to be used to improve the signal-to-noise ratio, but also to appropriately

scale the input injection signalr1(k)− y1(k,ρ). In certain cases, the referencer(k) and/or measured signalsy(k,ρ) can be

orders of magnitude larger (or smaller) than the process inputu(k,ρ), which means that injection ofr1(k)−y1(k,ρ) with large20

amplitude would lead to an undesired input. Hence,F can be used to scale this signal to the desired input level.
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2.3 IFT for systems with offset in reference inputs

In the previous subsection, the controllerC was subject to IFT where it was assumed thatr(k) could be set to zero. In this

subsection, the details of iteratively optimizing controller C when operating at a non-zero reference inputr(k) are analyzed.

Specifically, the details in this part are tailored to the case of optimizing for instance the CPC. In the CPC loop, the generator

speed is tried to be held close to the rated generator speed. Thus, the reference input can be used to generate a step response.5

Then, the referencer(k) can be written asr(k) = ro+rn(k), wherero 6= 0 is the constant offset (e.g., the rated generator speed)

andrn the reference step. Similar to the previous section, the offsetro will contaminate the gradient signals and therefore a

third experiment is required to remove this contamination.

The experiments to obtain unbiased gradient estimates are as follows (Hjalmarsson, 2002). First, an experiment is carried

out where a step changer1(k) = ro + rn(k) is applied to the closed-loop system according to Figure 1. Recording the process10

inputu1(k,ρ) and the outputy1(k,ρ)

y1(k,ρ) = S(ρ)
(
PC(ρ)(ro + rn(k))+ v1(k)

)
, (12)

u1(k,ρ) = S(ρ)C(ρ)
(
ro + rn(k)− v1(k)

)
, (13)

gives the first set of signals. Second, an experiment identical to the first experiment is carried out, except that there isnot a step

change in the reference, hencer2(k) = r0. This yields the second set of signals15

y2(k,ρ) = S(ρ)
(
PC(ρ)ro + v2(k)

)
, (14)

u2(k,ρ) = S(ρ)C(ρ)
(
ro − v2(k)

)
. (15)

The third experiment is the experiment where the recorded signals of the first and second experiment are used to obtain an

estimate of the gradient. The control configuration for the gradient experiment is shown in Figure 3, where it is seen thatthe

reference input equalsro. For this configuration, the gradient estimate signals read(also see Appendix A.1)20

∂̂y

∂ρ
(k,ρ) =

1

F

∂C

∂ρ
(ρ)

(
S(ρ)

[
PF (r1(k)− y1(k,ρ))+PC(ρ)ro + v3(k)

]
− y2(k,ρ)

)
, (16)

∂̂u

∂ρ
(k,ρ) =

1

F

∂C

∂ρ
(ρ)

(
S(ρ)

[
F (r1(k)− y1(k,ρ))+C(ρ)ro −C(ρ)v3(k)

]
− u2(k,ρ)

)
, (17)

from which it can be seen that both noise and the reference offsetro perturb the estimate. Fortunately, the offsetro in the

gradient estimates can be removed by using (14) and (15) during the gradient experiment (see Figure 3).

It is noted that the first and second experiment are nearly identical, but are both required in order for(y1(k,ρi)−r1(k))∂̂y/∂ρ(k,ρi)25

andu1(k,ρi)∂̂u/∂ρ(k,ρi) to be unbiased (Hjalmarsson, 2002) under the same assumptions as before.

2.4 IFT for systems with multiple controllers

The IFT method discussed in the previous part cannot directly be applied to control systems where multiple (decoupled)

controllers are working on the same input signal. Consider in this case for example the torque controller and the drivetrain

6



PC(ρ)
ro u3 y3 1

F

∂C

∂ρ

∂̂y

∂ρ

1

F

∂C

∂ρ

v3F (r1 − y1) y2

∂̂u

∂ρ

+

++

+

+

−

−

−

u2

Figure 3. Block diagram of modified closed-loop gradient experiment for reference inputs with offsets.

PC1
r u y

H
y′

C2(ρ)

v

+

++
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Figure 4. Block diagram of the closed-loop system which involves multiple controllers (representing the scenario of torque control and

drivetrain damping).

controller. The torque controller regulates the generatortorque in such a way that the rotor speed provides maximum power

extraction from the wind. At the same time, a drivetrain damper adds a small torque ripple on the regulated generator torque in

order to reduce drivetrain oscillations (which will be further explained in Section 4). Thus, in such case the referencesignalr(k)

in Figure 2 cannot be set to zero. Moreover, the torque and damping controllers might have some interaction such that biased

estimates are obtained. In order to apply IFT to this kind of control systems, it is shown that a similar procedure as for the case5

with reference offsets can be used.

The basic control system analyzed in this section is shown inFigure 4. The control system consists of controllersC1

andC2(ρ), where the latter is subject to optimization. ControllerC1 works on the error between a referencer(k) and the

measured outputy(k,ρ), whileC2(ρ) works on the outputy(k,ρ) filtered byH(s). The role of the high-pass filter will become

clear at a later point. The controllerC2(ρ) is without loss of generality implemented with positive feedback.10

The first experiment is identical to the single controller case as described in the previous paragraphs: the closed-loopsystem

in Figure 4 is used to obtain the following signals

y1(k,ρ) = S(ρ)
(
PC1r1(k)+ v1(k)

)
, (18)

u1(k,ρ) = S(ρ)
(
C1r1(k)−C1v1(k)+C2(ρ)Hv1(k)

)
, (19)
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whereS = (I +PC1−PC2(ρ)H)
−1 is the sensitivity function. The signals (18)-(19) determine the cost function given in (1).

The gradient signal related to the outputy1(k,ρ) is obtained as follows. First note that

y(k,ρ) = Pu(k,ρ)+ v(k) (20)

such that the partial derivative thereof is given by

∂y

∂ρ
(k,ρ) = P

∂u

∂ρ
(k,ρ). (21)5

Then, note that the process inputu(k,ρ) in Figure 4

u(k,ρ) = C1(r(k)− y(k,ρ))+C2(ρ))Hy(k,ρ) (22)

has partial derivative

∂u

∂ρ
(k,ρ) =−C1

∂y

∂ρ
(k,ρ)+

∂C2

∂ρ
Hy(k,ρ)+C2(ρ)H

∂y

∂ρ
(k,ρ). (23)

Substituting (23) in (21) and manipulating, yields10

∂y

∂ρ
(k,ρ) = S(ρ)P

∂C2

∂ρ
Hy(k,ρ). (24)

Similarly, the gradient related to the input can be found to be (see Appendix A.2)

∂u

∂ρ
(k,ρ) = S(ρ)

∂C2

∂ρ
(ρ)Hy(k,ρ). (25)

Thus, the signals (24)-(25) can be obtained by injecting thehigh-pass filtered outputHy(k,ρ) or simplyy′(k,ρ) at the process

inputu(k,ρ) in a gradient experiment according to Figure 5. Doing so, onethen obtains the following gradient estimates15

∂̂y

∂ρ
(k,ρ) =

1

F

∂C2

∂ρ

(
S(ρ)

[
PC1r(k)+FPHy1(k,ρ)+ v3(k)

]
− y2(k,ρ)

)
, (26)

∂̂u

∂ρ
(k,ρ) =

1

F

∂C2

∂ρ

(
S(ρ)

[
C1r(k)−C1v3(k)+C2(ρ)Hv3(k)+FHy1(k,ρ)

]
− u2(k,ρ)

)
. (27)

Comparing the above equations with (24)-(25) and it can be observed that the estimates are biased. Now, by running an

experiment identical to the first experiment, one acquiresy2(k,ρ) andu2(k,ρ) identical to (18)-(19). Subtracting these, as

shown in Figure 5, cancels the undesired terms in the gradient signals (26)-(27) such that the desired gradient is obtained20

which is only perturbed by noise terms.

The high-pass filterH is incorporated for practical consideration. In the gradient experiment, the signalFHy1(k,ρ) is

injected in the system. In the case of drivetrain damping, this would mean to inject the measured generator speedy1(k,ρ) with

a scaling factorF . As the generator speed during operating is larger than zero, this would imply to insert a step change in the

demanded generator torque. High-pass filtering the measured speed causes to inject a signal that varies around zero.25
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Figure 5. Block diagram of the gradient experiment for the multiple controller scenario. The controllerC1 is fixed and controllerC2(ρ) is

subject to IFT. The signalsHy1(k,ρ), y2(k,ρ) andu2(k,ρ) are obtained from two others experiments and are required toobtain unbiased

gradient estimates.

2.5 Including cost function weights

This section shortly discusses weighting filters in the costfunction. The cost function in (1) can be modified to include time

and frequency weights. First, consider the following so-called zero-weighting mask of the cost function (Lequin et al., 1999,

2003)

J(ρ) =
1

2N

N∑

k=N0

E
[
(y(k,ρ)− r(k))2 +λu(k,ρ)2

]
, (28)5

where the index of the summation starts atN0 > 1. The motivation for this mask, often used for step response tuning, is

as follows. Typically, the main objective of step response tuning is to move the system quickly from one point to another.

The settling time is an important parameter in this context.Without zero-weighting mask, the controller is tuned such that the

reference is as close as possible matched, while in practiceone does not care too much about the trajectory to the new reference

value, as long as the overshoot is not too large. By zero-weighting the transient trajectory in the cost function, the algorithm10

tries to achieve a fast settling time.

The cost function can also incorporate frequency weightsLy andLu

J(ρ) =
1

2N

N∑

k=N0

E
[
(Ly(y(k,ρ)− r(k)))2 +λ(Luu(k,ρ))

2
]
, (29)

which filter the errory(k,ρ)− r(k) and inputu(k) accordingly. With the frequency weights one can emphasize or suppress

frequency bands in the cost function. For example, in the case of drivetrain damping, the measured output signal will notonly15

be composed of the drivetrain resonance frequency, but alsomany other disturbances with various frequency components.

Thus, filtering the drivetrain frequencies in the cost function makes sure the controller will focus on the filtered frequencies.

9



The cost function (29) requires filtering ofy(k,ρ)− r(k) andu(k,ρ) with Ly andLu respectively. Moreover, the derivative

of (29) with respect to the control parameters

∂J

∂ρ
(ρ) =

1

N

N∑

k=1

E

[
Ly(y(k,ρ)− r(k))

∂y

∂ρ
(k,ρ)+λLuu(k,ρ)

∂u

∂ρ
(k,ρ)

]
, (30)

then involves the filtersLy andLu as well. Thus, this also requires the gradient signals need to be passed through the frequency

filters.5

2.6 Stability and convergence

The iterative optimization of the controller parametersρ described in the previous paragraphs can have robustness issues. This

is caused by the fact that, typically, there are no guarantees that the controller remains stable during the iteration. For that rea-

son a number of articles (Heertjes et al., 2016; Procházka etal., 2005; de Bruyne and Kammer, 1999; Veres and Hjalmarsson,

2002) have appeared on the subject of including stability constraints for the optimization procedure. These algorithms are10

not considered here, because no stability issues are encountered in this study. However, a safety measure that can be taken

is lowering the parameter update step sizeγi, but for this a trade-off between stability and convergencerate has to be made.

A technique to improve convergence is to adjust the step sizeγi after each iteration, based on a norm of the cost function

gradient∂J/∂ρ(ρi).

3 Wind turbine and simulation environment15

In this study, the NREL 5MW reference wind turbine model is used. The model does not represent an existing wind turbine,

but is considered to reflect typical commercial wind turbines of similar ratings. The turbine has three blades in an upwind rotor

configuration, a rotor diameter of126m, and reaches the rated power output of5MW at a wind speed of12.1m s–1. A summary

of the most important parameters is listed in Table 1. The wind turbine is a variable-speed variable-pitch machine, suchthat the

rotor speed in below-rated wind is regulated by means of the generator torque, and in above-rated wind by collectively pitching20

the blades. The natural frequency and damping ratio of the drivetrain dynamics, which is important for the drivetrain damper

that will be designed in Section 4, areωr = 10.49 rads–1 andζ = 0.0217, respectively.

The relevant control scheme for the scope of this study is given in Figure 6. The measured generator speedΩgen forms

the input for the controllers. The torque controller provides a demanded generator torque setpointTtrq to regulate the rotor

speed in below-rated wind and drivetrain damping can be achieved by superimposingTtrq with a small torque rippleTdtd,25

such that the final demanded generator torque is given byTgen. In above-rated conditions, the generator speed is held constant

atΩref =Ωrated by means of the collective blade pitch setpointθ generated by the CPC. The drivetrain damper and the CPC

will be optimized using IFT in Section 4 and 5.

The software package GH Bladed4.20 (Garrad Hassan; Garrad Hassan & Partners Ltd, a, b), which isa certified and widely

used wind turbine design software package in industry, is used to simulate the behavior of the wind turbine in response to30

a supplied wind field. To do so, the structural model of the turbine is modeled by a multi-body approach combined with a

10



Table 1. NREL 5MW wind turbine description (Bossanyi and Witcher, 2009)

Description Value

Rated power 5MW

Number of blades 3

Rotor diameter 126m

Orientation Upwind

Hub height 90m

Gearbox ratio 97

Rated wind speed 11.3m s–1

Rated rotor speed 12.1 rpm

Rated generator torque 43.093kNm

Drivetrain natural frequency 10.49 rad s–1

Wind

Turbine

Torque Controller

CPC*

Ωgen

Tgen

θ

Drivetrain damper*

+

+

−

Tdtd

Ttrq

Ωref

Figure 6. Overview of the relevant controller configuration in this study. The starred controllers will be the subject for IFT.
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modal representation of the flexible components. The rotor aerodynamics are modeled by combining blade and momentum

theory. Initial (baseline) controllers will be constructed using classical loopshaping techniques on linear models of the different

subsystems, which are obtained from Bladed using the built in linearization tool. The controllers will subsequently beimple-

mented on the NREL 5MW Bladed wind turbine model, and optimized using the IFT algorithm, as Bladed allows for testing

of new control algorithms by compiling an external controller designed in e.g., MATLAB Simulink (Mathworks) to a DLL5

file (Houtzager). The DLL file is then used during the calculations to obtain the closed-loop dynamics of the wind turbine.The

controllers are discretized using the Tustin approximation and run at a sampling time of0.01s. Note that some of the considered

subsystem dynamics are active in a lower frequency range, such that a reduced sampling time would be sufficient. However,

in this work all controllers are designed to operate at the sampling frequency, as commercial turbines typically operate at this

frequency. The data in the log files is recorded with a sampling time of0.05s. The interested reader is referred to the theory10

manual of Bladed (Garrad Hassan & Partners Ltd, b) for details on the calculation methods.

4 IFT of a drivetrain damper

Wind turbines which have a geared drivetrain are known to have a lightly damped drivetrain mode. Subjected to turbulent

wind, the rotor speed will vary despite the speed regulationby torque control and CPC. The rotor speed variations cause the

drivetrain mode to be excited, which can lead to oscillations in the drivetrain. In order to prevent this, typically a drivetrain15

damping controller is included in the control system (e.g.,see Figure 6). This controller adds a small torque ripple at the

drivetrain frequency (Bossanyi, 2000) to the demanded generator torque of the torque controller. Doing so, will dramatically

reduce the drivetrain oscillations. Several studies in thepast have considered the design of drivetrain damping control, e.g.,

refer to (Bossanyi, 2000; Dixit and Suryanarayanan, 2005; Fleming et al., 2011; Wright et al., 2011; Fleming et al., 2013).

In this section, the IFT algorithm c.f. Section 2 is applied to the optimization of the drivetrain damper parameters. In the next20

paragraph, the controller parameterization is given as well as the classical design approach. Then, a parameter study is carried

out to visualize the cost function. Subsequently, the controller is iteratively optimized for realistic loading scenarios as well as

for different algorithm settings. Finally, the results of this case study are discussed.

4.1 Baseline damping controller design

Typically, the drivetrain controller is chosen to be a bandpass filter of the form (Bossanyi, 2000; Bossanyi and Witcher,2009)25

Cdtd(s) =
2Kωζs

s2 +2ζωs+ω2
, (31)

whereK is the bandpass gain,ω is the drivetrain frequency andζ influences the damping. With a (linearized) model of

the drivetrain dynamicsGdtd, this bandpass filter can be tuned to damp the drivetrain oscillations. To this end, a linearized

model of the drivetrain dynamics is obtained from Bladed using the built in linearization tool. With this model the drivetrain

damper is designed using classical loopshaping techniques(Skogestad and Postlethwaite, 2006). The resulting Bode diagrams30

of the drivetrain dynamics, the open-loop (controller times drivetrain dynamics), and the closed-loop are shown in Figure 7.
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Figure 7. Bode diagrams of the drivetrain dynamics, the open-loop (controller times drivetrain dynamics), and the closed-loop system.

From the open-loop dynamics shown in Bode diagram, it is recognized that the bandpass gainK can theoretically be increased

infinitely (i.e., because the phase plot never crosses−180◦), however, in practice the controller bandwidth is limitedby actuator

and communication constraints and higher-order unmodeleddynamics. Hence, during the iterative optimization the controller

cannot become unstable (for positive values of the controller parameters). The bandpass filter which is used in Figure 7 hasK =

2500, ζ = 0.3, andω = ωd = 10.49 rads–1 and is considered as the baseline controller. This filter hasbeen experimentally5

verified to yield satisfactory performance.

4.2 Parameter study for drivetrain damping

Before the IFT algorithm was implemented, first a parameter study using the linearized drivetrain dynamics was carried out. In

order to gain understanding of the optimization problem, the closed-loop system including the drivetrain dynamicsGdtd and

the bandpass filterCdtd is simulated for a range of parameters(K,ω,ζ). A disturbance signal at the drivetrain frequency is10

injected at the output. The cost function is taken as (1), i.e., both the output and the input are weighted. The cost function for

combinations ofK andω is shown in Figure 8. The results indicate that the cost function has a large area where it is almost

optimal and which becomes wider for increasingζ. This means that for this problem many combinations ofK andω exists

which give almost identical results. Moreover, this also indicates that the parameters are likely to quickly converge to almost

minimum cost values, but will slowly converge to the optimumvalue. It also shows that the baseline damping filter withζ = 0.315
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Figure 8. Close-up of the optimal parameter combinations for the drivetrain excitation problem withζ = 0.1 (left) andζ = 0.3 (right). The

results are thresholded and normalized for clarity. The results show large areas where the cost function is almost optimal. The minimum

values of the cost function for each case is indicated by the white+ marker.

could be improved (at least for the simulation case) by decreasing the dampingζ of the filter. Finally, the cost function plot

shows that the phase of the controlled system can be adjustedby increasing/decreasing the frequencyω and at the same time

increasing/decreasing the bandpass gainK to maintain practically the same compensation performance.

4.3 IFT of drivetrain damping

The input of the drivetrain damping controller (31) is takento be the measured generator speed. The generator speed signal5

consists of many frequency components arising from the interaction between the wind turbine system and the wind. For

drivetrain damping one is only interested in the frequencies close to the drivetrain frequency. Hence, the controller scheme

is taken to be identical to Figure 4, whereC1 is the torque controller andC2 the drivetrain damper. The input to the system

is u= Tgen and the outputy =Ωgen. The measured generator speed signalΩgen is passed through the high-pass filter

H(s) =
s2

s2 +2ζHωHs+ω2
H

, (32)10

whereωH = 0.63 rads–1 is the cut-off frequency andζH = 0.7 determines the damping of the filter. In order to make sure

that the cost function is dominated by the drivetrain excitations, the output component of the cost function (1) is filtered. The

weighting filter

Ly(s) =
ωrs

s2 +2ζrωrs+ω2
r

, (33)

with ωr = 10.49 rad s–1 at the drivetrain frequency andζr = 0.1, is effectively an inverted notch filter passing through the15

frequencies close to the drivetrain frequency and attenuating other frequencies. The input component of the cost function is
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also filtered, as one in this case is only interested in the ‘high’ frequency part of the generator torque setpointTgen. Therefore,

the input component is also filtered with the high-pass filter(32). The cost function then becomes

Jdtd(ρ) =
1

2N

N∑

k=1

E
[
(LyHΩgen(k,ρ))

2 +λHTgen(k,ρ)
2
]
, (34)

which thus consists of the measured response of the generator speedΩgen filtered by (32) and (33) and the demanded generator

torqueTgen filtered by (32). These filters are also included in the gradient experiment configuration in Figure 5 just before the5

controller derivatives.

The experiments of IFT for the iterative drivetrain controller optimization are according to Section 2.4 as follows:

First experiment (T : 0− 20s) In the first experiment, the closed-loop system is operated for 20s (i.e.,N = 2000 samples),

with C1 andC2 identical to Figure 4. The outputΩgen is filtered by (32) and (33), and the inputTgen is filtered by (32).

Second experiment (T : 20− 40s) The second experiment is identical to the first experiment.10

Third experiment (T : 40− 60s) In the third experiment, the filtered outputHΩgen from the first experiment is added to the

torque setpointTgen and the recorded signals from the second experiment are subtracted as shown in Figure 5.

After the third experiment atT = 63s, the controller parametersρ are updated according to (33), and before the next iteration

is started,7s are used to let the transients disappear that are caused by the controller parameter update. Thus, a full iteration

takes70s seconds. In the results the IFT algorithm is also adjusted tocollectN = 1000 andN = 3000 samples (10s and15

30s, resp.) per experiment. In these cases the experiment lengths are adjusted accordingly and the iterations therefore in total

take40s and100s, respectively. In all cases, the first iteration starts atT = 30s after the start of the simulation such that all

initial transients are disappeared.

The generator torque setpointTdtd provided by the IFT algorithm is limited to±1.8kNm. Moreover, the generator torque

setpoint is also limited in the rate of change, i.e., a maximum rate of±20kNm s–1 is allowed.20

4.4 Results

The results for IFT of the drivetrain damper are subdivided into four parts each covering a different aspect of the IFT results.

4.4.1 General analysis of results

In the first part, the results for a number of general settingsof IFT are analyzed. The wind field considered here has a mean

wind speed of14m s–1 and a turbulence intensity of10%. The number of data points considered isN = 2000 corresponding25

to 20s of simulated time (recall that the controllers run at a sampling time of 0.01s) and the parameter update step size of (2)

is set toγ = 0.3. The adjustable signal-to-noise ratio parameterF is set to2000, which was experimentally found to provide a

good trade-off between the signal-to-noise ratio and the amplitude of the injected signal.

First, the convergence of the cost function and controller parameters for different optimization cases are considered. In total

four cases are considered:30
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1. Baseline, in the baseline case the controller parametersare held constant and is given for reference;

2. ρbase, in the second case, the initial parametersρ0,base are equal to the baseline parameters (i.e.,K = 2500, ω =

10.49 rads–1, andζ = 0.3), from which IFT procedure is started. The input weighting is chosen to beλ= 5 · 10−7;

3. ρbase,λ, the third case is identical to the second case except that the input weighting is smaller, i.e.,λ= 2 · 10−7;

4. ρsubopt, in the final case, the initial parametersρ0,subopt are chosen to be far from the baseline case:K = 1000, ω =5

6.28 rad s–1, andζ = 0.4. The input weighting is identical to the second case.

The results of the comparison are shown in Figure 9. From the three plots related to the cost, it is observed that the baseline

controller is already rather close to optimal controller performance. The controller with suboptimal initial controller parameters

converges towards the other controller cases in roughly10 iterations1. It is observed that the optimization of the controller

parameters converges in a way that it varies around the steady-state result. The variance of the trajectory is correlated to the10

turbulence intensity used.

The main performance improvement is observed in the generator torque effort. It can be observed that the bandpass gainK

and bandpass dampingζ of the baseline controller should, respectively, be increased and decreased in order to improve the

performance. The bandpass frequencyω remains close to the drivetrain resonance frequencyωd during the optimization. The

influence of the lower input weightingλ in the case ofρbase,λ is clearly seen in the bandpass trajectory.15

With the controller parameters obtained in the last iteration of the second case, a comparison is made with the baseline

case in a normal design load case according to IEC (2005). Thefrequency spectra of the demanded generator torqueTgen and

the resulting generator speedΩgen are shown in Figure 10. From the spectrum plot ofΩgen it can be observed that the IFT

optimized controller yields a higher damping around the drivetrain frequencyωd. The optimized parameterization also slightly

increases the frequency contents around the drivetrain mode. The demanded generator torqueTgen displays a similar result.20

There is slightly more energy concentrated at and around thedrivetrain frequency, while at low and high frequencies theenergy

has reduced.

4.4.2 Impact of F on results

In this paragraph, the influence of the scaling factorF on the IFT performance is investigated. To this purpose, theIFT

algorithm is carried out on the drivetrain damper using different values ofF . The initial parameters are identical to the baseline25

and the step size is chosen to beγ = 0.3 and the input weight toλ= 5 ·10−7. The number of data samples collected is again set

to N = 2000 corresponding to experiment lengths of20s. The turbulent wind field is identical as in the previous paragraphs.

The results for three cases where F is varied betweenF = 1000 andF = 2000 are shown in Figure 11.

The first thing that can be observed from the cost function plot is that the cost function slightly reduces with increasingthe

scaling factorF . The effect ofF on the optimization is more recognized in the convergence trajectories of the bandpass gainK30

and the bandpass damping coefficientζ. Clearly, by increasing the scaling factorF , the convergence rate increases. This is also

1To support the statement of convergence, an extended optimization is performed and results are included in Appendix B, Figure 19.
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Figure 9. Comparison of three drivetrain torsional damping controllers of which two are subject to IFT. The baseline controller parameters

are kept constant and the result is shown as reference. The other three cases involve IFT where the torsional damper is optimized starting

from different initial conditions. Results shown are obtained withγ = 0.3, F = 2000, and turbulent wind with mean speed14m s–1 and10%

turbulence intensity.
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Figure 10. Comparison of the baseline and IFT optimized drivetrain controller performance.

what one could expect from reasoning, because the excitation of the system increases withF , as can also be seen from the

lower plot in Figure 11. The choice ofF seems to be independent, at least for the considered values,of the final values to

which the controller parameters converge. Thus, when applying IFT, the scaling factor should be carefully chosen such that the

choice forF in that sense becomes a tradeoff between the convergence rate and maximum allowed magnitude of the injected

signal.5

4.4.3 Varying experiment length N

In the previous results, the length of the experiments in each iteration wasN = 2000 (20s). Here, the iterative optimization

results are compared for experiment lengths of10s, 20s and30s. The step size and input weight are set toγ = 0.3 andλ=

5 · 10−7, and the scaling factor is set toF = 2000. The results are shown in Figure 12.

It is observed that the experiment length has a clear influence on the variance of the obtained results, both for the cost function10

plots as well as the controller parameters. The results alsoindicate that for the drivetrain damping case the experiment lengths

do not dramatically change the optimization outcomes. It seems that for theN = 1000 case the load reduction performance

is slightly better than in the other cases. Similarly, theN = 3000 case seems to result in the lowest generator torque effort to
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reduce the drivetrain oscillations. Moreover, for this case the parameters remain rather close to the original baseline parameters.

It can be argued that theN = 2000 case provides the best tradeoff between the variance, performance, and convergence time.

4.4.4 Varying wind conditions

In the final part of this case study, IFT is also applied to a wind speed of10m s–1 at below-rated operating conditions. Although

the need for an active drivetrain damper in below-rated varying wind conditions is strongly turbine dependent, this case study5

will show the ability of the algorithm to optimize controllers while turbine power control is active. For comparison, the14m s–1

wind case is also shown. The step size and input weight are once more set toγ = 0.3 andλ= 5 · 10−7, the scaling factor is

chosen to beF = 3000 for the10m s–1 wind andF = 2000 for the14m s–1 wind. The experiment length is kept atN = 2000

samples. The results are displayed in Figure 13.

It is observed in the plots that the convergence trajectories for both wind speeds are very similar. The14m s–1 turbulent10

wind case excites the drivetrain mode more than the10m s–1 wind case as is suggested by the increased cost, which thus

also requires a higher input energy. The cost function plotsshow a number of iterations with a clearly higher input cost.This

is caused by sudden wind speed changes to which the torque controller responds. Although the input in the cost function is

high-pass filtered, these sudden changes remain partly in the input signal. At such occasions, the controller parameters also

display relatively large changes. This could be overcome byincreasing the cut-off frequency of the high-pass filter that is used15

to filter the input signal in the cost function, or by increasing the experiment length, such that these effects are averaged (i.e.,

the experiment length acts as low-pass filter on the results).

5 IFT of CPC

This section presents the results of the IFT algorithm applied to step tuning of the CPC. In the next paragraph, first the controller

structure is given including the details of the IFT method thereof. In the subsequent section the optimization results for several20

cases are discussed.

5.1 CPC design and IFT implementation

The CPC of a wind turbine generally consists of a Proportional Integral (PI) controller cascaded with some filters that prevent

from undesired contributions in the pitch signal. The full controller of the CPC loop is given by

Ccpc =

(
Kp +

Ki

s

)
×

s2 +2ζz,3Pω3Ps+ω2
3P

s2 +2ζp,3Pω3Ps+ω2
3P︸ ︷︷ ︸

Notch at 3P frequency

×
s2 +2ζz,dωds+ω2

d

s2 +2ζp,dωds+ω2
d︸ ︷︷ ︸

Notch at dtr frequency

×
ω2
LP

s2 +2ζp,LPωLPs+ω2
LP︸ ︷︷ ︸

Low−pass filter

, (35)25

where the filter coefficients are listed in Table 2. The CPC thus includes a notch filter that prevents from working on the3P

frequency present in the generator speed signal, similarlya notch filter that prevents from reacting to the drivetrain frequency

component, and a low-pass filter removing all frequencies above 1.6Hz. The controller takes as input signal the measured

generator speedΩgen and outputs a demanded collective pitch signalθ, see Figure 6.
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Figure 12. Comparison of IFT performance for different numberN of collected data samples. Result shown are obtained withγ = 0.3, λ=

5 · 10−7, F = 2000, and turbulent wind with mean speed14m s–1 and10% turbulence intensity..
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Table 2. Filter parameters of the different controller components.

Description Symbol Value

Low-pass filter

Low-pass filter frequency ωLP 10.05 rad s–1

Low-pass filter damping ζp,LP 0.7

Notch filter at3P frequency

Notch filter frequency ω3P 3.77 rad s–1

Notch filter damping zero ζz,3LP 0.0015

Notch filter damping pole ζp,3LP 0.15

Notch filter at drivetrain frequency

Notch filter frequency ωd 10.49 rad s–1

Notch filter damping zero ζz,d 0.002

Notch filter damping pole ζp,d 0.2

The IFT algorithm is applied so as to optimize the step response tracking of the controller in (35). As CPC is aimed at

disturbance rejection rather than reference tracking, this might seem an odd optimization objective. However, for this SISO

case they both target the same sensitivity. So, the frequency-dependent performance is dependent on the excitation signal. Since

the power spectrum of a step could be considered as a weightedversion of a wind spectrum, with a higher emphasis on the

low-frequency components, meaningful results can be obtained using this approach. This can be further improved by using a5

reference signal with a power spectrum similar to that of a wind signal. The advantage of the approach followed is that the

reference signal is user defined and the wind is uncontrollable. The step change is imposed in the rated generator speed signal,

i.e., Ωref =Ωrated−Ωstep. A negative step changeΩstep is applied to prevent the turbine from going into overspeed.The

generator speed signal has a constant offsetro =Ωrated and therefore the experiments according to Section 2.3, andFigure 1

and 3 are used:10

First experiment (T : 20− 40s) In the first experiment, the step changeΩref =Ωrated−Ωstep in the reference input is applied

for 20s. The generator speed responseΩgen and the high-pass-filtered process inputθ are recorded.

Second experiment (T : 0− 20s) In the second experiment, the closed-loop system is operated with Ωref =Ωrated. The out-

putΩgen and process inputθ are recorded and used in the next experiment.

Third experiment (T : 65− 85s) In the third experiment, the gradients are obtained by operating the closed-loop system15

with Ωref =Ωrated, injecting the error signalF (Ωref −Ωgen) from the second experiment at the process inputθ, using

the recorded signals of the first experiment at the process input of the system according to Section 2.3, and filtering with

controller derivatives (including the high-pass filter forthe input gradient).
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The time between the second and third experiment is requiredto make sure all oscillations due to the step change have

disappeared. AtT = 86s the controller parameters are updated. Then, after34s during which the transients due to the gradient

experiment and the controller update have disappeared, atT = 120s, the next iteration is started. The first iteration starts

at T = 30s. During the optimization, the maximum pitch rateθ̇ is limited to±8◦ s–1. Notice that the order of the first and

second experiment have been reversed during the optimization in comparison to Section 2.3.5

The cost function is chosen as

Jcpc(ρ) =
1

2N

N∑

k=1

E
[
(Ωgen(k,ρ)−Ωref(k))

2 +λLθθ(k,ρ)
2
]
, (36)

where the input weighting factorλ and the step sizeγ in the parameter update rule (2) are both considered for different values.

Note that the input signal in the cost function is high-pass filtered byLθ, which is identical to (32). The high-pass filterLθ is

required because the optimization procedure should focus on the dynamic pitch response rather than on the static pitch offset10

required to maintain the rated generator speed.

5.2 Results of IFT for CPC

The first result is obtained by optimizing the CPC for a turbulent wind field with mean wind speed14m s–1 and turbulence

intensity of4%. The step change for this result is chosen to beΩstep = 30 rpm. Moreover, the adjustable signal-to-noise ratio

gainF is set to0.02. The initial PI controller values areKp = 4 · 10−3 andKi = 1 · 10−3. The results for three cases with15

varying input weightingλ and step sizeγ are shown in Figure 14.

The trajectory of the cost function values and the controller parameters are shown in Figure 14. Note that the performance

objective in this work is expressed by the cost functionJ(ρ), and minimization of this function is considered as improved

performance. Another method for controller performance comparison is the use of Pareto curves (Odgaard et al., 2015b, a), but

this technique will not be considered.20

It can be observed that the initial controller parameters were suboptimal and converge in a few iterations to a much better

performance. The results also show that the convergence of the parameters behave differently. The proportional gainKp has

converged to its final value after four iterations. The integral controller gainKi, on the other hand, slowly increases to larger

values. The difference in trajectory can be explained due tothe fact that in the step response the proportional gain is more

dominant. In order to make the integral controller parameter more dominant, one could increase the experiment lengthN .25

The effect of the gainsγ andλ on the convergence trajectories are apparent in Figure 14. It is observed that the convergence

of the proportional gainKp for the cases whereλ= 5 · 103 is faster due to the higher step sizeγ. The effect of increasing

the weightλ in the cost function is also clear from Figure 14: the parameters converge to smaller values, which is according

expectation.

In Figure 15, three different step responses are shown. The blue graph displays the response of the initial controller tothe30

step change. As can be observed, this response is sloppy and after nine iterations has improved to a decent response. The

increased weight on the input cost yields a step response where less pitch duty is required with only a very limited loss of
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Figure 14. Reference step tuning using IFT of CPC at a wind speed of14m s–1 with 4% turbulence intensity.. The results show three different

cases where the step sizeγ and the input weightingλ in the cost function are varied.

tracking performance. In Figure 16, the generator speed response and the collective pitch angle for a full iteration during the

first and ninth iteration are displayed.

The final results involve a comparison between IFT of CPC for two different wind speeds:14m s–1 and18m s–1 with 4%

turbulence intensity. It is generally known that the control authority of CPC increases when the blades are further pitched from

the wind, which means that less pitch effort is required to keep the rotor speed close to rated. The IFT tuning results alsodisplay5

this behavior. In Figure 17 it can be seen that the proportional gain for18m s–1 is roughly two thirds the value compared to

the14m s–1 case. On the other hand, the integrator gainKi is somewhat higher for the18m s–1 wind speed. The cost function

converges to a comparable result. The step responses shown for the seventh iteration are also rather similar.

25



Generator speedΩgen

S
pe

ed
[r

pm
]

Time [s]

0 5 10 15 20

1100

1120

1140

1160

1180

 

 

It. 9, λ= 1 · 104

It. 9, λ= 5 · 103

It. 1, λ= 5 · 103

Collective pitch angleθ

P
itc

h
an

gl
e

[d
eg

]

Time [s]

0 5 10 15 20

4.5

5

5.5

6

6.5

7

7.5

Figure 15. Comparison of the generator speed step response during firstand ninth iteration, and for different input weighting factors λ.

Results shown are obtained for a wind speed of14m s–1 with 4% turbulence intensity.
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Figure 16. Comparison of responses during first and ninth iteration. Results shown are obtained for a wind speed of14m s–1 with 4%

turbulence intensity. The measured generator speed and reference input are shown in the upper plot, the lower plot displays the pitch response.
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Figure 17. Reference step tuning of CPC using IFT of CPC at a wind speed of14m s–1 with 4% turbulence intensity..

6 Conclusions

In this paper, IFT controllers for wind turbines have been developed. The typical controller configurations used for wind turbine

control require three closed-loop experiments to be carried out. With the data that is collected during these experiments it has

been shown that IFT can be successfully applied. The resultsindicate that starting the optimization from a baseline controller

with decent performance, can improve the performance already within a few iterations. It has also been shown that IFT can5

be applied to both disturbance rejection and reference tracking control for wind turbines. This is demonstrated by means of

optimizing the drivetrain damping controller and the CPC. The methodology could similarly be applied to improve fore-aft

and/or side-side tower damping performance. Finally, it isargued that IFT could be a valuable tool with which the performance

of wind turbine controllers can be improved without the needof system identification.
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Figure 18. Comparison of the CPC step responses for14m s–1 and18m s–1 with 4% turbulence intensity during the seventh iteration.

Appendix A: Derivation of input gradients

A1 Derivation of input gradient for Section 2.3

Before the derivation of the input gradient is given, first recall that the control system in Section 2.3 is according to Figure 1

and therefore the sensitivity functionS(ρ) and complementary sensitivity functionT (ρ) are given by

S(ρ) = (I +PC(ρ))−1, (A1)5

T (ρ) = (I +PC(ρ))−1PC(ρ). (A2)

Then, note that in Figure 1 the inputu(k,ρ) is determined by

u(k,ρ) = S(ρ)C(ρ)ro −S(ρ)C(ρ)v(k), (A3)

wherer(k) has been replaced byro. The gradient of (A3) with respect toρ is derived as

∂u

∂ρ
(k,ρ) =

(
∂S

∂ρ
C(ρ)+S(ρ)

∂C

∂ρ
(ρ)

)
ro −

(
∂S

∂ρ
C(ρ)+S(ρ)

∂C

∂ρ
(ρ)

)
v(k). (A4)10

The derivative of the sensitivity functionS(ρ) equals

∂S

∂ρ
=−(I +PC(ρ))−2P

∂C

∂ρ
(ρ) =−S2P

∂C

∂ρ
(ρ). (A5)

Substituting for the latter sensitivity derivative in (A4)yields

∂u

∂ρ
(k,ρ) = S(ρ)

∂C

∂ρ
(ρ)

(
ro −T (ρ)ro +T (ρ)v(k)− v(k)

)
. (A6)

Realizing that(T (ρ)− I)v(k) =−S(ρ)v(k) and thatT (ρ)ro +S(ρ)v(k) = y(k,ρ) gives the input gradient15

∂u

∂ρ
(k,ρ) = S(ρ)

∂C

∂ρ
(ρ)(ro − y(k,ρ)). (A7)
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A2 Derivation of input gradient for Section 2.4

The derivation of the input gradient in Section 2.4 is similar to the derivation in Appendix A.1. Here, the sensitivityS(ρ) and

complementary sensitivityT (ρ) are as follows

S(ρ) = (I +PC1 −PC2(ρ)H)−1, (A8)

T (ρ) = (I +PC1 −PC2(ρ)H)−1PC1. (A9)5

In Figure 4, the inputu(k,ρ) equals

u(k,ρ) = S(ρ)C1r(k)+S(ρ)C2(ρ)Hv(k)−S(ρ)C1v(k), (A10)

such that the gradient can be derived to be

∂u

∂ρ
(k,ρ) =

∂S

∂ρ
C1r(k)+

(
∂S

∂ρ
C2(ρ)H+S(ρ)

∂C2

∂ρ
H−

∂S

∂ρ
C1

)
v(k), (A11)

where10

∂S

∂ρ
= (I +PC1 −PC2(ρ)H)−2PH

∂C2

∂ρ
. (A12)

With the derivative of the sensitivity function, the input gradient becomes

∂u

∂ρ
(k,ρ) = S(ρ)

∂C2

∂ρ
H

(
S(ρ)PC1r(k)+

(
S(ρ)PC2(ρ)H−S(ρ)PC1 + I

)
v(k)

)
. (A13)

Realizing that
(
S(ρ)PC2(ρ)H−S(ρ)PC1 + I

)
v(k) = S(ρ)v(k), yields the final result

∂u

∂ρ
(k,ρ) = S(ρ)

∂C2

∂ρ
H

(
T (ρ)r(k)+S(ρ)v(k)

)
= S(ρ)

∂C2

∂ρ
Hy(k,ρ) = S(ρ)

∂C2

∂ρ
y′(k,ρ). (A14)15
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Appendix B: Extended optimization simulation to show convergence
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Figure 19. Comparison of IFT performance for different simulation lengths. The simulation settings used are: wind speed14m s–1, turbulence

intensity10%, step sizeγ = 0.3, input weighting factorλ= 5 · 10−7, and scaling factorF = 2000.

30



References

Abhinav, K. A. and Saha, N.: Dynamic Analysis of an Offshore Wind Turbine Including Soil Effects, Procedia Engineering,116, 32 – 39,

8th International Conference on Asian and Pacific Coasts (APAC 2015), 2015.

Al Mamun, A., Ho, W. Y., Wang, W. E., and Lee, T. H.: Iterative Feedback Tuning (IFT) of Hard Disk Drive Head Positioning Servomecha-

nism, in: Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pp. 769–774, 2007.5

Bossanyi, E. A.: The design of closed loop controllers for wind turbines, Wind Energy, 3, 149–163, 2000.

Bossanyi, E. A. and Witcher, D.: Controller for 5MW reference turbine, Tech. Rep. Controller for 5MW reference turbine,UPWIND, 2009.

de Bruyne, F. and Kammer, L. C.: Iterative feedback tuning with guaranteed stability, in: American Control Conference,1999. Proceedings

of the 1999, vol. 5, pp. 3317–3321, 1999.

Dixit, A. and Suryanarayanan, S.: Towards Pitch-ScheduledDrive Train Damping in Variable-Speed, Horizontal-Axis Large Wind Turbines,10

in: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference on, pp. 1295–1300, 2005.

Fleming, P. A., van Wingerden, J. W., and Wright, A. D.: Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load

Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing, in: AIAA wind energy symposium, 2011.

Fleming, P. A., van Wingerden, J. W., Scholbrock, A. K., van der Veen, G., and Wright, A. D.: Field testing a wind turbine drivetrain/tower

damper using advanced design and validation techniques, in: American Control Conference (ACC), 2013, pp. 2227–2234, 2013.15

Garrad Hassan: Bladed 4.20, http://www.gl-garradhassan.com, (Accessed 2015).

Garrad Hassan & Partners Ltd: Bladed User Manual, version 4.2, a.

Garrad Hassan & Partners Ltd: Bladed Theory Manual, version4.2, b.

Heertjes, M. F., Van der Velden, B., and Oomen, T.: Constrained Iterative Feedback Tuning for Robust Control of a Wafer Stage System,

Control Systems Technology, IEEE Transactions on, 24, 56–66, 2016.20

Hjalmarsson, H.: Iterative feedback tuning - an overview, International Journal of Adaptive Control and Signal Processing, 16, 373–395,

2002.

Hjalmarsson, H.: From experiment design to closed-loop control, Automatica, 41, 393 – 438, 2005.

Hjalmarsson, H. and Gevers, M.: Frequency domain expressions of the accuracy of a model free control design scheme, in: 11th IFAC

Symposium on System Identification, vol. 1, pp. 135–140, 1997.25

Hjalmarsson, H., Gevers, M., Gunnarsson, S., and Lequin, O.: Iterative feedback tuning: theory and applications, Control Systems, IEEE,

18, 26–41, 1998.

Houtzager, I.: External Controller Design Tool for GH Bladed and Simulink, http://www.dcsc.tudelft.nl/~datadriven/discon/, (Accessed: June

2013).

Houtzager, I., van Wingerden, J. W., and Verhaegen, M.: Windturbine load reduction by rejecting the periodic load disturbances, Wind30

Energy, 16, 235–256, 2013.

IEC: IEC61400-1. Wind Turbines - Part 1: Design Requirements, Edition 3, 2005.

La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A.,and Lackner, M.: Automatic identification of wind turbine models using

evolutionary multiobjective optimization, Renewable Energy, 87, Part 2, 892 – 902, optimization Methods in RenewableEnergy Systems

Design, 2016.35

Lequin, O.: Optimal closed-loop PID tuning in the process industry with the “iterative feedback tuning” scheme, in: Control Conference

(ECC), 1997 European, pp. 3931–3936, 1997.

31

http://www.gl-garradhassan.com
http://www.dcsc.tudelft.nl/~datadriven/discon/


Lequin, O., Gevers, M., and Triest, L.: Optimizing the settling time with Iterative Feedback Tuning, in: Proc. 14th IFACWorld Congress,

1999.

Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., and Triest, L.: Iterative feedback tuning of PID parameters: comparison with classical

tuning rules, Control Engineering Practice, 11, 1023 – 1033, 2003.

Liu, D., McDaid, A. J., Aw, K. C., and Xie, S. Q.: Position control of an Ionic Polymer Metal Composite actuated rotary joint using Iterative5

Feedback Tuning, Mechatronics, 21, 315 – 328, 2011.

Lombardi, D., Bhattacharya, S., and Wood, D. M.: Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil,

Soil Dynamics and Earthquake Engineering, 49, 165 – 180, 2013.

Mathworks: Simulink, http://www.mathworks.com, (Accessed 2013).

Navalkar, S. T. and van Wingerden, J. W.: Iterative FeedbackTuning of an {LPV} Feedforward Controller for Wind Turbine Load Allevia-10

tion*, IFAC-PapersOnLine, 48, 207 – 212, 1st {IFAC} Workshop on Linear Parameter Varying Systems {LPVS} 2015Grenoble,France,

7-9 October 2015, 2015.

Navalkar, S. T., van Wingerden, J. W., van Solingen, E., Oomen, T., Pasterkamp, E., and van Kuik, G. A. M.: Subspace predictive repetitive

control to mitigate periodic loads on large scale wind turbines, Mechatronics, 24, 916 – 925, 2014.

Navalkar, S. T., van Solingen, E., and van Wingerden, J. W.: Wind Tunnel Testing of Subspace Predictive Repetitive Control for Variable15

Pitch Wind Turbines, Control Systems Technology, IEEE Transactions on, PP, 1–1, 2015.

Odgaard, P. F., Knudsen, T., Overgaard, A., Steffensen, H.,and Jørgensen, M.: Importance of dynamic inflow in model predictive control of

wind turbines, IFAC-PapersOnLine, 48, 90–95, 2015a.

Odgaard, P. F., Knudsen, T., Wisniewski, R., and Bak, T.: Optimized control strategy for over loaded offshore wind turbines, Proceedings of

Ewea Offshore 2015, 2015b.20

Procházka, H., Gevers, M., Anderson, B. D. O., and Ferrera, C.: Iterative Feedback Tuning for robust controller design and optimization, in:

In Proceedings of the Conference on Decision and Control, and the European Control Conference, 2005.

Skogestad, S. and Postlethwaite, I.: Multivariable feedback control: analysis and design, John Wiley & Sons, Chicester, 2006.

Solari, G. and Gevers, M.: Unbiased estimation of the Hessian for iterative feedback tuning (IFT), in: Decision and Control, 2004. CDC.

43rd IEEE Conference on, vol. 2, pp. 1759–1760, 2004.25

van der Veen, G. J., van Wingerden, J. W., Fleming, P. A., Scholbrock, A. K., and Verhaegen, M.: Global data-driven modeling of wind

turbines in the presence of turbulence, Control Engineering Practice, 21, 441 – 454, 2013a.

van der Veen, G. J., van Wingerden, J. W., and Verhaegen, M.: Global Identification of Wind Turbines Using a Hammerstein Identification

Method, Control Systems Technology, IEEE Transactions on,21, 1471–1478, 2013b.

van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad,30

P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha,D., Lindeboom,

H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein,M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-

term research challenges in wind energy - a research agenda by the European Academy of Wind Energy, Wind Energy Science, 1, 1–39,

2016.

van Wingerden, J. W., Hulskamp, A., Barlas, T., Houtzager, I., Bersee, H., van Kuik, G., and Verhaegen, M.: Two-Degree-of-35

Freedom Active Vibration Control of a Prototyped Smart Rotor, Control Systems Technology, IEEE Transactions on, 19, 284 –296,

doi:10.1109/TCST.2010.2051810, 2011.

32

http://www.mathworks.com
http://dx.doi.org/10.1109/TCST.2010.2051810


Veres, S. and Hjalmarsson, H.: Tuning for robustness and performance using iterative feedback tuning, in: Decision andControl, 2002,

Proceedings of the 41st IEEE Conference on, vol. 4, pp. 4682–4687 vol.4, 2002.

Wright, A. D., Fleming, P., and van Wingerden, J. W.: Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the

Controls Advanced Research Turbine, in: 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, 2011.

Xiao, Y., Li, Y., and Rotea, M.: Experimental Evaluation of Extremum Seeking Based Region-2 Controller for CART3 Wind Turbine, in:5

AIAA 34th Wind Energy Symposium, 2016.

33


