
Thank you for the helpful comments; they are much appreciated. We have prepared a new version that 

hopefully addresses the open issues. 

 

General comments: 

1. The distribution fit to a random process is representative only if the process is stationary and 

ergodic (i.e., its statistical properties can be sufficiently well determined over a given sampling 

period). Subsequently stationarity and ergodicity are central requirements for the validity of load 

extrapolations. In the present paper, these conditions are not taken into account and I am afraid 

that they are violated in many of the cases. As an example, for samples drawn from a Rayleigh 

distribution with mean 𝜇, the standard deviation of the sample mean is defined as 𝜎𝜇𝑠 =

𝜇√(4 − 𝜋)/(𝑁𝜋), where 𝑁 is the sample size. For 𝜇 = 8.5 m/s as in the present paper and for 

sample size 𝑁 = 1000, the standard deviation of the sample mean wind speed will be 0.14 m/s, 

which means that the 95% confidence interval will be 0.55 m/s wide. In effect, samples of this size 

may be quite different from each other and will result in different extrapolations. This sampling 

uncertainty arises due to the sample size being too small to properly represent the statistical 

properties of the parent distribution, and not due to the quality of any subsequent distribution 

fit. The quality of the fit should relate instead to the realization-to-realization uncertainty for 

samples drawn from the same stationary process. To summarize – the uncertainty sources should 

be distinguished and their effect accounted for separately, or the sampling statistical uncertainty 

should be eliminated by drawing samples with the same wind statistics. 

The uncertainty arising from the sampling error is exactly what we wanted to highlight. Perhaps 

Figure 5 gave the impression that the error was computed by fitting many distributions to a single 

sample. We have clarified that in the caption. 

We also did not want to go into too much detail here, especially since the focus was on the 

consequences of the uncertainty rather than on the statistical method itself. Our goal with this 

paper was to come up with an extrapolation method that was easy to follow for readers struggling 

with statistical methods, and to challenge them with the consequences of the uncertainty through 

a simple example. That being said, we understand that perhaps presenting alternative approaches 

to ours might improve the paper. In the new version, we have gone through the following 8 

workflows: 

 Sampling method (distribution)  Distribution fit  Fitted only above threshold 

(a)  Aggregation-before-fitting (Rayleigh)  Gumbel  No 
(b)  Aggregation-before-fitting (Rayleigh)  Gumbel  Yes 
(c)  Aggregation-before-fitting (Rayleigh)  GEV  No 
(d)  Aggregation-before-fitting (Rayleigh)  GEV  Yes 
(e)  Fitting-before-aggregation (Uniform)  Gumbel  No 
(f)  Fitting-before-aggregation (Uniform)  Gumbel  Yes 
(g)  Fitting-before-aggregation (Uniform)  GEV  No 
(h) Fitting-before-aggregation (Uniform) GEV Yes 

 



2. The extrapolation procedure analysed by the authors is not necessarily consistent with the actual 

design approach used by manufacturers. According to the IEC 61400-1 standard, it is acceptable 

to define the long-term distribution of loads according to two approaches: 1) first carry out 

extrapolations for simulations binned according to wind speed, and then aggregate the long-term 

load distribution based on the extrapolated functions (so-called “extrapolate, then aggregate” 

approach). 

In the original manuscript, we decided to go with approach 2) to match the workflow with which 

the database was generated (Barone et al., 2012). In the new version, we have also included a 

fitting-before-aggregation approach to be more consistent with IEC guidelines (see point 1). 

 

3. There is no discussion on the effect of the variation of the wind speed in the original MC sample, 

and in the random subsets used to test the uncertainty in extrapolation techniques. This variation 

means that in each sample there are a lot more simulations at wind speeds around the mean, but 

only few at high wind speeds – e.g., for a sample of size 1000, only 13 simulations on average will 

represent wind speeds above 20m/s. 

The variation in the original MC sample (from Sandia) should be clear from Figures 1 and 2. We 

have also added a small remark on the variation of wind speeds in any small subsample and how 

it compares to other sampling methods.  

 

4. What about other load cases? Very often, if the design loads from one load case (e.g. DLC1.1) are 

low, another load case (e.g. emergency shutdown with gust, DLC4.2) will become design-driving. 

So a lower design load prediction in DLC1.1 will not necessarily lead to lower material thickness, 

it will simply eliminate the load case as a potential design driver. 

We did not take into account other load cases as our primary focus was on DLC 1.1. A designer 

still has to go through DLC 1.1 in order to discard it as a non-driving load case. Moreover, the 

results can also be applied to cases where loads are extrapolated from more realistic conditions 

with multiple variables (e.g., wind speed/wave height/atmospheric stability). In any case, the 

rather artificial, yet possibly design-driving DLC’s in the IEC standards should not make the 

extrapolation problem less interesting. 

 

5. Page 10, lines 16-20, the authors conclude: “In any case, we can conclude that the bare minimum 

of 300 minutes of time series, as prescribed in Appendix F of the standards (IEC, 2005), is not 

sufficient to produce any reasonable 50-year estimate. Based on this load set and this 

extrapolation produce, one should instead aim for sample sizes larger than N = 105.” I do not agree 

with this conclusion. Due to the issues outlined in my comments above, some additional 

uncertainty is present in the extrapolation. If these uncertainties are eliminated, or if another 

extrapolation procedure (e.g. aggregation after fitting) is used, the accuracy of the extrapolation 

may improve and the required sample size will become smaller. 

Apart from the approach used in the original manuscript, we have added some other approaches 

to strengthen the base for our conclusions (see point 1). We have also weakened our statement 



on the 300 minutes a bit. Still, we can at least stick by our conclusion that 300 minutes is a very 

low minimum, especially considering modern-day computing power. 

 

Specific comments: 

6. Page 3, last paragraph: “the wind speeds belonging to the 10% highest loads points towards a 

region well above the rated wind speed (see Figure 3)”. I don’t think this statement agrees with 

Figure 3, where the mode of the distribution 𝑓(𝑈̅|𝐹̂ ≥ 0.9) is actually at wind speeds just below 

rated. 

The mode of the distribution 𝑓(𝑈̅|𝐹̂ ≥ 0.9) is around 13.5 m/s, well above the rated wind speed 

of 11.4 m/s. In fact, if one were to take the top 1% or top 0.1% highest loads from Figure 1, they 

originate from increasingly higher wind speeds. 

 

7. Page 4, line 5: Why is the GEV distribution a good candidate? In my experience, the GEV, or other 

3- parameter representation as the 3-parameter Weibull, are good candidates for extrapolation 

in situations where only few data points are available and not all of them belong to the upper tail 

of the extremes distribution. However, if the amount of data and the threshold selection result in 

a data set which is predominantly from the upper tail which has a characteristic log-linear 

behaviour, I would think that a 2-parameter Gumbel distribution would provide more robust and 

accurate fit. 

The GEV is a near perfect match to the tail for large sample sizes. Since characteristic log-linear 

behavior is not always found (for example the yawing moment in Barone, 2012), we wanted to 

avoid the issue of having to need prior knowledge about the tail. Nevertheless, the Gumbel 

distribution is usually more forgiving at small sample sizes. We have included it in the new version 

as an alternative method (see point 1). 

 

8. Page 5, line 5: “any extrapolated 50-year loads that are more than 50% higher than the “real” 

value are discarded and resampled”: - This data censoring approach is quite crude. It also relies 

on the known true value which will not be known in practice. Given the large number of samples, 

it is possible to establish a confidence interval for each load level and discard the outliers, see e.g. 

Naess and Gaidai, Structural Safety 31 (2009), pp. 325-334. 

We have left the outliers in the new version to avoid having to know the true value. 

 

9. Figure 9: It seems that the uncertainty for sample size N = 100 is smaller than the uncertainty for 

N = 1000. This is against the logic and indicates a possible sampling bias. Could the authors find 

an explanation for this? 

This is because how the threshold is placed at very small sample sizes. For N < 100, the data above 

the threshold includes more of the knee in order to have enough points for a fit. The data points 

are then often lined up in a slightly downward curve, which favors a GEV with a negative ξ (thus 



fewer outliers). For N > 1000, the threshold has moved further up the tail, which is close to being 

straight and favors both positive and negative ξ. 

 

Technical comments: 

10. Page 8, lines 5-10: It does not get entirely clear how the stress criteria for accepting or rejecting a 

given design relate to the extrapolated loads. Please improve the explanation. 

The stress criteria was purely used as a simple example to demonstrate a decision making process. 

We have clarified this a little bit more in the new version. 


