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Abstract. Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions.

A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal

operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical

results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady

experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for5

the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is

improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force

coefficient in stall, where the codes and measurements deviate and no clear improvement is visible. This article also contains

aeroelastic simulations of the DTU 10 MW reference turbine in stand still at turbulent inflow with a fixed and idling rotor. The

influence of the trailed vorticity modeling on the extreme flapwise blade root bending moment is found to be small.10

1 Introduction

State-of-the-art aeroelastic wind turbine codes that are suitable for simulating the many time series needed for certification

typically use an aerodynamics model based on Blade Element Momentum (BEM) theory. These BEM based models can

be extended by tip loss corrections and so-called dynamic inflow models that take the wake inertia into account. With this

extension, they are suitable to predict the varying induced velocities in an unsteady aeroelastic simulation. In addition to the15

dynamic induced velocities, there are also dynamic effects due to shed vorticity and dynamic stall, which occur on faster time

scales than the dynamic inflow and are typically taken into account by 2D unsteady airfoil aerodynamics models, in this work

the one described in Hansen et al. (2004).

Thus both the larger scale wake effects and the smaller scale unsteady airfoil aerodynamics are taken into account if the

turbine is in operation. In standstill, however, BEM theory can not be used, because the basic assumption in BEM, that the20

rotor can be approximated by a disc, is violated. Therefore the induced velocities due to the vortices trailed from the blades are

not modeled, which results in both a wrong steady state load distribution and missing dynamics.

Wind turbine blades are twisted to ensure a reasonable angle of attack distribution along the blade in operation. In standstill,

on the other hand, the blade twist leads to large load variations along the blade, and thus strong trailed vorticity that is not
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modeled in the aeroelastic codes used for wind turbine certification. Further, the inflow turbulence, which in normal operation

only affects a part of the relative flow velocity at the airfoils (the other part being due to rotor rotation), causes very large

dynamic variations in angle of attack (AOA) along the blade in stand still.

In this work, a trailed vorticity model, which was originally designed for normal operation and implemented as part of a

BEM based model in HAWC2, (Larsen and Hansen, 2007; Pirrung et al., 2016b, a), has been extended so that it can be used5

in standstill conditions. Results from this extended model are compared to the analytical constant downwash at an elliptical

wing and measurements from the NREL/NASA Phase VI unsteady experiment, (Hand et al., 2001). Aeroelastic computations

in standstill with turbulent inflow are performed to evaluate the influence of the model on radial load distributions and extreme

flapwise blade root bending moment.

2 Near wake model description10

The near wake model (NWM) for trailed vorticity was originally developed for use in helicopter aerodynamics. It was assumed

in the original model that the trailed vorticity stays in the rotor plane. In order to save computation time, the decreasing

induction due to a vortex element trailed at a certain position evaluated at a blade section as it moves away from the blade is

approximated using two exponential functions. This makes it possible to use an indicial function algorithm to avoid the time

consuming numerical integration of vortex arcs based on the Biot-Savart law. The model has since been modified to enable the15

computation of the induction due to trailed helical vortex arcs, (Pirrung et al., 2016b), which is important in normal operation

at high wind speed. Further, it has been shown that using one exponential function instead of two is possible with negligible

accuracy loss by Pirrung et al. (2016a).

A sketch of the near wake geometry is shown in Figure 1. The induction W at a blade section s at a time step i is found as

the sum of the induced velocities due to all vortex arcs v trailed from a blade:20

W i
s =

Nv∑

v=1

W i
s,v (1)

The induced velocity due to an individual vortex arc is

W i
s,v =W i−1

s,v e
−∆β/Φs,v +Dw,s,v∆Γ(1− e−∆β/Φs,v ) (2)

where ∆β is the angle the blade rotates during a time step and Φ is a geometric parameter depending on the positions of vortex

trailing point and blade section, as well as the helix angle of the trailed vortex arc. The trailed vortex strength, which depends25

on the radial gradient of the bound circulation, is ∆Γ and Dw,s,v describes the induced velocity at section s due to a trailed

vortex arc v with circulation 1 that starts directly at the blade. The advantage of using exponential functions is apparent: To

obtain the induction at a new time step, the induction due to the newly trailed vortex element, the right term in Equation (2), is

added to the exponentially decreasing induced velocity due to all previously trailed elements contained in W i−1
s,v .
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Figure 1. Sketch of the geometry in the near wake. The vortex arc v, trailed at radius r, induces axial (out-of-plane) and tangential (in-plane)

velocities at the section s. The radial distance between vortex trailing point and section position is denoted h and h > 0 if the vortex is trailed

outboard of the section. The angle β describes how far a vortex element with length ds has moved away from the blade. The figure is adapted

from Pirrung et al. (2014). In practice, the blade is discretized into many sections and vortices are trailed from the root and tip and in between

sections.

3 Model extension

In order to enable computation of standstill cases, a new definition of the angle β is necessary. The previous implementation

used the projection of the trailed vortex filament in the rotor plane, which is not possible in standstill conditions. Thus the angle

β is redefined:

β∗ =
vrel∆t
r

, (3)5

where vrel is the relative flow velocity at the radial station from which the vortex filament is trailed. If the trailed vorticity stays

in the rotor plane, the old and new definitions are identical, β = β∗.

The new definition of β∗ accounts for the differing element length trailed in one time step due to the downwind convection

velocity. The axial and tangential components of the induced velocities due to the newest element, cf. Equation (2), can be

determined based on the helix angle ϕ:10

Dw,s,v,axial =Dw,s,v cosϕ (4)

Dw,s,v,tangential =Dw,s,v sinϕ. (5)

Because the near wake model is mainly meant to capture trailed vorticity effects close to the blade, the local inflow angle is

used as helix angle ϕ. This inflow angle is computed based on the velocity triangle at the vortex trailing point and is affected by

the free wind speed including turbulence, the movement of the blade and the induced velocities due to near and far wake. This15

way the near wake flow situation depends only on the velocities at the blade section, which is similar to how the 2D unsteady

aerodynamics effects are computed, see Hansen et al. (2004). The time simulation of axial and tangential induction is then

computed independently, so Equations (1) and (2) are evaluated twice for each section-vortex arc combination.
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If the downwind convection velocity increases, the paths of the trailed vorticity change from circular (at zero convection

speed) over helical (at moderate convection speed) to straight (at standstill). This influences both the steady state value of

the induction from trailed vorticity and the dynamic behavior. Both of these can be modeled by changing the parameter Φ in

Equation (2).

As described in Pirrung et al. (2016b), an optimal value of Φ can be computed. With this Φopt, the indicial function approx-5

imation computes the same steady state induced velocity as the Biot-Savart law:

pi/2∫

0




(
h
r

)2 [
1−

(
1− h

r

)
cosβ

]
(

1 +
(
1− h

r

)2− 2
(
1− h

r

)
cosβ+ (β tanϕ)2

)3/2


dβ =

pi/2∫

0

(
1.359e−β/Φopt − 0.359e−4β/Φopt

)
dβ. (6)

Here, r denotes the radial position where the vortex is trailed, and h the distance from the vortex trailing position to the radial

position of the blade section where the induction is to be determined (positive if the section is inboard the vortex), cf. Figure 1.10

For straight vortices, Φ varies linearly with h/r

Φs =





0.788hr for 0< h/r < 1

−0.788hr for h/r < 0.
(7)

To ensure that the model can be used for straight vortices in standstill conditions and helical vortices in normal operation,

a new Φ? is computed, that is a linear interpolation between Φs for straight vortices, Equation (7), and Wang and Cotons

expression for circular vortices, Wang and Coton (2001):15

Φ? = kΦΦs + (1− kΦ)Φ, (8)

where the interpolation kΦ is a function of both h/r and the tangent of the helix angle. The straight and circular Φ approach

each other for h/r→ 0, meaning for sections very close to vortex trailing points, where the influence of the vortex is large and

an accurate computation of Φ is thus very important. Therefore the interpolation proposed in Equation (8) ensures good results

for close positions, which would be difficult to achieve by direct curve fitting of Φ to the optimal value according to Equation20

(6).

For positive values of h/r, kΦ can be approximated as

kΦ = ahr,1 + ahr,2ϕ+ ahr,3ϕ
2 + ahr,4ϕ

3 (9)

ahr,i = pi,1 + pi,2
h

r
+ pi,3

(
h

r

)2

+ pi,4

(
h

r

)3

(10)

For negative values of h/r:25

kΦ = ahr,1 + ahr,2e
ahr,3(π2−ϕ) + ahr,4e

−8(π2−ϕ)− ahr,2− ahr,4 (11)

ahr,i = ni,1 +ni,2e
ni,3(hr ) +ni,4e

ni,5(hr )−ni,4−ni,2 (12)
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The values ni,j and pi,j are collected in the matrices N and P:

N =




1.01933 −0.13567 0.39552 0.08018 44.83475

12.98745 50.0 0.00235 11.31161 3935.34323

−0.69016 101.23878 −0.00154 3.99520 0.39454

−0.26925 50.0 −0.00248 0.40364 1.16610




(13)

P =




−1.64637 8.14821 −12.17849 5.02653 21.77131

−0.49901 6.08465 −15.17120 14.82541 −2.42319

3.90836 −18.76623 39.12433 −29.48701 −60.29473

−1.60623 7.42953 −15.85948 11.68702 −195.06087




(14)

Optimal and approximated values for Φ are shown for different helix angles ranging from 0 (circular arcs) to 89 degrees in

Figure 2. The 89 degrees have been chosen because for 90 degrees the integral in Equation (6) can’t be evaluated. It is shown5

clearly that the approximation gives a good representation of Φ across the range of helix angles. There are some deviations

for h/r→ 1, which represents the influence of vortices close to the tip on the root sections. Because the deviations only

influence roughly the innermost 5 % of the rotor radius, where often no aerodynamic profiles are installed, the quality of the

approximation is acceptable.

4 Unsteady airfoil aerodynamics model10

The 2D unsteady airfoil aerodynamics model in HAWC2 consists of both an attached flow model for the 2D shed vorticity

effects and a dynamic stall model to predict unsteady flow separation, as described in Hansen et al. (2004). The attached flow

model uses indicial functions assuming a flat plate. The dynamic stall model interpolates between a fully attached and fully

separated airfoil polar, based on a time lagged trailing edge separation point. The dynamic stall model does not include leading

edge separation. The bound circulation necessary for the strength of the trailed vortices is determined by using an indicial15

function approach, where the quasi steady bound circulation is computed according to the quasi steady lift coefficient (Pirrung

et al., 2016a). This accounts for stall in the bound circulation computation.

5
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Figure 2. Approximation of Φ at different helix angles compared to the optimal Φ value.

5 Results

5.1 Elliptical wing

The case of an elliptical wing with a 10 meter span has been used previously to test the NWM (Madsen and Rasmussen, 2004;

Pirrung et al., 2014). In these earlier publications, the wing was placed at the end of a very long, slowly rotating blade to

ensure an almost parallel inflow. In this work, the wing is instead mounted on a 0.5 meter long, non-rotating hub and is in a5

uniform inflow of 35 m/s. The previous publications prescribed an elliptical circulation distribution, but in this work the wing

is modeled with a geometric AOA to the inflow of 5.45 degrees and a maximum chord length of 5.21 meters. The geometric

AOA is defined as the angle of the local chord line with respect to the inflow direction in HAWC2, which corresponds to the

wind tunnel center line in case of the Phase VI measurements discussed later. A lift gradient of 2π is used, which leads to the

analytical result of a constant downwash of 1.5 m/s at the wing.10

Figure 3 compares downwash at the lifting line computed from original and extended NWM with the analytical solution.

The original model fails to predict the constant downwash in stand still, while the results from the extended model are in good

agreement with the analytical solution.
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Figure 3. Results for an elliptical wing.

5.2 NREL Phase VI rotor in stand still.

In all following comparisons, ’HAWC2’ refers to HAWC2 stand still simulations. The BEM model and dynamic inflow model

are disabled, because the BEM model is not valid in standstill and the dynamic inflow model models the unsteady behavior of

the BEM induction. The 2D unsteady aerodynamics model containing shed vorticity and dynamic stall modeling as introduced

in Section 4 is active.5

In addition to the 2D unsteady aerodynamics model, the ’HAWC2 NW’ simulations include the trailed vorticity modeling

by the extended near wake model.

5.2.1 Non-pitching

Besides measurements at operation the Phase VI experiment also contained measurements in standstill, some of which have

been compared to CFD results by Johansen et al. (2002) and Sørensen and Schreck (2012). Here, some steady comparisons10

with measurements published in Johansen et al. (2002) are shown together with comparisons at lower geometric angle of attack.

The inflow speed in the cases presented here is 20 m/s, which results in a Reynolds number of 0.86 million at 47% blade

radius. The Reynolds number varies along the blade with the chord length (ignoring induced velocity effects on the Reynolds

number), and the aerodynamic code interpolates accordingly between different airfoil polars.

A comparison of the radial distribution of the normal force coefficient is shown in Figure 4 at 3.5 and 18.2 degrees geometric15

AOA at 47% blade radius. At 3.5 degrees geometric AOA at the 47 % station, most of the blade is in attached flow. In this case,

the near wake model predicts a radial distribution of the normal coefficient that agrees well with the measurements in terms of

the radial load gradients, but there is an offset to the measurements. No explanation for this offset has been found. The results

at the higher geometric AOA, where most of the blade is in stall, are shown in the right plot of Figure 4. In this case the near

7
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Figure 4. Radial distribution of normal force coefficients at 3.5 (left) and 18.2 (right) degrees geometric AOA at 47% blade radius. Results

from HAWC2 (denoted H2) and HAWC2 including the extended near wake model presented in this paper (H2 NW) are compared to

measurements.

wake model can predict the root vortex well, but the agreement with the measurements becomes worse toward the tip, where

the blade is in deep stall.

The steady state comparison of the tangential force coefficients in these cases in Figure 5 leads to the same conclusions.

Again there appears to be an offset between near wake computations and measurements in the 3.5 degrees case. In the 18.2

degrees case the prediction of the root vortex by the near wake model is clear, but the agreement gets worse towards the stalled5

tip.

5.2.2 Pitching

Two cases of a pitching blade are presented here: case O47010 with a mean geometric AOA at the 47% station of 3 degrees

and a pitching amplitude of 2 degrees at a frequency of 0.739 Hz (reduced frequency K = 0.0625 at 47%) and case O47320

with a mean geometric AOA at the 47% station of 14 degrees and a pitching amplitude of 5.5 degrees at a frequency of 1.18310

Hz (reduced frequency K = 0.1 at 47%). The free stream velocity in both cases is 23.3 m/s.

The normal force coefficient variation for the O47010 case is shown in Figure 6. The mean geometric AOA is only half a

degree different than in the steady case in Figure 4, and almost the full blade is in attached flow. The unsteady simulation agrees

with the steady simulation in an offset, where the HAWC2 NW results are below the measurements at every station but the

blade tip. A comparison of the mean values would thus not lead to new conclusions. For easier dynamic comparison, the mean15

values of cn have been subtracted in Figure 6. The near wake modeling leads to improved agreement with the measurements

everywhere except at the 63% station, where the differences between the predicted and measured loops are small. At the other

radial stations HAWC2 NW predicts the loop openings and gradients much better than HAWC2. At the 80% station it is

8
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Figure 5. Radial distribution of tangential force coefficients at 3.5 (left) and 18.2 (right) degrees geometric AOA at 47% blade radius.

Results from HAWC2 (denoted H2) and HAWC2 including the extended near wake model presented in this paper (H2 NW) are compared to

measurements.

especially clear that the reduced mean AOA due to the trailed vorticity leads to the correct position on the airfoil polar. At this

radial station the HAWC2 computations show a cn-gradient and loop opening that is characteristic of a too large mean AOA.

Thus the offset in the mean value is unexpected.

The ct variations in Figure 7 show improved simulation results due to the NWM, at most blade stations except 47%. Similar

as in the cn comparison above, HAWC2 NW predicts gradients and loop openings that are very close to the measurements.5

The normal force coefficient loops for the O47320 case (14 degrees mean AOA at the 47% radial station) are shown in Figure

8. Because the amplitudes are larger and the mean AOA is higher in this case, the loops are more open and more nonlinear.

Therefore the unsteady aerodynamics model has a larger influence on the mean values of cn and ct than in case O47010 and it

has been chosen not to subtract the mean values in the O47320 results. The flow is only attached at the 30% radial station, cf.

Figure 8, and there HAWC2 NW predicts the cn gradient more accurately than HAWC2. At the 47% radial station, HAWC210

NW predicts a slightly higher range of cn, that is closer to the measurements. Also the shape of the loop predicted by HAWC2

NW agrees better with the measurements than that predicted by HAWC2, but both models do not reach as high maximum

cn values as the measurements. At the 63% station HAWC2 NW predicts a slightly more open loop than HAWC2 at up to

17 degrees geometric AOA, which is in better agreement with the measurements. Also in agreement is the increasing normal

force coefficient towards higher AOA, which is not predicted by HAWC2. As at the 47% station, and also further outboard, the15

models underpredict the maximum measured cn values. At both the 80% and 95% stations, the loops predicted by HAWC2 are

narrowing towards the high angles of attack. This is because the dynamic stall model interpolates between a fully attached and

fully separated curve, cf. Section 4. At high angles of attack, where the flow is fully separated, the dynamic stall model becomes

steady, because the separation point does not move any more, and accordingly the loops close. Due to the trailed vorticity in

the HAWC2 NW computations, the local angles of attack at the radial stations close to the tip are lower than the geometric20
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Figure 6. Case O47010, Variation about mean cn

angles of attack, and therefore the flow is not yet considered fully separated. Thus the loops predicted by HAWC2 NW do not

become more narrow towards high geometric AOA at the 80% and 95% stations. Even though the loop opening predicted by

HAWC2 NW at the 95% radial station is closer to the measurements, the gradient of the cn loop can not be predicted.

The loops of the tangential force coefficient in the O47320 case are shown in Figure 9. At the 30 % station in attached

flow, HAWC2 NW clearly predicts a loop opening and gradient that agrees better with the measurements than the results from5

HAWC2. At the 47% radial station, HAWC2 NW predicts the form of the loop slightly better, but the opening in the measured

loop is considerably larger. At the further outboard stalled stations there is generally a large disagreement between both codes

and the measurements and it is difficult to state which codes’ predictions agree better with the measurements.
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Figure 7. Case O47010, Variation about mean ct
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5.3 DTU 10 MW in standstill with turbulent inflow

Aeroelastic simulations on the DTU 10 MW Reference turbine (Bak et al., 2012) have been performed to investigate the effect

of the trailed vorticity model in standstill. The mean wind speed in these simulations is 50 m/s, the shear exponent is 0.11

and the turbulence intensity is 11%. These values are based on DLC 6.2 in the design load basis for onshore wind turbines by

Hansen et al. (2015). All blades are pitched to 82 degrees and the simulated time is 700 seconds, where the first 100 seconds5

are removed to avoid transients. The blades are discretized into 30 equidistantly spaced aerodynamic sections.

The compared codes are HAWC2 with dynamic stall enabled, but without induction model and HAWC2 NW, where both

dynamic stall and induction due to the trailed vorticity are modeled. In order to enable direct comparisons between the different

aerodynamic models a few computations have been performed with a locked rotor and only a single turbulence seed. The

radial distributions of AOA, induced velocities and aerodynamic forces on the blade pointing vertically upward are discussed10

in Section 5.3.1 at wind directions of 0, -15 and 15 degrees.

To evaluate the extreme blade root flapwise bending moments, simulations with an idling rotor in the wind direction range

of -15 to 15 degrees (5 degree resolution) are presented in Section 5.3.2. A number of 36 turbulence seeds has been used at

each wind direction and for each aerodynamic model.

Larger wind direction misalignments than 15 degrees are not included in this article, because they can lead to stand still15

vibrations of the DTU 10 MW (Wang et al., 2016). These vibrations make it difficult to compare radial load distributions and

maximum loads and their analysis is outside the scope of the present work. Further the near wake model can not be considered

valid beyond these yaw misalignments, because the radial AOA distribution will reach far into positive or negative deep stall

at either root or tip of the blade.

5.3.1 Locked rotor20

The radial distributions of in-plane induced velocity, AOA and edgewise and flapwise aerodynamic forces are shown in Figure

10 for a wind direction of -15 degrees. The solid lines show the mean values and the standard deviations are indicated by dashed

lines. At this wind direction, most of the upward pointing blade is in negative stall, except for the area around the tip where

the flow is attached. Because the near wake model is implemented such that a bound circulation is computed based on the lift

coefficient, a slight reduction in the mean aerodynamic forces can be seen when the near wake model is enabled. The AOA25

and induction distributions clearly show the prediction of a root vortex, while the influence of the trailed vorticity on the mean

loading toward the blade tip is limited. Because the lift gradient is larger in attached flow, the standard deviation of the induced

velocity increases towards the tip. These increased induced velocity variations counteract the force variations due to inflow

turbulence, which causes slightly smaller standard deviations of the angle of attack and flapwise force if the trailed vorticity

modeling is active. There is no clear tip vortex visible in the mean induction distribution because the loading approaches zero30

towards the tip even without an induction model. Further the equidistant point spacing means that the small drop of the loading

to zero at the very last blade section is not so finely resolved. At 0 degrees wind direction, the flow is attached on the whole

blade, see the top right plot of Figure 11. Therefore the lift gradients are large and the trailed vorticity modeling has a larger
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Figure 10. Distribution of induction, AOA and loads for the upward pointing blade. The mean values are shown as solid lines and the dashed

lines indicate the standard deviations.

influence on the loading. Both the mean aerodynamic forces as well as the standard deviations of these forces are reduced

along almost the whole blade. The root vortex is clearly visible in the top left plot of the induced velocity in Figure 11.

The flow is stalled along the whole blade at 15 degrees wind direction. Therefore the quite large induced velocities if the

near wake model is active have only a minor effect on the aerodynamic forces, even though using the near wake model changes

the mean local AOA by up to five degrees, see Figure 12. The forces at the blade root, around 25 meter radius, are clearly5

smaller in the HAWC2 NW than in the HAWC2 computations, but because of the small lift gradient around stall this reduction

does not affect the standard deviations of the aerodynamic forces as much.
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Figure 11. Distribution of induction, AOA and loads for the upward pointing blade. The mean values are shown as solid lines and the dashed

lines indicate the standard deviations.

5.3.2 Idling rotor

Computations with 36 different turbulence seeds per wind direction and for each of the two aerodynamic models have been

performed to investigate the influence of the aerodynamic model on the extreme flapwise blade root bending moment. The

result of these simulations is shown in Figure 13. The dashed lines represent the mean value of the maximum absolute flapwise

blade root bending moment in the 36 simulations. The absolute maximum of the maxima encountered in the simulations is5

shown as solid lines. It can be seen that including the near wake model in the simulations reduces the mean maximum value

by roughly 0.5 to 1.5 %, depending on the wind direction. However, the absolute maximum in all of the simulations appears

to be almost independent of the aerodynamic model, except for the 0 degrees wind direction. An explanation for this might be

that in the idling cases with yaw error the blades see different AOA distributions as function of azimuth position. A very high

blade root bending moment will occur if a high wind speed hits a large part of the blade at an angle of attack corresponding10

to the maximum lift coefficient. Because the lift gradient at the maximum lift coefficient is small, the influence of the near

wake model in this extreme case is small as well, therefore the highest blade root bending moments at yaw error are very

similar between HAWC2 and HAWC2NW. This extreme case of high wind speed at maximum lift coefficient does not occur

with each turbulence seed, though. If the extreme loading does not occur at the maximum lift coefficient in a 600 second
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Figure 12. Distribution of induction, AOA and loads for the upward pointing blade. The mean values are shown as solid lines and the dashed

lines indicate the standard deviations.
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Figure 13. Maximum flapwise blade root bending moment for wind directions between -15 and 15 degrees. Dashed lines show the mean of
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HAWC2 simulation, then the trailed vorticity leads to a reduced maximum loading. Therefore the average extreme loading of

the simulations with 36 turbulence seeds is decreased when the near wake model is active.

This comparison in stand still shows that adding the near wake model might appear to reduce the extreme loading if a small

number of turbulence seeds is used. A high number of turbulence seeds, on the other hand, is expected to lead to the same

extreme loading independent of trailed vorticity model. Another conclusion is that the maximum extreme loading is much5

higher than the average extremes of the 10 minute time series’ with different turbulence seeds. A large number of seeds might

be necessary to achieve realistic extreme values in an aeroelastic load analysis in stand still conditions.

6 Conclusions

The near wake model has been extended to compute the induction due to trailed vorticity in standstill. Due to the twist distri-

bution of a wind turbine blade and the larger effect of turbulence in standstill when compared to operational conditions, strong10

vortices can be trailed from any position along the span of the blade. Comparison with the analytical solution of a constant

downwash for an elliptical wing shows good agreement with results from the extended near wake model, with the original

model predicting large radial variations of the downwash.

Comparison with measurements from the NREL/NASA Ames phase VI experiment in attached flow conditions shows an

unexplained offset between the steady state normal and tangential force coefficients measured and predicted by HAWC2 NW.15

However, the HAWC2 NW code predicts the effect of the trailed vorticity on the radial load gradients in steady state.

A comparison of the dynamic variation of the force coefficients for a sinusoidally pitching blade in attached flow shows that

HAWC2 NW can predict dynamic loops that agree much better with the measurements than those predicted by HAWC2 on the

major part of the blade. The agreement is improved both in terms of cn-AOA curve gradients and openings of the loops.

In a steady state comparison at high mean AOA, where the flow is separated at most of the blade, the near wake model can20

predict the root vortex at the inner part of the blade in attached flow. At the rest of the blade no clear improvement due to the

added trailed vorticity modeling is visible. At the tip, which is in deep stall, the predicted normal force coefficient agrees worse

with the measurements.

The unsteady comparison at high AOA shows a clear improvement at the inner part of the blade, which is in attached flow.

Also on the outer part the openings of the cn loops are predicted better by HAWC2 NW than HAWC2, mainly because the flow25

in the HAWC2 simulations is close to fully separated, where the dynamic stall model can not predict the dynamic behavior.

The HAWC2 NW simulations predict lower AOAs close to the blade tip and thus the dynamic stall loops stay open. Even

though the trailed vorticity modeling leads to improved predictions in this case, the basic weakness of the Beddoes-Leishman

type dynamic stall model in deep stall should be adressed in future research. Further, the outboard ct loops in stall are found

to be difficult to model. However, UAE Phase VI ct measurements, and ct measurements in general, are highly sensitive to30

pressure tap distribution, which can lead to increased uncertainties in this measurement.

As expected, the aeroelastic computations in stand still with turbulent inflow and a fixed rotor show that the near wake model

reduces the mean blade loading mainly at radial positions in attached flow compared to the standard stand still aerodynamic
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model without induction. The standard deviations of the force variations are reduced accordingly. Because the relative velocity

in stand still is similar at all radial positions of the blade and the chord gets smaller towards the tip, no large tip loss effects

have been observed and the main induction is clearly due to the root vortex.

Also computations with idling rotor in a yaw error range of -15 to +15 degrees have been performed with 36 turbulence seeds

per wind direction. The absolute maximum of flapwise blade root bending moment shows only a very small influence of the5

aerodynamic model. The mean maximum encountered with the different turbulence seeds shows a small, but clear reduction

due to the trailed vorticity modeling.

In both the fixed and idling rotor cases, the yaw angles have been limited such that no edgewise vibrations of the DTU 10

MW blades occur. For a different turbine and blade design, stand still vibrations in attached flow can be possible. The impact

of the aerodynamic modeling approach on these vibrations could be adressed in future research.10
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Standstill vibrations are usually stall driven. I could not easily think of any other reason that could trigger vibrations especially in attached flow. Is it classical flutter that you have in mind?
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