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Abstract. In wind energy research, airborne wind energy systems are one of the promising energy sources in the near future.

They can extract more energy from high altitude wind currents compared to conventional wind turbines. This can be achieved

with the aid of aerodynamic lift generated by a wing tethered to the ground. Significant savings in investment costs and overall

system mass would be obtained since no tower is required. To solve the problems of wind speed uncertainty and kite deflections

throughout the flight, system identification is required. Consequently, the kite governing equations can be accurately described.5

In this work, a simple model was presented for a tether with a fixed length and compared to another model for parameter

estimation. In addition, for the purpose of stabilizing the system, fuzzy control was also applied. The design of the controller

was based on the concept of Mamdani. Due to its robustness, fuzzy control can cover a wider range of different wind conditions

compared to the classical controller . Finally, system identification was compared to the simple model at various wind speeds,

which helps to tune the fuzzy control parameters.10

Nomenclature

Latin Symbols

c1 steering sensitivity coefficient of the turn rate law −

c2 gravity sensitivity coefficient of the turn rate law −

c0 steering offset of the turn rate law −15

hfig angular height rad

us steering action −

vw,ref horizontal wind velocity at the reference height m/s
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x
′

k , y
′

k , z
′

k projection of the body fixed reference frame on the unit sphere −

xk , yk , zk body fixed reference frame of the kite −

xse , yse , zse unit sphere reference frame −

xw , yw , zw wind reference frame of the kite −

ym measured course angle obtained from the sensor m5

yr estimated course angle obtained from system identification m

Greek Symbols

β elevation angle rad

βmax elevation angle at zero angular speed rad

βmin elevation angle at angular speed ω22 rad10

χ course angle rad

χset set value for the course angle rad

δmin minimal, angular attractor point distance rad

µ membership function (the range is from 0 to 1) −

ω22 angular speed at elevation angle 22◦ rad/s15

ω norm of the angular velocity of the kite on the unit sphere rad/s

ωfig angular width rad/s

φ azimuth angle rad

ψ heading angle rad

% turn radius of the trajectory of the kite point rad20

Vectors and Matrices

PSEk,set position of the kite in angular coordinates(φ , β) rad

Pk covariance matrix of the estimated error −

θ̂ last vector estimated using the LSE algorithm −
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Va apparent wind speed m/s

Y estimated course angle obtained from the system identification rad

Ym measured course angle obtained from the sensor rad

1 Introduction

Airborne wind energy (AWE) systems are very promising energy sources that use flying devices. These devices can fly at high5

altitudes. Therefore, power can be generated by harvesting stronger and more persistent wind. The kite system is one of the

AWE systems being developed. It consists mainly of two parts, a flexible wing and a generator on the ground connected by a

tether. To capture as much power as possible from wind, the kite should fly at a high crosswind speed. To satisfy this, control is

applied to the kite to keep it flying at high altitude, and perpendicular to the direction of the wind in an optimized path Fagiano

and Milanese (2012); van der Vlugt et al. (2013).10

AWE systems can capture more energy with higher capacities, which is why they are considered a good renewable energy

system. The wind energy density at an altitude of 10 km could reach up to 5000 W/m2 according to Wubbo Ockels, the

developer of the "ladder-mill" concept in 1997 Ockels (2001). However, it is too hard to build a system that can operate at an

altitude of 10 km and generate electricity from wind. This is why most of the current development and research projects have

shifted their focus to lower altitudes Archer et al. (2014).15

Wind energy density ranges from 1400 to 4500 W/m2 at altitudes of 200 to 900 m, respectively. Wind turbines cannot be

installed at these altitudes because of the limitations of tower size Goudarzi et al. (2014). Therefore, it will be an optimum

solution to have a system similar to wind turbines at this altitude but with no tower. The concept of wind turbine blade rotary

motion can be replaced by a tethered kite connected via the flexible wing to a fixed generator on the ground.

The power generation by AWE follows several concepts, however, in this paper we mentioned just two different concepts.20

The first concept is based on the tension force in the tether. The flying wing pulls the tether, which is wrapped around a

pulley on the ground connecting it to the generator, until the tether reaches its maximum length. Then, it is reeled back to the

minimum length allowed based on the design limitations. The second concept depends on installing a motor/generator setup

on the wing itself, which generates energy during most of the cycle and uses energy during the other part of it. It sends the

generated energy through the electrified tether to the ground. It is crucial for the kite system to control its motion for efficient25

and reliable operation.

The optimum trajectory for kite flight is one of the key control parameters that can be decided by a flight-path planner. To

keep the kite on this planned trajectory, a winch controller controls the tether length. The kite flight has two main phases, as

shown in Fig. 1. First, the reel-out phase is where the kite is free to go further from the ground station and pulls the tether. To

obtain the maximum tensile force, the angle of attack of the wing is maximized. Second, the reel-in phase is where the kite is30

pulled back toward the ground station. In this case, the angle of attack is minimized to reduce the drag force on the kite, which

would cost more energy.
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Figure 1. Working principle of the pumping kite power system van der Vlugt et al. (2013).

Many researchers studied the control of the kite system Canale et al. (2010); Jehle and Schmehl (2014b); Ilzhöfer et al.

(2007); Baayen and Ockels (2012); Williams et al. (2008); Houska and Diehl (2007); Costello et al. (2013); Diehl et al. (2001);

Fagiano et al. (2014); Erhard and Strauch (2013a). However, they only considered the first phase of the kite motion, which is

considered for power generation, and neglected the second phase, where energy is used to pull the kite back. Other studies were

concerned with the modeling of the kite system, winch controller, and tether assembly Diehl (2001); Ahmed (2014); Fagiano5

(2009); Furey (2012); Thorpe (2011); Zgraggen (2014). The governing equations in most of these studies were defined by using

the point mass model Fechner et al. (2015). Other researchers considered the governing equations based on a rigid body model

without considering the turn rate law, which is necessary to describe steering of the kite Thorpe (2011); Zgraggen (2014);

Fechner et al. (2015); Williams et al. (2007). Other researches discretized the kite into 10 points, which increased the solution

accuracy, although the tether was not discretized Furey (2012).10

Neural network modeling was an idea that was analyzed, but the results were not satisfactory. Quasi-static modeling was

also considered for more accurate controller implementation, but the results were not sufficient for validation Fagiano et al.

(2012); Erhard and Strauch (2013a). The average system model overcomes this validation problem since it gives a suitable

derivation for different types of controllers Fechner and Schmehl (2012).

Experimental efforts for the autonomous take-off of the airborne systems were carried out, however there are still some15

challenges to get fully autonomous flight in different wind conditions. Moreover, a global controller that can work under

all conditions cannot be designed effectively for the commercial products Fechner and Schmehl (2012); Jehle and Schmehl

(2014a); Baayen and Ockels (2012). Nonlinear model predictive control (NMPC) is used as a control strategy by many re-

searchers to stabilize the kite. It is possible to theoretically apply this algorithm to optimize flight trajectory, but in a real flight

test, it will require accurate and fast wind data that are currently unavailable Canale et al. (2010); Jehle and Schmehl (2014b);20

Ilzhöfer et al. (2007).
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Thus, alternative techniques are needed to stabilize the flight trajectory. One technique is very promising for fixed short

tethers, as it does not require information about the wind field or the kite and still performs quite well Fagiano et al. (2014).

Neither long nor variable length tethers are valid for the simulation. For a tether with a length of 200 to 500 m or for a

heavy kite, the accuracy is insufficient. Accuracy was increased in other studies that considered the apparent wind speed and

gravitational effects in the simulation Jehle and Schmehl (2014a). However, for a tether shorter than 200 m with a time delay5

greater than 200 ms, the accuracy becomes insufficient.

The uncertainty of the kite’s model has recently been presented in Fagiano et al. (2014); Jehle and Schmehl (2014a); Fagiano

and Milanese (2012); van der Vlugt et al. (2013). However, several practical questions arise when dealing with the control

design process. It is crucial to identify the wind speed, direction, aerodynamic parameters, kite shape, and tether shape in real

time. Thus, fully autonomous flight for the kite system has not yet been successful.10

In this paper, the least square estimation (LSE) was used as a system identification to get a more accurate description for the

steering dynamics of the kite in real-time; the characteristics of the kite are varying with time because the wing is inflatable and

flexible. Also, the wind speed can’t be measured in real-time, thus it is impossible to obtain the lift and drag forces during flight.

This technique especially is used to identify the system parameters as it can calculate them without iteration (one directional

calculations) which means no time loses and low chance of singularity in the solver.15

The novelty of this work is to use an algorithm that is valid for any kite size and any tether length. So it can overcome

the problems of the uncertainty. The LSE algorithm needs the steering values from the motors and the course angle from the

sensors. Thus, no additional information is needed such as the wind speed or the mathematical model of the kite to identify

the system that shall be controlled. Therefore, this paper tries to stabilize the kite using fuzzy control based on the LSE in

real-time.20

This paper is divided into five main sections. The first section is the introduction 1, which gives an overall view of the

previous research related to the paper’s work. The second section shows the mathematical model 2 used to describe the kite’s

motion. The third section gives the system identification derivation and details the sequence of the code 3. The fourth section

describes the main parts of the fuzzy control and explains the choice of the fuzzy control parameters 4. Finally, the last section

shows the simulation results of the classical control and the fuzzy algorithm. The comparison also includes varying wind25

conditions and their effects on system stability 5.

2 Mathematical model

Different mathematical models have been used to derive the kite governing equations. Some of these models considered the

system as a kite connected with two control tethers without considering the variation of the angle of attack. These assumptions

were considered to allow for an easier implementation of the kite’s dynamic states Diehl et al. (2001). Then, more complexity30

and details were added to the models. Some researches assumed that the system consists of the three degrees of freedom

model and that the kite is a point mass at the end of a straight tether. Furthermore, the aerodynamic properties of the kite were

considered fixed for all wind conditions Ahmed et al. (2011).
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Recent work considered the kite with a variable tether length and started to derive mathematical models for this variation of

the tether length. A discretised tether model was derived during the reel-in and the reel-out phases using the Lagrangian ap-

proach to obtain the governing equations. Moreover, this model considered the segments of the tether as a rigid body connected

by spherical joints Williams et al. (2007).

Other research groups considered the tether model as a discretised tether with point masses connected by springs to each5

other, and aerodynamic analysis was performed using the vortex lattice method; however, the phases of reeling-in and reeling-

out were not mentioned in the analysis Gohl and Luchsinger (2013). On the other hand, other research groups detailed the

reel-in and reel-out phases (including the winch model) to present full kite motions in different phases Ahmed et al. (2011);

Coleman et al. (2013).

Some studies on kite design are being conducted to assess the aerodynamic characteristics. They applied the fluid-structure10

interaction method to study the aero-elasticity of the kite since the kite consists of an inflatable wing Viré (2012); Viré et al.

(2012); Bosch et al. (2014). However, the simulation is slower than the real flight test, and it still needs more work to run the

same as the real flight test.

Recent work on kite modeling has been achieved in TU Delft Fechner et al. (2015). This research considered the dynamics

of all system components such as the tether, kite, and generator. Additionally, the reel-in and reel-out phases were detailed15

to provide a smooth simulation for the tether. Additionally, the authors used two different definitions for the kite. The first

definition considered the kite as an improved point mass model. It can be used to calculate the angle of attack and calculate the

lift and drag of the kite during changes in the angle of attack. The other model considered the kite as a four point mass model

with rotational inertia in all axes. It closely models the real kite since all dimensions of the kite (the height and the width) are

considered.20

This section is divided into three main subsections. The first subsection presents the system model and gives a full description

for the kite kinematics framework 2.1. The second subsection explains the flight path planner (FPP) 2.2 to show the kite path

during flight and to show the parameters that affect the kite trajectory. The FPP was chosen to adapt any testing area for the flight

test. Finally, the flight path controller (FPC) 2.3 was derived to stabilize the kite using the PID controller. This mathematical

model was derived based on the turn rate law Erhard and Strauch (2013a).25

2.1 Kinematic Framework

As mentioned in the introduction section 1, there are different concepts to derive the mathematical model of the kite Diehl

(2001); Ahmed (2014); Fagiano (2009); Furey (2012); Thorpe (2011); Zgraggen (2014). Some of these models considered the

kite as a point mass model, and other researchers just considered the kite as a rigid body Thorpe (2011); Zgraggen (2014);

Fechner et al. (2015); Williams et al. (2007). These models are not totally accurate compared to the 10 point mass model30

Furey (2012). However, increasing the number of mass points makes the solver slower than the real flight test. Thus, choosing

a simple model to derive the governing equations of the kite potentially allows the solver to run in real time. Additionally, it

would be suitable for designing and simulating the FPC and FPP in real-time.
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Figure 2. Small Earth Reference Frame. The position of the kite is projected onto a half sphere with a radius of one. The elevation angle

β and the azimuth angle φ describe the position of the kite, the angle ψ, and its orientation. The course angle χ is the angle between the

direction toward the zenith and the velocity vector of the center of mass of the kite as projected on the tangential plane touching the position

of the kite on the half sphere Fechner (2016).

To give a complete definition of the kite model, it is important to introduce the different frames used in the derivation of

the mathematical model of the kite. The first frame is called the "Earth Centered Earth Fixed", and the position of the kite and

the ground station are measured there. These measurements have to be converted into the "Wind Reference Frame" as shown

in Fig. 2. Additionally, the xw axis of the Wind Reference Frame is in the same direction as the average wind speed, and its

center is placed at the anchor point of the tether. Together with the tether length lt, the elevation angle β and the azimuth angle5

φ represent a spherical coordinate system that fully defines the position of the kite in the Wind Reference Frame. Fig. 2 also

introduces the "Small Earth" analogy in which the kite’s position is projected onto the unit sphere around the origin and then

described by angles β and φ.

Based on the given frames of the kite system, the given vectors xk , yk , and zk show the Body Fixed Reference Frame of the

kite. The zk axis goes downward from the position of the kite to the connecting point with the tether. The yk axis is the vector10

from the left to the right tip of the kite. The xk axis is the orthogonal of yk and zk. The heading angle ψ is the angle between

the vector xk and the direction toward the zenith as projected on the tangential plane touching the position of the kite on the

half sphere. In the model given in this section, the tether is assumed to be straight, and the design of the FPP and the FPC

assumed this as well. To control the motion of the kite, the heading angle and the course angle of the kite must be controlled

from one point to another using the control action given by the steering motor.15
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To control the system using the classical control, the system should be converted into a single input single output (SISO)

model Baayen and Ockels (2012), which was achieved after introducing the Small Earth Reference Frame. The input for the

kite became the steering action generated from the motor in the kite control unit (KCU), and the system output is the course

angle. The angular velocity ω of the kite point with respect to the origin O is derived in Eq. (1) from the rate of change of the

elevation and azimuth angles. This point is further highlighted in Appendix A.5

ω =

√
β̇
2
+ φ̇

2
sin2β (1)

The simplified 2D kite system model is used in the mathematical equations of the kite. The kite is considered to have a fixed

length tether, which has to be straight . The test also considered the kite to be flying toward the center of the wind window in

the direction of the zenith. The inputs of the model are the steering action us, the apparent wind speed va, and the initial values

of the heading, elevation, azimuth, and angular speed. The outputs of the system are the heading angle, its derivative, and the10

position of the kite, which can be calculated from the elevation and the azimuth angles. The turn rate law is used to calculate

the heading angle of the kite, as shown in Eq. (2). After obtaining the heading angle, the integration can easily obtain the value

of the heading of the kite. This part is further highlighted in Appendix B.

ψ̇ = c1va(us− co)+
c2
va

sinψ cosβ (2)

The position of the kite can be calculated from the substitution of the angular velocity ω into the derivatives of the elevation15

and the azimuth angles. This concept is valid under the assumption of the similarity of the course angle with the heading angle.

Some assumptions are considered when calculating the angular speed ω. One of these assumptions considers that ω depends

only on the elevation angle β, and it is calculated from Eq. (3); this part is further highlighted in Appendix A.

ω =
βmax −β

βmax −βmin
ω22 (3)

2.2 Flight Path Planner (FPP)20

Designing the FPP mainly depends on previous ordered positions that show the required flight path of the kite and the points

that the kite should be steered toward. In the work presented in this paper, there are two points called attractor points on the

right and left sides of the wind window to make the kite fly in a figure eight motion. The figure eight shape was chosen for

different reasons. It gives the kite the chance to fly over the wind window to produce more power by increasing the relative

wind velocity. It also aids in smooth steering and reduces the overlapping that occurs if a circular motion is used.25

Fig. 3 shows the main points of the kite movement. The flight path controller FPC guides the kite to go toward the points set

in Fig. 4 in the shape of a figure eight. The algorithm of the FPP is divided into four subsystems as shown in Fig. 4. The cases

of the flight are shown in table 1 to switch between the different conditions of flight and sub-states. During turning, there is a

time delay, and an offset δx = 112◦ must be used to compensate for it 1.

1This offset is needed to compensate for the time delay between the command to stop turning and the kite actually stopping. This value depends mainly on

the rotational inertia of the kite but also on the speed of the steering actuators
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Figure 3. Four-step flight path planner for flying a figure eight: First turn left, then steer toward P3, then turn right and finally steer toward

P4 Fechner (2016).

Figure 4. Finite sub-state diagram showing the sub-state and the transitional condition of the figure eight controller. This sub-state machine

is active in the state FIG-8 of the high-level controller. The states LAST-LEFT and LAST-RIGHT are omitted for simplicity Fechner (2016).

To design the FPP, we need to define the inputs and the output for the algorithm. The kite orientation ψ, azimuth angle φ, and

set value of the average elevation βsw are considered as inputs for the FPP. The control action obtained from the PID controller,

set value of the position PSEk,set and set value of the turn rate law ψ̇set are considered as the output.
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State Next state PSEk,set χ̇set Condition

Initial TURNLEFT - χ̇turn ALWAYS

FLYLEFT TURNLEFT - χ̇turn φ > φsw

TURNLEFT FLYRIGHT P3 from PID χ > 270◦ − δχ

FLYRIGHT TURNRIGHT - −χ̇turn φ <−φsw
TURNRIGHT FLYLEFT P4 from PID χ < 90◦ + δχ

Table 1. Finite sub-states of the figure-eight flight path planner.

Figure 5. Schematic to show the turn rate law of the kite as a function of the angular velocity and turn radius Fechner (2016).

The FPP algorithm needs to obtain the values of P3, P4, and ψ̇turn as a function of the angular width ωfig , the angular

height hfig , and the minimum attractor point distance δmin.

As shown in Fig. 5, the tangential velocity of the kite Vk,τ is given in Eq. 4:

Vk,τ = rω (4)

Then, the radius of the turn % is given in Eq. (5):5

%=
hfig
2

(5)

The turn rate χ̇turn is calculated from the angular velocity of the kite ω, which is calculated from Eq. (1), and can be calculated

as shown in Eq. (6):

χ̇turn =
Vk,τ
R

=
ωr

R
(6)
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The value of φc2 can be calculated from Eq. (7):

φc2 =
wfig
2

− % (7)

Then, the azimuth angles φsw and the elevation angle βsw of the switch point can be calculated from Eq. (8) and Eq. (9) by

combining the right turning circle with the tangent:

φsw = φc2 −
%2

φc2
(8)5

βsw =

√
%2 − (φsw −φc2)

2
+βset (9)

The slope of the line toward P4 can be calculated from Eq. (10):

k =

√
φc2 −φsw
φsw

(10)

After solving for the points P3 and P4, we can obtain:10

P3 = (−φsw − δmin

√
1

1+ k2
),(βsw + δmink

√
1

1+ k2
) (11)

P4 = (φsw + δmin

√
1

1+ k2
),(βsw + δmink

√
1

1+ k2
) (12)

2.3 Flight Path Controller (FPC)

The kite’s position can be controlled using the setting values of the elevation, the azimuth, and the normalized depower setting15

u
′

d as inputs and the steering of the motor us as the output. The controller includes the navigator of the kite to estimate the

desired heading angle based on the current elevation and required elevation β and on the azimuth angles φ. The desired flight

direction can be calculated by substituting Eq. (13) and Eq. (14) into Eq. (15). The resultant from Eq. (15) can be compared

with the heading angle that comes from the sensor to obtain the error signal used in the control design as an input. Then, the

steering action can calculated from the control block as an output us.20

y = sin(φset−φ)cosβset (13)

x= cosβ sinβset− sinβ cosβset cos(φset−φ) (14)

χset = atan2(−y,x) (15)25
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After obtaining the result of Eq. (15), the system is ready for the controller since the SISO and PID controllers were used to

update the steering value of the motor us. The results of the classical control are compared with the system identification and

fuzzy control 3, 4 as given in the simulation section 5 using Simulink 2.

3 System Identification Using Least Square Estimation

The aim of this section is to identify the variation of the system parameters during flight. The parameters must be updated in5

real time by analyzing the history of the model’s input (control action) and output data (course angle) . Least square estimation

(LSE) Plackett (1950); Bobál et al. (2006); Dutton et al. (1997) is used as a system identification technique to update the

system’s governing equations. The algorithm minimizes the mean square error (MSE) as defined in Eq. (16)

MSE =
1

k

k∑
r=1

(Yr −Ym)
2 (16)

where r is number of the time steps in the discrete time process, Ym is the measured data obtained from the sensor, and Yr10

is the value results estimated from the system identification shown in Eq. (22). The open loop transfer function of the kite is

derived in Fechner (2016) in the form of a simple model. It has the unknown apparent wind speed as a parameter. Furthermore,

the model parameters depend on the angle of attack of the kite, which varies. Thus, the mathematical model cannot exactly

define the system Jehle and Schmehl (2014b). Therefore, it is suggested to use parameter estimation to update the values for

the open loop transfer function, as shown in Fig. 6.15

This figure shows that the system is SISO with the course angle required as an input, and the output is the measured course

angle of the kite. Then, the error would be calculated from the difference between the input and measured course angle obtained

from the sensors. Then, the error signal will be the input for the controller block (adaptive controller) to obtain the suitable

control action. The system identification block will use the control action results from the controller block and the measured

course angle as input and then begin estimating the system’s parameters (Eq. 23) in real time; these parameters will be used to20

generate the open-loop transfer function of the kite. These parameters will be sent to the controller block for use in designing

the adaptive control. This algorithm has the advantage of quickly obtaining system parameter values and has no singularity

for any initial conditions, even if they are zeros. The LSE uses the motor action us and the sensor data for the course angle to

update its parameters. The open loop discrete transfer function for the kite can be approximated as shown in Eq. (17):

G(z−1) =
Y (z−1)

U(z−1)
=
B(z−1)

A(z−1)
(17)25

Both the first and second order polynomials would be sufficient to identify the system parameters because the sample time

is short , which helps to overcome the error from discretization.
2Simulink is a commercial software developed by MathWorks. It is a graphical programming tool for different aspects of engineering. However, it is used

in my thesis to represent the system’s model and design the controller for a fixed sample time. It mainly aims to save time for the user by replacing the long

codes by simple blocks to achieve the same requirements. Simulink is widely used in automatic control and digital signal processing Reedy and Lunzman

(2010)
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Figure 6. Block diagram of the adaptive control system.

A(z−1) and B(z−1) are considered as second order polynomial equations in the discrete domain. Thus, the parameters

a1,a2, b1 , and b2 are the non-dimensional independent variables of the polynomial equations, and they varying with time due

to the change that occurs in the system governing equations. After rewriting A(z−1) and B(z−1) in the discrete form, they are

as given in Eq. (18) and (19):

A(z−1) = 1+ a1z
−1 + a2z

−2 (18)5

B(z−1) = b1z
−1 + b2z

−2 (19)

After substituting Eq. (18) and (19) into Eq. (17):

Y

U
=

b1z
−1 + b2z

−2

1+ a1z−1 + a2z−2
(20)

Additionally, we can rewrite Eq. (20) in the difference form as shown in Eq. (21):10

Yk =−a1Yk−1 − a2Yk−2 + b1Uk−1 + b2Uk−2 (21)

Thus, the open loop model can be rewritten as shown in Eq.(22):

Yk =XT
k−1θk (22)

13



where:

θk−1 =


−a1
−a2
b1

b2

 (23)

Xk−1 =


Yk−1

Yk−2

Uk−1

Uk−2

 (24)

Thus, the MSE can be written as follows:5

MSE =
1

k

k∑
r=1

(XT
r−1θr−1 − (Ym)r)

2
(25)

The objective of using the system identification is to obtain the values of θ that can minimize the mean square error. From the

derivation, the values of θ can be easily calculated using Eq. (26):

θk =Pk[

k∑
r=1

(Xr−1Ym)] (26)

Where,10

Pk = [

k∑
r=1

(Xr−1X
T
r−1)]

−1 (27)

By rewriting Eq. (12), we can find the following Eq. (28):

Pk =Pk−1 −
Pk−1Xk−1X

T
k−1Pk−1

1+XT
k−1Pk−1Xk−1

(28)

After substituting Eq. (28) into Eq. (26):

θk = θk−1 −
Pk−1Xk−1

1+XT
k−1Pk−1Xk−1

(XT
k−1θk−1 −Ym) (29)15

Thus, the unknown parameters a1,a2, b1 , and b2 should be calculated in every time step. To obtain these parameters, it the

following calculation steps must be conducted: Initialize matrix Pk−1 with large positive numbers on the leading diagonal and

zeros on the off-diagonal elements. The vector θk−1 must be populated with initial parameters close to the model.

1. Xk is updated every sample time by the system outputs and inputs as previously defined.

2. Calculate θk and Pk from Eq. (28) and Eq. (29).20
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3. Update θk−1 and Pk−1 with θk and Pk.

4. Repeat the loop for each time step.

Using LSE is a good choice to identify the kite parameters compared with other system identification algorithms. Since it is

a non-iterative technique with low computational costs, it has no singularity in the solution, even if the initial conditions are

zeros, due to its simple implementation. The results from the LSE are used to predict the behavior of the system (open loop5

transfer function), and it was used to design the fuzzy control 4.

4 Fuzzy Control

In this section, the control strategy is detailed using Mamdani’s fuzzy algorithm Burns (2001); Amindoust et al. (2012). Fuzzy

logic control Zadeh (1968, 1978); Deif et al. is a digital control technique that uses the multivalued logic output to obtain

the solution. It was developed for the systems that do not have accurate mathematical models. Thus, choosing the parameters10

of the fuzzy controller depends on the experience and the common sense of the designer to overcome the inaccuracy of the

mathematical model Burns (2001).

The computations of fuzzy control were calculated as hardware-in-the-loop (HIL) Bondoky et al. (2017). This means that

sensors sent data to the ground station using wireless communications. Then, the calculations were performed using computers

on the ground based on the results of the system identification algorithm to choose the suitable control action. Finally, the15

control action was sent again to the motor to steer the kite.

The kite system consists of an inflatable wing, and its shape changes with time due to the force distribution on its surface.

Thus, the mathematical model of the kite cannot be fixed during the whole flight. Moreover, the wind speed varies during the

flight, and there is no accurate way to assess it in real time to calculate the force distribution on the kite’s surface van der Vlugt

et al. (2013).20

Due to all these difficulties, the need for robust control such as fuzzy control to stabilize the kite is very important. Therefore,

choosing the fuzzy logic controller is a good choice to satisfy these requirements because it is strong in stabilizing nonlinear

systems and can address systems with inaccurate mathematical models. However, the fuzzy logic controller is difficult to

implement on small-sized commercial microcontrollers since it requires many calculations that are difficult to implement on

microcontrollers fixed on the kite’s surface. Therefore, sending the sensor data to the ground station by wireless communi-25

cations and performing the calculation using a ground station is a good choice to obtain the control action. This step causes

a delay due to the transmission time, which is considered in the model and calculation. Mamdani’s model consists of three

stages to stabilize the kite system, including fuzzification 4.1, inference 4.2, and defuzzification 4.3, as shown in Fig. 7. The

mathematical model used for the simulation was built in TU Delft and given in Fechner (2016). It details the kite model and

the flight path controller using classical control us. Based on the error signal e, the input of the fuzzy model can be estimated.30

Then, the number of memberships will be chosen, and the width of each membership will be changed to tune the system to

obtain the suitable control action. The sample time of the simulation plays a very important role in the stability of the kite.
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Figure 7. Fuzzy Logic Control System.
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Figure 8. The main memberships for fuzzification and defuzzification.

Therefore, it should be chosen based on the hardware used and the speed of calculation in the ground station. In our simulation,

the sample time was 0.02 seconds.

4.1 Fuzzification

The process arranges the inputs of the fuzzy logic control to obtain the fuzzy set membership values in the various input

universes of discourse Burns (2001); Yen and Langari (1999). To construct the fuzzification stage, one must choose the number5

of inputs, the size of the universes of discourse, and the number and shape of the fuzzy sets. The fuzzy logic control that acts

as a proportional controller aims to minimize the error e. Therefore, the range of expected values of error e should be known

during the estimation of the size of the universes of discourse. In our case, the range of the error e is -5 to 5 rad, as shown in

16



Eq. (30) 3. The last step in designing the fuzzification is to choose the number and shape of fuzzy sets in a particular universe

of discourse. Choosing them affects the accuracy of the control action, but it reduces the real-time computational complexity.

In the simulation, three sets were selected to satisfy the requirements within the given limits, as given in Figs. 8a and 8b. There

was an optimization between the number of sets and the response’s accuracy. Therefore, choosing 3 sets satisfies the stability

requirements.5

e=


trap.(−8.5,−5,−3,0)

tri(−1.5,0,1.5)

trap(0,3,5,8.5)

 (30)

4.2 Rule Base and Interface

This is the second stage of the fuzzy logic algorithm. It consists of (if-statements) Burns (2001) and takes linguistic rules. For

example, if e is Ne, then u is Nu.

This style of fuzzy logic control is called the Mamdani rule. Choosing the rule base of the fuzzy logic control depends on10

the designer’s experience with the system. The designer of the rule bases chooses them based on the mathematical model of

the system. From the experience of the kite system, the rule bases are chosen as follows:

If e is Ne, then u is Nu.

If e is Ze, then u is Zu.

Additionally,15

if e is Pe, then u is Pu.

Now, the system is ready for the last stage of the fuzzy logic control to obtain the control action.

4.3 Defuzzification

This is the last stage of the fuzzy logic control. It is the process of converting the set of inferred fuzzy signals chosen from the

fuzzy output, as mentioned in the rule base 4.2, into the non-fuzzy (crisp) control action Deif et al.; Burns (2001), as shown in20

Fig. 8b. The most known defuzzification technique is the center of area method. In this case, the control action can be easily

obtained by calculating the sum of the first moments of the area divided by the sum of the area. The Matlab fuzzy toolbox is

used to simplify the work and save programming time.

5 Simulation Results

This section shows the result of the system identification 3 and the fuzzy control 4. The system identification model gives us25

the definition and description of the kite. The parameters are updated in real time and help us gain the experience needed to

design the controller. Fuzzy control was simulated, and the three sets were chosen for the error e and control action us. The
3The range of the error was estimated based on the error of the classical control in 2.3. Moreover, the tuning for the memberships’ shape was estimated

from trial-and-error to obtain a reasonable response for the system.
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following simulated results were achieved using the model developed in TU Delft Fechner (2016). This model gives a detailed

description of the kite using the simple model algorithm, and the flight path of the kite makes a figure eight pattern. Two flight

conditions were tested in this simulation. The difference between the two flight conditions is the wind speed. The wind speed

is modeled as shown in Figs. 11b and 14b. The difference between the two models is that the frequency of the wind in 14b is

much higher than that in 11b. Gaussian noise was added to the sensor data (elevation, azimuth, and apparent wind speed).
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Figure 9. Time history of the system identification parameters.
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Figure 10. Simulation results for the azimuth and elevation angles during 70 seconds.
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5.1 Flight condition I

In the first flight condition, the kite model was affected by the wind speed given in Fig. 11b. Thus, the kite’s parameters

a1,a2, b1, and b2 could be calculated from section 3, as given in Fig 9a and Fig. 9b. After obtaining the kite’s parameters

a1,a2, b1, and b2, we can easily compare the course angle of the classical model and the estimated model, as shown in Fig.

11a. The comparison between the figure eight motion is given in Fig. 10a for the classical control and Fig. 10b for the fuzzy5

control.

As mentioned in section 4, the fuzzy control will stabilize the kite based on the error signal that comes from the sensors and

the input. Thus, it takes the suitable control action to satisfy the requirements.
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Figure 11. Time history for the wind speed and course angles.

5.2 Flight condition II

In the second flight condition, the wind speed was changed as given in Fig. 14b. The wind speed is modeled to be more10

aggressive for the kite’s controller. This is achieved by increasing the frequency of the wind speed in the first flight test 5.1

compared to the second flight test 5.2 . After applying the system identification algorithm given in 3, the values of a1,a2, b1

and b2 will be updated as shown in Figs. 12a and 12b. The figure eight motion given in Fig. 13b is calculated using the simple

model and the classical controller. The figure eight concept is satisfied, but the elevation angle is reduced toward the instable

region. Thus, using the classical control cannot satisfy the condition of stability in different wind conditions. However, Fig.15

13a is calculated using the fuzzy control, which can handle the strong changes in the wind speed in addition to the noise that

comes from the sensors using the same algorithms without any change in the code. The comparison between the course angles

measured and estimated using the system identification are given in Fig. 14a. Even though the wind speed was changed, the

system identification can predict the course angle to become almost identical to that measured from the sensors.
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Figure 12. Time history of the system identification parameters.
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Figure 13. Simulation results for the azimuth and elevation angles during 70 seconds.

6 Conclusions

This paper presented a technique to identify the kite’s parameters and controller that would be robust enough to stabilize

the kite in real time when other classical controls cannot satisfy this. Using the least square estimation algorithm for system

identification helps to present a complete definition for the kite’s parameters in real time. The variation of the kite’s parameters

comes from the changes in wind speed and direction, the change in the aerodynamic coefficients, and the change in the kite’s5

shape (as it consists of an inflatable wing).
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Figure 14. Time history of the system identification parameters.

The kite model is mainly non-linear. Therefore, the choice of fuzzy control is suitable for such systems. Additionally, the

computations of fuzzy control were calculated as HIL. When deriving the system identification equations, the model was

considered as a discrete linear model with a short sample time. The results of the system identification were compared with the

classical model for different wind speeds, as shown in Figs. 9a – 14b, which show the differences between the classical and

fuzzy controls in stabilizing the kite.5

Appendices
A The Angular Velocity ω of the Kite Motion

The kite is moving in two directions (spherical coordinates). φ is the rotation around the Zw axis, and β is moving in the

direction of Xse, as shown in Fig. 2. They can be as given in Eq. (31):

ω = (φ̇)zw +(β̇)yse (31)10

where zw is given in Eq. (32).

zw =−(sinβ)zse (32)

From Eq. (31) and Eq. (32), we obtain:

ω =−(φ̇sinβ)zw +(β̇)yse (33)
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y The angular velocity ω of the kite point with respect to the origin O is derived in Eq. (34) from the rate of change of the

elevation and azimuth angles.

ω =

√
β̇
2
+ φ̇

2
sin2β (34)

Another simplified equation is given as a function of the elevation angle β in Eq. (35). This equation is derived from an

experimental test, and the relationship between the angular speed and elevation angle is assumed to be linear within a specified5

range for the elevation angle β.

ω =
βmax −β

βmax −βmin
ω22 (35)

This equation assumes that the angular speed reaches the constant value ω22 at an elevation angle of 22◦ and an angular speed

of zero at β = βmax = 73◦. This angle is the elevation angle of the Hydra kite while parked at a 300m tether length for an

approximate wind speed of 6m/s. From the experimental test for the Hydra kite used in the simulation, we obtained the values10

of βmax = 73◦, ω22 = 0.25 deg/s, and βmin = 22◦ Fechner (2016).

B Turn Rate Law

The law states that the turn rate of the kite about its yaw axis is a function of the steering deflection of the actuator us, the kite’s

dependent constants co, c1, c2, the heading angle ψ, the elevation angle β and the apparent wind speed va Erhard and Strauch

(2013a, b). The turn rate law is used to calculate the heading angle of the kite as shown in Eq. (36). After obtaining the rate of15

the heading angle, the integration can easily obtain the value of the heading of the kite.

The steering value of the motor us is the control action responsible for steering the kite. It is the change of the length of the

tether connected between the kite and the KCU. The control action us is calculated based on the calculations of the FPP and

FPC.

ψ̇ = c1va(us− co)+
c2
va

sinψ cosβ (36)20

The algorithm is an iterative technique to obtain the empirical relationship between the kite parameters c1 and c2 and the turn

rate of the kite ψ̇. The characteristics of the kite (such as its size and weight) are considered in the parameters c1 and c2, which

estimate the main behavior of the kite.

An empirical relationship is achieved in Jehle and Schmehl (2014b) for other projects, as shown in Fig. 15, for the 25m2 kite

surface area, but it is not used in this thesis. From this experiment, the authors obtained the parameters of the kite as c1 = 0.15325

and c2 = 0.25. The parameters used in the simulation to substitute in the turn rate law in this thesis are given in table 2. The

Hydra kite with a 10.18m2 projected surface area was used in the simulation, and the experiment was implemented to obtain

its parameters Fechner (2016).

22



Figure 15. Comparison between the estimated turn rate and the measured turn rate for the 25m2 kite surface area Jehle and Schmehl (2014b).

Table 2. Fitted turn rate law parameters of the Hydra kite Fechner (2016).
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