RC1 review

Title : Lidar-based wake tracking for closed-loop wind farm control

Dear reviewer,

We really appreciate your comments and have tried to adopt and consider all of them. Please find below a point-to-point reply. Further, in the supplementary material, a latexdiff is given.

Thank you very much for your effort!

Best Steffen on behalf of the authors.

Summary review : The work seems to be innovative and of value to the scientific community, but the manuscript is extremely hard to follow because of the wording / order of statements. The writing needs to be overhauled so that it can be more accessible. Below some specific suggestions are made to improve clarity.

We have considered all of your points, see below, and tried to give more structure. We highly appreciate your effort!

Page	Lines	Comment	Reply
1	8	issues in the wind farm as opposed	Rephrased to clarify
		to? the individual turbine?	
	15	Or > and	Changed
	19	In relation to wind turbine control, the same two goals are valid for wind farm control > The same two goals are valid for both wind turbine and wind farm control	Thanks for the suggestion. We adopted it.
	20	These goals were addressed in research with different approaches unclear whether you are talking about previous research or your own, please reword it	We shortened the sentence and rephrased.
2	1	In > at	Thanks
	4-5	the barrier is not necessarily a lack of devices, but their cost, logistics, etc?	In the past, there wasn't a measurement device available to measure flow at different locations remotely like a lidar can do. But you are right about the other barriers. We have added them.
	6-8	weird sentence, I suggest rewording similar to Lidar can be a useful tool to address the measurement problem in wind farm	Thanks!

		applications, while bearing in mind the	
		instrument limitations and the	
		assumptions required to extract the	
		information and exploit the lidar	
		measurement data.	
	9	It aims to enable closed-loop wake	Thanks.
		redirection	
	12	Incomplete sentence?	Sorry about that. We have corrected it.
Introdu	uction	Since you are going into so much detail	Thank you for the advice. Since my
		and level of simplicity when you put	background is control engineering I have
		things in context in the introduction	assumed a lot. I tried to add a paragraph
		(e.g. flow is modeled by Navier Stokes),	which briefly explains the advantage of
		you should also briefly explain	closed-loop wake redirection vs. open-
		difference between open vs closed loop	loop.
		control, and why focus on one vs the	We do not know a publication about lidar-
		other. Also, introduction makes it	based closed-loop wake redirection at the
		sound like no one else has looked into	moment.
		this before (closed loop wake	
		redirection), is this the case? If so that's	
		fine otherwise you should refer to	
		their work.	
Figure	1	Remove a	Thanks!
	20	Exist > exists	Thank you. I have changed.
		There isn't a > there is no	
	21	which is a concept based on time	Thanks.
		averaged profiles of the wake behind a	
		turbine.	
	22	Give a time scale for these averages	We tried to be more specific, thank you
		Having averaged the flow something	for your suggestion.
		like a > the language is too informal,	
		reword something like "Averaging the	
		flow yields a (double) Gaussian	
		function for the velocity deficit profile in	
		the horizontal and vertical	
		directions"	
	23-24	taking a different method of defining	Thank you.
		the shape, the wake center position	
		could be at a different position although	
		the flow would be the same > also	
		needs rewording, suggestion something	
		like "when different methods are	
		used to define the shape, wake center	
		estimates may be vary under the	
		same flow conditions"	
	24-25	Thus, there isn't a unique wake center	Thank you clarifying. We took you
		definition. This makes a comparison	suggestion.
		difficult and needs to be considered	
		when comparing results.	
		Suggestion	

· · · · · · · · · · · · · · · · · · ·	1		
		The absence of a unique wake center	
		definition must be considered when	
		comparing results as it precludes direct	
		comparisons (across different	
		studies?).	
	27-28	Considering the task of lidar-based	We rephrased it. Thanks.
		wake tracking then this includes first a	
		reference definition of the wake center	
		and second an estimation method	
		which is used to get the closest	
		estimation of the wake center from the	
		lidar measurement data.	
	30	Which want to > to	Thanks.
3	2-3	Estimate verb repetition	We shortened the sentence to be more
			clear.
	5	you repeat over and over again "a	We changed to redirection
	5	redirecting" which sounds really off	
		either remove "a" or change to a better	
		noun e g redirection	
	7	compensates > compensates for	Thanks
	, Q	compensates > compensates for	Thanks
	0	which is due $>$ due	
	0	first the measurement problem is	Thanks
	9	addrossed	THATKS.
		the measurement problem is addressed	
		first	
	11 12	Koon in camo paragraphi	Sorry for that
	11-12	The in the following described tasks	Sorry for triat.
	14		we removed parts to state more clearly.
4	2	1: As described before, first a reference is	We changed to be more precisely
4	5	As described before, first a reference is	we changed to be more precisely.
		As proviously montioned, it is first	
		As previously mentioned, it is first	
		lecessary to define a reference.	
		(still sourius like an incomplete	
	2.4	Sentence, a reference what?)	
	3-4	Can you be a bit less concise nere?	we rephrased and adopted your
		Unclear what the volimer work is.	suggestion.
		Example: The minimum wind power	
		method proposed by Vollmer et al.	
		(2016) is adopted here to identify the	
		wake shape/center	
	4	Is all the work 2D? Not yet very clear	It depends on the method. In our point of
		until this point	view the wake center definition is also not
			2D, since all directions are present.
	9	which is every second > sampled at 1 Hz	Thanks.
		frequency?	
	9-10	In addition to Vollmer et al. (2016)	We rephrased to be clearer.

		Maximum in addition to the	
		You mean in addition to using the method proposed by Vollmer?	
	4.0		Course have
	10	with different time constants	same nere.
		you mean over different running	
		window lengths? over different time	
	44.42		
	11-12	Inerefore, a SOWFA simulation with	Inanks for the comment. We reworded
		low turbulence level and a mean wind	according to you suggestion.
		speed of 8 m/s is used in which the flow	
		field is sampled and every 1 s.	
		Therefore? This is a conclusion from	
		sometning? Needs rewordingex:	
		The results presented are for a low	
		turbulence (II=??) SOWFA simulation	
		under a mean (free stream, hub	
		neight?) wind speed of 8 m/s	
Figure 2	2	Caption is not descriptive, stand-alone	Thanks for the suggestion. We adopted
		and clear enough. Something like	the caption.
		Time evolution of wake center (meters	Yes, it comes from the wake
		away from hub? what is negative vs $T(x)$	development. I have changed the figure
		positive?) when different periods 1 (s)	according to your suggestion.
		are used to average the flow during the	
		wake center calculation.	
		Why are first 100's so different? Is this	
		some model spin up, while the wake	
		is suil slowly developing? If so, maybe	
		this data should not be part of the	
		analysis, or this should be	
	16	approached > approaches	Thanks
	17	can first compare to existing quantities	Thanks
	17	s can first be compared	
	16-17	like estimation of the rotor-effective	You are right. Thank you we adopted it
	10-17	wind speed, or estimating u and y wind	Tou are right. Thank you, we adopted it.
		vector components using lider	
		measurements like in Schlinf et al	
		(2012)	
		this whole thing should be in	
		narenthesis to make sentence more	
		readable	
		(e.g. estimation of the rotor-effective	
		wind speed or of u and v wind vector	
		components as in Schlinf et al. (2012)	
	18	be used predict > be used to predict	Thanks.
	10	after line-of-sight velocities can you put	
		(v los) so that when it shows up in	
		the next figure the reader is already	
		familiarized with your nomenclature /	
		symbology	

Figure 3		The general concept of model-based	Thanks. This makes it more clearer.
		wind field reconstruction: Estimating	
		the wind field characteristics by fitting	
		simulated lidar measurement data	
		(v los,s) to the measured ones (v los,m	
).	
		, The general concept of model-based	
		wind field reconstruction, in which the	
		wind field characteristics are estimated	
		by fitting simulated lidar	
		measurement data (v los.s) to	
		measurements (v los.m).	
5	16	simulated lidar measurements	Thank you. We have changed it here.
0	10	I am not sure you should call it	mank your the name onanged it herei
		measurements if they are not	
		measurements	
	19	What's the " wind field parameter"?	We specified. We meant the model
	15	what's the whather parameter :	narameter (e.g. wake center wake decay
			wake deficit etc.)
	20	This whole paragraph, please rewrite	We have rewritten
	20	words and concents are repeated a	we have rewritten.
		lot voru uncloar	
6	0	horizontal ratation of the wind field	Voc. we mean aligned with the wind
0	9	nonzontal rotation of the wind here	direction
		Also I'm protty sure you meen	Unection.
		Also I m pretty sure you mean	Yes, sorry about that!
		underlying whenever you have	
	12	underlaying	M/a avalained
	13	and the subscript represents?	Theole
	14	component. mus, this yields >	THANKS.
5 1-1-1-1		Components, yleiding	
Figure	0	If the coordinate system follows the	we specified the conditions.
		what turbine reference frame, then	
		what	
		do negative wind speed values mean?	
		Also, does it matter at which	
		downstream distance this is? And is	
		there any yaw misalignment here?	
_		Unclear	
/	4	the deficit is cleared over distance > the	Yes, thanks.
		momentum deficit recovers?	
	8	What is s?	s*Gamma gives the solution for the initial
			wake deficit. There is no meaning for s ->
ļ			one could see it as local gain.
	15	what does " impulse dissipation" mean	We meant wake recovery.
8	1	You might want to use D instead of d, or	Thanks. The multiplication sign helped.
		maybe x for the downstream	
		distance, because in equations the little	
		d looks like a derivative, as in Eq 8 I	

		first thought it was derivative of the	
		dissipation. Or maybe just put a	
		multiplication sign there, or the d	
		outside of the fraction multiplying	
		everything	
	10	by constant you mean steady (constant	Mean wind speed is meant
	19	in time) ?	Mean wind speed is meant
9	7	the model parameter still confused that	Changed
5	,	THE narameter is?	Changed
	12-13	The way you worded this sentence	Thanks
	12 13	makes the reader think you want to	Thunks.
		make	
		a point here. If it's just an example	
		(which at least in this section, it is	
		hocause new the section is over) then	
		say so, for example:	
		An example of an estimation stop of the	
		All example of all estimation step of the	
		campaign at the alpha ventus offshore	
		wind form is shown in Figure 7	
El avera -	7	A glob of	Theoles
Figure	/	A plot of	Ma alayified the setup
		you don't need to say this is a plot!	we clarified the setup.
		five distances > five downstream	
		distances	
	. –	is this looking down or upstream?	
	15	has already shown > shows (you haven't	Thanks.
		discussed Figure 7 at all)	
	17	merged to a wind field	we removed the unclear part and used
		what does this mean?	the times symbol.
		also use a different symbol in your /x/,	
		maybe \$\times\$ wherever it appears	
		in manuscript	
10	1	In >at	Thanks
	4	most far > furthest (wherever it appears	Thanks. We have added some lines
		in manuscript)	before. So the parameter question should
		the wake parameter , what is this	be clear.
		again?	
	6	positions > position	Thank you.
		there isn't a > there is no	
		How did you come up with 0.1 for your	It is the result of the model fit.
		dissipation?	
Figure 8		Time series of model parameters for	We specified the conditions.
		wake tracking of simulation data?	
		missing a period	
11	8	sorry what is "the filtering"? can you be	Removed the sentence, since it isn't
		more specific, I don't remember	necessary here. It is only confusing.
		anymore at this point	
12	5	An > a	Thanks

Figure 9		I assume this is a mistake? I don't	Yes!
C		understand why it's same caption as	As mentioned before, we have specified
		above but results are different!	the conditions.
13		Figure 11 is talked about in text before	It was mentioned in the text. Before Sect.
		Figure 10 so these should be	6.
		swapped? Actually seems like Figure 10	
		never comes up?!	
	6	the assumptions of a constant thrust	Thanks.
		coefficient, c T, is made.	
		the assumption of a constant thrust	
		coefficient is made	
14	5	is this so obvious to the community that	A reference is given.
		it doesn't need a reference?	
15	2	what is subscript dem?	A description is added.
	8	using a Smith Predictor. A Smith	Thanks.
		Predictor uses > using a Smith Predictor,	
		which uses	
	21	the sensitivity and the complementary	We have added a reference. Sorry about
		sensitivity	that. It is very difficult to address and
		As someone not in controls field I don't	assume the right audience. Our
		understand this. It's weird that in	assumption was to address someone who
		some spots you get into such seemingly	has basic knowledge in control theory.
		unecessary descriptions of things	
		(again, saying the flow is modeled with	
		Navier Stokes for example) but then	
		at other points you assume all your	
		readers will know these concepts? If it's	
		not too difficult, add a line explaining	
		what these concepts mean or refer the	
		reader to some reference. There is a lot	
		of very controls-specific stuff	
		throughout your paper which is fine and	
		great since that's your main topic,	
		but your paper will reach a much	
		broader audience if you make it clearer	
		and	
		more readable to people that do wind	
		research but focus on other aspects,	
		and who may be interested in applying	
		what you've done.	
15	12	enable > enables	Thanks
16	5-6	Keep in same paragraph	Changed.
	6	An > a	Thanks!

RC3 review

Title : Lidar-based wake tracking for closed-loop wind farm control

Dear reviewer,

We really appreciate your comments and have tried to adopt and consider all of them. Please find below a point-to-point reply. Further, in the supplementary material, a latexdiff is given. (Having already considered the review of reviewer 1)

Thank you very much for your effort!

Best Steffen on behalf of the authors.

Summary review : The article provides a novel approach to tracking the wake center behind a wind turbine using lidar measurements, which will be of value to the wind energy community when trying to develop a closed-loop wind farm controller. The concepts discussed in the paper are well organized and overall has good flow. I was hoping to see more discussion of the controller performance at the end, but this paper is more about the wake tracking than the controller. Perhaps controller performance was discussed in Raach et al. (2014), and could be played up more in this paper to address a reader's desire to see controller performance. It would be nice to see in figures 8 and 9 a comparison to the lidar's tracking of the wake center to the actual wake center. However, defining the wake center is not easy and that is acknowledged by the authors. In practice in the field, defining the wake center is nearly impossible to do anyway as full flow field knowledge is virtually impossible.

Thank you for your review. You are completely right, this paper covers more the estimation task and the 2016 ACC and also my current work focus on the control part. I will mention it in the beginning of the control part and in the conclusion. Figure 10 gives exactly what you asked for. You are completely right, however, when talking about the wake center definition and comparability challenge.

Page	Lines	Comment	Reply
1	3	The tracking is demonstrated > The	Thanks
		wake tracking is demonstrated	
1	4	Spell out the acronym "SOWFA"	Changed.
	9-10	"The wind speed in the wake of a wind	Thanks for the suggestion. I considered it.
		turbine"	
		This sentence looks to describe a wake,	
		but seems out of place. Perhaps the	
		wake	
		concept can be introduced in the	
		previous sentence "installations are	
		limited, the	
		interactions between" >	
		"installations are limited, the wake	
		interactions	
		between" Then this sentence makes	
		more sense.	

	11	If a wind turbine is hit > If a wind	Thanks.
		turbine is impacted	
	21	is proposed and >was	Has been rephrased.
	22	torque actuator and steering the wind	Thank you. We adopted it.
		turbine to >torque actuator and	
		operating the wind turbine at	
	23	This results in a weaker > This results	Thanks.
		in less of a	
	26	Fleming et al. (2014b, a); >Fleming	Thanks. This was a strange behavior of
		et al. (2014a, b);	the bibtex package
2	1	(in seven diameter >(at a seven	Thanks.
		diameter	
	1	by yawing the turbine up to 40 deg.	Added.
		Is there a reference to back this	
		sentence up?	
	12	a closed loop controller is In	Our fault. We have corrected it.
		summary,	
		It seems there is something missing	
		between "is" and "In	
	20	a main problem exist. >there exists	Thanks.
		a main problem.	
	22	Having averaged the flow > After	Rephrased.
	22.24	having averaged the flow	Development
	23-24	However, taking a different method of	Rephrased.
		defining the shape, the wake center	
		could be at a different position	
		although the flow would be the same	
		see Vollmer et	
		al (2016)	
	27	Considering the task of a lidar-based	Thanks. We adopted it
	-/	wake tracking then this includes first a	
		reference definition of the wake center	
		and second	
		>	
		The task of lidar-based wake tracking	
		includes first, a reference definition of	
		the	
		wake center and second,	
	30	a closed-loop controller which want	We rephrased and tried to make it
		to manipulate >a closed-loop	clearer.
		controller	
		which look to manipulate	
3	1	device, a lidar, and processing >	Thank you.
		device, such as a lidar, and	
		processing	
	10	In the following, > In the following	Thanks.
		sections,	

	10-16	This should all be one paragraph	Ok
	14	The in the following described tasks	We rephrased it.
		present	
		It seems something is missing between	
_	_	"The" and "in"	
4	3	first a reference is needed to be	We removed parts and rephrased the
		defined. In this work an adaptation >	beginning.
		tirst a	
		reference of the wake center is needed	
		to be defined. In this work, an	
	7	dudplation	Thank you We missed that But we profer
	/	variable v in the following paragraph?	to use "lateral offset"
		assume it	to use lateral offset.
		is the snanwise offset	
	9	The wake center is calculated every	Thanks good point!
	5	time step	
		Can you specify how far downstream	
		the wake center is being calculated	
		here and in	
		figure 2?	
	12-13	The wake center clearly converges to a	Very good point, we have added a
		steady value with increasing averaging	sentence like you suggested.
		time	
		Т.	
		This sentence implies that an increasing	
		averaging time is better. So, just always	
		choose an increasing averaging time is	
		the thought process in my head when i	
		reau this Dorbons it should be stated that	
		there are adverse effects for choosing	
		an	
		increasing averaging time. I could see	
		that an increased averaging time would	
		be	
		slower to adjust to a changing wind	
		direction, and so this should be	
		considered when	
		choosing an averaging time to use	
	14	For section 3.2, the discussion here	We have added something at the
		about comparing between lidar	beginning of section 3.
		measurements	
		and real data is a little confusing. I think	
		this is being compared in simulation	
		results.	
		i think that this section should start by	
		stating that these comparisons are	
		being	

		made in cimulation to holp a reader to	
		understand these comparisons.	
	18	the used models can be used >the models can be used	Thanks.
5	10	A solution to this limitations > A solution to these limitations	Thanks.
	11	applications of lidar system usage in wind energy >applications of lidar systems in wind energy	Thanks.
	12	 reconstruction methods, see Raach et al >reconstruction methods, Raach et al To be consistent with the other reference notation in this sentence. 	Thanks.
6	1	In the discussion of the main wake effects, I was thinking that wake meandering should be included in this list, but perhaps that falls into the category of wake evolution. Maybe wake meandering should be its own item in the list, but I do not have a strong opinion one way or another.	Since it is not modeled in the reduced order model, we haven't mentioned it. Since the model is used for identification the meandering DOF is not necessary at the moment, but could be considered if necessary.
	8	In the discussion with equation 2, I am wondering why do you need to rotate the coordinate system? I am sure there is a reason, and perhaps you can state why.	It is just a convention to introduce different coordinate systems for wind, lidar, turbine. It gives the freedom to yaw the turbine, or consider a misaligned wind field in the reconstruction.
7	12-13	New energy is flowing from the side and above and the flow is mixed. > New energy flows in from the freestream and mixes with the wake.	Thank you, good point!
	15	In contrast to other wake models, however, > However, in contrast to other wake models,	Thanks.
8	7	optimization of the yaw angles for a wind farm >optimization of the yaw angles for a simulated wind farm	Ok.
8	18	non yawed >non-yawed	Thanks.

9		For the caption for figure 6, change "Non yawed" to "Non-yawed"	Done.
9	7	As depicted in Figure 3 > As depicted in Figure 3,	Thanks.
10		In figure 7, it would be nice if above each figure in the top row there was a title that specified the downstream distance of each measurement: 0.6 D, ? D, ? D, ? D, 1.4 D. All I know is 0.6 and 1.4, but the inner distances are not specified.	We have added the distances in the caption.
	2	Second, the turbine is misaligned Could you specify how much the turbine is misaligned	It is done.
11/12		In figure 8/9, the title of the subplot "wake misalignment" is confusing. Do you mean the turbine's yaw error over time?	Yes. I will correct.
12	5	approximated with an delay. > approximated with a delay.	Thanks.

Lidar-based wake tracking for closed-loop wind farm control

Steffen Raach¹, David Schlipf¹, and Po Wen Cheng¹

¹Stuttgart Wind Energy (SWE), University of Stuttgart, Allmandring 5B, 70569 Stuttgart, Germany *Correspondence to:* Steffen Raach (raach@ifb.uni-stuttgart.de)

Abstract. This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based wake tracking approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. The method uses a reduced order wake model to track the wake. The <u>wake</u> tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a <u>SOWFA simulation simulation with the</u>

5 <u>Simulator fOr Wind Farm Applications (SOWFA</u>). Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, the two approaches enable a closed-loop wake redirection.

1 Introduction

In recent years, the focus of control applications in wind energy has shifted wind farm control has gained more and more to

- 10 issues importance in the wind farm. Since wind turbines are growing in size and the available areas for installations are limited, the interactions between energy control community, since wind turbines in a wind farm array are becoming more important. can interact by their flow. The wake interaction can result in less power compared to a fee-stream operation and can result in higher structural load of the downstream turbine due to higher turbulence in the flow and possible partial wake impingements. The wind speed in the wake of a wind turbine is reduced with respect to the free stream wind speed. Additionally, the turbulence in
- 15 the wake is increased. If a wind turbine is hit impacted by a wake from a wind turbine located upwind, the wind turbine produces less power and is faced with higher structural loads because of the increased turbulence, see Borisade et al. (2015). Describing the wake effects and quantifying the decay has been of interest for years. Different models have been developed to address different phenomena, such as the velocity deficit and the increased turbulence intensity. There are empirical models, data driven models, or and models which describe the physical behavior in the wake, all varying in complexity and computational effort.
- 20 Mainly, models with low complexity are steady state models which means they describe the interaction in a static manner and no wake propagation is modeled. Further research is needed to develop control oriented dynamic wake models.

In relation to wind turbine control, the The same two goals are valid for wind both wind turbine and wind farm control: 1) maximization of the total power and 2) reduction of the structural loads. These goals were addressed in research with different approaches Two main concepts has been introduced for wind farm control: 1) axial induction based wind farm control

25 is proposed and investigated and control and 2) an approach was introduced to redirect the wake-wake redirection control. Axial induction control aims at manipulating the axial induction by the blade pitch or torque actuator and steering operating the wind

turbine to at a lower production level. This results in a weaker less of wake deficit and aims at minimizing structural load effects on the downwind wind turbines and preserving energy in the flow for downstream turbines. The effects on the overall energy capture of the wind farm is not clear yet, see Annoni et al. (2015). Consider Boersma et al. (2017) for a general overview on wind farm control.

- 5 The idea of redirecting the wake by the yaw actuator instead of trying to mitigate its intensity has been discussed in different publications, see Fleming et al. (2014b, a); Gebraad et al. (2014)Fleming et al. (2014a, b); Gebraad et al. (2014). In simulation studies it was shown that the wake is redirected up to 0.54 times the rotor diameter (in at a seven diameter downwind distance) by yawing the turbine up to 40 deg, see Fleming et al. (2014b). Different investigations have shown promising results using this method in in improving the power output of a wind farm by applying yaw offsets in open-loop approaches, see Gebraad
- 10 et al. (2014) and Fleming et al. (2014a). Nevertheless, the form in which it has been applied so far does contain drawbacks: 1) Applying optimized yaw angles in a feed-forward approach does not guarantee that the wake is going to the desired direction - thus, the quality of the model, which is used to compute the yaw angles, highly influences the control performance. 2) There is no observation of whether the wake is being redirected correctly. The concept of closed-loop wake redirection, which was introduced in Raach et al. (2016), can help to overcome the drawbacks.
- A major barrier for wind farm control applications is has been the lack of measurement devices to measure the flow interactions between wind turbines, but also their cost and availability. Further, modeling the three dimensional flow field is not a straight forward approach since the flow is usually described by the Navier-Stokes equations. Lidar can be a useful tool to address the measurement problem in wind farm applicationsalthough the limitations of a lidar system always remain and assumptions are necessary, while bearing in mind the instrument limitations and the assumptions required to extract the
- 20 information and exploit the lidar measurement data.

This paper addresses the wind farm control concept of wake redirecting. It aims to enable a closed-loop wake redirecting using lidar measurements by presenting a method to obtain the wake position . The using lidar measurements. Further, the difficulty in wake position definition and measurability is discussed.

First, it presents a model-based estimation approach to obtain important quantities for wake redirecting using a nacelle-based
lidar system facing downwind. Furthermore, a closed loop controller is <u>designed and analyzed</u>. In summary, this work presents an entire concept for lidar-based closed-loop wake redirecting.

2 Methodology

In order to enable a lidar-based closed-loop wake redirecting within a wind farm, the problem can be divided into two main tasks: 1) the measurement task and 2) the control task. This work focuses mainly on the measurement task but gives also a
summary of a solution to the control task, which was presented in Raach et al. (2016). Figure 1 presents the general concept of the closed-loop wake redirecting and the link between measurement task and control task.

Figure 1. The conceptual idea of a closed-loop wake redirecting and its two main tasks: 1) the estimation task addressed in Section 5 and 2) the control task addressed in Section 6.

2.1 Problem formulation for wake-tracking

When talking about wake tracking or a wake center position <u>there exists</u> a main problem<u>exist</u>. There isn't a . There is no clear definition of the wake center, moreover, the idea of a wake center comes from time averaging is a concept based on <u>time averaged profiles of</u> the wake behind a turbine and then characterizing the averaged profile. Having averaged the flow

- 5 something like a double-Gaussian shape or a Gaussian shape can be observed(1 to 10 minutes averages). Averaging the flow yields a (double) Gaussian function for the velocity deficit profile in the horizontal and vertical directions. From this a wake center can then be defined easily. However, taking a different method of defining when different methods are used to define the shape, the wake center position could be at a different position although the flow would be the same wake center estimates may be vary under the same flow conditions, see Vollmer et al. (2016). Thus, there isn't The absence of a unique wake center
- 10 definition . This makes a comparison difficult and needs to must be considered when comparing results. Furthermore, this means even with full flow field information the wake center is not a measurable quantity and depends on definition.

Considering the The task of lidar-based wake tracking then this includes firstincludes first, a reference definition of the wake centerand second an estimation method which is used to get the closest estimation of the wake center. Then, the result of the estimation method from the lidar measurement data can be compared to the reference definition.

2.2 The estimation task

Measuring flow quantities is crucial for enabling a closed-loop controller which want to manipulate the wake quantities. The task of the measurement problem is to provide the necessary quantities for the controller. This means using a measurement device, <u>such as</u> a lidar, and processing the measurement data in such a way that they are useful for the controller. Since the lidar

5 measurement principle has several limitations in providing wind field information an adequate estimation technique is used -This estimation approach is crucial in estimating parameters of the wake and is that is described in Section 5.

2.3 The control task

The second task towards a closed-loop wake redirecting redirection is the control task. Its main challenge is to convert the estimated wake position information and the demanded position to a demanded yaw signal. A feedback controller has to be

10 designed which steers the wake center to the desired position and compensates <u>for</u> uncertainties in the models. Since the reaction of a change in the yaw <u>can be is</u> measured with a delay , which is due to the wake propagation time, the controller has to be designed in such a way that it can overcome this limitation.

In the following , first, section, the measurement problem is addressed first. A method is presented to estimate wake information from lidar measurement data using a nacelle-based lidar system.

15 Second, the controller problem is addressed in Section 6. A wake redirecting controller is presented which uses the obtained wake information, namely the wake center position, and steers the wake center using the yaw actuator to a desired position.

The The overall goal of this paper is to present a concept for also present the framework of lidar-based closed-loop wake redirecting. The in the following described tasks present a solution to the problem. Therefore, the models can be replaced, modified, or improved but the general concept remains for closed-loop wake redirectingredirection with exemplary models and controller.

3 Reference definition and its impact on the estimation task

In this section the wake center definition is addressed. The comparisons are being performed in simulation since in reality a full flow knowledge is impossible.

3.1 Wake center definition

20

25 As described before, first a reference is needed to be defined. In this work an adaption of the previously mentioned, it is first necessary to define the wake center. The minimum wind power presented in Vollmer et al. (2016) is used. The wake center method proposed by Vollmer et al. (2016) is adopted and modified to identify the wake center. Thus, it is defined as the position where the same wind turbine second wind turbine, which orientated identically and has the same rotor diameter than

Figure 2. Analysis Time evolution of the impact of wake center (at a 1.8 diameter downwind distance) when different running average filters applied window lengths *T* are used to average the flow on during the wake center calculation.

the first, would produce the least powerresulting in. This yields the minimization problem

$$\min_{y} \int_{0}^{2\pi} \int_{y}^{R+y} u(r,\phi)^{3} r \, \mathrm{d}r \mathrm{d}\phi,\tag{1}$$

where the position of the turbine is described in the polar coordinate system (r, ϕ) with the origin at y (lateral offset) and z = 0 (hub-height). The definition then assumes that the wake center is at (y, z).

- 5 The wake center is calculated every time step of the available flow field data which is every second. In addition to Vollmer et al. (2016) the flow field is time averaged with different time constants. The impact of time averaging is analyzed with different running average filters for the flow and shown flow field is time averaged over different running window lengths and the impact of the wind lengths is analyzed. The calculated wake center (at a 1.8 diameter downwind distance) filtered with a running averaged filter with different window lengths are presented in Figure 2. Therefore, a SOWFA simulation with low turbulence level and a mean
- 10 wind speed of 8 m/s is used in which the flow field is sampled and every 1 s. The presented results are for a low turbulence (TI = 6%) SOWFA simulation under a mean hub-height free-stream wind speed 8 ms^{-1} . The available flow field data has a sampling frequency of 1 Hz and the wake center is calculated from each sample. The wake center clearly converges to a steady value with increasing averaging time T. An increased averaging time, however, slows the adjustment, e.g. to a changing wind direction, or a set point change, and should be considered when choosing an averaging time.

15 3.2 Problem discussion of lidar-based wake tracking

Compared to other problems in lidar-based wind field reconstruction the problem of wake center estimation is different. Other model based approached approaches in wind field reconstruction like (e.g. estimation of the rotor-effective wind speed, or estimating of u and v wind vector components using lidar measurements like in Schlipf et al. (2012), can first compare as in Schlipf et al. (2012)) can first be compared to existing quantities. Further, the used models can be used to predict line-of-sight

velocities (v_{los}) of lidar measurements and be directly compared to the real data. Therefore, the model can be used in two directions, estimating and predicting the wind field.

Here, having the wake center defined like in Eq. (1) the prediction of the wind field from a given position is not possible and further a direct comparison of line-of-sight data is not possible. Nevertheless, the wake center position definition seems to be very convenient and is therefore used as reference.

4 A simplified wake model for wake tracking

The estimation task addresses the processing and estimation of useful information and provides them to the controller. Since a lidar system has several limitations, the desired quantities, like the wake position, or the wake deficit, are not measurable and have to be estimated from the measurement data. One main limitation of a lidar system is that it only returns the projection of the wind speeds along the direction of the laser beam. This means that a lidar system only provides scalar information of the actual wind vectors. Further, the wind speed is not measured at a certain point but in a volume around the desired measurement location. A solution to this these limitations is to implement model-based wind field reconstruction. Wind field reconstruction methods have been developed and used for different applications of lidar system usage systems in wind energy, for example static two- and three-dimensional, Schlipf et al. (2012), dynamic three dimensional wind field reconstruction

15 methods, see Raach et al. (2014), and approaches for floating lidar systems, Schlipf et al. (2012). Here, the concept of wind field reconstruction is used to obtain information about the wake.

Figure 3. The general concept of model-based wind field reconstruction: Estimating, in which the wind field characteristics are estimated by fitting simulated lidar measurement data ($v_{los,s}$) to the measurement ones measurements ($v_{los,m}$).

The general approach of wind field reconstruction from lidar data is to estimate wind field characteristics from an internal model by fitting simulated lidar measurements data to the measured ones. In Figure 3 the basic idea of model-based wind field reconstruction is shown. An optimizer is used to find the best fit for a model of the assumed wind field with the defined lidar

20 configuration. The optimizer minimizes the square error of the modeled (simulated) $v_{los,s}$ and the measured $v_{los,m}$ lidar lineof-sight velocities and returns the estimated wind field parameter . model parameter (e.g. wake center position, wake decay, wake deficit, etc.). For the model-based wind field reconstruction an adequate wind field model is crucial. For estimating wake information and tracking the wake, the In this work, a lidar and a wind field model is used. The wind field model has to include a model for the wake in the wind field. Thus, consists of a background wind field model, which defines the ambient wind speed and its profile, and a wake model is necessary which. The wake model includes the main wake effects: wake deficit, wake evolution, and wake center displacement. Further, an underlaying wind field model is used. The models are presented in the following section.

10

1

4.1 Wind field model

Figure 4 shows the subparts of the wind field model: 1) the underlaying wind field, and 2) the wake model.

The wind field model is described in a wind coordinate system which is denoted by the subscript W. It is rotated horizontally with respect to the global inertial coordinate system I and aligned with the wind direction. The wind speed vector in the W-system is transformed in the I-system by

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix}_{I} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}_{W},$$
(2)

where α is the horizontal rotation of the wind field. The <u>underlaying underlying</u> wind field includes the rotor effective wind speed v_0 and vertical linear shear δ_V . It is assumed that the wind field has only a *u* component. Thus, in the *W* coordinate system, the <u>underlaying wind field is underlying wind field vector at point *i* with the coordinates $\begin{bmatrix} x_i, y_i, z_i \end{bmatrix}^T$ </u>

5
$$\begin{bmatrix} u \\ v \\ w \end{bmatrix}_{i,W} = \begin{bmatrix} v_0 + z_i \delta_V \\ 0 \\ 0 \end{bmatrix},$$
(3)

Figure 5. The initial wake deficit over-directly evaluated at the normalized rotor disk(at 0 m downstream). The mean hub-height wind speed (8 ms^{-1}) was removed for simplicity. No yaw misalignment is applied.

where z_i is the height above the ground. This is illustrated in Figure 4 on the left. Further, the wind field is linearly overlaid with the wake model Ψ for the u and v component. Thus, this yields components yielding

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix}_{i,W} = \begin{bmatrix} v_0 + z_i \delta_V + \Psi_{u,i} \\ \Psi_{v,i} \\ 0 \end{bmatrix}.$$
(4)

In the following section, the considered wake effects are described and the wake model is presented.

5 4.1.1 Wake deficit and wake evolution model.

10

The rotor extracts energy from the wind and converts it into electrical energy. Therefore, the wind speed is reduced behind a wind turbine. Through mixing and energy flow from the surrounding the deficit is cleared over distancemomentum deficit recovers. The wake deficit is modeled with an initial wake deficit at the rotor disk with tip and root losses depending on the energy extraction. In order to get the initial deficit, the energy extraction is mapped by applying Prandtl's root and tip loss function $\Gamma_{Prandtl}$. Applying the energy conservation assumption yields

$$(v_0 + s\Gamma_{\text{Prandtl}})^2 - (1 - c_P)v_0 = 0,$$
(5)

with the power coefficient c_p . Solving this equation for s gives the initial wake deficit

$$\Psi_{\text{init}} = s_{\text{solution}} \Gamma_{\text{Prandtl}}.$$
(6)

An exemplary initial wake deficit Ψ_{init} is shown in Figure 5.

The wake is evolving as it moves away from the wind turbine. New energy is flowing from the side and above and the flow is mixedflows in from the freestream and mixes with the wake. Physically these dynamics are described via the Navier-Stokes equations. These are partial differential equations and it would be a very complex task to estimate the wake using these equations. However, here an empirical model is used which models the impulse dissipation. In wake recovery, However, in

contrast to other wake models, however, the wake evolution is modeled by a Gaussian shape 2D filter. The 2D filter Ξ depends on the distance d behind the wind turbine

$$\Xi(d, y_i, z_i) = \exp\left(\frac{y_i^2 + z_i^2}{2\sigma_f^2(d)}\right) \tag{7}$$

with

25

5
$$\sigma_f(d) = \frac{d\epsilon}{2\sqrt{2\log(2)}} \frac{d\cdot\epsilon}{2\sqrt{2\log(2)}}$$
(8)

and y_i and z_i the grid points in distance d. With the parameter ϵ the dissipation rate can be set.

Thus, for every distance behind the rotor, the wake can be evaluated using the initial wake deficit Ψ_{init} and the filter (7). The wake deficit results from the convolution of the initial wake deficit Ψ_{init} with the filter $\Xi(d, y_i, z_i)$ to

$$\Psi(d, y_i, z_i) = \Xi(d, y_i, z_i) * \Psi_{\text{init}}$$
(9)

10 4.1.2 Wake deflection model.

The wake deflection caused by a yaw misalignment γ is additionally modeled. The relationship is derived in the study of Jiménez et al. (2010) and was successfully used in an optimization of the yaw angles for a <u>simulated</u> wind farm in Gebraad et al. (2014). The angle of the wake with respect to the main wind direction is

$$\xi(d, c_T, \gamma) = \frac{\xi_{\text{init}}(c_T, \gamma)}{\left(1 + \beta \frac{d}{D}\right)^2},\tag{10}$$

15 with the initial angle of the wake at the rotor

$$\xi_{\text{init}}(c_T, \gamma) = \frac{1}{2}\cos^2(\gamma)\sin(\gamma)c_T \tag{11}$$

and the model parameter β , which defines the sensitivity of the wake deflection to yaw and is here assumed to be known in advance. Further, c_T is the thrust coefficient and D the rotor diameter. Thus Further, the yaw induced deflection at the downwind position d is according to Gebraad et al. (2014)

20
$$\delta_{\text{yaw}}(d, c_T, \gamma) = -\xi_{\text{init}}(c_T, \gamma) \frac{D}{30\beta} \left[15 \left(1 - \frac{1}{1 + \frac{2\beta d}{D}} \right) + \xi_{\text{init}}(c_T, \gamma)^2 \left(1 - \frac{1}{\left(1 + \frac{2\beta d}{D} \right)^5} \right) \right].$$
 (12)

The rotation is applied to the wake deficit and yields a u and v component of the wake model,

$$\begin{bmatrix} \Psi_{u,i} \\ \Psi_{v,i} \\ 0 \end{bmatrix}_{W} = \begin{bmatrix} \cos\xi(d,c_T,\gamma) & -\sin\xi(d,c_T,\gamma) & 0 \\ \sin\xi(d,c_T,\gamma) & \cos\xi(d,c_T,\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Psi_i \\ 0 \\ 0 \end{bmatrix}_{W}$$
(13)

In Figure 6 two different wake situations are shown, the first is a non-yawed non-yawed case and in the second case the turbine is yawed with $\gamma = 25 \text{ deg.}$ In both cases the <u>underlaying underlying</u> wind field has a <u>constant mean hub-height free stream</u> wind speed of $v_0 = 16 \text{ m/s}$ and no vertical shear.

Figure 6. Visualization of two wake situations within a constant wind field of $v_0 = 16 \text{ m/s}$, axial induction a = 0.15 and dissipation rate $\epsilon = 0.1$.

5 The estimation task - model-based wake tracking

As summarized before the estimation task performs the wake tracking using the presented wake model. To perform a lidarbased waked tracking a lidar model is needed. First, the lidar model is presented and then the wake tracking approach is described. Finally, estimation results of two different cases are presented and discussed.

5 5.1 Lidar model

The lidar measurements can be modeled by a point measurement in the wind field. In the inertial coordinate system this is done by a projection of the wind vector $\begin{bmatrix} u_i & v_i & w_i \end{bmatrix}_I^T$ onto the normalized laser vector in the *i*-th point $\begin{bmatrix} x_i & y_i & z_i \end{bmatrix}_I^T$ with focus distance $f_i = \sqrt{x_{i,I}^2 + y_{i,I}^2 + z_{i,I}^2}$ by $v_{los,i} = \frac{x_{i,I}}{f_i} u_{i,I} + \frac{y_{i,I}}{f_i} v_{i,I} + \frac{z_{i,I}}{f_i} w_{i,I}.$ (14)

10 5.2 Model-based wake tracking

As depicted in Figure 3, the model based wind field reconstruction method estimates the model parameter by minimizing the error between measured line-of-sight wind speed $v_{los,m}$ and simulated line-of-sight wind speed $v_{los,s}$. A nonlinear optimization problem is formed for *n* measurement points. This yields

$$\min_{p} f(x) = \min_{p} \begin{bmatrix} (v_{los,m,1} - v_{los,s,1})^{2} \\ \vdots \\ (v_{los,m,n} - v_{los,s,n})^{2} \end{bmatrix},$$
(15)

15 where in p all free model parameters are included. The free model parameters are listed in Table 1.

Figure 7 shows one An example of an estimation step of the wake tracking from a measurement campaign at the alpha ventus offshore wind farm is shown in Figure 7.

Figure 7. A plot of one An exemplary estimation step of the wake tracking. The simulated lidar measurements in the first row are compared to the measured lidar data in the second row for five <u>downstream</u> distances from 0.6 to 1.4 times the rotor diameter (from left to right, [0.6, 0.8, 1.0, 1.2, 1.4], looking downstream). The estimated wake center is marked with the black dot.

5.3 Evaluation and discussion

5

Figure 7 has already shown shows that the model fits well for the application and can be applied with real measurement data. In the following, SOWFA (Churchfield and Lee (2012)) is considered as simulation tool. Flow snapshots of a simulation of a single wind turbine are stored and merged to a wind field which. The flow field is then scanned with a lidar simulator. The lidar scans with a 7x7 grid in 7×7 grid at five distances from 0.6 to 1.4 times the rotor diameter (D = 126 m). Two different cases are analyzed: First, a case where the turbine is aligned with the wind direction. The estimation results are shown in Figure 8. Second, the turbine is misaligned with 30 deg to deflect the wake. The results of the wake tracking is shown in Figure 9. In both figures the wake center is estimated at the most far furthest scanning distance of 1.4D = 176.4 m. In both cases the method shows the ability of estimating the wake parameter and tracking the wake center.

Table 1. The free model parameter for the wind field model which are estimated in the optimizer.

underlaying wind field		_	wake model	
v_0	rotor effective wind speed	_	c_T	thrust coefficient
δ_V	vertical linear shear		c_P	power coefficient
			γ	turbine yaw angle
			ϵ	wake dissipation coefficient

Figure 8. Time results of the wake tracking of a SOWFA simulation. The wind turbine is aligned with the main wind direction. The lidar scanned in a $7x7-7 \times 7$ grid in at five distances from 0.6D to 1.4D. The wake center is estimated at the most far furthest scanning distance 1.4D = 176.4 m

Figure 9. Time results A second time evolution of the different estimated wind field and wake tracking of a SOWFA simulation In this case, the wind turbine is misaligned with 30 deg and the wake is deflected. The lidar scanned in a $7x7-7 \times 7$ grid in at five distances from 0.6D to 1.4D. The wake center is estimated at the most far furthest scanning distance 1.4D = 176.4 m

Figure 10. Comparison between the wake center estimation (see Eq. (1)) and the lidar-based wake tracking method.

As mentioned before the wake center positions position needs to be calculated using a specific definition and there isn't a is no direct measurable representation of it. In Figure 10 the lidar-based wake tracking is compared to the wake center estimation using the definition of Eq. (1) without any filtering.

6 The control task

5 The following closed-loop controller was first presented in Raach et al. (2016) and is recapped here. Then, in a second step having analyzed the wake center displacement from the wake tracking, the filtering is discussedConsider also Raach et al. (2017) where a \mathcal{H}_{∞} controller design for closed-loop wake redirection with defined performance margins.

As mentioned above, the reaction of the wake to a yaw action can only be measured with a time delay. To control a delayed system, the Smith Predictor approach has been derived and used in many applications. Internal model control is the basic idea

10 of a Smith Predictor.

The presented controller follows the idea of internal model control in which the difference between the actual system output and a predicted output is used within the controller to regulate the system. Therefore, a model is necessary for describing the wake effects in a simplified but sufficient way. It consists of the controller which is a classical proportional-integral controller. Further, an internal model is used which approximates the real system behavior. The wake propagation which exists because

15 the wake flow has to evolve until it reaches the measurement location of the lidar system is approximated with an <u>a</u> delay. The time delay τ varies with respect to the mean wind speed. Finally, a filter is needed to cancel out controller actions which can not be observed because of the time difference between control action and measurement location. Figure 11 shows the general concept of the controller.

Figure 11. The general structure of the wake steering controller: The controller, a simplified wake model and the wake propagation modeled with a delay, and the filter. The controller uses the difference, δy_L , between the predicted output \tilde{y} , the measured output y_L and the desired output $y_{L,des}$ to set the demanded yaw angle γ_{dem} .

6.1 Internal wake model of the controller

As depicted in Fig. 11, the wake controller needs an internal model to predict the reaction of the wake to the demanded yaw angle. The internal wake model includes the yaw actuator and the yaw induces wake deflection. For the wake model the assumptions of a constant thrust coefficient $\frac{c_T}{c_T}$ is made.

5 Altogether, this yields an internal controller model $\widetilde{\Psi}$ of the reality Ψ :

$$\widetilde{\Psi}: \begin{cases} \qquad \ddot{\gamma} + 2d\omega\dot{\gamma} + \omega^2\gamma = \omega^2\gamma_{dem} \\ \widetilde{y} = \delta_{\text{yaw}}(d_{\text{Lidar}}, c_{T,\text{const}}, \gamma) \end{cases} \text{ yaw actuator dynamic wake deflection model}$$
(16)

with γ_{dem} the demanded yaw angle and d_{Lidar} the distance to the measurement location.

There is a time delay because the wake first needs to evolve to the measurement location:

$$\tilde{y}_L(t) = \tilde{y}(t-\tau). \tag{17}$$

10 For the controller design, the time delay is approximated using the Pade Pade approximation of time delays, see Skogestad and Postlethwait

6.2 Controller design

The primal goal of the wake controller is to steer the wake center to a desired point in a defined distance by yawing the wind turbine. As mentioned, this is done using a Smith Predictor. A Smith Predictor, which uses an internal model to predict the output reaction. Then the predicted wake center position and the filtered error between predicted and measured wake center

15 position is fed back to the controller.

6.2.1 Controller

A standard proportional-integral (PI) controller is used. It is designed such that the closed-loop performance with the internal model (16) meets a phase margin of 60 deg and a closed-loop bandwidth of $\omega_{CL} = \frac{1}{2\tau}$. This yields a controller of the form

$$u = K_p \Big(\Delta y_L + \frac{1}{T_i} \int \Delta y_L \mathrm{d}t \Big), \tag{18}$$

5 with the proportional gain K_p and the time constant T_i .

6.2.2 Filter

The wake propagation and the caused delay disables a direct measure of a yaw change and because of that one has to filter the measured feedback to prevent non-observable yaw actions. Since the delay τ is time varying and depends on the mean wind speed the filter has to be adaptable. Therefore, the cutoff frequency of the butterworth low-pass filter is set to $\omega_{\text{filter}} = \frac{\pi}{8\tau}$.

10 6.3 Evaluation and discussion

In the following the wake controller is analyzed. Further, the sensitivity and the complementary sensitivity of the closed-loop system is assessed. Consider Skogestad and Postlethwaite (2005) for a detailed description on controller design and analysis.

6.3.1 Controller analysis

In the following the transfer function of the wake controller is assessed. As shown in Figure 11 the wake controller consists of the internal controller C, an internal model $\tilde{\Psi}$, the time delay approximation W and the filter F. Having merged all parts the wake controller K is

$$K = \frac{F}{(1 + C\Psi(1 - FW))}.$$
(19)

Figure 12 shows the bode analysis of the wake controller K. The controller shows integration behavior, starting with $-90 \deg$ phase.

20 6.3.2 Closed-loop analysis

To perform closed-loop analysis the internal controller model $\widetilde{\Psi}$ is transformed to Laplacian space yielding the plant G. Then, the sensitivity S and the complementary sensitivity T that are

$$S = \frac{1}{1 + GK}$$
(20)
$$T = \frac{GK}{1 + GK},$$
(21)

25 with the controller K are assessed and shown in Figure 13.

Figure 12. Bode analysis of the designed controller *K*.

Figure 13. Sensitivity S and complementary sensitivity T analysis of the closed-loop system.

7 Conclusions

This paper introduces first a method which uses lidar measurements to estimate wind field parameters and <u>enable enables</u> a tracking of the wake center position. Second, a controller is presented which uses this information to redirect the wake to a desired position.

5 In two different cases using simulated lidar measurements of SOWFA simulations, the wake tracking shows promising results in estimating the wake center. The difficulty in wake center position definition is elaborated. A definition is used and the wake tracking results are compared to it.

The challenges of a lidar-based wake redirecting control problem are discussed and an appropriate controller is designed to meet the desired requirements.

10 This enables the next step towards a closed-loop wake redirecting in an a high fidelity simulation tool which is aimed as a next step.

As an outlook, the presented framework of lidar-based closed-loop wake steering offers new possibilities for wind farm control. In a next step, it will be implemented and tested in a high fidelity simulation tool and tested in real time. For the control problem , different controller approaches robust controllers will be investigated such as \mathcal{H}_{∞} controllers or robust controllers.

15 Dynamic estimation techniques as well as other wake estimation models will be used for comparing the ability of tracking the wake and finding the most suitable approach for this task.

References

5

15

25

- Annoni, J., Gebraad, P. M., Scholbrock, A. K., Fleming, P. A., and van Wingerden, J.-W.: Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model, Wind Energy, 19, 1135–1150, 2015.
- Boersma, S., Doekemeijer, B., Gebraad, P., Fleming, P.and Annoni, J., Scholbrock, A., Frederik, J., and van Wingerden, J.-W.: A Tutorial on Control-Oriented Modeling and Control of Wind Farms, in: Proceedings of the American Control Conference (ACC), 2017.
- Borisade, F., Luhmann, B., Raach, S., and Cheng, P. W.: Shadow Effects in an Offshore Wind Farm Potential of Vortex Methods for Wake Modelling, in: Proceedings of the German Wind Energy Conference DEWEK, Bremen, Germany, 2015.

Churchfield, M. and Lee, S.: NWTC design codes-SOWFA, URL: http://wind. nrel. gov/designcodes/simulator s/SOWFA, 2012.

- Fleming, P., Gebraad, P. M., Lee, S., Wingerden, J.-W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Simulation
 comparison of wake mitigation control strategies for a two-turbine case, Wind Energy, 18, 2135–2143, 2014a.
- Fleming, P. A., Gebraad, P. M., Lee, S., van Wingerden, J.-W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Evaluating techniques for redirecting turbine wakes using SOWFA, Renewable Energy, 70, 211–218, 2014b.
 - Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J., Fleming, P., Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study, Wind Energy, 19, 95–114, doi:10.1822/we, 2014.
- Jiménez, Á., Crespo, A., and Migoya, E.: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw, Wind Energy, 13, 559–572, 2010.
 - Raach, S., Schlipf, D., Haizmann, F., and Cheng, P. W.: Three Dimensional Dynamic Model Based Wind Field Reconstruction from LiDAR Data, in: Journal of Physics: Conference Series: The Science of Making Torque From Wind, vol. 524, Copenhagen, Denmark, 2014.
- 20 Raach, S., Schlipf, D., Borisade, F., and Cheng, P. W.: Wake redirecting using feedback control to improve the power output of wind farms, in: Proceedings of the American Control Conference (ACC), Boston, USA, 2016.
 - Raach, S., van Wingerden, J.-W., Boersma, S., Schlipf, D., and Cheng, P. W.: Hinf controller design for closed-loop wake redirection, in: Proceedings of the American Control Conference (ACC), 2017.

Schlipf, D., Rettenmeier, A., Haizmann, F., Hofsäß, M., Courtney, M., and Cheng, P. W.: Model Based Wind Vector Field Reconstruction from Lidar Data, in: Proceedings of the German Wind Energy Conference DEWEK, Bremen, Germany, 2012.

Skogestad, S. and Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, John Wiley & Sons, 2005.

Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study, Wind Energy Science, 1, 129–141, doi:10.5194/wes-1-129-2016, 2016.