
Reply to comments of “Anonymous Referee #2”: 

First, the authors wish to thank “Referee #2” for the detailed and thoughtful comments.  The 
reviewer’s comments will serve to improve the paper considerably.  Point by point replies 
follow: 

General comments  

The authors have presented a very interesting idea for efficiently improving the esti- mates of 50-
year extreme loads for wind turbines. Most attractive about the method is its overall simplicity, 
using the well-known concept of importance sampling and deriving a simple gradient for the 
variance of the extrapolation estimate that can be used to add the required number of additional 
samples for each wind bin, in order to reduce the variance of the estimate to an acceptable level. 
With a few exceptions, to be noted below, the presentation of both background details and the 
method is clearly written. The results seem to show that the method works quite well, without 
having to run the optimization for a prohibitively long time. However, there is one aspect of the 
setup of the problem that obscures the true meaning of the results, again to be expanded on 
below. Unless this can be clarified, interpretation of the results is difficult. As a preliminary 
demonstration of the approach, and assuming they hold up to scrutiny, these results are 
promising and the method could be of use both in conventional assessments of the 50-year 
extreme load and also in other settings like reliability assessments. It is also nice to see that the 
authors are open and critical about the overall power of the method and they make some 
interesting points about the limits of the current analysis framework and suggestions for other 
ways to improve extreme value analysis for wind turbines.  

Specific comments  

Introduction:  

On page 2, lines 14-15 you write: “... reliable extrapolation of nonlinear physics under 
uncertain forcing is extremely problematic, especially without knowledge of the form (e.g. 
quadratic) of the nonlinearity." This is certainly true, but an equally important reason why the 
specific type of long-term extrapolation usually done for the evaluation of 50-year extreme loads 
is problematic is precisely the large differences in timescale between the data and the 
extrapolated estimate. This impacts the problem in many ways, certainly also through the 
nonlinearity you mention, but in a more practical sense this large difference in timescales means 
that any uncertainty in the data is necessarily magnified by the extrapolation. Small errors in the 
short-term data set could potentially lead a designer to significantly over- or underestimate the 
long-term extreme loads. Later in the paper you show that there can be a large variance in the 
extrapolation, which is in turn reduced by your proposed method, so this overall point should be 
mentioned here.  

This is an excellent point about the difficulties due to time scales and we can certainly add some 
language to that effect to the problem introduction. 

Section 2.2, Extrapolation:  



On page 4, line 2 you write: “In this paper we use a 3 parameter Wiebull distribution.” Why this 
distribution? This choice may for the demonstration of the method be seemingly irrelevant, but 
some reason for the choice would be instructive for the reader. One might wonder, for example, 
if this is indeed the distribution that overall gives the best fit for your data and is therefore the 
easiest to use for illustrating the method. Certainly, the Gumbel distribution, for instance, can be 
easier to work with (since it has only 2 parameters), so it seems there must be some motivation 
for choosing the Weibull. For reasons of clarity and reproducibility, it would also be of interest 
to know what method you used to fit the distributions to your data. Maximum likelihood 
estimation perhaps? Please state this.  

We agree there is a lack of a full explanation here.  We used the 3-parameter Weibull because it 
has worked well in previous work.  There are many excellent papers concerning extrapolation 
and efforts to justify and/or distinguish between different extreme value distributions (e.g., 
Ragan and Manuel,“Statistical Extrapolation Methods for Estimating Wind Turbine Extreme 
Loads”, Toft, Sorenson, and Veldkamp, “Assessment of Load Extrapolation Methods for Wind 
Turbines”).  It is not the purpose of the current paper to assess the different distributions.   

Regarding the fitting procedure, in light of the interest in particular in extrapolation, rather than 
just fitting, we have fit the empirical cumulative distribution function of the data directly to the 
theoretical cumulative distribution function (CDF) of the distribution by nonlinear least squares.   
We have done this separately for the data from each wind speed bin. In order to emphasize the 
largest peaks (i.e. the lowest probability values) we do not use all the data, just the Mpks largest 
peaks, where Mpks is an algorithmic parameter.  As an exercise, we experimented with using 
different values of Mpks (e.g., see Fig 2). 

On page 4, line 29 you write: ”To gather peaks, we take the maximum of each 1 minute segment 
in our simulations.” Yet, you already stated on lines 17-20: ”Finally, there is the length of time 
between independent peaks ... values as low as 4 seconds have been justified in previous studies 
(Ragan and Manuel, 2008), and 10 seconds seems to be more than 20 adequate.” So why this 
choice of 1 minute separations? Based on what you write later in the paper it seems to be 
motivated by a desire to only use the largest peaks, hence using smaller separations would yield 
maxima that might not give a good description of the extreme behavior of the system. If this is 
the case, or if there is some other motivation, it would be instructive to have it stated clearly 
here. To be very precise, given that one wants a number of peaks that exactly divides the total 
simulation length, why not a 30 second separation, which would give twice the number of 
maxima and hence more data per simulation with which to fit the distributions while maintaining 
3 times the required separation to maintain independence of the peaks?  

The tradeoff between gathering more peaks (at the risk of sacrificing statistical independence) 
versus less peaks (at the risk of not having enough data) is another interesting detail that we 
could study. In this vein, our use of 1 minute intervals and your proposal to use 30 second 
separations has a similar motivation, which is simply to pick a reasonable point along that 
tradeoff that avoids the pitfalls of either end point. 

Section 3.2, ASIS as stochastic optimization:  

As a more general point, it is clear from the fact that the variance is what is being minimized, as 



well as studying equation (21) and from the algorithm summary on page 10, that the procedure 
is only ever going to add samples to the various bins, never remove samples. However, viewed as 
a more general optimization problem, an unattentive reader could believe that such an algorithm 
might in fact reduce the number of samples in a bin. Perhaps this “uni-directionality” of the 
algorithm should be stated more clearly to avoid any possible confusion over what its purpose is.  

Agreed. In principle we can imagine “solving” the bin-optimization problem once and for all, 
which would give us an optimal distribution of bins.  Then, given a certain computational 
budget, we could apportion the samples to bins proportionally, which would indeed possibly 
reduce the number in some bin from the original search.  Our orientation was more from an “on-
line” perspective: why not use data from bins you have already run simulations on?  It would be 
easy to add a sentence clarifying this point. 

On page 10, lines 11-12 you write: “Also, the Ni need to be integers, which is accomplished by 
rounding. The resulting error is likely subsumed into the general convergence of the stochastic 
optimization procedure.” This statement needs a more convincing justification. For a k-
dimensional optimization problem, which for a discrete solution set induces a k-dimensional 
lattice of discrete points, it is not immediately clear that a local minimum in the continuous case 
is also a local minimum in the discrete case. That is, when going from some continuous set of Ni 
(a point in k-space) to a discrete set of Ni (a point on the k-lattice) by rounding each Ni to the 
nearest integer, the corresponding function value is not necessarily lower than at neighboring 
points on the lattice. If such a correspondence between minima in continuous and discrete space 
can be established for this particular case, it needs to be justified by specific arguments or at 
least by reference to another work.  

We have no such formal justification for this procedure.  The thinking is simply that we assume 
the variance of the estimate as a function of bin distribution is a smooth enough function that it is 
a reasonable approximation to round to the nearest bin counts.  Given that we do have to round 
to integer bin counts, this is the best we can do.  Furthermore, this is a stochastic problem, so it is 
likely that the continuous-valued bin counts have some error associated with them anyway.  We 
claim (without proof, but believe it is a reasonable assertion) that the error induced by the 
unconverged sampling procedure is just as much or more than that induced by the rounding to 
integers of the bin counts.  We are certainly not claiming that the rounded minimum is lower 
than the “relaxed” (i.e. continuous-valued) minimum; this is patently false, because the possible 
discrete bin-counts are a subset of the continuous ones. 

On page 10, line 18 you write: “In fact we have to decide some number of ”large peaks” we will 
use to evolve N.” Why? Presumably you already have all the information from the extrapolation 
that has already been performed before estimating the gradient. So why must the gradient only 
be estimated from some limited number of large peaks? The motivation for this is certainly not 
clear from the text.  

This is, operationally, a separate step from the extrapolation (in fact, the ASIS variance 
minimization can be performed without ever performing extrapolation).  In retrospect, there may 
be an interesting connection between the number of peaks used for extrapolation (Mpks) and the 
number of peaks that enter into the gradient-of-variance calculation, but this is beyond the scope 



of the current paper (though if you are confused, we will clarify this distinction in the text).  The 
choice of the “5 largest peaks” is rather arbitrary, enough so that more than the single largest 
peak contributes, but not so many as to deemphasize the goal of finding large peaks. 

Section 4, Results:  

To demonstrate the method, you set up a problem where you seek the ideal number of peaks, 
Mpks, to use for the fitting. However, it is unclear how this variable relates to the extrapolation 
procedure already described. Initially, you have used 10 maxima, 1 per minute of simulation 
time, for each wind speed bin. Is it this number of 10 maxima which is now a variable? If so, how 
is this actually accommodated in the extrapolation? For example, in Figure 2 you show the 
extrapolation for many different values of Mpks.  How do you get the additional peaks? Do you 
perform another T minutes of simulation corresponding to the number of additional peaks 
needed? Or do you decrease the separation time between maxima and hence extract more 
maxima from the simulation data you already have? If the former, do you perform specifically 
the required amount of simulation time for each case or do you perform enough simulations for 
all the different values of Mpks you have used and then simply use the 5, 10, 20, 40 etc largest 
peaks from this expanded set of potential maxima? These different ways of solving the problem 
have very different statistics and therefore different implications for the extrapolation itself. 
Using the largest 20 maxima from 160 minutes of simulation time is very different from using 20 
maxima from 20 minutes, which is very different from using the 20 largest maxima from 10 
minutes and so on. In fact, depending on which of these approaches is used, it is not clear 
whether the results are truly meaningful. Nor is it clear how the number of maxima used might 
or might not interact with the number of samples in each bin as dictated by the ASIS optimization 
procedure.  

Clearly the description of the choice of peaks to use for fitting is inadequate.  For Figure 2, for 
example, we have run FAST for 10 minutes 20 separate times for each bin (the figure shows only 
the results for the 20 m/s bin, but the others are similar).  This results in 200 minutes of total 
simulation time, thus according to our 1-peak-per-minute convention (which is fixed throughout 
the paper), 2000 peaks.  Each line on the figure (e.g. “5 peaks”, “10 peaks”, etc.) is the result of 
fitting the 3 parameter Weibull CDF to just the largest Mpks (e.g. 5, 10, etc) of these 2000.  The 
line labelled “empiricial CDF” is the empirical CDF of the 2000 peaks.  We were hoping to 
avoid having to argue about the distinctions you mention above by choosing very “vanilla”, 
uncontroversial values for these types of parameters, but our lack of clarity has unfortunately 
brought them all back into play.  We apologize and will clarify in the next draft.  We do not think 
the choices we made effected the meaningfulness of the results.  The number of maxima used is 
similar to the choice of threshold in peak-over-threshold method, or the simulation time in 
methods just taking the single maximum from each simulation.  In this context it is well-studied 
in the literature, but we agree that its role in ASIS is a new twist.  Figures 3, 4,and 5 suggest that 
it is not a completely critical issue, however.  Quite a range of values for Mpks are effective, and 
the effectiveness (e.g., see Fig 3) is a relatively (for stochastic optimization) smooth function of 
Mpks. 

More details about the optimization are needed in order to ensure that the results are clear and 
reproducible. For example, the criteria for termination of the algorithm are unclear.  



The lack of precise convergence criteria is indeed a shortcoming of the present paper, 
especially because in practice this is critical: the user is seeking an estimate of the 50-
year load with some acceptable measure of its accuracy.  We have pointed at the way one 
would achieve this in practice.  In particular, we would recommend (as in the “Results” 
section) to uses ASIS iteratively in conjunction with extrapolation and bootstrapping:  
For each ASIS iteration, subsample via bootstrapping, form a large number of 
extrapolations, thus estimate the 50-year load and its variance.  The stopping criteria is 
then a user-specified threshold for the variance.  In short, monitor the (left and middle for 
ASIS and ASIS+extrapolation, respectively) curves in Figure 2 until the variance is below the 
desired level. 

Technical corrections  

• Section 2.2, page 4, line 2: ”In this paper we use a 3 parameter Wiebull distribution.” Should 
be ”Weibull”   

• Section 3.1, page 8, equation (12): Y (x) should be Y (xi)   

• Section 3.1, page 8, lines 14-15: ”Here we denote the dataset as {Yi,k} where i indexes over 
wind speed bins and k indexes over the peaks we have extracted at that wind speed.” This 
repeats almost exactly information already given in Section 2.2, page 3, lines 30-31. 
Consider removing (since we are already aware of the notation) or rephrasing. 

 Thank you for these. 

And thank you again for your careful reading and consideration of the paper. 

On behalf of the co-authors, 

Sincerely, 

Peter Graf,  
Computational Science Center and National Wind Technology Center, National Renewable 
Energy Laboratory  


