
 

Reply to comments of “Referee #1”, Lance Manuel: 

First, the authors wish to thank Professor Manuel for his detailed and thoughtful 
comments.  The reviewer’s comments point out some lack of precision in our discussion, 
especially that of IFORM, and will serve to improve the paper considerably.  Point by 
point replies follow: 

The entries in “Courier” font have been added (Dec, 2017) 
to our initial replies (Oct, 2017, “Times” font) as we 
prepared our revised manuscript.  They contain more 
specific descriptions of what we actually changed in the 
revised manuscript. 

Overview and General Comments  
This is a most interesting presentation of a vexing problem that has proven to be a 
challenge to wind turbine loads analysts for many years. The ideas developed by the 
authors and the narrative discussing the desire to “bridge” more conventional 
extrapolation methods and variance reduction techniques that go beyond brute-force 
Monte Carlo simulations are welcome. Casting the problem as an optimization problem, 
albeit without the usual formalisms, so as to adaptively improve estimates of long-term 
loads is done most effectively. Throughout, there are interesting insights and discussions 
that make for an illuminating reading and exposure to the essential issues.  

Specific Section-by-Section Comments  
Introduction  

The description about IFORM on Page 2, Lines 12–13 should be clarified. More 
correctly, only with the environmental contour (EC) method which is the most commonly 
employed version of IFORM, one uncouples the “environment” from the “response,” 
and global extremes of interest associated with a target return period are approximated 
by using the maximum response from among all response levels derived only for 
candidate environmental variables consistent with that return period (in other words, 
response variability given environmental conditions is neglected). That said, in cases 
such as the one described in this article, where the environment is described using only 
one random variable (wind speed), the EC method has limited use. The EC method is 
better suited when a pair of random variables (say, wind speed and turbulence intensity, 
or wind speed and wave height for offshore turbines) are included. When only one 
random variable defines the environment, the “environmental contour” for a target 
return period is reduced to a single wind speed. This has limited use because, for 



instance, in the present example, for both side-to-side and fore-aft tower bending 
moments, the method will suggest that only rare and high wind speeds around cut-out 
that are associated with a 50-year return period need to be considered in turbine 
aeroelastic simulations. This will clearly lead to inaccurate 50-year fore-aft tower 
moments.  

The applicability of EC does not depend on the number of random inputs as much as their 
joint probability.  Even with a large number of random inputs, we can envision response 
variability being the governing influence, i.e. a situation where the extreme load occurs at 
rather common environmental conditions.  This issue is just especially manifest in the 1-
variable case, where indeed the 50-year EC is just a single point. 

We have mostly rewritten the IFORM section based on your 
comments.  Thank you very much for helping clarify this 
issue. 

Now, despite the preceding comment that the EC method reduces the conventional 
environmental contour to a degenerate point or single-valued wind speed to consider for 
turbine response simulations, in fact, in the present case, one could instead use IFORM 
in its more general form and use wind speed and response as two random variables and 
formally derive estimates of 50-year side-to-side and fore-aft tower bending moments. 
This is discussed later, along with comments offered in the context of Section 2.4 
(IFORM).  

This is true, however, such estimates reintroduce extrapolation, which ASIS is designed 
to avoid (see below). 

Extrapolation  

Page 4, Line 14: Strictly speaking, the 50-year return period event is that event that is 
exceeded “on average” once in 50 years. Even though it is not the same in general, 
sometimes the event is defined as one that is exceeded “on average” with a probability of 
1/50 in one year.  

Thank you for this clarification; we should base our definition on the underlying 
assumption that this is a Poisson process and define our terms precisely from it. 

Inserted comment to this effect. 

Page 4, Line 26: 3.8−7 should be 3.8 × 10−7.   

Thank you, will be corrected. 

Corrected 



Monte Carlo importance sampling for extreme loads  

Page 6, Line 23: The comment that some form of accept-reject sampling can be used with 
importance sampling is an intriguing one. It is unclear how exactly this would be done 
given that Y (x) is not known in closed form; any additional notes, even if included very 
briefly, regarding such sampling would help.  

The comment is meant to address the problem that the normalization constant is not 
known, not that Y(x) is an expensive function. As long as we can evaluate Y(x), even if 
by simulation (we assume we can also evaluate f(x)), we can sample from any 
distribution proportional to Y(x)f(x) by the accept-reject algorithm (see, e.g. 
https://en.wikipedia.org/wiki/Rejection_sampling), which involves sampling uniformly in 
a 2D region containing the function Y(x)*f(x).  The probability of x w.r.t. the Y*f 
distribution is just the proportion of these uniform samples below Y*f in this 2D “box”.  
This procedure does require assumptions on the bounds of Y and the support of Y and f, 
but in principle these can be made large enough to “cover” any meaningful probability 
for Y*f. 

We have inserted this explanation into the text for the 
curious reader. 

IFORM  

As stated earlier, the EC method doesn’t apply here as there is no environmental contour 
corresponding to the authors’ example—such a contour is a degenerate single wind 
speed value obtained as F−1(3.8×10−7) and as such has limited value for, say, the fore-aft 
tower bending moment where the derived 50-year load will certainly be under-predicted. 
Indeed, in this single environmental random variable case, the degenerate single 
simulation needed for any response or load of interest would require simulations to be 
run for a single wind speed above cut-out, i.e., for V equal to 43.3 m/s. This would be 
meaningless.  

The authors correctly point to the deficiencies of IFORM (on Page 7) but, in light of 
comments in the preceding paragraph, since there is no environmental contour at all that 
can be defined to describe their example study, much of the extended discussion 
regarding the EC method and environmental contours as presented in Section 2.4 is not 
relevant.  

The discussion of EC is in part simply for reasons of completeness, but more importantly 
it is for conceptual aid.  For us to reach low probability events without extrapolation we 
need to correlate the extreme events directly to environmental conditions.  Otherwise, we 
must model the response variability, which puts us back in the modeling and 
extrapolation context we are seeking to overcome. 



We have substantially re-written the section on IFORM. We 
hope it is no longer misleading and irrelevant.  We think 
the distinction between environment and response, whether 
in the context of IFORM, EC, or not, is an important one: 
quantifiable uncertainty in “environment” we can handle, 
while unquantified uncertainty in “response” we cannot. The 
latter must therefore be treated either by assuming the 
data comes from a certain distribution, fitting the data to 
that distribution, and extrapolating to desired return 
periods, or by massive numbers of Monte Carlo samples such 
that empirical CDFs reach the desired return period.  IFORM 
(in its general sense) is simple and even beautiful to use, 
and it may be formulated differently than the traditional 
extrapolation approach, but as used it is still a form of 
extrapolation. It does not save us from the “extrapolate or 
sample massively” conundrum. 

Another way to say this: as a method, IFORM is great, but 
it is a form of extrapolation, which we are trying to avoid 
by using Monte Carlo approaches; but as a concept, IFORM/EC 
adds tremendous value to the discussion, because it 
highlights the notion of response variability, which is the 
crux of why extreme loads estimation is so hard to pin 
down.  

The conclusion of the paper, after all the method 
development, is that the best step forward is to study the 
actual response variability.  If we can quantify this 
variation, then we can target specific quantiles.  For 
example, suppose we knew that the side-side load was, say, 
a Weibull distribution with a certain shape and scale 
(these could of course be functions of wind speed).  Then 
the EC method could be directly used to find all the 
combinations of wind speed and load that have the 50-year 
return period probability.  Take that max load of these and 
we are done.  All the fitting and extrapolation are 
necessary because we do not yet have an understanding of 
the response variability.  Maybe we cannot have such an 
understanding, but trying seems justified, since that would 
be the only way to avoid extrapolation and to avoid massive 
computation, both of which everyone seems to agree is 
problematic. 



The discussion of IFORM/EC in the paper is not meant to 
really do justice to IFORM/EC as methods, but only to frame 
this discussion of the critical distinction, statistically, 
between environment and response.  Perhaps discussing it in 
this way is unfair; there is no intent to dismiss IFORM/EC 
as practical methods. 

Now, in a most interesting way, the very issue that doesn’t allow for a critique of the EC 
method—namely, that the authors choose only V as an environmental random variable—
actually allows the more general IFORM procedure to be used with the authors’ own 
simulation results and will lead to reasonable results (how this can be achieved is 
presented here very briefly). The idea is as follows: Consider that there are two random 
variables—wind speed, V, and the response or load, Y , whose statistics are derived from 
10-min simulations . We will assume that we know the probability distribution for V (for 
instance, here, the authors use a Weibull V with shape and scale parameters equal to 2 
and 11.28 m/s, respectively); we establish conditional distributions for Y given V based 
on simulations. We can use IFORM, though not the EC method, to find the required 
quantiles of Y |V for any V of interest. This is purely a geometry problem (involving 
mapping of V and Y to two independent standard normal random variables). To illustrate 
this, because the results presented in Figure 1 are the easiest to read off and learn from 
without great effort, one would find using IFORM that for TwrBsMxt, the 24 m/s bin 
would require that the desired 50-year response must have a probability of exceedance in 
10 minutes of 5.95×10−6. Given the 5th, 25th, 50th, 75th, and 95th percentile loads in 
Figure 1, a 2-parameter Weibull fit to these data leads to a 50-year TwrBsMxt value of 
29,700 kN-m. Other (lower) wind speeds occur more often and associated load levels to 
be checked for those wind speeds using the IFORM procedure must be rarer, i.e., with 
exceedance probabilities in 10 minutes that are smaller than 5.95 × 10−6. Given the data, 
these wind speeds do not lead to TwrBsMxt values at the desired probability levels that 
exceed what was found for V equal to 24 m/s. In a similar manner, for TwrBsMyt, 
selecting V equal to 16 m/s, the desired 50-year response for IFORM must have a 
probability of exceedance in 10 minutes of 7.20 × 10−7. Again, from the data in Figure 1, 
a 2-parameter Weibull fit to these data read off easily, leads to a 50-year TwrBsMyt 
value of 94,300 kN-m. Again, note that other wind speeds and associated (different) 
response quantiles need to be checked, as part of the IFORM procedure, to ensure that 
the largest load quantile across all the wind speed bins is then claimed as the 50-year 
load. Details regarding all the calculations are not presented here but IFORM 
computations are based on the Weibull V and loads data from Figure 1.  

This is wonderful!  You are the most inspired (and inspiring reviewer) ever.  We have no 
objection with your procedure, and it is certainly interesting that your results largely 
agree with ours.  We would point out, however, that in carrying out the IFORM 
procedure described above, you have taken our data and fit it to a Weibull distribution.  
The resulting low probability estimations are then made possible by extrapolation of this 



fitted model.  It would be interesting to investigate how this differs from simply fitting an 
extreme value distribution to the empirical data directly (as in the traditional bin-based 
IEC-recommended method).  It is quite possible that the IFORM, even though still based 
on fitting and extrapolation, is fundamentally more accurate because in some sense it 
“factors out” the environmental probabilities.  If some form of extrapolation is inevitable 
to get to 50-year loads in a tractable amount of computing time, maybe the combination 
of ASIS’s variance-minimization-sampling and general IFORM (as you describe) is a 
promising approach. 

In sum, the authors’ comment regarding searching on the environmental contour (or just 
inside it) is not pertinent here. There is also no need to discuss above-median response 
levels in this context. Both the preceding comments would have been appropriate if, in 
addition to wind speed, another environmental random variable were included such as 
turbulence intensity. As illustrated, IFORM in its general form can be easily employed 
here and response variability can be directly accounted for—as the authors state 
correctly, this variability is ignored by the EC method. It is not ignored by IFORM in 
general and, as shown in the previous paragraph, even with the limited data presented in 
Figure 1, the method works quite efficiently in deriving 50-year loads. By running 
additional simulations at critical wind speeds, the resulting loads data and subsequent 
distribution fits to the same will lead to reduced uncertainty in derived 50-year loads.  

Again, this is perhaps an important “intermediate step” between the traditional bin-based 
extrapolation method and the fully model-free ASIS method, i.e. more accurate than 
direct extrapolation but more computationally tractable than ASIS. But we feel it is 
important to point out that it does still indeed rely on fitting and extrapolation to achieve 
the desired 50-year return periods.  Filling this gap precisely would be a very interesting 
area for future study. 

By optimizing the sampling, ASIS can benefit any method 
that fits data to distributions, so certainly an ASIS-IFORM 
hybrid would be of interest. 

Adaptive stratified importance sampling (ASIS)  

Reference to POE, on Page 8, Line 20, should really be to the probability of non-
exceedance.  

Indeed correct; we can easily correct this. 

Done 

In Step 2 of the algorithm on Page 10, why not simply obtain new samples (with 
rounding) in proportion to ∆NJ(N)? It is not clear but it seems that the most important bin 
(where ∆NJ(N) is largest) is allocated some samples and the remaining (of 20) are then 



randomly allocated to other bins. Why randomly?  

Randomly because we cannot strictly rely on information gained from the limited number 
of samples gathered so far.  Due to random variation, the first N samples might not be 
leading us toward the correct bins, so “following” them could lead to a local solution to 
the minimal variance problem.  Choosing the rest of the samples randomly is a crude (but 
common) strategy in global optimization. 

Language that attempts to clarify this situation has been 
added below the algorithm description. 

The algorithm, as presented, appears not to state what is the criterion for stopping or 
convergence. The discussion regarding the “umbrella” concept that suggests a minimal 
superset of sample distributions across bins is exactly what is needed. It is the only way 
to guarantee adequate samples of response extremes to meet very distinct response 
characteristics such as between TwrBsMxt and TxrBsMyt. The ASIS algorithm as 
presented doesn’t explicitly state this but assumes convergence when all the response 
measures are adequately sampled in all bins so as to yield unbiased 50-year response 
values, presumably with some specified confidence level on these predictions. If it helps, 
in an offshore wind turbine application, Sultania and Manuel [3], employed bootstrap-
based confidence intervals for specific sea states (akin to bins here) to arrive at the 
appropriate number of simulations for accuracy in response probability distributions, 
conditional on the environment. Given the results presented in this article, it appears that 
convergence on long-term loads for each bin is indeed achieved by the authors in their 
examples by examining the variance of loads associated with low POE levels.  

The lack of precise convergence criteria is indeed a shortcoming of the present paper, 
especially because in practice this is critical: the user is seeking an estimate of the 50-
year load with some acceptable measure of its accuracy.  We have pointed at the way one 
would achieve this in practice.  In particular, we would recommend (as in the “Results” 
section) to use ASIS iteratively in conjunction with extrapolation and bootstrapping:  For 
each ASIS iteration, subsample via bootstrapping, form a large number of extrapolations, 
thus estimate the 50-year load and its variance.  The stopping criteria is then a user-
specified threshold for the variance. 

The lack of true stopping criteria in the current work is 
because we are still investigating the major properties of 
the method. We have added a recommendation and citations 
and recipe to use bootstrapping for production purposes.   

It was not clear, upon reading, what was the reason for using the 5 largest loads. The 
largest loads will automatically drive the tail of long-term loads distributions and, as 
such, the 50-year load, when these largest loads are included along with all smaller 
loads; so, why retain only the 5 largest? Some clarification would help here.  



This is indeed another part of the algorithm that would need further study before 
committing it to “production” use.  Calculating the gradient of the variance using the 5 
largest peaks was just an intuitive guess as to the number of loads that would drive the 
sampling in an effective way.  A similar parameter is the number of peaks used for 
extrapolation Mpks, which we studied (at least graphically) in Figures 2, 4, and 5.  Future 
work would be warranted to tune these parameters more systematically; hopefully it is 
convincing that the exact values of them does not undermine the principle of the method. 

Language intended to clarify this situation has been added.  
Using all the peaks would reduce the variance of the POE 
estimates of all the peaks, even the small peaks we don't care 
about, but using just the single largest might miss the (as yet 
undiscovered) peaks associated with other bins. The choice of 
the “5 largest peaks” is rather arbitrary, enough so that more 
than the single largest peak contributes, but not so many as to 
deemphasize the goal of finding large peaks.  

Results  

The results in Figures 3–5 are very interesting and suggest that the methodology 
proposed by the authors offers a robust and efficient means of deriving long-term turbine 
loads for design. The rapid reduction in variance in estimates of long-term loads by using 
the ASIS algorithm is convincing.  

A few observations are offered. 1. It would be very useful and insightful to see how g(x) 
or the bin-wise importance sampling changes with iteration for the two load measures, 
TwrBsMxt and TwrBsMyt, separately, and what the ultimate umbrella sampling ends up 
being, after convergence, or as the number of iterations changes—given the contrasting 
characteristics of the two load measures, one might expect a bi-modal sampling with one 
mode around or slightly above rated and another closer to cut-out will result.  

In our earlier paper (“Advances in the Assessment of Wind Turbine Operating Extreme Loads 
via More Efficient Calculation Approaches” in: AIAA SciTech 2017) we have (see Figure 6 
therein) plotted the distributions that ASIS led to.  In that paper, the ASIS method was 
applied separately to each load, and they do result in bin distribution peaks at different 
wind speed values.  So it would indeed be predicted that a bimodal distribution would 
emerge. 

In fact, when we dig into the data from our runs, we find 
that a bi-modal distribution does not emerge, despite our 
intuition. It would indeed be interesting to do more 
detailed comparisons of the distributions that emerge as a 
function of loads that are included. Sometimes algorithms 
do not conform to our intuition! 



2. It is not completely clear what Mpks refers to. For instance, does Mpks = 40 imply that, 
after accounting for samples from all bins, only the largest 40 are used or does it mean 
that for each bin, the largest 40 loads are retained and then combined with 40 from the 
other bins before extrapolation?  

The Mpks largest loads from each bin were used to separately fit the extreme value 
distributions in a bin-wise fashion. 

In the results section, we have expanded the description of 
exactly what was done, especially what exactly Mpks is. 

3. The non-monotonic upward trending cooefficient of variation on the 0.05 POE load 
seen in Figure 3 for a very large number of peaks might be caused by dependence among 
the peaks that results when too many peaks are extracted from each 10-min simulation 
(see Fogle et al [2]).   

Indeed, this is likely, especially because the effect is most pronounced for the lowest 
iterations where there are fewer total runs to choose from.  	

4. Is it possible that the x axis units in Figure 4 are 10,000’s of KN-m. rather than 
1,000’s of kN-m as stated? This would be consistent with Figures 1 and 2 which appear 
to show TwrBsMxt loads an order of magnitude higher. It would also be consistent with 
the IFORM-based estimates that were computed (above) as 29.7 × 103 kN-m and 94.3 × 
103 kN-m, respectively, for TwrBsMxt and TwrBsMyt. The caption for Figure 5 is correct; 
the one for Figure 4 might need to be corrected.  

Agreed.  Again, thank you for reading carefully! 

Corrected. 

5. As presented, Figures 4 and 5 do not show loads for the low POE level of 3.8 × 10−7 

associated with the target 50-year return period. It would have been useful to see those 
results. Indeed, ASIS-based convergence at the lowest POE levels that are presented, 
suggest that 25 iterations and the use of 40 peaks is very good. 

It would of course be possible to extrapolate to the 50-year levels in practice.  Though 
ASIS appears to work well, we see there is no free lunch; it would still require many 
iterations to achieve empirical 50-year estimates.  Apologies for not extending the 
extrapolation all the way to the 50 year return period; in our opinion the figure was 
visually more appealing as presented, because it illustrates more clearly the improvement 
made over the 25 iterations of ASIS. 

In the caption for Figure 3, 5−2 should be 5 × 10−2.  



Thank you for point that out; we will correct this. 

Corrected 

Conclusions  

The closing discussion is most helpful in setting this work in the context of other studies 
regarding the derivation of long-term loads for wind turbine design. The ASIS algorithm, 
as presented, will prove useful to loads analysts. While the authors have demonstrated its 
effectiveness using 100 independent tests in their numerical studies, in practice, it may be 
useful to suggest use of the ASIS algorithm followed by bootstrapping, after each 
iteration, and confirmation that the coefficient of variation on some load quantile (as in 
Figure 3, for example) is acceptably low—for example, 5%. It is clear that ASIS can 
achieve this target with a far smaller number of aeroelastic simulations than 
extrapolation based on ordinary or conventional sampling methods. The authors do, in 
fact, recognize in their closing discussions, that bootstrapping with a single data set 
could be used with ASIS and thus reduce computational effort.  

Only to provide a contrast with the authors’ work, it should be noted that IFORM-based 
approaches, referred to in this article, can be very efficient. This has been demonstrated 
in this discussion using the authors’ own data (crudely derived from their Figure 1); note 
that in the illustration presented response variability is not ignored as is done with the 
environmental contour method. Accounting for response variability in IFORM is not 
difficult—it is conceivable that an ASIS-like formulation for sampling could prove far 
more efficient than even IFORM but this needs to be demonstrated for situations where 
more than one random variable defines the “environment.”  

It is possible, as noted above, that though IFORM in this context still involves 
extrapolation, that it is fundamentally more accurate than direct fitting to extreme value 
distributions, because the environmental contour has already been accounted for.  Thus, 
an improvement on the recommend ASIS+extrapolation+bootstrap approach might 
instead be ASIS+IFORM+bootstrap.  This would be a subject of future study. 

Finally, related to this last point, the ASIS algorithm would be especially important to 
employ along with the introduction of stochastic turbulence and with the treatment of 
turbulence intensity or turbulence standard deviation explicitly as a random variable. 
The role of gusts and turbulence in extreme loads is known to be significant and the need 
then for bivariate importance sampling distributions could present challenges (Bos et al. 
[1], van Eijk et al. [4]); at the same time, the benefits to be derived from approaches such 
as ASIS, if its efficiency and accuracy is demonstrated in such cases, would then add to 
its appeal.  

This would be another interesting area of future study/application.  In principle it is a 
simple extension of the method to apply the stochastic variance minimization procedure 



to more than one variable. 

A suggestion to this effect has been added to the 
conclusion. 

On Page 15, Line 3, “stratified adaptive” should be “adaptive stratified” to be consistent 
with the ASIS acronym.   

Yes. 

Corrected. 

 

Finally, thank you very much once again for the incredibly careful and thoughtful reading 
of the paper. 

Yes, thank you again. A most thorough review! 

On behalf of the co-authors,  

Sincerely,  

Peter Graf,  
Computational Science Center and National Wind Technology Center, National 
Renewable Energy Laboratory 

  



Reply to comments of “Anonymous Referee #2”: 

First, the authors wish to thank “Referee #2” for the detailed and thoughtful comments.  The 
reviewer’s comments will serve to improve the paper considerably.  Point by point replies 
follow: 

The entries in “Courier” font have been added (Dec, 2017) 
to our initial replies (Oct, 2017, “Times” font) as we 
prepared our revised manuscript.  They contain more 
specific descriptions of what we actually changed in the 
revised manuscript. 

General comments  

The authors have presented a very interesting idea for efficiently improving the esti- mates of 50-
year extreme loads for wind turbines. Most attractive about the method is its overall simplicity, 
using the well-known concept of importance sampling and deriving a simple gradient for the 
variance of the extrapolation estimate that can be used to add the required number of additional 
samples for each wind bin, in order to reduce the variance of the estimate to an acceptable level. 
With a few exceptions, to be noted below, the presentation of both background details and the 
method is clearly written. The results seem to show that the method works quite well, without 
having to run the optimization for a prohibitively long time. However, there is one aspect of the 
setup of the problem that obscures the true meaning of the results, again to be expanded on 
below. Unless this can be clarified, interpretation of the results is difficult. As a preliminary 
demonstration of the approach, and assuming they hold up to scrutiny, these results are 
promising and the method could be of use both in conventional assessments of the 50-year 
extreme load and also in other settings like reliability assessments. It is also nice to see that the 
authors are open and critical about the overall power of the method and they make some 
interesting points about the limits of the current analysis framework and suggestions for other 
ways to improve extreme value analysis for wind turbines.  

Specific comments  

Introduction:  

On page 2, lines 14-15 you write: “... reliable extrapolation of nonlinear physics under 
uncertain forcing is extremely problematic, especially without knowledge of the form (e.g. 
quadratic) of the nonlinearity." This is certainly true, but an equally important reason why the 
specific type of long-term extrapolation usually done for the evaluation of 50-year extreme loads 
is problematic is precisely the large differences in timescale between the data and the 
extrapolated estimate. This impacts the problem in many ways, certainly also through the 
nonlinearity you mention, but in a more practical sense this large difference in timescales means 
that any uncertainty in the data is necessarily magnified by the extrapolation. Small errors in the 
short-term data set could potentially lead a designer to significantly over- or underestimate the 
long-term extreme loads. Later in the paper you show that there can be a large variance in the 
extrapolation, which is in turn reduced by your proposed method, so this overall point should be 



mentioned here.  

This is an excellent point about the difficulties due to time scales and we can certainly add some 
language to that effect to the problem introduction. 

We have added a paragraph expressing the difficulty in terms of 
timescales as suggested. 

Section 2.2, Extrapolation:  

On page 4, line 2 you write: “In this paper we use a 3 parameter Wiebull distribution.” Why this 
distribution? This choice may for the demonstration of the method be seemingly irrelevant, but 
some reason for the choice would be instructive for the reader. One might wonder, for example, 
if this is indeed the distribution that overall gives the best fit for your data and is therefore the 
easiest to use for illustrating the method. Certainly, the Gumbel distribution, for instance, can be 
easier to work with (since it has only 2 parameters), so it seems there must be some motivation 
for choosing the Weibull. For reasons of clarity and reproducibility, it would also be of interest 
to know what method you used to fit the distributions to your data. Maximum likelihood 
estimation perhaps? Please state this.  

We agree there is a lack of a full explanation here.  We used the 3-parameter Weibull because it 
has worked well in previous work.  There are many excellent papers concerning extrapolation 
and efforts to justify and/or distinguish between different extreme value distributions (e.g., 
Ragan and Manuel,“Statistical Extrapolation Methods for Estimating Wind Turbine Extreme 
Loads”, Toft, Sorenson, and Veldkamp, “Assessment of Load Extrapolation Methods for Wind 
Turbines”).  It is not the purpose of the current paper to assess the different distributions.   

We have added language specifically stating that we are not 
claiming any superiority for the 3 parameter Weibull. 

Regarding the fitting procedure, in light of the interest in particular in extrapolation, rather than 
just fitting, we have fit the empirical cumulative distribution function of the data directly to the 
theoretical cumulative distribution function (CDF) of the distribution by nonlinear least squares.   
We have done this separately for the data from each wind speed bin. In order to emphasize the 
largest peaks (i.e. the lowest probability values) we do not use all the data, just the Mpks largest 
peaks, where Mpks is an algorithmic parameter.  As an exercise, we experimented with using 
different values of Mpks (e.g., see Fig 2). 

We have added language describing this procedure. 

On page 4, line 29 you write: ”To gather peaks, we take the maximum of each 1 minute segment 
in our simulations.” Yet, you already stated on lines 17-20: ”Finally, there is the length of time 
between independent peaks ... values as low as 4 seconds have been justified in previous studies 
(Ragan and Manuel, 2008), and 10 seconds seems to be more than 20 adequate.” So why this 
choice of 1 minute separations? Based on what you write later in the paper it seems to be 
motivated by a desire to only use the largest peaks, hence using smaller separations would yield 
maxima that might not give a good description of the extreme behavior of the system. If this is 



the case, or if there is some other motivation, it would be instructive to have it stated clearly 
here. To be very precise, given that one wants a number of peaks that exactly divides the total 
simulation length, why not a 30 second separation, which would give twice the number of 
maxima and hence more data per simulation with which to fit the distributions while maintaining 
3 times the required separation to maintain independence of the peaks?  

The tradeoff between gathering more peaks (at the risk of sacrificing statistical independence) 
versus less peaks (at the risk of not having enough data) is another interesting detail that we 
could study. In this vein, our use of 1 minute intervals and your proposal to use 30 second 
separations has a similar motivation, which is simply to pick a reasonable point along that 
tradeoff that avoids the pitfalls of either end point. 

Language to this effect has been added to the manuscript. 

Section 3.2, ASIS as stochastic optimization:  

As a more general point, it is clear from the fact that the variance is what is being minimized, as 
well as studying equation (21) and from the algorithm summary on page 10, that the procedure 
is only ever going to add samples to the various bins, never remove samples. However, viewed as 
a more general optimization problem, an unattentive reader could believe that such an algorithm 
might in fact reduce the number of samples in a bin. Perhaps this “uni-directionality” of the 
algorithm should be stated more clearly to avoid any possible confusion over what its purpose is.  

Agreed. In principle, we can imagine “solving” the bin-optimization problem once and for all, 
which would give us an optimal distribution of bins.  Then, given a certain computational 
budget, we could apportion the samples to bins proportionally, which would indeed possibly 
reduce the number in some bin from the original search.  Our orientation was more from an “on-
line” perspective: why not use data from bins you have already run simulations on?  It would be 
easy to add a sentence clarifying this point. 

Added language to this effect. 

On page 10, lines 11-12 you write: “Also, the Ni need to be integers, which is accomplished by 
rounding. The resulting error is likely subsumed into the general convergence of the stochastic 
optimization procedure.” This statement needs a more convincing justification. For a k-
dimensional optimization problem, which for a discrete solution set induces a k-dimensional 
lattice of discrete points, it is not immediately clear that a local minimum in the continuous case 
is also a local minimum in the discrete case. That is, when going from some continuous set of Ni 
(a point in k-space) to a discrete set of Ni (a point on the k-lattice) by rounding each Ni to the 
nearest integer, the corresponding function value is not necessarily lower than at neighboring 
points on the lattice. If such a correspondence between minima in continuous and discrete space 
can be established for this particular case, it needs to be justified by specific arguments or at 
least by reference to another work.  

We have no such formal justification for this procedure.  The thinking is simply that we assume 
the variance of the estimate as a function of bin distribution is a smooth enough function that it is 
a reasonable approximation to round to the nearest bin counts.  Given that we do have to round 



to integer bin counts, this is the best we can do.  Furthermore, this is a stochastic problem, so it is 
likely that the continuous-valued bin counts have some error associated with them anyway.  We 
claim (without proof, but believe it is a reasonable assertion) that the error induced by the 
unconverged sampling procedure is just as much or more than that induced by the rounding to 
integers of the bin counts.  We are certainly not claiming that the rounded minimum is lower 
than the “relaxed” (i.e. continuous-valued) minimum; this is patently false, because the possible 
discrete bin-counts are a subset of the continuous ones. 

Added language and reference connecting our algorithm with both 
stochastic gradient descent and discrete programming. Hopefully 
this is acceptably clear. 

On page 10, line 18 you write: “In fact we have to decide some number of ”large peaks” we will 
use to evolve N.” Why? Presumably you already have all the information from the extrapolation 
that has already been performed before estimating the gradient. So why must the gradient only 
be estimated from some limited number of large peaks? The motivation for this is certainly not 
clear from the text.  

This is, operationally, a separate step from the extrapolation (in fact, the ASIS variance 
minimization can be performed without ever performing extrapolation).  In retrospect, there may 
be an interesting connection between the number of peaks used for extrapolation (Mpks) and the 
number of peaks that enter into the gradient-of-variance calculation, but this is beyond the scope 
of the current paper (though if you are confused, we will clarify this distinction in the text).  The 
choice of the “5 largest peaks” is rather arbitrary, enough so that more than the single largest 
peak contributes, but not so many as to deemphasize the goal of finding large peaks. 

We have attempted to clarify this issue in the text. 

Section 4, Results:  

To demonstrate the method, you set up a problem where you seek the ideal number of peaks, 
Mpks, to use for the fitting. However, it is unclear how this variable relates to the extrapolation 
procedure already described. Initially, you have used 10 maxima, 1 per minute of simulation 
time, for each wind speed bin. Is it this number of 10 maxima which is now a variable? If so, how 
is this actually accommodated in the extrapolation? For example, in Figure 2 you show the 
extrapolation for many different values of Mpks.  How do you get the additional peaks? Do you 
perform another T minutes of simulation corresponding to the number of additional peaks 
needed? Or do you decrease the separation time between maxima and hence extract more 
maxima from the simulation data you already have? If the former, do you perform specifically 
the required amount of simulation time for each case or do you perform enough simulations for 
all the different values of Mpks you have used and then simply use the 5, 10, 20, 40 etc largest 
peaks from this expanded set of potential maxima? These different ways of solving the problem 
have very different statistics and therefore different implications for the extrapolation itself. 
Using the largest 20 maxima from 160 minutes of simulation time is very different from using 20 
maxima from 20 minutes, which is very different from using the 20 largest maxima from 10 
minutes and so on. In fact, depending on which of these approaches is used, it is not clear 



whether the results are truly meaningful. Nor is it clear how the number of maxima used might 
or might not interact with the number of samples in each bin as dictated by the ASIS optimization 
procedure.  

Clearly the description of the choice of peaks to use for fitting is inadequate.  For Figure 2, for 
example, we have run FAST for 10 minutes 20 separate times for each bin (the figure shows only 
the results for the 20 m/s bin, but the others are similar).  This results in 200 minutes of total 
simulation time, thus according to our 1-peak-per-minute convention (which is fixed throughout 
the paper), 2000 peaks.  Each line on the figure (e.g. “5 peaks”, “10 peaks”, etc.) is the result of 
fitting the 3 parameter Weibull CDF to just the largest Mpks (e.g. 5, 10, etc) of these 2000.  The 
line labelled “empiricial CDF” is the empirical CDF of the 2000 peaks.  We were hoping to 
avoid having to argue about the distinctions you mention above by choosing very “vanilla”, 
uncontroversial values for these types of parameters, but our lack of clarity has unfortunately 
brought them all back into play.  We apologize and will clarify in the next draft.  We do not think 
the choices we made effected the meaningfulness of the results.  The number of maxima used is 
similar to the choice of threshold in peak-over-threshold method, or the simulation time in 
methods just taking the single maximum from each simulation.  In this context it is well-studied 
in the literature, but we agree that its role in ASIS is a new twist.  Figures 3, 4,and 5 suggest that 
it is not a completely critical issue, however.  Quite a range of values for Mpks are effective, and 
the effectiveness (e.g., see Fig 3) is a relatively (for stochastic optimization) smooth function of 
Mpks. 

We have expanded the description of the procedure as outlined 
above.  We hope it is understandable now. 

More details about the optimization are needed in order to ensure that the results are clear and 
reproducible. For example, the criteria for termination of the algorithm are unclear.  

The lack of precise convergence criteria is indeed a shortcoming of the present paper, 
especially because in practice this is critical: the user is seeking an estimate of the 50-
year load with some acceptable measure of its accuracy.  We have pointed at the way one 
would achieve this in practice.  In particular, we would recommend (as in the “Results” 
section) to uses ASIS iteratively in conjunction with extrapolation and bootstrapping:  
For each ASIS iteration, subsample via bootstrapping, form a large number of 
extrapolations, thus estimate the 50-year load and its variance.  The stopping criteria is 
then a user-specified threshold for the variance.  In short, monitor the (left and middle for 
ASIS and ASIS+extrapolation, respectively) curves in Figure 2 until the variance is below the 
desired level. 

The lack of true stopping criteria in the current work is 
because we are still investigating the major properties of 
the method. We have added a recommendation and citations 
and recipe to use bootstrapping for production purposes.   

Technical corrections  



• Section 2.2, page 4, line 2: ”In this paper we use a 3 parameter Wiebull distribution.” Should 
be ”Weibull”   

• Section 3.1, page 8, equation (12): Y (x) should be Y (xi)   

• Section 3.1, page 8, lines 14-15: ”Here we denote the dataset as {Yi,k} where i indexes over 
wind speed bins and k indexes over the peaks we have extracted at that wind speed.” This 
repeats almost exactly information already given in Section 2.2, page 3, lines 30-31. 
Consider removing (since we are already aware of the notation) or rephrasing. 

 Thank you for these. 

 All corrected. 

And thank you again for your careful reading and consideration of the paper. 

Yes, thank you very much. Your review helped make the paper (we 
hope) much more comprehensible. 

On behalf of the co-authors, 

Sincerely, 

Peter Graf,  
Computational Science Center and National Wind Technology Center, National Renewable 
Energy Laboratory  

 


