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Abstract. Wind turbine extreme loads estimation is especially difficult because turbulent inflow drives nonlinear turbine

physics and control strategies, so there can be huge differences in turbine response to essentially equivalent environmental

conditions. The two main current approaches, extrapolation and Monte Carlo sampling, are both unsatisfying: extrapolation-

based methods are dangerous because by definition they make predictions outside the range of available data, but Monte Carlo

methods converge too slowly to routinely reach the desired 50-year return period estimates. Thus a search for a better method5

is warranted. Here we introduce an adaptive stratified importance sampling approach that allows for treating the choice of envi-

ronmental conditions at which to run simulations as a stochastic optimization problem that minimizes the variance of unbiased

estimates of extreme loads. Furthermore, the framework, built on the traditional "bin"-based approach used in extrapolation

methods, provides a close connection between sampling and extrapolation, and thus allows the solution of the stochastic opti-

mization (i.e., the optimal distribution of simulations in different wind speed bins) to guide and recalibrate the extrapolation.10

Results show that indeed this is a promising approach, as the variance of both the Monte Carlo and extrapolation estimates

are reduced quickly by the adaptive procedure. We conclude, however, that due to the extreme response variability of turbine

loads to the same environmental conditions, our method and any similar method quickly reaches its fundamental limits, and

that therefore our efforts going forward are best spent elucidating the underlying causes of the response variability.

1 Introduction15

Estimating extreme loads for wind turbines is made especially difficult by the nonlinear nature of the wind turbine physics

combined with the stochastic nature of the wind resources driving the system. Extreme loads, such as those experienced when

a strong gust passes through the rotor or when a turbine has to shut down for a grid emergency, can drive the design of the

machine in terms of the material needed to withstand the events. The material requirements in turn drive wind turbine costs

and overall wind plant cost of energy. Thus, accurate modeling and simulation of extreme loads is crucial in the wind turbine20

design process. This paper discusses the use of adaptive importance sampling in estimation of such loads. Importance sampling

(IS) (Robert and Casella, 2004) is a well established method for using samples from one distribution to estimate statistics from

another. Adaptivity in importance sampling has been introduced in (Karamchandani et al., 1989) and elsewhere, but does not

appear to have broadly taken hold. Here we introduce an adaptive importance sampling method for extreme loads estimation.
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The essential task in wind turbine extreme loads estimation is to evaluate the probability of exceedance (POE) integral

P (Y > l) =
∫

P (Y > l|x)f(x)dx. (1)

Here P (Y > l) is the probability of load Y exceeding target/threshold l, P (Y > l|x) is the conditional probability of ex-

ceedance given wind speed x, and f(x) is the distribution of wind speeds (or other environmental conditions). Because we are

interested in extremely low probability events and Y (x) is stochastic and only available via simulation, standard methods of5

integration do not apply.

Existing approaches fall generally into three main classes. The first is based on extrapolation: data is gathered in different

wind speed “bins", extreme value distributions are fit to the empirical distribution function for each bin, and these are then

integrated. The second is based on Monte Carlo methods: exceedance probabilities are written as expectations of indicator

functions, samples are drawn from an assumed wind distribution, and unbiased estimates made by the usual Monte Carlo10

summation. A highly efficient third approach, the Inverse First Order Reliability Method (IFORM) (Winterstein et al., 1993),

estimates global extremes by modeling their variation from median extremes. (We will discuss IFORM briefly below, but it

is not the main focus of this paper.) Unfortunately, to date none of these methods is satisfactory. The crux of the difficulty

is that on the one hand too many samples are required for converged Monte Carlo estimates, but on the other hand reliable

extrapolation of nonlinear physics under uncertain forcing is extremely problematic, especially without knowledge of the form15

(e.g. quadratic, etc.) of the nonlinearity. Nevertheless, the computational expense of MC implies that except in rare cases, some

sort of extrapolation will be necessary in order to reach the desired 50 year return period estimates. Perhaps we can at least

use MC/IS to make sure extrapolations are accurate to the resolution of data we actually have, and to gather data in ways that

accelerates their convergence.

Our goal is to therefore to develop methods that make unbiased estimates that minimize variance as a function of the number20

of samples/simulations, and to use these to dynamically update extrapolations. Our proposed method, Adaptive Stratified

Importance Sampling (ASIS), is essentially a global stochastic optimization method where the search variables are the number

of samples from each wind speed bin we use, and the objective function is the variance of our Monte Carlo estimates. The key

tool here is importance sampling, which allows us to continually produce unbiased estimates of exceedance probabilities even

as the distribution of bins changes. These quasi-optimal samples are then used to make the best possible extrapolations. Results25

below show that this is indeed a promising approach.

The organization of this paper is as follows. First we present the necessary background on the existing extrapolation method

(e.g., as recommended in the IEC standard (IEC, 2005)), Monte Carlo methods, and importance sampling. Next we describe our

ASIS algorithm. Then we present a brief study illustrating some of its properties. The paper provides a context for discussing

extrapolation and importance sampling in the same framework. Our conclusion highlights the potential for this approach,30

reiterates some of the fundamental difficulties with the endeavor, and leads to suggestions for where we should next focus our

efforts to crack this difficult problem.
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2 Background on turbine simulation, extrapolation, Monte Carlo, and importance sampling

2.1 Turbine simulation

Throughout this paper, we use FAST, NREL’s aeroelastic simulation tool (Jonkman, 2013). FAST is a widely-used industry

and academic tool for wind turbine loads estimation. NREL’s WISDEM software allows for the execution of FAST and its

companion tool TurbSim (which generates turbulent wind fields for input to FAST) in a programmatic fashion from python,5

as has been reported previously (Graf et al., 2016).

The particular turbine on which we are testing these methods is the NREL 5 MW reference turbine, often used for such

studies (Jonkman et al., 2015; Choe et al., 2016), in an onshore configuration. The “environmental conditions" are thus de-

scribed by hub height mean wind speed (modeled by a Weibull distribution with scale and shape parameters of 11.28 m/s and

2, respectively). Additional environmental parameters of turbulence intensity, spectrum, coherence function, and wind shear10

are kept fixed at nominal values. It should be noted that the stochasticity in the combined TurbSim/FAST simulation comes

from the “random seed" that is input to TurbSim. This seed governs the exact starting conditions for the generation of the

turbulent inflow wind field. Because this is an ergodic system, a long enough simulation would eventually cover all possible

wind conditions. However, for finite simulations, multiple runs using different random seeds allow us to “sample" the space of

all possible turbulent flow field snapshots with the same mean wind speed, turbulence intensity, etc. This is common practice15

in extreme loads analysis. We can regard random seed as a proxy for sampling over a uniform distribution of turbulent inflows

for each set of environmental conditions.

For this study, we selected two output channels of interest, tower base side-side bending (“TwrBsMxt" in FAST nomen-

clature) and tower base fore-aft bending (“TwrBsMyt"), which provide contrast because the wind speeds where their highest

loads occur overlap differently with the typical wind speed distribution. The side-side moments grow with hub-height wind20

speed, making their extremes hard to estimate with traditional MC sampling because they do not overlap well with typical

wind distributions. The fore-aft counterparts do overlap quite closely with the typical wind distributions.

2.2 Extrapolation

The current standard for estimating extreme loads relies on extrapolation. We refer the reader to the relevant literature for a

detailed exposition of the extrapolation method (Ragan and Manuel, 2008; Moriarty, 2008; Toft et al., 2011; Graf et al., 2017).25

Here we present a concise statement of the method and discuss one or two subtleties. The protocol to construct exceedance

curves using binning and extrapolation is as follows:

1. Run Turbsim/FAST Ni times per wind speed xi at center of bin i (Typically Ni ∼ 6).

2. For each bin i, concatenate the data from each seed and extract peaks (see below r.e. peak extraction and time scales).

For future reference we refer to the resulting dataset as {Yi,k} where i indexes over wind speed bins and k indexes over30

the peaks we have extracted at that wind speed
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3. For each bin i, form empirical cumulative distribution functions (CDFs) and fit a chosen distribution Fi(x) = P (Y < l|x)

to them. In this paper we use a 3 parameter Wiebull distribution.

4. (optional) For each bin: convert each fitted distribution to desired time scale (see below r.e. peak extraction and time

scales).

5. Finally, P (Y < l) =
∫

P (Y < l|x)f(x)dx∼∑
i P (Y < l|xi)f(xi)∆xi, where f(x) is pdf of wind distribution, and5

∆xi is the width of bin i. The extrapolated estimate of the probability of exceedance is then P (Y > l) = 1−P (Y < l).

The distributions chosen to fit the bin-wise CDFs are the theoretically appropriate extreme value distributions (Generalized

Extreme Value, 3 parameter Weibull, etc.). However, this does not mean they accurately represent the behavior of the particular

FAST loads in a specific context. The optimality properties of extreme value distributions are asymptotic properties, but we

are doing “intermediate asymptotics": long term–but not infinitely long term–trends. Nevertheless, these distributions are the10

appropriate starting point.

It is important to be clear regarding various time spans at play here. First, there is the ultimate time of interest, typically in

wind studies the “50 year return period" (note this does not mean that in 50 years the event in question happens with probability

1; typically it is defined as an event having probability 1/50 of happening in one year). Next there is the simulation time, i.e.,

the length of each FAST run. This is almost always 10 minutes in the literature. Relatedly, there is the time span over which15

our estimates of exceedance probability apply. These are also traditionally 10 minutes, i.e. reported probabilities of exceedance

are probabilities of exceedance in 10 minutes, but there is nothing in principle to make this fixed. Finally, there is the length of

time between independent peaks. This time can be estimated empirically by examining the autocorrelation of the data; values

as low as 4 seconds have been justified in previous studies (Ragan and Manuel, 2008), and 10 seconds seems to be more than

adequate.20

The various time spans come into play as we extract peaks and make estimates. The rule that connects them is the simple

“AND" rule of probability: If Y < l for time T , and T = Kt, then Y < l for time t for K times in a row, so PT (Y < l) =

Pt(Y < l)K . For probabilities of exceedance P (Y > l), we write P (Y > l) = 1−P (Y < l) and use the same idea, resulting

in the familiar expression PT (Y > l) = 1−(1−Pt(Y > l))K . For example, the former is typically used to convert peak distri-

butions collected on a 10 second, 1 minute, or peak-over-threshold basis to a 10 minute basis, while the latter is used when we25

derive the ubiquitous value of 3.8−7 that represents the probability of the 50 year return period event happening in 10 minutes.

In this paper we adopt the following setup: All our simulations are 11 minutes long, where we discard the first minute as

a transient and retain the final 10 minutes for our studies (we will occasionally be loose with the terminology and refer to

these as “10 minute simulations"). To gather peaks, we take the maximum of each 1 minute segment in our simulations. This

provides exactly 10 peaks per simulation, which allows for building 1-minute empirical cumulative distribution functions (i.e.30

probability of exceedance in 1 minute) in a consistent manner. The resulting 1 minute empirical POEs are converted to 10

minute POEs as described above (i.e. K = 10) to conform to standard practice. Below we experiment with how many of these

peaks should be used in the fitting of the extreme value distributions used in the extrapolation method. This alternative to the

peak-over-threshold method makes comparison and correspondence between extrapolation and sampling easier, because we
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have a fixed number of peaks per FAST run. We have divided the wind speed range into 5 bins centered at 8, 12, 16, 20, and

24 m/s.

To acquire a sense of the basic variability of the response, we have run 20 independent sequences of the simulations described

above for the extrapolation method (6 random seeds per bin). Figure 1 consists of box and whiskers plots of the peaks from the

first 6000 peaks (10 peaks per run X 6 seeds X 20 repetitions X 5 bins). For both the side-side and fore-aft loads, the variability5

within each bin is large. For example, the difference between 95th and 5th quantile for the 24 m/s side-side bin is comparable

to its median value. For the side-side load the dependence on wind speed is clearly also very strong, whereas for the fore-aft

load, the variability within the bins is as large as it is between the bins.

Figure 1. Box and whiskers plots of the distribution of raw response (specifically, all 1-minute maxima) of the combined TurbSim/FAST

simulation as a function of wind speed bin for side-side (left) and fore-aft (right) loads. The difference in general trend between side-side

and fore-aft loads is clearly evident. The variability within each bin is extreme (esp. for the fore-aft load), which puts an upper bound on the

utility of sampling methods (e.g., importance sampling) targeting certain wind speeds. The boxes show the median, 25th, and 75th percentile.

The whiskers are positioned at the 5th and 95th percentile. The data are the absolute maxima in 1 minute segments of 120 separate 10 minute

simulations per bin (1200 total peaks for each bin).

2.3 Monte Carlo importance sampling for extreme loads

Monte Carlo (MC) methods are widely used to estimate expectations of quantities calculated by stochastic simulations (Robert10

and Casella, 2004). Importance Sampling (IS) is an MC method in which an auxiliary importance distribution q(x) is used

to focus sampling on areas of the target distribution f(x) that are most relevant with respect to the functions of interest (e.g.,
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the loads Y (x)). Often “relevant” means minimal variance (see below). The broad applicability of the method arises from the

so-called Importance Sampling Identity:

Ef [Y (x)] =
∫

Y (x)f(x)dx (2)

=
∫

Y (x)
f(x)
q(x)

q(x)dx (3)

= Eq[Y (x)
f(x)
q(x)

] (4)5

where Ef and Eq represent the expectation with respect to f and q, respectively. This means, from an MC standpoint, that

both

Ef [Y (x)]∼ 1
Mtot

Mtot∑

i

Y (xi) with xi drawn from f, (5)

and

Eq[Y (x)
f(xi)
q(xi)

]∼ 1
Mtot

Mtot∑

i

Y (xi)
f(xi)
q(xi)

with xi drawn from q, (6)10

(where Mtot is the total number of samples we have of the quantity we are estimating) are unbiased estimates of the same

quantity Ef [Y (x)].

For us Mtot will be the number of peaks gathered from the FAST runs. In what follows we will use M to represent numbers

of peaks, and N to represent numbers of FAST runs. With our convention of taking the maximum over 1 minute spans of 10

minute simulations, we will have M = 10N throughout. The subscript “tot” will be the total number (over all bins), whereas15

index subscripts (e.g. “i”), etc., will refers to the peaks or runs within the corresponding bin. Thus as above Ni is the number

of FAST runs (i.e. random seeds) in the ith bin, and Mi = 10Ni is the number of peaks extracted from the Ni runs, and Ntot

is the total number of FAST runs.

Although the above estimates (5) and (6) are both unbiased, they could have drastically different variance, which means that

they may converge at drastically different rates. The minimal variance importance distribution can be derived and is20

q∗(x) =
Y (x)f(x)
Ef [Y (x)]

(7)

From a practical standpoint there are two obvious problems with this result. First, it depends on the expectation we wanted to

calculate in the first place. This objection we can overcome using some form of accept-reject sampling that does not depend

on the normalization constant. A more significant problem, however, is that q∗ also depends on the function Y (x) whose

expectation we are trying to calculate with as few evaluations as possible. Finally, in our case, an even worse problem is that25

Y (x) is not a deterministic function of x, so, as stated, q∗ is also a stochastic function. Nevertheless, Eqn. (7) provides a

guide for our quest to find the minimal variance importance distribution: it should be as close as possible to proportional to the

product of load Y (x) and wind probability f(x).
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For our purposes, finally, note that Eqn. (1) can be written as an expectation of the so-called “indicator" function that is 1 if

Y (x) > l and 0 otherwise:

P (Y > l) = Ef [I(Y > l)]∼ 1
Mtot

∑

i

I(Y (xi) > l)
f(xi)
q(xi)

with xi drawn from q. (8)

Eqns. (1) and (8) form the basis of the mathematical bridge between extrapolation and MC/IS methods described in section 3.

2.4 IFORM5

Here we summarize the Inverse First Order Reliability Method (IFORM) in the present context. IFORM was introduced by

Winterstein (Winterstein et al., 1993) and addresses the estimation of extreme loads from a different perspective. Instead of

directly computing the integral in Eqn. (1), IFORM seeks to find just the conditions that cause the extreme load. IFORM works

best if the response of interest is a completely deterministic function of environmental conditions that themselves have known

probability. Then one can directly search the environmental contour (e.g. all wind/wave/turbulence/etc. combinations that have10

probability 1-in-50 years of occurring) to find the highest load. IFORM introduces the important notion of response variability,

which refers to the magnitude of the variation of the nonlinear stochastic response for fixed environmental conditions. This

notion helps to explain why it is problematic to rely on IFORM for the purposes of wind turbine extreme loads estimation. The

approaches to handling response variability in IFORM generally involve modeling or estimating the variation of the response

away from its "median extreme" value (e.g. median of all the maximum values, here over each 1 minute window, over several15

simulations). But in our case the response variability (for example, plotted directly in Figure 1) is simply too large to be credibly

modeled as "median plus an approximation" (the true/maximal extreme is too far from the median extreme). Also, the strategy

of starting from the desired extreme (e.g. 50 year return period) environmental contour, or just inside it, is not feasible here.

Such wind speeds, for example, are not even in the operating range of the turbine; the wind speed where the extreme response

will occur is in fact not that improbable. IFORM may not work well for wind turbine extreme loads because the 50-year loads20

may not be associated with the 50-year environmental contour. The present task, that of estimating extreme loads with wind

speed as the only environmental variable, is governed mostly by the response variation. Therefore we will not estimate extreme

loads by IFORM in this paper. However, IFORM is critical for conceptual understanding: where possible, our goal should be

to "convert" response variation (intractable) to environmental variation (tractable) through better understanding of its physical

cause. It is the extreme response variability (different random seeds for the same environmental conditions can cause very25

different FAST output) that makes extreme loads estimation a difficult problem. We return to this subject in section 5.

3 Adaptive stratified importance sampling (ASIS)

3.1 Bin-wise empirical CDFs as the bridge between extrapolation and MC

When we perform the bin-wise simulations used in the extrapolation methods, we are performing stratified sampling. Recog-

nizing that these samples can be described as a probability distribution provides a bridge to using them in an IS context, as30
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discussed in (Graf et al., 2017). The basic idea is as follows. Assume a set of samples {xi} from an arbitrary distribution g(x)

of wind speeds (g may be either f(x), q(x), or an empirical one derived from binning the data). By running FAST, the set {Yi}
of corresponding loads can be generated and sorted from the lowest to the highest. Then for any given load Yj , the IS estimate

is:

P (Y < Yj) = Ef [I(Y < Yj)] (9)5

=
∫

I(Y (x) < Yj)f(x)dx (10)

=
∫

I(Y (x) < Yj)
f(x)
g(x)

g(x)dx (11)

∼ 1
Mtot

∑

i

I(Y (x) < Yj)
f(xi)
g(xi)

with xi drawn from g (12)

=
1

Mtot

∑

i





f(xi)
g(xi)

if i < j

0 otherwise
(13)

=
1

Mtot

∑

i<j

f(xi)
g(xi)

. (14)10

Letting wi ≡ f(xi)
g(xi)

, we can concisely write the empirical CDF for all the loads {Yj} as:

P (Y < Yj) =
1

Mtot

∑

i<j

wi. (15)

To apply this formula to data from the binning method, we need the appropriate g(x), i.e. the appropriate weights wi of

each sample. Here we denote the dataset as {Yi,k} where i indexes over wind speed bins and k indexes over the peaks we

have extracted at that wind speed. We rewrite the integral over wind speeds as a sum of integrals, and then approximate each15

separate integral by the Mi peaks derived from the Ni runs (in our case, over TurbSim random seeds) at the fixed wind speed

xi for bin i:

∫
I(Y (x) < Yj)f(x)dx =

Nbins∑

i=1

xi+1∫

xi

I(Y (x) < Yj)f(xi)dx (16)

∼
Nbins∑

i=1

1
Mi

Mi∑

k=1





f(xi)∆xi if Yi,k < Yj

0 otherwise
(17)

From this, we see that the “weight" contributed by sample i,k to the POE for Yj is 1
Mi

f(xi)∆xi for all i,k s.t. Yi,k < Yj .20

To calculate the empirical CDF from the bin data, then, we assign weight wi = 1
Mi

f(xi)∆xi to all samples from bin i and

apply Equation (15). Table 1 summarizes the exact correspondence between extrapolation and IS/MC. The importance density

corresponding to stratified sampling is seen to be g(xi) = Mi

Mtot

1
∆xi

= Ni

Ntot

1
∆xi

.

Thus we have a “bridge" between fitting and sampling. Bin-wise empirical CDFs can be directly compared with fitted

distributions (in fact, they are what we fit to). But the estimate over all wind speeds can then be expressed generically in the25
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Table 1. Bin-wise empirical cumulative distribution functions provide a bridge from extrapolation, which builds POE from bin-wise fitted

distributions Fi, and importance sampling, which builds an unbiased estimate from the appropriately defined distribution g.

Method P (Y < l) =
∫

P (Y < l|x)f(x)dx Remarks

Empirical bin-wise CDF
∑

i
1

Ni

∑
k I(Yi,k < l)f(xi)∆xi P (Y < l|xi)∼ 1

Ni

∑
k I(Yi,k < l)

Extrapolation
∑

Fi(l)f(xi)∆xi P (Y < l|xi)∼ Fi(l), fitted to above

Importance Sampling 1
Mtot

∑
i,k I(Yi,k < l) f(xi)

g(xi)
sampling from g(xi) = Ni

Ntot

1
∆xi

IS language suited to comparison with MC and IS estimates. IS/MC do not provide any “bin-wise" information (there are no

bins), so it is otherwise impossible to “debug" their divergence from extrapolation. This formulation allows us to see, first, that

error accrues from lack of convergence of empirical CDFs, for both methods. Additionally though, for extrapolation, the error

is compounded by lack of fit between the chosen extreme value distribution and the empirical CDFs, which is the price we pay

for being able to extrapolate to arbitrarily low POEs.5

3.2 ASIS as stochastic optimization

The discussion above indicates that the samples from the bin based methods can alternatively be used to make empirical

estimates via their implied importance distributions. This orientation suggests, also, that there is no barrier to changing the

distribution of samples as we go. So we can think of the estimation procedure as an optimization problem: find the distribution

of bins (number of samples per bin) that results in unbiased estimates with minimal variance. In (Graf et al., 2017) we have10

used a heuristic algorithm that looked for “gaps" in the empirical peak distribution. Here instead we introduce a gradient-based

approach. As above, let Ni be the number of FAST runs performed in the ith wind speed bin, and let N be the vector of

bin-counts. Now, the variance of the estimate using importance distribution g is

J(N)≡ varg[P (Y > l)] = Eg[
I(Y > l)2f(x)2

g(x)2
]−Eg[

I(Y > l)f(x)
g(x)

]2. (18)

Note the second term does not depend on g (in the corresponding integral, the g in the denominator cancels out). So15

∂J

∂Nj
=

∂

∂Nj
Eg[

I(Y > l)2f(x)2

g(x)2
] (19)

∼ ∂

∂Nj

∑

i,k

I(Yi,k > l)2f(xi)2 N2
tot∆x2

N2
i

(20)

= −2
∑

i,k

I(Yi,k > l)2f(xi)2 N2
tot∆x2

N3
i

. (21)

Here we have used the fact that Mi

Mtot
= Ni

Ntot
to write the expression in terms of bin counts instead of peak counts.

Our algorithm begins by running the standard 6 seeds per bin from the extrapolation method (i.e., Ni is initialzed to 6 for all20

i). Then we perform the following steps in an iterative fashion:

9
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1. Compute ∇NJ(N).

2. Allocate a target number of new samples (e.g. 20 per iteration) to bins in two ways:

(a) allocate some percentage of the new samples in proportion to∇NJ ,

(b) recognizing this is a global optimization problem, allocate the rest to other bins randomly.

3. Run TurbSim/FAST for the new batch.5

4. Update our empirical estimates of POEs and our extrapolation estimates.

Note the algorithm as stated does not explicitly recognize the stochasticity of the underlying quantity Y (x). Because we are

using an unbiased estimate of the gradient of the variance, our approach, naive as it is, is known to converge “almost surely" to

a local optimum (Robbins and Monro, 1951). Now that we have cast the problem in this form, though, we can take advantage

of ongoing research in this area.10

Also, the Ni need to be integers, which is accomplished by rounding. The resulting error is likely subsumed into the general

convergence of the stochastic optimization procedure.

Next, as stated J only concerns one load type (e.g. tower base side-side bending moment). But previously (Graf et al., 2017)

and above (i.e. Fig.1) we have seen that side-side and fore-aft loads favor different importance distributions. Since it defeats

the purpose of the method to have to repeat it for every load, we have adopted an “umbrella" concept; we compute the desired15

bin distribution for all the loads of interest, and form the minimal superset of bins that includes them all.

Another issue, even for a single load type, is how many of its peaks Yi are considered in computing the gradient of the

variance. In fact we have to decide some number of “large peaks" we will use to evolve N . The results here use the 5 largest

loads. This is an important issue to keep in mind and one of several that makes the application of IS theory tricky in practice.

(E.g., (Choe et al., 2015) have derived an optimal importance distribution, but it is “peak-dependent", i.e. only strictly optimal20

for estimating the exceedance probability of the particular load value for which it was derived.)

4 Results

In this section we demonstrate the basic mechanics of the algorithm in the context of a study of the effect of the number of

peaks, Mpks, used to fit the bin-wise extrapolation distributions (Fi ∼ P (Y < l|xi), above). Figure 2 illustrates the variability

of the extrapolated exceedance probability as a function of Mpks. Here we have fit the extreme value (Weibull 3 parameter)25

distribution to the peaks from the wind speed bin centered at 20 m/s for different values of Mpks. Based on the data, we need

a way of saying what the “correct" number of peaks to use is. For this, we study the variance of the resulting extrapolation,

which we can estimate simply by repeating the entire sampling, simulating, fitting, and extrapolation procedure 100 times. The

results are summarized in Figures 3, 4, and 5.

For each of the 100 independent tests, we ran extrapolation and ASIS for 25 iterations (an iteration of extrapolation is30

simply re-performing the extrapolation procedure with the current ASIS bin data), which adds a varying number of new
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Figure 2. Weibull 3 parameter fits to empirical CDF for wind speed bin centered at 20 m/s for a variety of choices for how many peaks

Mpks we use for the fit for side-side (left) and fore-aft (right) tower base loads. In all cases we are fitting the analytical CDF to the highest

Mpks loads of the empirical CDF (a lower values of Mpks is like a higher threshold in the peak-over-threshold method). Especially for the

side-side moment, the extrapolated POE values depend heavily on how many peaks are used.

samples to each bin at each iteration. The most obvious observation is that indeed the variance of the estimates is decreasing

quickly as a function of iteration. ASIS reliably drives the variance of the estimates of POE down, and simply recalculating

the extrapolations to “keep up" with ASIS drives the variance of the extrapolation estimates down as well. There is a slight

dependence on Mpks, but it does appear there is a “sweet spot" around 40 peaks that is good for both loads (the detailed

study of the optimal Mpks is beyond the scope of this paper; it is akin to the study of the optimal threshold in the peak-5

over-threshold method). The standard deviation drops by roughly a factor of 3 after only about 100 FAST runs, (compared

to 30 for the original extrapolation (iteration 0)). This is closer to a “ 1
N " rate of convergence than the theoretical “ 1√

N
"

convergence. Thus our “adaptive extrapolation" approach appears capable of reducing variance somewhat dramatically with

minimal additional computation. The two approaches maintain correspondence even while adapting the bin distribution, which

allows for leveraging the variance reduction of the empirical ASIS estimate to reduce the variance of the extrapolation estimate.10

And the latter is the estimate of real importance, because that is what will be used in practice.
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Figure 3. Summarizing the convergence of tower base load estimates using extrapolation and ASIS estimates over 100 independent runs.

The top row is side-side, the bottom is fore-aft. The y-axis units are the ratio of the standard deviation to the mean estimate (relative standard

deviation, measuring convergence). The x-axis is the number of FAST runs (measuring computational expense). The target POE for the

empirical ASIS estimate (left) is 5−2 and for the extrapolation estimate (middle and right) is 10−5. Adaptively selecting samples in a way

designed to accelerate the convergence of the empirical estimate (ASIS, left) also accelerates the convergence of the extrapolation estimates

(middle, right). There is a somewhat weak dependence on the number of peaks used for extrapolation, but Mpks ∼ 40 appears robust for both

loads. The side-side load estimate has larger initial relative variance, because (as shown above in Fig. 1) its extremes occur at high winds,

but its relative variance is reduced more quickly by the adaptive procedure than the fore-aft load.
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Figure 4. Behavior of ASIS and iterative updating of extrapolation for side-side tower base bending load over 20 separate runs as a function

of Mpks. The x-axis unit are 1000s of kN-m, the y-axis is probability of exceedance in 10 minutes. The top row shows the results of both

ASIS and extrapolation at iteration 0 (i.e. just based on the initial set of bin-wise samples) as a function of the number of peaks used for fitting

the extrapolation distributions. The bottom row shows the estimates after 25 ASIS iterations. (Note the ASIS results are the same across each

row because they are independent of Mpks.) Clearly the variance of the estimates is tightened. It is not clear from visual inspection if one

choice of Mpks is better than any other.
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Figure 5. Behavior of ASIS and iterative updating of extrapolation for fore-aft tower base load over 20 separate runs. The x-axis unit are

10,000s of kN-m, the y-axis is probability of exceedance in 10 minutes. The format is the same as Fig. 4. Again it is interesting to compare

the visual representation with the statistics presented in Fig. 3. The single extremely large load discovered by ASIS was also seen in (Graf

et al., 2017) (Fig 5, panel (f)). Though it is beyond the scope of the present paper to do so, one of our main conclusions is that the statistical

methods have come to a point where the best course forward will be to pursue the exact causes of such loads and integrate a statistical

description of such situations into our methods.

14

Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2017-30
Manuscript under review for journal Wind Energ. Sci.
Discussion started: 25 July 2017
c© Author(s) 2017. CC BY 4.0 License.



5 Conclusions

In this paper we have built a bridge between bin-based extrapolative methods and sample-based importance sampling Monte

Carlo methods. With this, we proposed a stratified adaptive importance sampling (ASIS) algorithm that is both more efficient

than existing Monte Carlo approaches and maintains contact with the extrapolation methods and thereby allows for iteratively

increasing the extrapolation accuracy. This is important, because only the extrapolations are able to routinely make estimates5

of extremely long return period load exceedance probabilities.

There are several specific questions we are now in a better position to tackle. First, given a set of peaks, what is the best

way to use them to fit an extreme value distribution? In particular, using the largest peak values should more closely capture

the extreme loads; but these are also the loads that have the largest variation (because they are the most rare), so this part of

the empirical CDF is the least reliable. We can investigate the variation in fitted extreme value distributions as a function of10

schemes used to select peaks (the simplest of which, as explored above, is just taking the Mpks highest peaks).

Next, the importance distribution optimization problem we have introduced is clearly a stochastic optimization problem. As

stated above, this is in fact a convergent algorithm. But this is an active area of research, and more sophisticated algorithms

in the field of stochastic optimization can be used to improve our approach. We need to keep in mind, however, that the

optimization problem is a means to an end. The real goal is minimal variance estimates with the smallest amount of effort. We15

want to use the optimal importance distribution at the same time as we are discovering it.

In the end we need to also keep in mind that we have the dual mission of both efficiently estimating the load POEs and

accurately estimating their variance. We can use the peaks we sample to make unbiased estimates of variance just as we do

expectation, but these are only estimates, and they themselves suffer from lack of convergence. The resampling method of

bootstrapping offers a way to leverage a single data set to estimate statistics and their variance, and in a practical setting this20

would be recommended (as opposed to the completely separate runs we have described above).

Finally, it appears that this problem may be ripe for a machine learning approach: The physics is in the solver; to the extent it

is possible, we should be able to learn from increasing amounts of data. For this, we need accurate variance estimation methods

that can build a “loss function" for learning algorithms that examine data and decide how to best process it to make the best

next estimate, and to choose the best next places to sample; here we have presented a framework for extrapolating from such25

data that allows for learning the best extrapolation strategy from the variance minimization algorithm.

On the other hand, we should realize there is a physical source of extreme response variation, which is the combination of

turbulent inflow and nonlinear turbine response. By “opening up the black box", i.e., circling back to the original physics, we

hope to transfer what in the present setup is response variability into the realm of environmental variability, at which point

we can use its probability distribution (which, like wind speed and other environmental variables, we have a better chance30

of knowing) in an IFORM-like method to hone in on just the loads of interest (i.e., the extreme loads) more quickly. Further

studies into the root causes of extreme response variation of wind turbine loads for fixed environmental conditions and their

ultimate incorporation into more efficient statistical extreme loads estimation are ongoing.
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