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Abstract

As wind farms become larger, the spacing between turbines becomes a significant design consid-

eration that can impose serious economic constraints. To investigate the turbulent flow structures

in a 4× 3 Cartesian wind turbine array, a wind tunnel experiment was carried out parameterizing

the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6D

or 3D in the streamwise direction, and 3D or 1.5D in the spanwise direction, where D = 12 cm

is the rotor diameter. Data are obtained experimentally using stereo particle-image velocimetry.

Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of

6D and 3D, in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine

spacing to 3D, variations in the streamwise spacing influence the turbulent flow structure and the

power available to following wind turbines. Quantitative comparisons are made through spatial

averaging, shifting measurement data and interpolating to account for the full range between de-

vices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in

cases with spacing of 3D × 3D. Snapshot proper orthogonal decomposition (POD) was employed

to identify the flow structures based on the turbulence kinetic energy content. The maximum

turbulence kinetic energy content in the first POD mode is seen for turbine spacing of 6D× 1.5D.

The flow upstream of each wind turbine converges faster than the flow downstream according to

accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-

averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each

case; the case of 6D × 1.5D spacing shows the fastest to compare the rate of reconstruction of

statistical profiles. Intermediate modes are also used to reconstruct the averaged profile and show

that the intermediate scales are responsible for features seen in the original profile. The variation

in streamwise and spanwise spacing leads to changes in the background structure of the turbulence,

where the color map based on barycentric map and Reynolds stress anisotropy tensor provides an

alternate perspective on the nature of the perturbations within the wind turbine array. The im-

pact of the streamwise and spanwise spacings on power produced is quantified, where the maximum

production corresponds with the case of greatest turbine spacing.
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I. INTRODUCTION

Allowing insufficient space between wind turbines in an array leads to decreased perfor-

mance through wake interaction, decreased bulk flow velocity and an increase in the accumu-

lated fatigue loads and intermittency events on downstream turbines (Viggiano et al. 2016,

Ali et al. 2016a). Wind turbine wakes lead to an average loss of 10-20% of the total potential

power output of wind turbine array (Barthelmie et al. 2007). Extensive experimental and

numerical studies focus on wake properties in terms of the mean flow characteristics used to

obtain estimates of power production (Chamorro and Porté-Agel 2009, 2011). Wake growth

depends on the shape and magnitude of the velocity deficit, surface roughness, flow above

the canopy and spacing between the turbines.

Although there are many studies dealing with the effect of the density of turbines on the

wake recovery, it is still a debated question. The actual spacing of wind turbines can vary

greatly from one array to another and depending on the direction of the bulk flow. For

example, in the Nysted farm, spacing is 10.5 diameters (D) downstream by 5.8D spanwise

at the exact row (ER). The wind direction at the ER is 278◦ and mean wind direction

can deviate from ER by ± 15◦ (Barthelmie et al. 2010). Variation in the wind direction

is evident through wake statistics, including wake width, center line, and orientation with

respect to the array. Barthelmie and Jensen (2010) showed that the spacing in the Nysted

farm is responsible for 68-76% of the farm efficiency variation. In the Horns Rev farm,

spacing between devices is 7D, although aligned with the bulk flow direction spacing is as

much as 10.4D. Hansen et al. (2012) pointed out that variations in the power deficit are

almost negligible when spacing is approximately 10D at the Horns Rev farm, in contrast to

limited spacings that present a considerable power deficit. González-Longatt et al. (2012)

found that when the streamwise and spanwise spacing increased, the wake coefficient, which

represents the ratio of total power output with and without wake effects, is increased. Nilsson

et al. (2015) performed large eddy simulations (LES) of the Lillgrund wind farm, where pre-

generated turbulence and wind shear are imposed in the computational domain to simulate

realistic atmospheric conditions. In the Lillgrund wind farm, the actual spacing is 3.3D and

4.6D in the streamwise and spanwise directions. A turbine is missing near to the center of the

wind farm, demonstrating the effects of a farm with limited spacing and one with sufficient

spacing in otherwise identical operating conditions. The results of Nilsson et al. (2015) are
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highly applicable in the current study, although their foci are on turbulence intensity effects

and yaw angle.

Further, the effect of the incoming flow direction on the wake coefficient increased when

the spacing of the array is reduced. Meyers and Meneveau (2012) studied the optimal

spacing in a fully developed wind farm under neutral stratification and flat terrain. The

results highlighted that, depending on the ratio of land and turbine costs, the optimal

spacing might be 15D instead of 7D. Stevens (2015) pronounced that the optimal spacing

depends on the length of the wind farm in addition to the factors suggested in Meyers

and Meneveau (2012). Orography and wind direction are relevant when deciding distance

between turbines as well as layout as shown by Romanic et al. (2018).

Further investigations in array optimization have been undertaken by changing the align-

ment of the wind farm, often referred to as staggered wind farms. Meyers and Meneveau

(2010) compared aligned versus staggered wind farms; the latter yielding a 5% increase in

extracted power. Yang et al. (2012) used LES to study the influence of the streamwise and

spanwise spacing on the power output in aligned wind farms under fully developed regime.

Their work confirmed that power produced by the turbines scales with streamwise spacing

more than with the spanwise spacing. Wu and Porté-Agel (2013) investigated turbulent flow

within and above aligned and staggered wind farms under neutral condition. Cumulative

wakes are shown to be subject to strong lateral interaction in the staggered case. In contrast,

lateral interaction is negligible in the aligned wind farm. Archer et al. (2013) quantified the

influence of wind farm layout on the power production, verifying that increasing the turbine

spacing in the predominant wind direction maximized the power production, regardless of

device arrangement in the wind farm. Stevens et al. (2016) investigated the power output

and wake effects in aligned and staggered wind farms with different streamwise and spanwise

turbine spacings. In the staggered configuration, power output in a fully developed flow de-

pends mainly on the spanwise and streamwise spacings, whereas in the aligned configuration,

power strongly depends on the streamwise spacing.

As wind farms become larger, the land costs and availability represent critical factors in

the overall value of the wind farm. Spacing between the turbines is an important design

factor in terms of overall wind farm performance and economic constraints. Investigation of

wind farms with limited spacing is important in order to quantify the effects of wind turbine

wake interaction on the power production. The current work compares the turbulent flow in
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various configurations of the array, where the streamwise and spanwise spacings are varied.

The tunnel-scaled wind farm is restricted to a flat surface and topographic influences are

not considered, although the inflow to the wind farm includes modifications to resemble

an atmospheric boundary layer. The performance of the arrays is characterized by ana-

lyzing the mean velocity, Reynolds shear stress, and power production. Proper orthogonal

decomposition (POD) is employed to identify coherent structures of the turbulent wake asso-

ciated with variations in spacing. The Reynolds stresses are reconstructed from POD basis,

demonstrating variation in rates of convergence according to wind turbine spacing. Finally

the Reynolds stress anisotropy tensor is employed to differentiate the balance of energy in

the turbulence field for the test cases.

II. THEORY

A. Snapshot Proper Orthogonal Decomposition

POD is a mathematical tool that derives optimal basis functions from a set of measure-

ments, decomposing the flow into modes that express the most dominant features. The

technique, which was presented in the frame of turbulence by Lumley (1967), categorizes

structures within the turbulent flow depending on their energy content. Sirovich (1987)

presented the snapshot POD, that relaxes the computational difficulties of the classical or-

thogonal decomposition. POD has been used to describe coherent structures for different

flows, such as axisymmetric mixing layer (Glauser and George 1987), channel flow (Moin

and Moser 1989), atmospheric boundary layer (Shah and Bou-Zeid 2014), wake behind disk

(Tutkun et al. 2008), and a wind turbine wake flow (Andersen et al. 2013, Bastine et al.

2014, VerHulst and Meneveau 2014, Hamilton et al. 2015a, Ali et al. 2016b, 2017a).

The flow field, taken as the fluctuating velocity after subtracting time average mean

velocity from instantaneous velocity, can be represented as u = u(~x, tn), where ~x and tn

refer to the spatial coordinates and time at sample n, respectively. A set of the orthonormal

basis functions, φ, can be presented as

φ =
N∑

n=1

A(tn)u(~x, tn), (1)

where N is the number of snapshots. The largest projection can be determined using the
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two point correlation tensor and Fredholm integral equation

∫
Ω

1

N

N∑
n=1

u(~x, tn)uT (~x
′
, tn)φ(~x

′
)d~x = λφ(~x), (2)

where left hand side of the equation presents a spatial correlation between two points ~x

and ~x
′
, T signifies the transpose of a matrix, Ω is the physical domain, and λ are the

eigenvalues. To acquire the optimal basis functions, the problem is reduced to an eigenvalue

decomposition denoted as [C][G] = λ[G], where C , G and λ are the correlation tensor, basis

of eigenvectors, and eigenvalues, respectively. The matrix [G] is related to the time coefficient

as [G] = [A(t1), A(t2), · · · , A(tN)]T . The POD eigenvectors illustrate the spatial structure

of the turbulent flow and the eigenvalues measure the energy associated with corresponding

eigenvectors. The summation of the eigenvalues presents the total turbulent kinetic energy

(E) in the flow domain. The cumulative kinetic energy fraction η and the normalized energy

content of each mode ξ can be represented as ηn =
∑n

j=1 λn/
∑N

j=1 λn and ξn = λn/
∑N

j=1 λn.

POD is particularly useful in rebuilding the Reynolds shear stress using a limited set (Nlm)

of eigenfunctions as,

〈uiuj〉 =

Nlm∑
n=1

λnφ
n
i φ

n
j . (3)

B. Reynolds Stress Anisotropy

Following the development presented by Rotta (1951), the Reynolds stress anisotropy

tensor is written aij = uiuj − 2
3
kδij, where δij is the Kronecker delta and k represents the

turbulence kinetic energy and is defined by k = 0.5
∑3

i=1〈uiui〉. The deviatoric tensor is

then bij = uiuj/ukuk − 1
3
δij, of which the second and third scalar invariants are determined

as 6η2 = bijbji and 6ξ3 = bijbjkbki, respectively (Pope 2000, Lumley and Newman 1977).

The second invariant, η, measures the degree of the anisotropy and the third invariant, ξ,

specifies the state of turbulence. Alternatively, the eigenvalue decomposition of the normal-

ized Reynolds stress anisotropy tensor bij can be used to derive the the second and third

invariants as η2 = 1
3
(λ2

1 + λ1λ2 + λ2
2) and ξ3 = −1

2
λ1λ2(λ1 + λ2). In an attempt to further

facilitate the study of turbulence anisotropy, Banerjee et al. (2007) presented a linearized

anisotropy tensor invariants, termed barycentric map (BM) as,
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TABLE I: Summary of the special turbulence cases described by the barycentric map.

Cases Eigenvalues

Three-component λ1 = λ2 = λ3 = 0

Two-component λ1 = λ2 = 1
6 , λ3 = −1

3

One-component λ1 = 2
3 , λ2 = λ3 = −1

3

b̂ij = C1c


2/3 0 0

0 −1/3 0

0 0 −1/3

 + C2c


1/6 0 0

0 1/6 0

0 0 −1/3

 + C3c


0 0 0

0 0 0

0 0 0

 , (4)

where C1c, C2c and C3c are the coefficients that represent the boundaries of the barycentric

map. The BM coefficients are determined as C1c = λ1 − λ2, C2c = 2(λ2 − λ3), and C3c =

3λ3 + 1. The basis matrices in equation (4) represent the vertices of an equilateral triangle

with coordinates (x1c, y1c), (x2c, y2c) and (x3c, y3c). Table I presents the states of turbulence

that correspond to each vertex of the BM, describing to either isotropic (three-component),

one- or two-component turbulence. As a result, any realizable turbulence state can be

represented as follows,

xnew = C1cx1c + C2cx2c + C3cx3c, (5)

ynew = C1cy1c + C2cy2c + C3cy3c. (6)

Emory and Iaccarino (2014) also introduced a color map based visualization technique that

aids to interpret the spatial distribution of the normalized anisotropy tensor. In this case,

they attributed to each vertex of the barycentric map an RGB (Red-Green-Blue) color, see

figure 1 for more details. This color map technique combines the coefficients C1c, C2c and

C3c to generate an RGB map such that,


R

G

B

 = C∗1c


1

0

0

 + C∗2c


0

1

0

 + C∗3c


0

0

1

 . (7)
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FIG. 1: Schematic representation of the Barycentric map (BM) with color map.

where C∗ic are the modified coefficients that can be determined as C∗ic = (Cic + 0.65)5. The

coefficient with value of (0.65 and 5) is applied as it provides the optimal visualization; other

coefficients are tested with less success in terms of marking differences. As a result, one-

component turbulence is associated to the red color, two-component turbulence to green,

and three-component (isotropic turbulence) to blue, see figure 1. The anisotropy has been

examined in different types of flow, including pipe and duct flows (Antonia et al. 1991,

Krogstad and Torbergsen 2000), atmospheric boundary layer (Klipp 2010, 2012) as well as

the wake of a wind turbine (Gómez-Elvira et al. 2005, Hamilton and Cal 2015, Ali et al.

2017b,c). Here we will used the anisotropy stress tensor is employed to quantify the effect

of the spacing on the turbulence states.

III. EXPERIMENTAL DESIGN

A 4 × 3 array of wind turbines was placed in the closed-circuit wind tunnel at Portland

State University to study the effects due to variation in streamwise and spanwise spacing

in a wind turbine array. The dimensions of the wind tunnel test section were 5 m (long),

1.2 m (wide) and 0.8 m (high). The blockage ratio comparing the frontal area of the model

wind turbines to the cross-sectional area of the test section was less than 5%. The entrance

of the test section was conditioned by the passive grid, which consists of 7 horizontal and

6 vertical rods, to introduce large-scale turbulence. Nine vertical acrylic strakes, located at

0.25 m downstream of the passive grid and 2.15 m upstream of the first row of the wind
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FIG. 2: Experimental Setup. Dashed gray lines indicate the placement of the laser sheet relative to

the model wind turbine array. Filled gray boxes indicate measurement locations discussed below.

turbine, were used to modify the inflow. The thickness of the strakes was 0.0125 m and are

spaced every 0.136 m across the test section. Surface roughness was introduced to the wall

as a series of chains with a diameter of 0.0075 m, spaced 0.11 m apart. Figure 2 shows the

schematic of the experimental setup.

Sheet steel 0.0005 m thick was used to construct the 3-bladed wind turbine rotors. The

diameter of the rotor was D = 0.12 m, equal to the height of the turbine tower. The scaled

turbine models were manufactured in-house. Based on full scale turbines with a 100 m rotor

diameter and a 100 m hub height, the scaled models were at 1:830 scale. In this study,

the Reynolds number in the entrance row turbines was approximately the same order of

magnitude of the independent range detailed in Chamorro et al. (2012). The rotor blades

were steel sheets laser cut to shape and were 0.0005 m thick. The blades were shaped using

a die press. The die press was designed in-house to produce a 15 degree pitch from the plane

of the rotor and a 10 degree twist at the tip. Figure 3 presents the schematic of the wind

turbine model. The wind turbine model design used is that presented in Cal et al. (2010),

Kang and Meneveau (2010) and Hamilton et al. (2015b). Operating conditions for the wind

turbines were also scaled, namely the power coefficient, Cp and tip-speed ratio, λ, which were

detailed in Hamilton et al. (2015b) The streamwise integral length scale is approximately

0.13 m, which was the same order of magnitude as the turbine rotor and representative of

conditions seen by full-scale turbines in atmospheric flows. A DC electrical motor of 0.0013

m diameter and 0.0312 m long formed the nacelle of the turbine and was aligned with the

flow direction. A torque-sensing system was connected to the DC motor shaft following the

design outlined in Kang and Meneveau (2010). The torque sensor consists of a strain gauge,

Wheatstone bridge and the Data Acquisition with measuring software to collect the data.
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FIG. 3: Schematic representation of the wind turbine model.

The flow field was sampled in four configurations of a model-scale wind turbine array,

classified as CSx×Sz , shown in Table II. Permutations of the streamwise spacing (Sx) of 6D

and 3D and spanwise spacing (Sz) of 3D and 1.5D are examined. Stereoscopic particle

image velocimetry (SPIV) was used to measure streamwise, wall-normal and spanwise in-

stantaneous velocity at the upstream and downstream of the wind turbine at the center line

of the fourth row as shown in figure 4. At each measurement location, 2000 images were

taken, to ensure convergence of second-order statistics. The nominal sampling rate of the

SPIV system is fixed at 5 Hz. The SPIV system consists of a Nd:Yag (532nm, 1200mJ, 4ns

duration) double-pulsed laser and four 4 MP ImagerProX CCD cameras arranged in pairs

upstream and downstream of the wind turbine. Neutrally buoyant fluid particles of diethyl

hexyl sebacate were introduced to the flow and allowed to mix. Consistent seeding density

was maintained in order to mitigate measurement errors. The laser sheet was approximately

0.001 m thick with less than 5 mrad divergence angle. Each measurement window was 0.2

m × 0.2 m aligned with the center of each turbine, parallel to the bulk flow. A multi-pass

fast Fourier transformation was used to process the raw data into vector fields. Erroneous

measurement of the vector fields were replaced using Gaussian interpolation of neighboring
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FIG. 4: Top view of 4 by 3 wind turbine array. The dash lines at the last row centerline turbine

represent the measurement locations.

vectors. Based on the variability estimator (George 2013), the error of the SPIV measure-

ments was on the order of 3% with the greatest uncertainty pertaining to the out-of-plane

(spanwise) component.

TABLE II: Streamwise and spanwise spacing of the experimental tests.

Cases Sx Sz Occupied Area

C6×3 6D 3D 18D2

C3×3 3D 3D 9D2

C3×1.5 3D 1.5D 4.5D2

C6×1.5 6D 1.5D 9D2

IV. RESULTS

A. Statistical Analysis.

Characterization of the wind turbine wake flow is presented by the streamwise mean

velocity and Reynolds shear stress, with the aim to understand the influence of turbine-

to-turbine spacing. Figure 5 presents the streamwise normalized mean velocity, U/U∞,

upstream and downstream of each wind turbine for the cases C6×3, C3×3, C3×1.5 and C6×1.5.

The inflow mean velocity at the hub height U∞ = 5.5 m s−1 is used in the normalization. For

each turbine, the flow upstream and downstream of is shown by the contour plots on the left

and right, respectively. In the upstream region, case C6×3 exhibits the largest streamwise
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FIG. 5: Normalized streamwise velocity, U/U∞, at upstream and downstream of the cases C6×3,

C3×3, C3×1.5, and C6×1.5.

mean velocities due to greater recovery of the flow upstream of the turbine. Although the

streamwise spacing of case C6×1.5 is the same as case C6×3, the former shows reduced hub

height velocity. The normalized mean velocity is about 0.567 compared with 0.66 in case

C6×3, showing the influence of the spanwise spacing on wake evolution and flow recovery.

Variations between case C3×3 and C3×1.5 are small. Downstream of the turbine, the four cases

show differences outside of the rotor area, where case C6×3 shows the greatest velocities by

approximately 20%. Case C3×3 also shows higher velocities below the bottom tip compared

with cases C3×1.5 and C6×1.5. The normalized mean streamwise velocity and the turbulence

intensity in Nilsson et al. (2015) showed similar compound wakes from the upstream and

downstream turbines and confirmed the current result of cases C3×3 and C3×1.5. In that

study, there was one location with an absent turbine and the flow was given extra space for

recovery. The recovered wake flow in Nilsson et al. (2015) is similar to the present cases

C6×3 and C6×1.5.

Figure 6 compares the in-plane normalized Reynolds shear stress −uv/U2
∞ for all test

cases. The fluctuating velocities in streamwise and wall-normal direction are denoted as u

and v, respectively. In the upstream window, cases C3×3 and C3×1.5 display higher values

of the stress compared with C6×3 and C6×1.5. Although the spanwise spacing of case C3×1.5
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FIG. 6: Normalized Reynolds shear stress, −uv/U2
∞, in upstream and downstream of the each

measurement case.

is half of case C3×3, no relevant differences are apparent. In the downstream window,

comparison indicates that reducing streamwise spacing increases the Reynolds shear stress.

The average value of the shear stress in the wake is 16% greater for C3×3 than for C6×3.

A similar effect is observed in case C3×1.5, where average value of the stress is 2% greater

than that of C6×1.5. The effect of spanwise spacing is more pronounced when the streamwise

spacing is 3D; the average shear stress is approximately 20% greater in C3×1.5 than in C3×3.

B. Averaged Profiles.

Spatial averaging of the flow statistics is undertaken by moving the upstream domain of

each case beyond its corresponding downstream domain and performing streamwise averag-

ing, following the procedure in Cal et al. (2010). Through spatial averaging, it is possible to

compare key data from different cases taking into account the different streamwise spacings.

Streamwise averaging is denoted by 〈·〉x. Figure 7(a) shows profiles of streamwise-averaged

mean velocity for all four cases. Cases C6×3 and C3×1.5 show the largest and smallest ve-

locity deficits, respectively. At hub height, the velocity of the case C6×3 is approximately

2.25 m s−1 whereas case C3×1.5 shows a velocity of approximately 1.6 m s−1. Comparing to
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FIG. 7: Streamwise-averaged profiles of streamwise velocity, and Reynolds shear stress for four

different cases C6×3 (�), C3×3 (©), C3×1.5 (♦), and C6×1.5 (4).

C6×3, the change seen in the spatially-averaged velocity is greater in C3×3 than in C6×1.5,

confirming that the impact of reducing streamwise spacing is greater than changing the

spanwise spacing. Interestingly, when the spanwise spacing is fixed to Sz = 1.5D, changing

the streamwise spacing has a smaller than expected effect. Constraining the wake suppresses

development of the mean velocity in the streamwise and spanwise directions.

Figure 7(b) contains the streamwise-averaged Reynolds shear stress 〈−uv/U2
∞〉x for cases

C6×3 through C6×1.5. Slightly decreased values of 〈−uv/U2
∞〉x are seen in case C6×1.5, where

the spanwise spacing is reduced, especially below the turbine hub height y/D = 1. Re-

ducing spanwise spacing shows a more pronounced effect when the streamwise spacing is

Sx = 3D. The streamwise spacing plays a larger role than the spanwise spacing, i.e. the

maximum differences between the Reynolds shear stress profiles are detected between cases

C6×3 and C3×3. Interestingly, the largest difference between the spatially-averaged Reynolds

shear stress is found between cases C6×3 and C3×3, located at y/D ≈ 0.7 and y/D ≈ 1.4.

Furthermore, the four cases have approximately zero Reynolds shear stress at the inflection

point located at hub height. In addition, case C3×3 displays the maximum Reynolds stress

and case C6×1.5 presents the minimum stress.
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C. Proper Orthogonal Decomposition.

Eigenvalues produced in the POD express the integrated turbulence kinetic energy asso-

ciated with basis function describing the flow. The normalized cumulative energy fraction

ηn for upstream and downstream measurement windows are presented in figure 8(a) and (b),

respectively. Inset figures exhibit the normalized energy content per mode, ξn. Upstream

of the turbine, cases C6×3 and C6×1.5 converge toward ηn than cases C3×3 and C3×1.5, re-

spectively. These results are attributed to the reduction on the streamwise spacing. The

convergence of case C3×3 is approximately coincident with that of case C3×1.5. In the down-

stream measurement window, case C6×1.5 converges faster than the other cases, followed

by C6×3, C3×3 and C3×1.5. The comparison between the upstream and downstream win-

dows reveals that energy accumulates in fewer modes upstream in every test case, e.g., case

C6×3 requires 14 modes to obtain 50% of the total kinetic energy in the upstream window,

whereas 26 modes are required to obtain the same percentage of energy downstream of the

turbine. Cases C6×1.5 and C3×1.5 show the respective maximum and minimum variations in

λ1 between upstream and downstream measurements. This observation can be attributed

to the structure of the upstream flow of case C6×1.5, which is more recovered, compared to

the downstream flow, where the turbulence is high in energy content and more complex.

However, the upstream and downstream windows of case C3×1.5 are more similar in terms of

turbulence and organization. From mode 2 through 10, the starkest difference between the

upstream and downstream is found in case C6×3. Increasing the characteristic area per tur-

bine provides room for the flow to become more homogeneous in the upstream window and

exhibit the most significant momentum deficit in the wake, accounting for the differences

seen in ηn upstream and downstream.

The streamwise component of selected POD modes is shown for all cases in figures 9

through 11. These modes are selected because they provide a range of large and interme-

diate scales, and highlight the discrepancies among the cases. Figure 9 presents the first

POD mode at the upstream and downstream of the considered cases. The four cases show

small gradients in the streamwise direction compared to a large gradient in the wall-normal

direction. Although the four cases show a divergence between the eigenvalues of the first

mode, the eigenfunctions demonstrate very similar structure. For case C6×3, the energy of

the first POD mode decreases by 1.25% comparing the upstream eigenvalue to the down-
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FIG. 8: Energy content of the POD modes for four different cases: C6×3 (−·−), C3×3 (· · ·), C3×1.5

(−−), and C6×1.5 (−).

stream one, see figure 8. Smaller variations of 0.68% and 0.32% are observed in the cases

C3×3 and C3×1.5, respectively. Consequently, the structures of upstream and downstream of

these cases are approximately equivalent. The upstream measurement domain of cases C6×3

and C6×1.5 is representative of the recovering part of the flow, in contrast to the downstream

that presents the wake region. This difference in the physical space has an impact in the

low number POD modes that show a discrepancy in the coherent structures between the

upstream and downstream windows. In the C3×3 arrangement, upstream and downstream

regions exhibit similar behavior, thus pointing to the resemblance in the structure. Alike ob-

servations can be extracted from case C3×1.5. Of note, a difference in sign of the eigenvectors

is present, which is one of the POD properties.

Figure 10 presents the fifth POD mode of the four cases that show a combination of POD

and Fourier (homogenous) modes in the streamwise direction. Although the fifth mode of the

four cases contains ≈ 74% less energy of than the first mode, large scales are still pronounced.

Smaller features also appear in the upstream and the downstream windows. The upstream

window of cases C6×3, C3×3, and C3×1.5 is shifted horizontally in the downstream window.

The upstream and downstream widows of case C3×1.5 look like the first mode, reduced in

size, as is observed in the downstream window of the case C6×1.5.

Figure 11 presents the twentieth POD mode, where small structures become noticeable

in both upstream and downstream windows. The upstream measurement window of cases
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FIG. 9: The first mode upstream and downstream of the each case.

FIG. 10: The fifth mode upstream and downstream of the each case.

C6×3 and C6×1.5 shows larger scale structures compared to the other two cases. Although,

after mode 10, there is no significant difference in the energy content from case to case,

the structure of the modes shows a significant discrepancy between the cases confirming

that the intermediate modes are associated with the inflow characterizations. Thus, the
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FIG. 11: The twentieth mode upstream and downstream of the each case.

intermediate modes are responsible for carrying the significant part of flow dynamic and

cooperative behavior in the energy cascade. Therefore, any low-order models should include

these intermediate modes in order to improve the behavior dramatically and capture the

dynamic of the full system.

D. Reconstruction of Averaged Profile.

Combining the POD modes with the corresponding time coefficient gives these modes the

physical interpretation and shows the contribution of the modes to the overall flow behav-

ior. A reduced degree of the turbulence kinetic energy is considered using only a few modes

to reconstruct the streamwise-averaged profiles of Reynolds shear stress. Reconstructions

are made using either a single mode, or the first 5, 10, 25, or 50 modes to represent the

stress, shown in figure 12. Inset figures present the Reynolds shear stress construction using

the modes 5-10, 5-25, and 5-50, respectively, excluding the first four modes to isolate con-

tributions from intermediate modes. The black lines are the streamwise averaged stresses

from the full data in figure 7(b). Using an equal number of modes, case C6×1.5 rebuilds the

profiles of the Reynolds shear stress faster than the other cases. Case C6×3 also shows fast

reconstruction and dissimilarity to case C6×1.5, mainly arising from the profile of first mode
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(red line). Cases C3×3 and C3×1.5 show approximately the same trends in reconstruction

profiles. Below hub height, the four cases show the same trend of the first mode profiles,

where the contribution in the reconstruction profiles is zero. The maximum difference be-

tween the successive reconstruction profiles occurs between the first mode and the first five

modes. The cases C6×3, C3×3 and C3×1.5 show moderate variation between the profiles of

the reconstructed stress resulting from first five and first ten modes (red and green lines,

respectively). After mode 10, contributions by each additional mode are quite small, shown

by pink and gray lines.

The maximum difference between the full data and the reconstructed profiles is located

at y/D ≈ 0.75 and y/D ≈ 1.4, where the extrema in 〈−uv〉x are located. Generally, faster

reconstruction implies that the flow possesses coherent structures with a greater portion

of the total kinetic energy. Consequently, the flow characterized with greater coherence in

the cases C6×3 and C6×1.5. In cases C3×3 and C3×1.5, less energetic features arise from the

reduced spacing effect that leads to a reduction of the mean velocities within the canopy and

an increase in lateral wake interactions. These interactions, which become larger as a result

of the accumulated wakes, expand downstream of the rotor. Thus, the streamwise spacing

allows for the flow to recover and therefore produce larger, more coherent structures within

the domain, which in comparison eclipses variations produced by the spanwise spacing. Also,

the large spacing offers a larger frontal area to the wind coming from above the lateral sides.

To quantify the contribution of the moderate-scaled structures, the Reynolds shear stress

is reconstructed using the intermediate modes. As can be shown in the insets of figure 12,

the full data profile (black line) is compared with profiles reconstructed from modes 5-10

(red line), 5-25 (blue line), and 5-50 (green lines). The intermediate modes in each case

approximately take the form of the full data profiles below the hub height, although the

magnitudes of the reconstructions are smaller than those of the full data statistics. Recon-

struction Reynolds shear stress in cases C6×3 and C3×1.5 show minute variations between the

reconstructed profiles and are essentially vertical lines above the hub height. This trend is

opposite that shown by the profile of the first mode alone, indicating that the most energetic

modes selectively reconstruct turbulence above hub height. Cases C3×3 and C3×1.5 show a

difference between the successive profiles above the hub height. The maximum difference

is observed between the reconstructed profiles from modes 5-10 and from 5-25 due to the

turbulence kinetic energy contained within these modes.
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FIG. 12: Reconstruction Reynolds shear stress using: first mode (−−−), first 5 modes (−−−), first 10

modes (−−−), first 25 modes (−−−) and first 50 modes (−−−). Full data statistics (−−−). The insets show

the reconstruction using modes 5-10 (−−−), 5-25 (−−−), and 5-50 (−−−).

E. Reynolds Stress Anisotropy

To examine the dynamics and energy transfer in the wind turbine arrays with different

streamwise and spanwise spacings, a description of the anisotropy in the upstream and

downstream of the wind turbines is presented in figure 13. A visualization of the turbulence

state is obtained via the color map representing the barycentric map as described in section

II B. Turbulence anisotropy effectively distinguishes the cases in terms of wake propagation

and wake interaction. The variation in the spacings changes the background turbulence

structure. The upstream window of cases C6×3 and C6×1.5 shows that the turbulence field is
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close to the isotropic limit, especially in hub height region, as a result of the wake recovery

occurring under relatively large spacing distance. Below the bottom tip, these cases show

pancake-like turbulence due to the surface effect that appear deeming the perturbation of

the turbines virtually negligible. Near top tip, the flow shows a turbulence of axisymmetric

state (between the pancake-like and cigar-like turbulence). With this representation, the

spacing variation leads to a changed state of the turbulence and between the developed

and developing flow conditions can be discernible. The upstream of case C3×3 shows a

pancake-like turbulence state. However, the hub height and bottom tip regions shows an

isotropic and axisymmetric turbulence, respectively. The upstream of case C3×1.5 exhibits

axisymmetric and cigar-like turbulence in the most of the upstream domain, although the

hub height region remains described by isotropic turbulence.

Past the turbine, the four cases exhibit the turbulence of isotropic state in the hub height

region. The top tip region of all four cases shows axisymmetric turbulence although case

C3×3 tends toward cigar-like turbulence. Below hub height, the turbulence is pancake-like

and the difference amongst the cases is the covered area, where it is maximum at C6×3 and

minimum at C3×3. The longest extension is found in case C6×3 and the lowest in case C3×3.

Comparing to C6×3, the change seen in the turbulence states is starker in C3×3 than in

C6×1.5, confirming that the impact of reducing streamwise spacing is greater than changing

the spanwise spacing. However, the impact of the spanwise spacing is noticeable when

Sx = 3D.

The ability to identify the turbulence structure allows for identification of its influence

on subsequent turbines in terms of fatigue loads (Frandsen and Thøgersen 1999). Further,

regions of the flow that are characterized by highly anisotropic turbulence are those in which

one is likely to find large-scale, coherent turbulence structures. These structures impart

the greatest axial and bending loads onto subsequent turbine rotors leading to accelerated

fatigue and increased operational and maintenance costs for wind farms. In addition, regions

of high anisotropy correlate with gradients in the mean flow and turbulence (Hamilton and

Cal 2015). These quantities are of particular interest in wind farm modeling and design.

Accordingly, the accurate representation of gradients in wind farm design modeling is a

necessary check to accurately representing production of and flux by turbulence kinetic

energy, wake interaction, and structural loading on constituent turbines. Finally, the stress

tensor invariants, by definition, do not depend on reflection or rotation of the coordinate

21



Case C6×3

0.5

1

1.5

y/
D

Case C3×3

Case C6×1.5

-1.8 -1.4 -1
x/D

0.5

1

1.5

y/
D

Case C3×1.5

0.6 1 1.4
x/D

-1.8 -1.4 -1
x/D

0.6 1 1.4
x/D

3-c

1-c2-c

FIG. 13: Barycentric map map for the upstream and downstream of the considered cases. The

small triangle is a color map key for ease of interpretation.

system meaning that they are unbiased descriptors for the turbulent flow (Pope 2000).

V. POWER MEASUREMENTS.

Figure 14 demonstrates the power produced by each turbine, Fx, obtained with the

torque sensor, versus the angular velocity, ω. The power measurements are normalized by

the maximum theoretical power 1
2
ρAcU

3
∞, where ρ is the air density, Ac is swept area of

the turbine rotor πD2/4. The angular velocity is normalized by the 2U∞/D. It is apparent

from the figure that the maximum power is extracted at the normalized angular velocity

of 15.8 ± 1. The maximum normalized power of 0.062 is harvested at the largest spacing,

case C6×3. Fixing the spanwise spacing and decreasing the streamwise spacing reduces the

normalized power produced by 33% for Sx = 6D (from case C6×3 to case C3×3) and by

22% for Sx = 3D (from case C3×1.5 to case C6×1.5). The complementary change in spacing

holds the streamwise spacing constant while decreasing the spanwise spacing. In varying the

spanwise spacing, the normalized power produced is reduced by 20% for Sz = 3D (from case

C6×3 to case C6×1.5) and by 6% for Sz = 1.5D (from case C3×3 to case C3×1.5). Nilsson et al.

(2015) has complementary results to the ones present, where an increase in power produced

is attained in the largest spacing and conversely, decreased in the limited spacing case.

Increasing the spanwise distance has a less notable effect in comparison to the streamwise
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spacing.

The trend of the power curves follows that observed in the averaged profiles of the stream-

wise velocity, see figure 7 (a). Further, they verify the relationship between the power of the

turbine with the deficit velocity. The maximum power and velocity are found in the case

C6×3 and the minimum quantities are noticed in C3×1.5. The smallest variations in the power

measurement and main velocity are observed between cases C3×3 and C3×1.5, whereas the

largest difference is observed between cases C6×3 and C3×3. Increased longitudinal spacing

produces larger energy content in the first few modes and establishes the character of the

turbulence field of the flow. This is reflected in an increase in power as directly measured

via a torque sensing device.

VI. CONCLUSIONS

Insight into the behavior of the flow in a wind turbine array is useful in determining how

to highlight the overall power extraction with the variation in spacing between the turbines.

The work above quantifies effects of tightly spaced wind turbine configurations on the flow

behavior. The findings of this study have a number of important implications, especially

regarding the cost of a wind farm or when large areas are not available. Stereoscopic PIV
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data are used to assess characteristic quantities of the flow field in a wind turbine array with

varied streamwise and spanwise spacing. Four cases of different streamwise and spanwise

spacings are examined; the streamwise spacing being 6D and 3D, and spanwise spacing

being 3D and 1.5D. The flow fields are analyzed and compared statistically and by snapshot

proper orthogonal decomposition.

The streamwise mean velocity, and Reynolds shear stress are quantified upstream and

downstream of the wind turbine in the considered cases. In the inflow measurement window,

higher velocities are observed in cases C6×3 and C6×1.5 compared to the other two cases whose

inflows are unrecovered wakes from preceding rows. In contrast, case C3×3 and C3×1.5 show

higher Reynolds shear stress. The notable differences between the cases are found above the

top tip and below the bottom tip downstream the turbines, whereas the core of the wakes

shows fewer discrepancies. The streamwise and spanwise spacings have a concerted effect

on the flow, where the degree of the impact of one change highly depends on the other.

This relationship is shown in all statistical quantities discussed here, such as reducing of the

streamwise spacing by 50% leads to increases in the averaged Reynolds shear stress by 16%

when Sz = 3D. According to current statistical quantities, one can infer that the higher

influence of streamwise spacing is shown when the spanwise spacing is Sz = 3D, and the

significant effect of the spanwise spacing is observed when the streamwise spacing is Sx = 3D.

Averaged profiles of the velocity follow the order of higher velocity seen in the contour plots

in case C6×3 and lowest velocity in case C3×1.5. The maximum and minimum difference are

observed between cases C6×3 with case C3×1.5 and C3×3 with case C3×1.5. The result also

reveals that the streamwise spacing is more impactful than the spanwise spacing. Spatially-

averaged profiles of Reynolds shear stress shows the maximum and minimum values occur

in cases C3×3 and C6×1.5, respectively.

According to the POD analysis, the upstream measurement plane of the four cases con-

verges faster than the downstream window. Case C6×3 and C6×1.5 show rapid convergence

in cumulative energy content upstream of the turbine, but C6×3 remains behind case C6×1.5

in the wake. The first mode of the case C6×1.5 carries the maximum turbulent kinetic energy

content compared to the first mode of the other cases. No significant difference in energy

content is observed after mode 10 between the four cases. The streamwise-averaged pro-

files of the Reynolds shear stress are reconstructed by back-projecting coefficients onto the

set of eigenfunctions. Low modes are used individually to demonstrate their contributions
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to the overall flow. Cases C6×1.5 and C6×3 converge to their respective spatially-averaged

profile faster than other two cases. The discrepancies in reconstruction is mainly observed

in profiles using only the first five modes. The same trend in reconstruction is observed in

cases C3×3 and C3×1.5. Reconstructed profiles display the effects of the spacing, where the

array of large streamwise spacing reconstruct faster than the other cases due to the coherent

structures embedded in the flow.

Based on the Reynolds stress anisotropy tensor and color map visualization, the spacing

modifies the anisotropic character of the turbulence. Increased turbine spacing allows the

turbulent flow to recover between devices, leading to increasingly isotropic flow incident to

the rotors. The hub height region of the wake shows isotropic turbulence regardless the

spacing. The differences of the color map visualization between the downstream locations

of the four cases show some structural dependency on the spacing between turbine rotors.

Power production by the turbines is measured directly using torque sensing system. The

power curves follow the same trend as the velocity profiles. The maximum power extracted

at the normalized angular velocity of 15.8 ± 1 and it is harvested in case C6×3. The small

difference in harvested power is observed between cases C3×3 and C3×1.5. The current work

demonstrates that wake statistics and power produced by a wind turbine depend more on

streamwise spacing than spanwise spacing. However, results above pertain only to a fixed

inflow direction. In the case where the bulk flow orientation changes, spacing in both the

streamwise and spanwise directions will be important to the optimal power production in a

wind turbine array. Continued efforts are required to understand the impact of streamwise

and spanwise spacing in infinite array flow with under realistic flow conditions, including

Coriolis forcing and under different stratification conditions.
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D. Bastine, B. Witha, M. Wächter, and J. Peinke, Journal of Physics: Conference Series 524,

012153 (2014).

26



C. VerHulst and C. Meneveau, Physics of Fluids 26, 025113 (2014).

N. Hamilton, M. Tutkun, and R. B. Cal, Wind Energy 18, 297 (2015a).

N. Ali, H. F. Kadum, and R. B. Cal, Journal of Renewable and Sustainable Energy 8, 063306

(2016b).

N. Ali, G. Cortina, N. Hamilton, M. Calaf, and R. B. Cal, Journal of Fluid Mechanics 828, 175

(2017a).

J. Rotta, Z. Physik 131 (1951).

S. B. Pope, Turbulent flows (Cambridge University Press, 2000).

J. L. Lumley and G. R. Newman, Journal of Fluid Mechanics. 82, 161 (1977).

S. Banerjee, R. Krahl, F. Durst, and C. Zenger, Journal of Turbulence 8, N32 (2007).

M. Emory and G. Iaccarino, Annual Brief, Center for Turbulence Research (2014).

R. A. Antonia, J. Kim, and L. Browne, Journal of Fluid Mechanics. 233, 369 (1991).

P. Krogstad and L. E. Torbergsen, Flow, turbulence and combustion. 64, 161 (2000).

C. Klipp, in SPIE Defense, Security, and Sensing. (International Society for Optics and Photonics.,

2010), pp. 768505–768505.

C. Klipp, in SPIE Defense, Security, and Sensing. (International Society for Optics and Photonics.,

2012), p. 83800G.
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