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Abstract.

We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal

wind-speed gradients because of its size and relatively closeness to land. Mesoscale model simulations are used to study the

horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and SCADA, we show that

for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale5

simulations to derive the undisturbed inflow conditions that are coupled with three commonly-used wake models; two engi-

neering approaches (the Park and G. C. Larsen models) and a linearized Reynolds-averaged Navier-Stokes approach (Fuga).

The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared

to estimates from both the average undisturbed wind climate of all turbines’ positions and the undisturbed wind climate of

a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind10

climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake

cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake

models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake

models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity

factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of15

the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model

error is 8.75%) and the engineering wake models are as uncertain as Fuga. These results are specific for this wind farm, the

available dataset, and the derived inflow conditions.

1 Introduction

The Anholt wind farm is currently the fourth largest offshore wind farm in the world power-wise. The layout of the Anholt wind20

farm was optimized to minimize wake losses. The number of wind turbines (111), the wind-turbine type and the maximum

allowed wind-farm area for turbine deployment (88 km2) are examples of chosen constraints. The employed optimization

tool has a tendency to place most wind turbines at the edges of the wind-farm area, while the remaining wind turbines are

placed inside the wind farm with a relative large interspacing. For the particular case of Anholt, a number of wind turbines
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were relocated from the optimized layout due to seabed that turned to be too soft (Nicolai Gayle Nygaard, 2017, personal

communication).

So far the only reported studies on the wake effects of this wind farm are those of Nygaard (2014), Nygaard et al. (2014),

and van der Laan et al. (2017). In the former, there is a comparison between the Park wake model (Katic et al., 1986) and

SCADA for a row of turbines in the middle of the wind farm for a given wind-direction and wind-speed range. The wake5

model estimates fairly well the wake losses. The study also presents the results of the Park model for other large offshore

wind farms, clearly showing that this wake model agrees with the SCADA for different inflow conditions rather well. These

are interesting findings because engineering wake models do not generally include coupling with the vertical structure of the

atmospheric boundary layer, thus, they should tend to underpredict wake losses in large offshore arrays (Stevens et al., 2016).

However, the studies showing wake-model underprediction in large offshore wind farms (Barthelmie et al., 2009) analyze10

the wake observations using narrow wind direction sectors and do not account for wind direction variability. In the study by

Nygaard et al. (2014), a comparison of two wake models, Park and the eddy viscosity model of WindFarmer (GL Garrad

Hassan, 2013), is performed against SCADA, revealing that Park, with a wake-decay coefficient k = 0.04, gives better results

than the model of WindFarmer with and without a large wind-farm correction. In the study by van der Laan et al. (2017), the

effect of the coastline on the wind farm is investigated with a Reynolds-averaged Navier-Stokes (RANS) model, showing that15

such RANS setup is able to predict the horizontal wind-speed gradient over the wind farm when compared to the SCADA.

Engineering wake models are also often regarded as too simplistic for the estimation of wake losses, yet they are those that

are most used when planning wind-farm layouts and for annual energy production (AEP) estimations. This is because they

can be easily implemented and optimized in terms of computational performance. One cannot expect to characterize wakes in

detail with such models but for the estimation of power and energy production means, they are sufficiently accurate when used20

properly (Nygaard, 2014; Nygaard et al., 2014). Peña et al. (2014) show that the Park model is able to predict the wake losses

of the Horns Rev I wind farm in the North Sea for different atmospheric stability conditions when using a stability-dependent

wake-decay coefficient. Peña et al. (2016) show that the Park model is in good agreement with the Sexbierum cases where

two more sophisticated wake models are also tested: a linearized RANS solution (Fuga) and a nonlinear solution of the RANS

equations that uses a modified k-ε turbulence model. In the latter two studies, the goodness of the results of the Park model is25

partly a result of accounting for the variability of the wind direction (Gaumond et al., 2014). Since Fuga is a computationally

efficient wake model, whose results (in terms of wind-speed deficits) are nearly equal to those of a nonlinear solution of the

RANS equations (Ott et al., 2011), we want to find out how different AEP and capacity factor estimates are when compared

to those of Park and of another wake model that is a simple solution of the RANS equations, the G. C. Larsen model (Larsen,

2009).30

Wake models of all types have been mainly evaluated against offshore wind farms that are well off the coast or where the

effect of the land is assumed to be minimal (Barthelmie et al., 2009; Réthoré et al., 2013; Stevens et al., 2016). The Anholt

wind farm can therefore help us investigating such effect as the land is relatively close by (≈20 km) and within the direction

of the predominant winds. We are aware that the Anholt wind farm experiences strong horizontal wind-speed gradients, which

are translated into power gradients for turbines that are not experiencing wakes (Damgaard, 2015). The challenge is therefore35
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to find out how such gradients interfere with the wake losses and how these affect the production and the AEP. This can be

performed by simple ‘coupling’ of undisturbed wind climates at some (or all) turbines’ positions, in which the horizontal

wind-speed gradient is embedded, with the wake models. To the authors knowledge, there has not been attempts to study the

impact of the horizontal wind-speed gradient on wakes of wind farms using engineering wake models yet, although there is an

attempt to include wind-direction gradients (Hasager et al., 2017). An obvious choice to derive the wind climate is the use of5

a mesoscale model such as the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008), which is nowadays

often used multi-purposely in the wind-energy community (Storm and Basu, 2010; Hahmann et al., 2015). In the present work,

we also want to investigate the ability of WRF to model the horizontal wind-speed gradient over the wind farm.

In this study, we first present (Sect. 2) a general background regarding the Anholt wind farm, the WRF mesoscale runs

that we use to estimate the wind-farm climate, the wind-farm SCADA, the wake models, and the ways in which we account10

for the horizontal wind-speed gradient and estimate the wake-models uncertainty. Section 3 presents the results regarding the

influence of the wind-speed gradient on flow cases, on the AEP, those showing the evaluation of the wake models for two flow

cases, and the analyses of the capacity factor, power loss and model uncertainty. Finally, discussion and conclusions are given

in the last two sections.

2 Methods15

2.1 Definitions

We define the efficiency of the wind farm at a given wind speed U as

ηU =

∑
iPi

ntPU
, (1)

where Pi the power of each individual turbine in the farm, PU the power of the turbine from the power curve at U , and nt the

number of turbines in the wind farm.20

We define the power loss of the wind farm as

PL= 1−
〈
∑

iPi〉
nt〈Pfree〉

, (2)

where 〈〉 means ensemble average and Pfree is the power of the free-stream turbines (these are defined in Sect. 2.2.2).

We define the relative wake model error as

ε=
PLobs−PLmod

PLobs
, (3)25

where the subscript obs and mod refer to observations and model, respectively.

2.2 Anholt wind farm

The Anholt wind farm is located in the Kattegat strait between Djursland and the island of Anholt in Denmark (see Fig. 1-left).

It consists of 111 Siemens 3.6 MW-120 turbines with hub height of 81.6 m and a rotor diameter of 120 m (Fig. 1-right). The
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smallest distance between the turbines is 4.9 rotor diameters. The water has depths of 15–19 m, the wind farm area is 88 km2

and full operation started since summer 2013.
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Figure 1. (Left) the Anholt wind farm (red markers) in the Kattegat. (Right) The layout and numbering of the turbines of the Anholt wind

farm in UTM32 WGS84. Turbines used to derived the inflow conditions are shown in red and cyan markers

2.2.1 SCADA

We have access to 10-min means of SCADA for the period January 1, 2013 to June 30, 2015. Data include nacelle wind speed,

yaw position, pitch angle, rotor speed, power reference, air temperature, rotor inflow speed, and active power. We also produce5

a filtered SCADA dataset by identifying periods where each turbine was grid connected and produced power during the entire

10-min period. The dataset excludes periods where any turbine was either parked or idling, those with starting and stopping

events, where power was curtailed, or boosted. We find turbines nr. 1, 36, 65, and 68 to be boosted with power values 5% above

the rated value. The result is a time series of 7440 10-min values starting in July 2013 until December 2014.

2.2.2 Inflow conditions10

Due to the lack of undisturbed mast measurements in the SCADA, we derive the inflow conditions from the filtered SCADA

dataset. We estimate an ‘equivalent’ wind speed based on either the 10-min SCADA’s power or pitch angle values in combi-

nation with the manufacturer’s power curve or the average pitch curve extracted from the SCADA. The inflow reference wind
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speed is computed as the average equivalent wind speed for groups of four undisturbed turbines as shown in Table 1. A group

of four turbines is used to robustly estimate the inflow wind speed and 10 different sectors are needed to avoid the influence of

Djursland and the island of Anholt. The inflow reference wind direction is computed as an average yaw position for pairs of

undisturbed wind turbines listed in Table 1. The yaw position calibration is performed as in Rodrigo and Moriarty (2015). The

turbines that we use to derive the inflow conditions are shown in Fig. 1-right.5

Table 1. Free-stream turbines used to determine the inflow wind speed (first two columns) and the inflow wind direction (second two

columns) as function of wind direction

dir [deg] turbine nr. dir [deg] turbine nr.

0–35 65 76 110 111 0–30 65 111

35–55 106 107 108 109 30–90 111 86

55–90 86 87 88 89

90–180 45 66 67 68 90–210 1 86

180–215 32 43 44 45

215–230 6 7 8 9 210–330 1 16

230–270 22 23 24 25

270–280 17 18 19 20

280–310 23 24 25 26

310–360 30 65 76 111 330–360 65 111

2.3 Wind-farm climate

We perform simulations of the wind climate over a region covering the Anholt wind farm using the WRF version 3.5.1 model.

Simulations are carried out on an outer grid with horizontal spacing of 18 km × 18 km (121 × 87 grid points), a first nested

domain of 6 km × 6 km (280 × 178 grid points), and a second nest with center in the middle of Jutland, Denmark of 2 km ×
2 km (427 × 304 grid points). The simulations use 41 vertical levels from the ground to about 20 km. The lowest 12 levels are10

within the 1000 m of the surface with the first level at ≈14 m. Initial, boundary conditions, and fields for grid nudging come

from the European Centre for Medium Range Forecast ERA-Interim Reanalysis (Dee et al., 2011) at 0.7◦× 0.7◦ resolution.

Other choices in the model setup are standard and commonly used in the modelling community. Further details regarding

the simulations are provided in Peña and Hahmann (2017). Figure 2 shows the Anholt wind climate at hub height at a WRF

grid point in the middle of the wind farm based on the WRF hourly outputs for 2014. The model output is logarithmically15

interpolated to hub height. Most winds come from the west, south-southwest, and southeast directions and winds between 5

and 15 m s−1 are the most frequent (the all-sector mean wind speed is 9.23 m s−1).

5



1%

2%

3%

4%

5%

W E

S

N

0 - 5
5 - 10
10 - 15
15 - 20
20 - 25
25 - 30

wind speed [m s−1]

Figure 2. The wind climate at hub height in the middle of the Anholt wind farm for the year 2014 based on WRF simulations

2.4 Wake models

We use three different wake models: the Park wake model with the commonly-used offshore value of k = 0.04, the G. C.

Larsen model (Larsen, 2009), and Fuga (Ott et al., 2011). The first two are engineering wake models and Fuga is a linearized

flow solver of the steady-state RANS equations using an actuator-disk approach. For the two engineering wake models, the

local wake deficits δi are superposed to compute the speed deficit at the nth turbine. This is performed in two different ways:5

linearly
∑n

i=1 δi and as a quadratic sum
(∑n

i=1 δ
2
i

)1/2
.

Due to the high computational efficiency of these wake models, we can easily perform wake analysis over given wind-speed

and wind-direction ranges and AEP-like calculations using the values in the time series (no need for distributions). For the

latter calculations, we create look-up-tables (LUTs) for each wake model, which contain the total wind-farm power output for

specific undisturbed wind directions and wind speeds. Figure 3 shows a comparison of the efficiency of the wind farm (Eqn. 1)10

predicted by the wake models. All wake models show the highest wake losses at the directions where most wind turbines are

aligned, i.e. at ≈160 and 340 deg, and 45 and 235 deg. At 5 m s−1, the Park-linear model generally shows the highest wake

losses followed by Larsen-linear and Fuga (within the direction where turbines are most aligned). At 5 and 10 m s−1, η ≈ 0.9

for all wake models excluding the most aligned directions, being Larsen-quadratic and Park-linear the models showing the

highest and lowest efficiencies, respectively.15

2.5 Accounting for the wind-farm gradient

One way to account for the effect of the horizontal wind-speed gradient within a wind farm, which is not the result of wake

effects themselves, on the wind-farm power output is by estimating the wake losses using the undisturbed wind speed and

direction at each individual turbine position for each time realization as inflow condition instead of using a single undisturbed
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Figure 3. The efficiency of the Anholt wind farm predicted by the wake models at 5 m s−1 (left frame) and 10 m s−1 (right frame)

wind speed and direction as it is commonly performed. At each turbine position, we will therefore have both a time series of

velocity deficits (and thus power values) because of the change with time of inflow conditions and a series, with a number of

members equal to the number of turbines in the farm, of velocity deficits for each inflow condition experienced by each turbine

for each time realization. Then, the wind-farm power time series, as an example, can be estimated by averaging the power

resulting from all inflow conditions for the same time realization (for the Anholt case this means 111 conditions) and then5

averaging the results of all turbines. This is hereafter known as a gradient-based analysis. The wind/inflow at each turbine must

be undisturbed and so mesoscale model simulations over the wind-farm area (without the wind farm) are an obvious option to

estimate the wind climate at each turbine position.

Due to the very high efficiency of the Park model (in a Matlab script it takes miliseconds to perform one simulation of Anholt

for a single inflow wind speed and direction), when using the WRF hourly time series, we can perform 111 simulations (i.e.10

111 different inflow conditions that are interpolated from the WRF grid into the turbine positions) in couple of seconds. Thus,

we can perform a gradient-based AEP analysis with hourly WRF winds in just few hours. It is important to note that we can

perform traditional1 AEP calculations with all wake models much faster using pre-computed LUTs.

1traditional here implying AEP calculations with a single inflow condition per time realization
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2.6 Uncertainty estimation

We quantify the uncertainty of the wake models using a nonparametric circular-block bootstrap similar to Nygaard (2015). The

idea is to ‘wrap’ the power-output time series (from both measurements and simulations) of the wind farm around a circle.

Blocks of the time series with a given size, which is here selected according to Politis and White (2004) based on the wind-

speed time series, are then randomly sampled. The number of sampled blocks is given by the total size of the time series and5

the block size. The number of bootstrap replications should be large enough to ensure a close to zero Monte Carlo error. By

bootstrapping the power-output time series, we can estimate the bootstrapped PL and so estimate a distribution of ε. Details

and code implementations of a number of bootstrapping techniques can be found in Sheppard (2014).

3 Results

The analysis of the influence of the horizontal wind-speed gradient in Sect. 3.1 is performed with the WRF model outputs10

for 2014 and the filtered SCADA dataset. For AEP estimations (Sect. 3.1.1), we only use WRF model outputs for 2014. The

westerly flow case in Sect. 3.1.2 uses the filtered SCADA dataset, as well as the south flow case in Sect. 3.1.3, and the WRF

model outputs for 2014. For the capacity factor calculations in Sect. 3.2, we use all the SCADA available for 2014 and the WRF

model outputs for the same year. The analyses of the power loss and model uncertainty in Sects. 3.3 and 3.4 are performed on

the filtered SCADA.15

3.1 Influence of the wind-farm gradient

Figure 4 shows the mean horizontal wind-speed gradient at hub height in and surrounding the Anholt wind farm based on

simulations from the WRF model for the year 2014. The left frame shows the average for all wind speeds and directions and

the right frame the average for all wind speeds and directions within 270±30 deg, which have been filtered using the simulated

wind direction at hub height at the position of turbine 15. It is clear the influence of Djursland (see Fig. 1-left) on the wind at the20

farm even for the omnidirectional case. The impact of Djursland is much stronger when looking at westerly winds so we could

expect an impact on the results of wake models when the flow is particulary from these directions. The horizontal wind-speed

gradient is mainly due to the roughness effect of the land surrounding the wind farm (van der Laan et al., 2017). Although it is

not shown, the island of Anholt east of the farm also has an impact on the wind speed at the wind farm for northeasterly flow

but this is not as strong as that of Djursland for westerly flow. For westerly winds (270± 30◦), the WRF-simulated average25

hub-height wind-speed difference between turbines nr. 1 and 30 is 0.62 m s−1, whereas for easterly winds (90±30◦) it is 0.12

m s−1 between turbines nr. 86 and 111.

In Fig. 5-left we extract the values from Fig. 4 at each turbine position by linearly interpolating the WRF winds to the turbine

positions. For the omnidirectional case, the horizontal wind-speed gradient is lower than for westerly winds, as expected, and

for both cases the strongest gradient is observed for the first row of turbines (1–30), which are those closer to Djursland.30
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Figure 4. WRF-simulated mean wind speed at hub height on the Anholt wind farm area for the year 2014. All data are shown in the left

frame and data within the directions 270± 30◦ at the position of turbine nr. 15 in the right frame. Colorbars are in m s−1

Figure 5-right shows SCADA-derived and WRF-simulated average wind speeds at hub height for turbines nr. 1–30 for a

number of westerly flow cases. We select filtered SCADA based on the inflow conditions described in Sect. 2.2.2 within the

wind-speed range 5–10 m s−1 and use the manufacturer’s power curve to derive each turbine’s wind speed from the power

output. For the comparison, we extract the WRF-simulated winds by averaging the horizontal wind-speed components on the

corresponding free-stream turbines for each direction range as given in Table 1. We also select WRF-simulated winds within5

the same wind-speed range 5–10 m s−1. It is observed that the horizontal wind-speed gradient for westerly winds depends on

the particular direction. The strongest simulated and observed gradients are found at 265±5 deg, being the winds at turbines nr.

1–15 lower than those at turbines nr. 15–30. Generally, the simulated gradient agrees with the observations fairly well, except

for the range 295± 5 deg, where the SCADA show the highest winds at the southern turbines. This can be an effect of the

topography on the turbines, which is not captured by WRF. It could also be a wind-farm wall effect (Mitraszewski et al., 2012).10

A similar effect (not shown) is observed when analyzing the SCADA-derived wind speeds of the turbines at the south of each

row for a direction 80–90 deg: the wind speed at turbine nr. 1 is about 6% higher than that at turbine nr. 86.

3.1.1 Annual energy production

The difference in AEP when accounting for the wind-farm gradient information and when assuming a horizontally homogenous

wind field2 is not larger than 1% when using the 2014 hourly WRF wind fields combined with the wake models (‘average wind15

field’ column in Table 2). The highest difference is observed for the WRF-Fuga setup, in which the estimation using the

2estimated each hour by taking the average of the horizontal wind-speed gradient over each turbine of the farm
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Figure 5. (Left) WRF simulated average wind speed at hub height at the turbine positions of the Anholt wind farm. (Right) Average wind

speed at hub height (normalized by that of turbine 15) at the most westerly row of the wind farm for a number of westerly flow cases: WRF

winds in solid lines and SCADA-derived winds in markers

‘average wind’ does not compensate for the low energy yield of the turbines in the south of the farm and the high energy yield

of those in the north as it does for the other WRF-wake model setups.

Table 2. Difference (in percentage) between different type of AEP calculations and that using the horizontal wind-speed gradient information

from the WRF simulations

model setup average wind field turbine nr. 1 turbine nr. 54 turbine nr. 65

WRF-Park-quadratic 0.05 -1.29 0.08 0.26

WRF-Park-linear 0.05 -1.33 0.07 0.26

WRF-Larsen-linear 0.05 -1.28 0.08 0.27

WRF-Larsen-quadratic 0.06 -1.24 0.08 0.27

WRF-Fuga 0.76 -0.59 0.77 0.98

The difference in the AEP estimation by accounting for the wind-speed gradient and that by using the wind climate of

turbine nr. 1, which is the position with the lowest average wind speed, is larger than 1% for the engineering wake models.

Such difference is rather large considering that the AEP of the wind farm is ≈1889.3 GW h when averaging all models’ AEP5

estimations using the wind-gradient information. The same exercise using the information of turbine nr. 54 (in the middle of

the farm) results in differences very close to those using the average wind field. Using the information of turbine nr. 65 (at

the top of the farm), the difference is also large but positive as expected. For the Anholt wind farm and its wind climate, in

particular, these results show that although accounting for the wind-farm gradient is important, it does not change largely the
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AEP estimations compared to those based on a one-point wind climate, unless the latter is not close to the average wind climate

within the wind-farm area. For comparison purposes (e.g. with the results in Fig. 5-left) the yearly average wind speed of the

‘homogenous’ wind is 9.21 m s−1.

3.1.2 Westerly flow cases

Given the impact of the horizontal wind-speed gradient on the AEP estimations (Sect. 3.1.1), it is relevant to study the wake5

losses under westerly flow conditions. Figure 6-top shows, for 2014, the average WRF-Park-quadratic power of each turbine

in the wind farm when filtering for westerly wind directions (using the WRF simulated wind climate at turbine nr. 15), both

accounting for the wind-speed gradient, as described in Sect. 2.5, and assuming a homogenous wind field (the average of the

wind climates at each turbine). For a broad wind-direction range, both results are nearly identical and only small differences at

specific turbines (up to 27.2 kW) are found when the wind-direction range is reduced; in this latter case we use the range that10

shows the largest gradients in Fig. 5-right. It is important to note that, although it is not seen, the normalized average power of

turbines 1–30 for the two ‘gradient’ cases in Figure 6-top is slightly lower than one, .

Since the horizontal wind-speed gradient does not seem to strongly impact the wake behavior for broad wind-directions

ranges, we compare the SCADA that have been wind-speed and direction filtered with the wake models in Fig. 6-bottom. The

inflow conditions are derived from the SCADA (see Table 1) and are used to run the wake models. 735 10-min cases are left15

after filtering for wind speed and direction (5–10 m s−1 and 270± 30 deg). In this case the power values are not normalized

with the power of a unique turbine, as we do for the plot in the top frame. Instead, we use the undisturbed turbine that is closest

to that where we are extracting the power from. This aids to levelize the SCADA at turbines nr. 1–30 mainly. The wake models

generally agree with the SCADA, particularly Fuga, being this and the engineering wake models’ variants using the linear sum

of wake deficits those showing the highest wake losses generally. For turbines nr. 31–60, where the wind farm experiences20

single and double wakes mostly, the SCADA are between the models’ results. For turbines nr. 66–111, where multiple wakes

occur, Larsen-quadratic highly underestimates the wake and the linear ‘variants’ and Fuga seem to generally agree better with

the SCADA. However, the comparison is not completely fair with the wake models because the reference power is not always

higher or equal to that of the individual turbines when these are supposed to be in the wake of a turbine. E.g. in the case of

turbine nr. 31, we use turbine nr. 3 as reference and in≈19% of the cases with the inflow conditions analyzed in Fig. 6-bottom,25

P3 < P31.

3.1.3 Southerly flow case

Figure 7 illustrates the wake loss for the north-south row in the middle of the wind farm (turbines nr. 45–65) filtering for inflow

conditions (9±0.5 m s−1 and 168.7±15 deg, which is the direction where turbines nr. 45 and 46 are aligned) that are derived

from the SCADA of turbines nr. 45 and 66–68 (Table 1). 26 10-min cases are left after filtering for wind speed and direction.30

As expected from the results in Fig. 6-bottom, for this multiple wake case, the models using the ‘linear’ variant agree better

with the SCADA than those using the ‘quadratic’ variant when going deeper in the row. The Park-quadratic model predicts the
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Figure 6. Normalized average power of each turbine in the wind farm for westerly flow conditions. (Top) from simulations using the 2014

WRF time-series and Park-quadratic with (gradient) and without (homogeneous) the horizontal wind-speed gradient information. (Bottom)

from SCADA and simulations from the wake models within the range 270± 30 deg and hub-height inflow wind speed of 5–10 m s−1. For

the SCADA, the shaded region indicates ±the standard error of the mean

wake loss of the three first turbines rather well but underpredicts it when moving deeper in the row. The results from Fuga are

between the engineering model’s variants.

Because the differences between SCADA and models in Fig. 7 are relatively large and the amount of 10-min periods for

the southerly flow case are 26 only, we also perform actuator-disk RANS simulations in EllipSys3D (Sørensen, 2003) using

a modified k-ε turbulence model (van der Laan et al., 2015). The results of the RANS model are very close to those of5

Fuga and Larsen-linear also underestimating the wake loss. We can only speculate that for this particular case, the high wake

loss from the SCADA is due to atmospheric conditions, in particular from periods under a rather stable atmosphere, that we

are not accounting for in the simulations. However, we do not have useful observations to directly derive stability. We have

atmospheric stability measures from the WRF simulations but ‘instantaneous’ WRF stability measures are highly uncertain

(Peña and Hahmann, 2012). Nygaard (2014) shows the same case using another SCADA period and the wake losses are≈10%10

lower than those we observe.
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Figure 7. Normalized average power of the north-south row of turbines in the middle of the wind farm for southerly flow conditions from

SCADA and simulations from the wake models within the range 168.7±15 deg and hub-height inflow wind speed of 9±0.5 m s−1. For the

SCADA, the shaded region indicates ±the standard error of the mean

3.2 Capacity factor

Being able to estimate the AEP (Sect. 3.1.1) is important but it is more interesting to find out whether we are able to predict it,

in our particular case, with the combined mesoscale-wake setup. For the exercise, the capacity factor is a better choice than the

AEP, since we can compare Anholt with other offshore wind farms.

We use all the SCADA data that are available for 2014. Theoretically, there should be 52560 10-min samples for this year.5

However, the amount of samples per turbine available in the SCADA varies and is never the theoretical one; the turbine with

the highest amount of samples is nr. 7 (51648) and that with the lowest is nr. 77 (49512). The average availability, taking

into account all turbines, of observed samples is 98.10%. Table 3 shows the observed and estimated capacity factors, which are

predicted by the WRF-wake model setup and that account for both the wind-farm gradient and the observed average availability

of samples.10

It is clear that we can estimate fairly well the observed capacity factor using the WRF-wake model setup. However, it is

important to note that wind turbines are not always working and underperform when compared to the manufacturer’s power

curve. The predicted AEP/capacity factor of a combined mesoscale-wake model is typically lower than the observed value;

however, we want to know the capacity factor of a wind farm regardless of the operating conditions.

3.3 Power loss15

Based on the SCADA’s 7440 10-min values and using Eqn. (2) with the inflow conditions as defined in Table 1, the wind farm

PL is 4.08%. The estimated PLs of the wake models are 3.64%, 5.05%, 3.87%, 2.60%, and 3.70% for Park-quadratic, Park-
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Table 3. Observed and estimated (from the WRF-wake model setup) capacity factors of the Anholt wind farm for 2014. The estimated values

account for the observed average availability of samples

source capacity factor [%]

SCADA 51.75

WRF-Park-quadratic 53.19

WRF-Park-linear 51.89

WRF-Larsen-linear 52.87

WRF-Larsen-quadratic 54.13

WRF-Fuga 52.51

linear, Larsen-linear, Larsen-quadratic, and Fuga, respectively. The results for the wake models are computed interpolating the

models’ LUTs with the same inflow conditions derived from the SCADA. All models, except for Park-linear, predict lower

PLs than the SCADA; Park-quadratic, Larsen-linear and Fuga slightly underestimating the wake loss.

One way to show that the estimations of power of the free-stream turbines are sound is to compare the manufacturer power

curve with the SCADA-derived power (averaging the power of the turbines in Table 1) and SCADA-derived inflow wind5

speed. This is illustrated in Fig. 8-left, where we show the power curve of the turbine and the SCADA-derived free values (no

interpolation is made). Figure 8-right shows a similar comparison but in this case we derive the gross wind-farm power (i.e.

111 times the power of the free-stream turbines) and that derived from the power curve at the estimated free wind speed. Both

figures show that our definition of the free-stream turbines is sound (no evident wake effects are observed) and that the turbines

do follow the manufacturer’s power curve.10

However, this does not give us an idea about the validity of the SCADA-derived inflow conditions for the turbines that

are far from those we use to derive the inflow conditions. By filtering the SCADA-derived inflow conditions for westerly flow

(270±30 deg), so that no wakes are observed for turbines nr. 1–30, we can derive power curves for the turbines at the beginning

and end of that row (i.e. nr. 1 and 30) and compare them to, e.g. the manufacturer’s power curve. As expected, the power curves

for turbines nr. 1 and 30 are below and above the manufacturer’s one, being the difference as high as 500 kW for turbine nr. 1,15

which is the turbine with the lowest average wind speed according to the WRF simulations (Fig. 5-left). Within the wind-speed

range where we observe such differences in power, the difference in wind speed is about 1 m s−1.

3.4 Model uncertainty

Also based on the SCADA’s 7440 10-min values, we find an optimal block length for the circular bootstrap of 242 samples. In

average, such sample length corresponds to about 10 days, which is long enough to capture the correlation between samples.20

We use 10000 bootstrap replications and find that, e.g. ε for the Park-quadratic model stabilizes after 2000 replications. Figure

9 shows the distribution of ε for all models where positive ε values denote a model that overestimates the power (underestimates

the wake loss), whereas negative ε values a model that underestimate the power (overestimates the wake loss).
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Figure 8. (Left) power curve of the turbines at the Anholt wind farm. (Right) gross wind-farm power derived from the SCADA for the

free-stream turbines compared to the that derived from the power curve (PC)

Figure 9. Distribution of the relative model error ε (Eqn. 3) of three wake models using 7440 10-min bootstrapped samples from the Anholt

wind-farm SCADA. The mean of each distribution is shown with a thicker vertical line. The mean and standard deviation of the distributions

of ε, 〈ε〉 and σε, are also given
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For the particular case of the Anholt wind farm and for the filtered SCADA used in the analysis, Larsen-linear has the

distribution with lowest bias and the largest σ values together with Park-linear, whereas Larsen-quadratic has the highest bias

and lowest σ values. The results for Park-quadratic and Fuga are very similar, both bias and σ. Park-linear, as expected due

to the previous results, is the only model systematically overestimating the wake loss. If we could extrapolate these results to

an AEP analysis, we would expect non-conservative AEP estimations (except for Park-linear), being Park-quadratic, Fuga and5

Larsen-linear slightly optimistic and Larsen-quadratic too optimistic.

4 Discussion

Some of our results depend on the methods we use to derive the wind-farm inflow conditions. We show that for the individual

turbines this is an important matter (see Fig. 8-left), but for this particular wind farm and wind climate, the differences between

the inflow derived from turbines in the middle of the long rows and the inflow conditions derived from turbines to either side10

of the rows seem to compensate for the overall wind-farm long-term analyses (e.g. AEP and capacity factor). One way to

further analyze the impact of different inflow conditions is to derive them for each individual undisturbed turbine. We can then

potentially perform analyses (flow cases, power loss, and capacity factor) in a similar fashion as that we use for accounting for

the horizontal wind-speed gradient3 and validate our findings.

We also estimate the power loss and the uncertainty of the wake models based on a rather discontinuous and short filtered15

SCADA dataset. Therefore, our results might be biased and caution must be taken when generalizing our findings. A clear

example is that related to the model uncertainty where we find that most wake models underestimate the wake losses. With a

longer dataset, the biases can change (and models might start to produce conservative results) but the relative position of the

models will most probably be maintained, Park-linear and Larsen-quadratic being the most conservative and most optimistic

models, respectively. If the same models are evaluated with SCADA from other wind farms, the biases will most probably20

change.

We show that our WRF-wake model setup is able to predict rather accurately the capacity factor of the Anholt wind farm.

Anholt is the offshore wind farm with the highest all-life capacity factor in Denmark (48.7%) and the highest in the world

for a wind farm older than 2 y, outperforming Horns Rev II that has in principle more favourable wind conditions. One of the

reasons for this is the Anholt wind-farm layout, which highly minimizes the wake losses.25

5 Conclusions

For the Anholt wind farm, we show from both the SCADA and WRF model simulations that for a number of wind directions,

there is a clear influence of the land on the free-stream wind speed at the positions of the turbines closer to the coast. However,

for AEP calculations where we run three different wake models using mesoscale model outputs as inflow conditions, accounting

for the horizontal wind-speed gradient (also derived from the mesoscale model results) does not have a large impact on the30

3although we cannot derive the undisturbed horizontal wind-speed gradient from wake-affected turbines without a wake model
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results when compared to AEP calculations based on first, a wind climate that is the average of all wind climates at the turbines’

positions, and second, a wind climate correspondent to a position in the middle of the wind farm. It does, however, differ from

the calculation using a wind climate that is strongly influenced by the horizontal wind-speed gradient particularly for the

engineering wake models.

We look at two flow wake cases with two different engineering wake models and some of its variants and a linearized RANS5

model. The first case corresponds to westerly winds, where the influence of the horizontal wind-speed gradient is largest.

Here the wake models, and Fuga in particular, agree with the SCADA fairly well. The second case corresponds to southerly

winds, where the wake losses are highest. Here, the wake models tend to underestimate the wake deficit when compared to the

SCADA. This is also translated into a wake-model tendency to underestimate the observed power loss; in average 0.31% less

than that derived from the SCADA.10

Using our mesoscale-wake model setup, we find that the estimated capacity factors are 0.27–4.60% biased when com-

pared to that computed from the SCADA. Finally, using inflow conditions derived from the SCADA and by circularly block-

bootstrapping these, we estimate the relative error of the wake models. We find that these models tend to underestimate the

wake losses, except for one wake model variant. The engineering wake models are found to be as good as the linearized RANS

fuga model. However, these are results that are wind-farm and SCADA specific, and that depend on the definition of inflow15

conditions; therefore similar analyses need to be reproduced at different wind farms, using more SCADA and different methods

to derive the inflow conditions.
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