
Referee #1 

A-------------------------------------- 
(1) 
The author’s don’t mention power increasing wind farm control. Is that deliberate, in that is model is 
being designed specifically for electrical grid service provision?  
 
(2)  
The presented wind farm model can potentially be used in/for controllers providing grid facilities as 
demonstrated in  
 
Vali, M., Petrovic, V., Boersma, S., van Wingerden, J. W., Pao, L.Y. and Kühn, M.: Model Predictive 
Active Power Control of Waked Wind Farms, American Control Conference, 2018 (under review). 
 
, but also controllers providing power maximization. In fact, in both: 
 
Vali, M., van Wingerden, J. W., Boersma, S., Petrovic, V., and Kühn, M.: A predictive control 
framework for optimal energy extraction of wind farms, Journal of Physics: Conference Series, 2016. 
 
Vali, M., Petrovic, V., Boersma, S., van Wingerden, J. W., and Kühn, M.: Adjoint based model 
predictive control of wind farms: Beyond the quasi steady-state power maximization, International 
Federation of Automatic Control, 2017.  
 
the objective is to maximize the power production of the farm. In the revised version of this paper, 
we will emphasise the fact that this model can potentially also be used for power optimization.  
 
While the above results are promising, they are obtained with controllers using the same wind farm 
model (WFSim) as to which the found control signals are applied (called the simulation model). In 
other words, perfect system knowledge is assumed. Similarly, in 
 
Munters, W. and Meyers, J.: An optimal control framework for dynamic induction control of wind 
farms and their interaction with the atmospheric boundary layer. Phil. Trans. R. Soc. A 375: 
20160100. 
 
the authors illustrate the potential of power maximization using a LES based wind farm model as the 
simulation model and as model in the controller. While a LES based model is relatively accurate, it is 
also computationally complex and therefore not suitable for online control.  
 
At the moment, we are investigating if a combination of the above results can give satisfying 
controller performance. More precisely, the model in the controller should be WFSim (due to its 
computational efficiency) and the simulation model should be a LES based wind farm model.   
 
(3) 
- 
 
B-------------------------------------- 
(1)  
Do I understand correctly that for the PALM and SOWFA comparisons, identical Ct time series are 
played through the turbine models, effectively open loop?  
 
(2)  

a) The control signals applied in the PALM and SOWFA case are not equivalent.  



b) The CT’ series applied to PALM and WFSim are exactly equivalent.  
c) The CT’ series applied to WFSim are not exactly equivalent as applied in SOWFA since the 

latter does not allow for such a control input. We used equation 24 to estimate CT’ (this is 
applied in WFSim) from SOWFA data.  

 
(3) 
- 
 
C-------------------------------------- 
(1) Is there no online estimation being applied?  
 
(2) 
There is no online estimation applied in this work. However, the presented model can be used for 
online estimation (see citations in next answer). 
 
(3) 
- 
 
D-------------------------------------- 
(1)  
Is the assumption that if such estimation, made possible by the model structure, remove any 
remaining error?  
 
(2)  
In the following work: 
 
Doekemeijer, B. M., van Wingerden, J. W., Boersma, S., and Pao, L. Y.: Enhanced Kalman filtering for 
a 2D CFD NS wind farm flow model, Journal of Physics: Conference Series, 2016.  
 
Doekemeijer, B. M., Boersma, S., van Wingerden, J. W., and Pao, L. Y.: Ensemble Kalman filtering for 
wind field estimation in wind farms, American Control Conference, 2017. 
 
we illustrate that the model can be used for online estimation and we illustrate that the estimation 
of wind farm dynamics will be improved by using an estimator (Ensemble Kalman filter in this case). 
 
The purpose of the WindFarmSimulator model is not to capture all the flow and turbine dynamics 
that LES models typically capture. Rather, the objective is to capture the dominant spatial and 
temporal dynamics inside the wind farm to allow reliable forecasting of each turbine’s power 
generation in a time efficient manner. This in turn enables wind farm control algorithms to, e.g., 
consistently track a desired power reference signal by predicting the effect of turbine control policies 
on the surrounding wind turbines. In the bigger picture, we propose a closed-loop control solution in 
which the WFSim model is calibrated in real-time to model discrepancies and to the current 
atmospheric conditions inside the wind farm. This calibrated model is then used for forecasting and 
for determining a control policy. The proposed closed-loop control framework is displayed in Fig. 1 in 
the paper. 

(3) 
-  



Referee #2 
 
A-------------------------------------- 
(1)  
Page 2: The first paragraph of the abstracts reads like part of an introduction. 
Please reformulate the abstract in a more functional manner. Specify what you mean 
by “validated with high fidelity data” and give a rough summary of the findings. Also, 
preferably use present or past tense instead of “will be” formulations. 
 
(2) 
Thank you for this valuable comment. The abstract will be rewritten and we will specify more 
precisely what we did in the paper. 
 
(3) 
The abstract is rewritten. Point 1 in the revised version. 
 
B-------------------------------------- 
(1)  
Pages 3/4: In the model summary, please fill the gap between LES models and 
engineering models with 3D RANS references. 
 
(2) 
The following: 
 
Crespo, A., Hernandez, J., Fraga, E., and Andreu, C.: Experimental validation of the UPM computer 
code to calculate wind turbine wakes and comparison with other models, Journal of Wind 
Engineering and Industrial Aerodynamics, 1988. 
 
and  
 
Özdemir, H., Versteeg, M. C., and Brand, A. J.: Improvements in ECN wake model, ICOWES 
conference, 2013. 
 
are both referring to a 3D RANS wind farm model. We will mention this more specific. 
 
In addition, the following references will be included: 
 
M. Avila, A. Folch, G. Houzeaux, B. Eguzkitza, L. Prieto, D. Cabezón, A Parallel CFD Model for Wind 
Farms, In Procedia Computer Science, Volume 18, 2013, Pages 2157-2166.  
 
van der Laan, M. Paul & Sørensen, Niels & Réthoré, Pierre-Elouan & Mann, Jakob & Kelly, Mark & 
Troldborg, Niels. (2014). The k-ε-fP model applied to double wind turbine wakes using different 
actuator disk force methods. Wind Energy.  
 
(3) 
References are added. Point 2 in the revised version. 
 
C-------------------------------------- 
(1) Page 5: Indicate what you mean by “high fidelity simulation data” and the corresponding 
site/wind farm characteristics (number of turbines, turbine types, ...) 
 
 



(2) 
With high-fidelity simulation data we mean flow velocities in the x- and y-direction at hub-height and 
turbine power signals computed with a LES based wind farm model.  
 
(3) 
In the revised version of the paper we specified this in the introduction and also the number of 
turbines and their specifications. Point 3 in the revised version. 
 
D-------------------------------------- 
(1)  
Page 7, first paragraph: Please clarify if the axial symmetry is assumed or not, in 
other words elaborate on the function tilde_v3(x,y,z). How to imagine the 2D model 
embedded into 3D space? 
 
(2) 
We do not assume axial symmetry, and in particular we do not define a symmetry axis (which would 
be necessary to start with when introducing axial symmetry). Nevertheless, our choice (w≈0 and 
dw/dz ≈ dv/dy) is inspired by conditions required for axial symmetry. If a single turbine is considered, 
and we look at a streamline along the turbine axis, axial symmetry implies indeed w≈0 and dw/dz ≈ 
dv/dy, but requires further conditions on dv/dz and dw/dy (which we do not impose in our model). 
Away from the turbine axis, these conditions are not consistent anymore with axial symmetry, nor 
are they for a full wind farm case with multiple turbines. They rather imply equal 
divergence/convergence of streamlines in y and z direction. We do not expect this assumption to be 
accurate everywhere, but we presume it to be good enough to resolve the lack of relaxation of 
purely 2D models. If necessary, a more general form (w≈0 and dw/dz ≈ c dv/dy), with c a tuning 
parameter (e.g. obtained through state estimation) could be considered, but results in the current 
work indicate that this may not be necessary. We will incorporate these issues better in the revision, 
using above discussion. 
 
(3) 
We incorporated these issues better in the revision, using above discussion. Point 4 in the revised 
version. 
 
E-------------------------------------- 
(1)  
Page 8: Please elaborate on the physics behind or the purpose of the function G. 
 
(2) 
The function G is a smoothing function that ensures a mixing length parameter that is differentiable. 
Also, from a physical point of view, it is more realistic to smoothly change the turbulence 
characteristics instead of abruptly.  
 
(3) 
- 
 
F-------------------------------------- 
(1)  
Page 9: The mixing length is for example unequal zero within the shaded area of 
turbine n in the central region of Fig. 3 (beginning of the curved arrow), i.e., at the 
region of the ramp (to which that arrow is pointing). Why should the ramp have that 
jump to zero at x_n’ = d? In other words, why is d smaller infinity? What does that 



mean physically? What is the physical meaning of the beginning of the ramp at x_n’ = 
d’? Please make the model a little more plausible to the reader. What is the physical 
implication of zero mixing length everywhere else? 
 
(2) 
The jump at zero is smoothened out by the function G.  
 
At this point we would like to stress that we developed an engineering model and some of the 
parameter are introduced for tuning purposes. In general we could say that the turbulence model is 
parameterized by l_s,d,and d'. It allows us to regulate in which area in the wind farm model we 
would like to have more or less wake recovery. Increasing values of l_u^n results in more wake 
recovery. Thus, if we allow d to be infinite, the wake recovery would also increase when the wake 
passes a downwind turbine. This is from a physical point of view not realistic since much more 
physics is happening when wind passes a turbine.  
 
By setting the mixing length parameter to zero downwind of a turbine (before a downwind turbine) 
we could say that we reset the wake recovery again. This parametrization is also not based on pure 
physical reasoning, but captures a change in wake recovery after flowing through a rotor. We are 
using a linearly increasing mixing length l_u^n behind the rotor following the results presented in:     
 
Iungo, G. V., Viola, F., Ciri,U., Rotea,M. A., and Leo: Data-driven RANS for simulations of large wind 
farms, Journal of Physics: Conference Series, 2015. 
 
(3) 
Overall we think that it is good to mention that the included turbulence model is a simplified mixing 
length model found heuristically using and adapting information from the reference above. We 
stated this more clearly in the revised version. Point 6 in the revised version.   
 
G-------------------------------------- 
(1)  
Page 9: The vector s is undefined. 
 
(2) 
s = [x,y], i.e., it indicates a position in the farm in the x,y coordinate frame.  
 
(3) 
The vector s is defined in the revised version. Point 7 in the revised version.  
 
H-------------------------------------- 
(1)  
Page 14: What is meant by “a regular notebook”? Which programming language 
was used for the implementation? 
 
(2) 
The programming language is MATLAB and the notebook contains an Intel Core i7 2.7 GHz processor.  
 
(3) 
We explicitly mention this in the revised version, also that the simulations are done using a single 
core. Point 8 in the revised version. 
 
 
 



I-------------------------------------- 
(1)  
Page 14: What is the meaning of “relatively small”? 
 
(2) 
Order of magnitude three smaller. Basically, elements in the off-diagonal matrices are of order O(1) 
while the elements in the diagonal matrices are of the order O(10^3). 
 
(3) 
We mention this more explicitly in the paper. Point 9 in the revised version.  
 
J-------------------------------------- 
(1)  
Did you check mesh convergence for the presented results? Please add a comment 
or a graph. 
 
(2) 
We did not study mesh convergence in detail, but rather looked into whether LES data could be 
approximated with the presented simplified wind farm model.  
 
(3) 
We included a note regarding this subject in the paper. Point 10 in the revised version. 
 
K-------------------------------------- 
(1)  
Please quantify explicitly the calculation times for all results. How does it relate to 
the response time of the controller and the chosen time step of the simulation? 

(2) 
The two-turbine case presented in Section 3.2.1 takes 0.02 sec per time step and the nine-turbine 
case presented in Section 3.2.2 takes 0.1 sec per time step.  
 
Assuming that the controller contains the presented model, it is difficult to say what the controller 
response time will be. This depends on how the presented model is used in the controller. When 
applying the model in a model predictive controller, the controller response time depends, e.g., on 
the prediction horizon. Also, the employed optimization procedure could demand for line search 
techniques or a backward simulation. In such a case, additional trajectories need to be simulated. 
  
However, the objective of this work is to keep the CPU time of the model as low as possible, while 
still capturing the dominant wind farm dynamics relevant for control purposes. The objective of the 
controller design should also be to keep the CPU times sufficiently low such that online control can 
be achieved.   
 
The time step of the simulations could be chosen larger or smaller while not changing the CPU time 
per time step and not affecting stability (we employ an implicit discretisation method). However, we 
did not validate the WFSim simulation results in such cases. This could be an interesting study.    
 
(3) 
We explicitly wrote these CPU times in the corresponding paragraphs. Point 11 in the revised version. 
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Abstract.

Wind turbines are often sited together in wind farms as it is economically advantageous. Controlling the flow within wind

farms to reduce the fatigue loads, maximize energy production and provide ancillary services is a challenging control problem

due to the underlying time–varying nonlinear wake dynamics. In this paper, we present a control–oriented dynamical wind

farm model called the WindFarmSimulator (WFSim) that can beused in closed–loop wind farm control algorithms. The three–5

dimensional Navier–Stokes equations were the starting point for deriving the control–oriented dynamic wind farm model.

Then, in order to reduce computational complexity, terms involving the vertical dimension were either neglected or estimated

in order to partially compensate for neglecting the vertical dimension. Sparsity of and structure in the system matrices make

this model relatively computational inexpensive. We showed that by taking the vertical dimension partially into account, the

estimation of flow data generated with a high–fidelity wind farm model is improved relative to when the vertical dimensionis10

completely neglected in WFSim. Moreover we showed that, forthe study cases considered in this work, WFSim is potentially

fast enough to be used in an online closed–loop control framework including model parameter updates. Finally we showed

that the proposed wind farm model is able to estimate flow and power signals generated by two different 3D high-fidelity wind

farm models.

Table 1.Nomenclature.

Lx ×Ly, domain size wind farm D turbine rotor diameter

Nx ×Ny , number of cells ∆x×∆y cell size

Tn, turbinen ℵ, number of turbines

Un, hub-height flow velocity at the rotor ub,vb, inflow conditions

Uc, flow centreline velocity U∞, upstream flow velocity

CT ,CP , thrust force and power coefficient f , wind turbine force

lu, turbulence model parameter τH , 2D stress tensor

∆t, sample period k, time index

qk =
(

uT
k vTk pTk

)T

, state vector with longitudinal and lateral flow velocitiesand pressure nq , number of states

wk =
(

νT
k γT

k

)T

, control variables zk, measurement vector
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1 Introduction

Optimizing the control of wind turbines in a farm is challenging due to the aerodynamic interactions among turbines. These

interactions come from the fact that downwind turbines are often operating in the wakes of upwind ones (Barthelmie et al.,

2009). Two important wake characteristics are: 1) a flow velocity deficit and 2) an increase in turbulence intensity. The former

reduces power production of the farm while the latter leads to a higher dynamic loading on downstream turbines, but also in-5

duces wake recovery. Individual turbine control variablescan influence the wake’s flow velocity, turbulence intensityand also

location. Hence, by changing the control variables of individual turbines, power production of and loading on these controlled

turbines and its downwind turbines can be manipulated. Windfarm control aims to find control variables under changing atmo-

spheric conditions such that demanded power production and/or a minimization of the loading can be guaranteed, improving

the cost and quality of wind energy. State–of–the–art closed–loop dynamic wind farm controllers are based on computation-10

ally expensive wind farm models, which make these methods suitable for analysis though unsuitable for online control. The

latter is important, because it allows for model adaptationto the time–varying atmospheric conditions using SCADA measure-

ments. As a consequence, more reliable control settings canbe evaluated. A survey on wind farm control can be found in,

e.g., (Knudsen et al., 2015; Boersma et al., 2017). In the latter,a clear distinction is made between model based and model free

control algorithms. This manuscript is focussed on the former where it is assumed that controllers are based on a mathematical15

model of the system. Consequently, the controller performance depends highly on the model quality. Modelling is therefore a

crucial step towards successful implementation of model based wind farm control.

Overviews on wind farm models can be found in (Crespo et al., 1999; Vermeer et al., 2003; Sanderse, 2009; Sanderse et al.,

2011; Annoni et al., 2014; Göçmen et al., 2016; Boersma et al., 2017). The spectrum of these models ranges from low fidelity

to high fidelity. The latter tries to capture relatively precise wind farm flow and turbine dynamics, while the former tries to cap-20

ture only the dominant characteristics (dynamic or static)in a wind farm. Examples of high fidelity wind farm models are Sim-

ulator fOr Wind Farm Applications (SOWFA) (Churchfield et al., 2012), UTD Wind Farm (UTDWF) (Martinez-Tossas et al.,

2014), SP–Wind (Meyers and Meneveau, 2010) and PArallelized LES Model (PALM) (Maronga et al., 2015). These three di-

mensional (3D) high fidelity wind farm models can easily have106 or more states. The resulting computation time can be in

order of days or weeks using distributed computation for simulation times less than the computation time. In other words, the25

computation time needed for LES is in general more than the total time that is simulated. Clearly, these types of models are not

applicable for online model–based control. Rather, these models serve as analysis/validation tools.

One way to reduce the high complexity of wake modeling is by using two–dimensional (2D) heuristic models that only

capture specific wake and turbine characteristics in a wind farm in the horizontal plane at hub height. These type of models

are found on the low fidelity side of the spectrum. Most of these wake models exclusively estimate a steady state situationfor30

given atmospheric conditions. Examples of static models are the Frandsen model (Frandsen et al., 2006) and the Jensen Park

model (Jensen, 1983; Katic et al., 1986). One extension of the Jensen model resulted in the parametric model called FLOw

Redirection and Induction in Steady–state (FLORIS) (Gebraad et al., 2014b). Two examples of low fidelity dynamic models

3



are SimWindFarm (Grunnet et al., 2010) and the model used in (Shapiro et al., 2017a), where relatively simple approximations

of the flow deficit are computed using heuristic expressions.

Medium fidelity models can be found in the middle of the spectrum as they trade off the accuracy of high fidelity models,

with the computational complexity of low fidelity models. These are in general based on simplified versions of the Navier–

Stokes equations. For example, in the 2D Dynamic Wake Meandering (DWM) model (Larsen et al., 2007), assumptions are5

made regarding the thin shear layer such that the Navier–Stokes equations can be approximated using less computationaleffort.

The authors in (Trabucchi et al., 2016) present a model, which is also based on the thin shear layer approximation, but accord-

ing to the authors applicable for non–axisymmetric wind turbine wakes. WakeFarm (also referred to as Farmflow) simulates

the wind turbine wakes by solving the steady parabolized Navier–Stokes equations in three dimensions (Crespo et al., 1988;

Özdemir et al., 2013). Other wind farm models based on the 3D Reynolds Averaged Navier–Stokes (RANS) are (Avila et al.,10

2013; van der Laan et al., 2015). In (Annoni and Seiler, 2015), time averaging is applied on the Navier–Stokes equations re-

sulting in the 2D RANS equations. The number of states is thenreduced by employing a state reduction technique.

Also considered as medium fidelity models are the ones presented in (Boersma et al., 2016b; Soleimanzadeh et al., 2014).

These wind farm models are based on the discretized 2D Navier–Stokes equations. However, these models do not contain a

turbulence model that allows for wake recovery. In addition, these 2D models do not take any neglected 3D effects into account15

and no yaw actuation of the individual turbines is included.

In this paper, a model will be presented that can be considered as a building block for the closed-loop control framework as

illustrated in Fig. 1.

Wind farm

wk zk

Model + estimator
ẑk −

+

ek
Optimizer

q̂k

rk

Controller

Figure 1. General dynamic closed–loop dynamic control framework with measurementszk and its estimation̂zk and state estimation̂qk.

The signalsrk andwk are a reference and control signal, respectively. In this paper we present a dynamic model that is compatible with this

framework.
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In current practice, signals such as power can be measured from a wind farm, but current research is also focussing on

estimating wake characteristics using a LIDAR device (Raach et al., 2017). These and other wind farm measurements are

called SCADA data and can be used by an estimator that is able to adapt the model parameters to current atmospheric

conditions and/or estimate the full state space,e.g., all the flow velocities at hub height in the farm. The work presented

in (Doekemeijer et al., 2016) illustrates the latter and employs the dynamic wind farm model presented in this paper. Subse-5

quently, the estimation can then be used to compute optimal control variables using a model predictive controller. The work

presented in (Vali et al., 2016) illustrates the application of such a model predictive wind farm controller using the dynamic

model presented in this work.

The online closed–loop control paradigm as depicted in Fig.1 demands for a control–oriented dynamic wind farm model

that will be presented in this paper. Characteristics of such control–oriented model are,i.a.:10

1. Low computational cost such that online model update, state estimation and control signal evaluation is possible.

2. Dynamic such that it can deal with varying atmospheric conditions within relatively small time scales.

The dynamic control–oriented wind farm model presented in this paper, referred to as WindFarmSimulator (WFSim), is appli-

cable in the framework discussed above and satisfies the above two points. It is based on corrected 2D Navier–Stokes equations

and contains a heuristic turbulence model. The Navier–Stokes equations are modified in order to partially correct for the ne-15

glected vertical dimension. Each turbine is modelled usingthe actuator disk model (ADM) and features yaw and axial induction

actuation. An important model feature is the exploitation of the sparse system matrices, leading to computational efficiency.

WFSim will be compared to high fidelity flow data and used in a practical control application.

The remainder of this paper is organized as follows. In Section 2, the mathematical background of the medium fidelity

wind farm model will be explained including a discussion on the rotor and turbulence model. This section ends with an20

analysis regarding the wind farm model its computation time. In Section 3, WFSim will be validated in two cases using flow

velocities in the longitudinal and lateral direction at hub–height and turbine power signals computed with two different LES

based wind farm models. The first case considered is a two turbine wind farm with turbines modelled using the ADM. The

second case is a nine turbine wind farm with turbines modelled employing Fatigue, Aerodynamics, Structures and Turbulence

(FAST) (Jonkman and Buhl, 2005). This paper is concluded in Section 4.25

5
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2 Formulation of a dynamic control–oriented wind farm model

In the current section, a simplified wind–farm model is formulated that is sufficiently fast for online control, but retains some

of the elemental features of three–dimensional turbulent flows. In order for the model to be fast, we envisage a 2D–like model,

but adapted to account for three–dimensional flow relaxation. We will dub the resulting model WFSim (WindFarmSimulator).

As starting point we use the standard incompressible three–dimensional filtered Navier–Stokes equations, as used in large–5

eddy simulations (LES),i.e.

∂ṽ

∂t
+(ṽ · ∇)ṽ+∇ · τM +

1

ρ
∇p̃− f = 0, momentum equations,

∇ · ṽ = 0, continuity equation.

(1)

The velocity fieldṽ = (ṽ1, ṽ2, ṽ3)
T and pressure field̃p represent filtered variables,∇= (∂/∂x,∂/∂y,∂/∂z)T , the air density

ρ, which is assumed to be constant, andτM represents the subgrid scale model, that will be defined in §2.1. As common in LES

of high–Reynolds number atmospheric simulations with gridresolutions in the meter range, direct effects of viscous stresses10

on the filtered fields are negligible, so that these terms are left out. Finally, the termf represents the effect of turbines on the

flow, as further detailed in §2.2.

Although LES filters are usually implicitly tied to the LES grid and filter length scale in the subgrid scale model, we presume

here that̃v corresponds to a top–hat filtered velocity field, with filter widthD, whereD is the turbine diameter. Thus,

ṽ(x,y,z) =
1

D3

z+D/2∫

z−D/2

y+D/2∫

y−D/2

x+D/2∫

x−D/2

v(x′,y′,z′) dx′dy′dz′. (2)15

From a wind farm simulation perspective, we are mainly interested at the flow velocity field at hub heightzh, i.e., ṽ(x,y,zh).

Moreover, to evaluate turbine forces and power, it suffices to know the velocity at turbine locationstn = (xn,yn)
T (with

n= 1 · · ·ℵ andℵ the number of turbines in the farm), sinceṽ(xn,yn,zh) is a reasonable representation of the turbine disk-

averaged velocity.

Therefore, we focus on formulating a 2D–like set of equations for ṽ(x,y,zh). To this end, define:20

u=
(
ṽ1(x,y,zh) ṽ2(x,y,zh)

)T

, (3)

=
(
u v

)T

, (4)

andw = ṽ3(x,y,zh) andp= p̃(x,y,zh)/ρ. Moreover, we assume thatw ≈ 0, so that the LES equations given in (1) can be

reformulated in terms ofu as

∂u

∂t
+(u · ∇H)u+∇H · τH +∇Hp− f =−

∂(uw+ τM,13)

∂z
e1 −

∂(vw+ τM,23)

∂z
e2, (5)25

∇H ·u=−
∂w

∂z
, (6)

with ∇H = (∂/∂x,∂/∂y)T , τH a 2D tensor containing the horizontal components of the subgrid stressesτM , ande1 ande2

the unit vectors inx andy direction, respectively.
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Finally, we further simplify above equations using two additional assumptions. First of all, we presume∂w/∂z ≈ ∂v/∂y.

When centred at the turbine axis, this is one of the conditions required for axial symmetry, though axial symmetry also re-

quires further conditions on∂v/∂z and∂w/∂y, which are not imposed. In general,∂w/∂z ≈ ∂v/∂y implies equal diver-

gence/convergence of streamlines iny– andz–direction. Although this is a very simple condition, we presume it to be good

enough to resolve the lack of relaxation of purely 2D models.If necessary, a more general form (w ≈ 0 and∂w/∂z ≈ c·∂v/∂y),5

with c a tuning parameter (e.g., obtained through state estimation) could be considered, but results in the current work indicate

that this may not be necessary. Secondly, we simply neglect the right–hand side of (5). Though this is a rather crude assump-

tion, the rationale is that the modelling termτH will suffice in the context of a control model, where model coefficients can be

updated online based on feedback (see also the discussion in§2.1). Hence our final 2D–like model corresponds to:

∂u

∂t
+(u · ∇H)u+∇H · τH +∇Hp− f = 0, (7)10

∇H ·u=−
∂v

∂y
. (8)

We emphasize here that above model is not a classical 2D modeldue to the difference in formulation of the continuity

equation. In contrast to a standard 2D model, this allows forflow relaxation in the third direction when,e.g., encountering

slow down by a wind turbine. This can be seen in Fig. 2, where simulation results are shown obtained with the above model,

a standard 2D dynamic wind farm model and LES. The simulationcase itself will be discussed more detailed in §3.2.1. Here15

we depict the normalised flow deficit in the wake at5D downstream of the turbine along the cross–stream axis. The figure

illustrates that the standard 2D Navier–Stokes equations lead to a significant speed up at the wake edges. This is a resultfrom

conservation of mass in two dimensions and the flow deceleration in front of the turbine, pushing part of the air around the

turbine. In the WFSim model, this speed up is smaller, as masscan also flow around the turbine in the third dimension. In Fig. 2

it can be seen that LES data is better estimated when imposingflow relaxation in the third dimension. Finally, note that partially20

modelling the missing vertical dimension as proposed aboveis novel with respect to the work presented in (Boersma et al.,

2016a).

This section is further organized as follows. First, in §2.1, the subgrid–scale model will be introduced. Then, in §2.2,the

turbine model will be explained. The discretization of the equations is presented in §2.4, and boundary and initial conditions

are discussed in §2.5.25

2.1 Turbulence model

In the literature, many subgrid–scale models are documented, and to date, model accuracy remains a challenge in LES research

(seee.g., (Sagaut, 2006)). However, in the current manuscript, an important factor in the selection of a model is simplicity

and computational efficiency, rather than accuracy. In fact, in contrast to conventional modelling, in a control–oriented model

completeness of the turbulence model is not a major issue, since unknown model coefficients can be calibrated online using30

measurements and feedback (Shapiro et al., 2017b), thus also controlling the overall error. Therefore, in this work we fall back

to one of the simplest and first known turbulence models, Prandtl’s mixing length model.
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Figure 2. Results of two–turbine simulations. Normalised time–averaged wake deficit at hub height5D downwind the downwind turbine

using standard 2D Navier–Stokes equations (red crossed), our model with adapted continuity equation (blue), and LES data (black dashed).

We formulate the stress tensorτH using an eddy–viscosity assumption,i.e.

τH =−νtS, (9)

with S = 1
2 (∇Hu+(∇Hu)T ) the 2D rate–of–strain tensor, andνt the eddy viscosity. The latter is further modelled as (Prandtl,

1925):

νt = lu(x,y)
2

∣∣∣∣
∂u

∂y

∣∣∣∣ , (10)5

wherelu(x,y) is the mixing length. It could be interesting to define the mixing length for each position in the wind farm

separately, but this will lead to too many tuning variables.Moreover, in (Iungo et al., 2015), the authors illustrate that in a

turbine’s near wake the mixing length is roughly invariant for different downstream locations, but in the far wake, the mixing

length increases linearly with downstream distance. We usethis to formulate a simple heuristic parametrization for the mixing

length model so that the number of decision variables will bereduced drastically. From now on we assume that the wind is10

coming from the east, but can have a direction defined byϕ. Then, the wind farm will be divided in segments as illustrated in

Fig. 3.
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Figure 3. Schematic illustration of the mixing length.

Each segments has its own(x′

n,y
′

n) coordinate system located in the global(x,y) coordinate system. Now we propose the

following mixing length parametrization:

lu(x,y) =





G(x′

n,y
′

n) ∗ l
n
u(x

′

n,y
′

n), if x ∈ X andy ∈ Y.

0, otherwise,
(11)

with G(x,y) a (smoothing) pillbox filter with radius3, ∗ the 2D spatial convolution operator andX = {x : x′

n ≤ x≤ x′

n +

cos(ϕ)d} andY = {y : y′n−
D
2 +sin(ϕ)x′

n ≤ y ≤ y′n+
D
2 +sin(ϕ)x′

n} andϕ defined as the mean wind direction (see Fig. 3),5

which we in this work bound by|ϕ| ≤ 45◦. In addition we constraintd by cos(ϕ)d ≤ |xq−xn| with xn a turbines x–coordinate

andxq its downwind turbines x–coordinate. We can seelnu(x
′
n,y

′
n) as the local mixing length that belongs to turbinen and

denote it as:

lnu(x
′

n,y
′

n) =




(x′

n − d′)ls, if x′

n ∈ X ′

n andy′n ∈ Y ′

n.

0, otherwise.
(12)

with X ′
n = {x′

n : d′ ≤ x′
n ≤ d} andY ′

n = {y′n : |y′n| ≤D} and tuning parameterls that defines the slope of the (linearly10

increasing) local mixing length parameter. In fact, this parameter could be related to turbulence intensity,i.e., the amount of

wake recovery. In this work we will not investigate this relation further. With the above formulation, the number of tuning

variables that belong to the turbulence model(ls,d,d
′) is reduced to3ℵ. Additionally, we assume thatls, d andd′ are equal for

each turbine in the farm, which reduces the amount of tuning variables that belong to the turbulence model to3, a quantity that

could be dealt with by an online estimator. However, in orderto have only3 tuning variables, the included turbulence model is15

defined as a simplified mixing length model found heuristically using and adapting information from (Iungo et al., 2015).
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2.2 Turbine model

Turbines are modelled using a classical non–rotating actuator disk model (ADM). In this method, each wind turbine is repre-

sented by a uniformly distributed force acting on the grid–points where the rotor disk is located. Figure 4 depicts a schematic

top–view representation of a turbine with yaw angleγ.

Figure 4. Schematic representation of a turbine with yaw angleγn and flow velocityU =
(

[u(xn,yn)]
2 + [v(xn,yn)]

2
)1/2

at the rotor.

Figure adapted from (Jiménez et al., 2010).

Using such an approach, the force exerted by the turbines canbe expressed as5

f =

ℵ∑

n=1

fn, with fn =
cf
2
C′

Tn
[Un cos(γn)]

2



cos(γn +ϕ)

sin(γn +ϕ)



H

[
D

2
− ||s− tn||2

]
δ [(s− tn) · e⊥,n] , (13)

with s= (x,y)T , H[·] the Heaviside function,δ[·] the Dirac delta function,e⊥,n the unit vector perpendicular to thenth rotor

disk with positiontn. Furthermore more we haveC′

Tn
the disk–based thrust coefficient following (Meyers and Meneveau,

2010), which can be expressed in terms of the classical thrust coefficientCTn
using the following relation:C′

Tn
= CTn

/(1−

an)
2 with an the axial induction factor of thenth turbine. Interestingly, the coefficientC′

Tn
can directly be related to the turbine10

set–point in terms of blade pitch angle and rotational speed(see,e.g., Appendix A in (Goit and Meyers, 2015)). In the WFSim

model,C′

Tn
and yaw angleγn are considered as the control variables and can thus be used to regulate the wakes and hence

wind farm performance. Furthermore, the scalarcf in (13) can be regarded as a tuning variable and will in this work be set

equal for all turbines in the farm.

2.3 Power15

From the resolved flow velocity components, the power generated by the farm is computed as:

P =

ℵ∑

n=1

1

2
ρACPn

[Un cos(γn)]
3, (14)

It is stated in (Goit and Meyers, 2015) (Appendix A) that whenthere is no drag and swirl is added to the wake,C′

Tn
= CPn

.

Since this is an idealized situation, a loss factor will be introduced such thatCPn
= cpC

′

Tn
. The scalarcp can be seen as a
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tuning variable and will be set equal for all turbines in the farm. In the above power expression, we have the factorcos(γn)
3

with exponent3. In literature such as,e.g., (Gebraad et al., 2014a) and (Medici, 2005) (page 37), numerical values for the

exponent were given according to LES and wind tunnel data, respectively. However, to date, the exact value for it is stillunder

research and since this is outside the scope of this study, the value of the exponent will be three.

This concludes the formulation of the WFSim model. In order to resolve for flow velocity components and wind farm power,5

the governing equations given in (7) and (8) need to be discretized, a topic that will be discussed in the following section.

2.4 Discretization

The set of equations are spatial discretized over a staggered grid following (Versteeg and Malalasekera, 2007). It is carried out

by employing the Finite Volume Method and the Hybrid Differencing scheme. Temporal discretization is performed using the

implicit method that is unconditionally stable (Versteeg and Malalasekera, 2007). This boils down to deriving the integrals:10

∫

∆t

∫

∆V

[
∂u

∂t
+(u · ∇H)u+∇H · τH +∇Hp− f

]
dV dt= 0,

∫

∆t

∫

∆V

[
∇H ·u+

∂v

∂y

]
dV dt= 0,

(15)

with ∆V the volume of one cell (see Fig. 5) and∆t the sample period. One obtains, for each cell, the followingfully discretized

Navier–Stokes equations (for detailed derivation we referto Appendix A):

− x-momentum equation for the(i,J)th cell (black in Fig. 5):

apxi,Jui,J =
(
anxi,J asxi,J awx

i,J aexi,J

)(
ui,J+1 ui,J−1 ui−1,J ui+1,J

)T

− δyj,j+1 (pI,J − pI−1,J)+ fx
i,J + . . .15

. . .+
(
anwx
i,J aswx

i,J anexi,J asexi,J

)(
vI−1,j+1 vI−1,j vI,j+1 vI,J

)T

(16)

− y-momentum equation for the(I,j)th cell (yellow in Fig. 5):

apyI,jvI,j =
(
anyI,j asyI,j awy

I,j aeyI,j

)(
vI,j+1 vI,j−1 vI−1,j vI+1,j

)T

− δxi,i+1 (pI,J − pI,J−1)+ fy
I,j + . . .

. . .+
(
anwy
i,J aswy

i,J aneyi,J aseyi,J

)(
ui,J ui,J−1 ui+1,J ui+1,J−1

)T

(17)20

− continuity equation for the(I,J)th cell (pink in Fig. 5):

0 = δyj,j+1 (ui+1,J − ui,J)+ 2δxi,i+1 (vI,j+1 − vI,j) , (18)

The statesu•,•,v•,•,p•,• are defined for the timek+1 while the coefficientsa••,• and the forcing termsf•
•,• depend on the

state at timek. Detailed definitions of these coefficients are given in Appendix A, Table 5. Note in (18), the appearance of the25

previously explained factor2 (see (8)).
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Figure 5. One cell for the x–momentum equation (grey with in its centreui,J ), one for the y–momentum equation (yellow with in its centre

vI,j ) and one for the continuity equation (pink with in its centrepI,J ). All three cells have equal dimensions and overlap.

Next, the state vectorsuk,vk andpk and control variable vectorsνk andγk at time stepk will be defined:

uk =




u3,2

...

u3,Ny−1

u4,2

...

u4,Ny−1

...

uNx−1,2

...

uNx−1,Ny−1




, vk =




v2,3
...

v2,Ny−1

v3,3
...

v3,Ny−1

...

vNx−1,3

...

vNx−1,Ny−1




, pk =




p2,2
...

p2,Ny−1

p3,2
...

p3,Ny−1

...

pNx−1,3

...

pNx−1,Ny−2




, νk =




C′

T1

C′

T2

...

C′

Tℵ



, γk =




γ1

γ2
...

γℵ



, (19)

with Nx andNy the number of cells in the x– and y–direction, respectively,andℵ the number of turbines in the wind farm.

Each component inuk, vk andpk represents a flow velocity and pressure, respectively at a point in the field defined by the

subscript. For clarity reasons, an example of a staggered grid is depicted in Fig. 6.5
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Figure 6. Example of a staggered grid with cells each having volume∆V . In WFSim, the grid is of the type quadrilateral.

2.5 Boundary and initial conditions

All the components that are not contained in the vectoruk,vk andpk, but do appear in the staggered grid need to be defined.

For the flow velocity components, first order conditions on the west side of the grid are prescribed assuming the wind is coming

from the east. These Dirichlet inflow boundary conditions are related to the ambient inflow defined asub andvb and can vary

over time. Zero stress (also referred to as Neumann) boundary conditions are prescribed on the other boundaries. Therefore,5

for the flow velocity components on the boundaries we define:

u2,J = ub for J = 1,2, . . . ,Ny , v1,j = vb for j = 2,3, . . . ,Ny ,

ui,Ny = ui,Ny−1 for i= 3,4, . . . ,Nx, vI,Ny = vI,Ny−1 for I = 2,3, . . . ,Nx,

ui,1 = ui,2 for i= 3,4, . . . ,Nx, vI,2 = vI,3 for I = 2,3, . . . ,Nx,

uNx,J = uNx−1,J for J = 2,3, . . . ,Nx − 1, vNx,j = vNx−1,j for j = 3,4, . . . ,Ny − 1.

For the initial conditions, we define all flow velocity components in the field asub and vb, respectively, the boundary

velocity components. The initial pressure field is set to zero. Note that by defining the boundary conditions as given above, the

assumption is that the wind is coming from the east in Fig. 6, which coincides with the definition of the mixing length (see

13



§2.1). Finally, the equations given in (7) and (8) can be transformed to the difference algebraic equation (DAE):1




Ax(uk,vk) Axy(uk) B1

Ayx(uk) Ay(uk,vk) B2

BT
1 2BT

2 0




︸ ︷︷ ︸
E(qk)




uk+1

vk+1

pk+1




︸ ︷︷ ︸
qk+1

=




A11 0 0

0 A22 0

0 0 0




︸ ︷︷ ︸
A




uk

vk

pk




︸ ︷︷ ︸
qk

+




b1(uk,vk,νk,γk)

b2(uk,vk,νk,γk)

b3




︸ ︷︷ ︸
b(qk,wk)

, (20)

with nq = nu+nv +np anduk ∈R
nu ,vk ∈R

nv ,pk ∈R
np containing all flow velocities in the longitudinal and lateral direc-

tion and the pressure vector at timek, respectively, and control variablewk =
(
νTk γT

k

)T

∈ R
2ℵ. The non–singular square

descriptor matrixE(qk) contains the coefficientsa•
•,•, appearing in (16) and (17), that depend on the state at timek. The square5

constant matrixA solely depends on grid spacing and sample period∆t. Note that the state vector contains three states for

every cell hence an increase in grid resolution results in anincrease in matrix dimensions. However, the system matrices that

occur in (20) are sparse and efficient numerical solvers are available for these kind of problems. This will be demonstrated in

§ 2.6. The vectorb(qk,wk) contains the forcing terms (turbines) and boundary conditions.

By definingNx,Ny,∆xI,I+1,∆yJ,J+1 and the turbine positions, a wind farm topology is determined. Next, ambient flow10

conditionsub andvb, tuning parameterscf , cp,d,d′, ls and the control variablewk need to be specified. The system given

in (20) is then fully defined and can be solved.

2.6 Computation time

When discretizing partial differential equations, a trade–off has to be made between the computation time and grid reso-

lution. Typically, a higher resolution results in more precise computation of the variables, but also increasing computation15

time. In WFSim, computational cost is reduced by exploitingsparsity and by applying the Reverse Cuthill–McKee algo-

rithm (George and Liu, 1981).2 The latter is applicable due to the fact that the matrix structure is fixed. The interested reader is

referred to (Doekemeijer et al., 2016) for more informationon the Cuthill–McKee algorithm in WFSim.

In this section, the mean computation time needed for one time step∆tcpu will be analysed. The presented results are

obtained on a regular notebook with Intel Core i7–4600U 2.7 GHz processor employing one core and MATLAB. Since the20

objective is to do online control,i.e., it is desired to reduce computational complexity, this section introduces a second WFSim

representation. The first representation was given in (20) while the second is defined as:



Ax(uk,vk) 0 B1

0 Ay(uk,vk) B2

BT
1 2BT

2 0




︸ ︷︷ ︸
E(qk)




uk+1

vk+1

pk+1




︸ ︷︷ ︸
qk+1

=




A11 0 0

0 A22 0

0 0 0




︸ ︷︷ ︸
A




uk

vk

pk




︸ ︷︷ ︸
qk

+




b1(uk,vk,νk,γk)

b2(uk,vk,νk,γk)

b3




︸ ︷︷ ︸
b(qk,wk)

. (21)

The difference can be found in the descriptor matrix. In the above representation, the elementsAxy(uk),Ayx(uk) that occur

in (20) are set to zero. This can be justified by the fact that their contribution is negligible since these matrices contain elements25

1This type of system can also be referred to as a quasi linear parameter varying model or descriptor model.
2The sparse toolbox and reverse Cuthill–McKee algorithm areboth utilised in Matlab.
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that, for our case studies, are of orderO(1) while the elements inAx(uk,vk) andAy(uk,vk) are of orderO(3). Therefore,

1 2 3 4 5 6 7 8 9

×10
4

0.2

0.4

0.6

0.8

1

Figure 7. Mean computation time per simulation time step∆tcpu versus number of statesnq . Red dashed is WFSim as presented in (20)

and blue is WFSim as presented in (21). Note that the number ofcells is approximatelynq/3 with nq the number of states.

no significant change in the flow field computation has been observed, but a decrease in∆tcpu (see Fig. 7), the remainder of

this paper will continue with the WFSim representation given in (21). Table 2 depicts more numerical values of∆tcpu for this

WFSim representation.

Table 2.Mean computation time per simulation time step∆tcpu versus number of statesnq for the WFSim representation as given in (21).

Computation are done on a regular note book on one core.

nq ∆tcpu [s] nq ∆tcpu [s] nq ∆tcpu [s] nq ∆tcpu [s]

3 · 103 0.02 27 · 103 0.22 115 · 103 1.19 239 · 103 3.1

6 · 103 0.04 43 · 103 0.37 147 · 103 1.66 258 · 103 3.5

9 · 103 0.06 64 · 103 0.60 182 · 103 2.12 268 · 103 3.7

14 · 103 0.10 88 · 103 0.88 221 · 103 2.50 276 · 103 3.8

From Table 2 we can conclude that∆tcpu increases between quadratic and linear with respect to the number of statesnq for5

nq < 221 · 103. It depends on the computer properties how much you can increase the number of states until the CPU is out of

memory.
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3 Simulation results

In this section, WFSim flow and power data will be compared against LES data and it is organised as follows. In §3.1, quality

measures are introduced. In §3.2.1, WFSim data is compared with PALM data and in §3.2.2, WFSim is validated against

SOWFA data. In both simulation cases, the thrust coefficientsC′

T is varied while the yaw angles are set to zero.

3.1 Quality measures5

Suppose we have at timek a measurement of one quantityzk ∈ R
N and its estimation̂zk ∈ R

N . Define the prediction error

ek = ẑk − zk. The quality measure Root Mean Squared Error (RMSE) is, for time stepk, defined as:

RMSE(zk, ẑk) =

√
1

N
eTk ek, (22)

This measure is used to compare the flow centreline velocityU c
k(x) and power signals from LES and WFSim data for differ-

ent model parameters. The flow centreline is, for one time step, defined as the laterally–averaged longitudinal flow velocity10

throughout the simulation domain across the rotor diameter. Mathematically this can, for LES data at time stepk at longitudinal

positionxi, be defined as:

U c
k(xi) =

1

Ny

Ny∑

s=1

uk(xi,ys), (23)

with ys the y–coordinate of one cell across the liney ⊂ y, which containsNy number of cells and having an equal length as

the rotor diameter. From WFSim data, the flow velocity component at the rotor centre will be taken accros the positionx.15

In this work we compare lateral and longitudinal flow velocity components at hub height and power signals calculated with

LES with lateral and longitudinal flow velocity components and power signals calculated with WFSim.3

3.2 Axial induction actuation

Studies such as (Shapiro et al., 2017a), (Munters and Meyers, 2017), (Vali et al., 2017) and (van Wingerden et al., 2017) illus-

trate that axial induction actuation can be used in active power control where the objective is to provide grid facilities. In order20

to utilize the WFSim model in active power control, it is important to first validate it when exciting the thrust coefficient.

In the following, WFSim is compared against simulation datafrom PALM (Maronga et al., 2015) and SOWFA (Churchfield et al.,

2012), both high–fidelity wind farm models that were briefly discussed in Section 1. The latter includes the actuator line

model (ALM) while the former employs the ADM.4

3The LES flow data is mapped onto the grid of WFSim using bilinear interpolation techniques.
4PALM also includes the rotating ADM, but in our case study, the ADM is employed.
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3.2.1 PArallelized LES Model (PALM) and WFSim

PALM predicts the 3D flow velocity vectors and turbine power signals in a wind farm using LES and is based on the 3D

incompressible Navier–Stokes equations.5 Table 3 gives a summary of the 2–turbine wind farm simulated in WFSim. A sum-

mary of the PALM simulation set–up can be found in Appendix B.The applied control signals are depicted in Fig. 8 and are

chosen such that different system dynamics are excited. Thefinal values for the tuning parameters are obtained using a grid5

search. Figure 9 and Fig. 10 show a comparison of the mean flow centreline and the wind farm power, respectively. A flow

field evaluated with both the WFSim model and PALM can be foundin Appendix B.

Table 3.Summary of the WFSim simulation set–up.

Domain sizeLx ×Ly 2× 0.63 [km2] Turbine rotor diameterD 126.4 [m]

Grid sizeNx ×Ny 50× 25 Turbine arrangement 2× 1

Cell size∆x×∆y 40× 23 [m2] Turbine spacing 5D

Times ∆t= 1,∆tcpu = 0.02 [s] Atmospheric conditions ub = 8,vb = 0 [m/s], ρ= 1.2 [kg/m3]

Force and power factor cf = 1.7, cp = 0.95 Turbulence model d= 530,d′ = 122 [m] ls = 0.06

0 200 400 600 800 1000 1200 1400 1600
t[s]

0

0.5

1

1.5

C
T

′

T1 (blue), T2 (red dashed)

Figure 8. Excitation signals for the 2–turbine simulation case. The yaw angles are set to zero.

In Fig. 9, the mean flow centreline through the farm of WFSim and PALM are relatively similar. The PALM data exhibits

more turbulent fluctuations due to the presence of a more sophisticated turbulence model, which allows for better capturing

small-scale dynamics such as turbine induced turbulence. However, the WFSim model is capable of estimating similar wake10

recovery as the PALM model. The recovery in the WFSim model isdue to the turbulence model as presented in §2.1. It is in fact

the slope of the local mixing length parameters that can determine the amount of wake recovery or more precise, the largerthis

slope, the more wake recovery will be observed. It is therefore interesting to link this tuning variable to the turbulence intensity

5In this work we consider PALM as a wind farm model since PALM issimulated with turbine models. However, PALM is also applicable for simulating

oceanic behaviour.
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Figure 9. Mean flow centreline at four time instances through the farm.The vertical red dashed lines indicate the positions of the turbines.
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Figure 10.Wind farm power from PALM (blue dashed) and WFSim (black).

in the farm. Furthermore, it can be seen in Fig. 10 that the WFSim model is capable of estimating the wind farm power. Since

both the WFSim model and PALM employ the ADM, fast fluctuations in the power signal can be observed. This is due to the

lack of rotor inertia in both simulation cases. The simulation case presented in this section illustrates that the WFSimmodel,
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in which the third dimension is partially neglected, is ableto estimate wind farm flow and power signals computed with a 3D

LES wind farm model. In §3.2.2, a SOWFA case study will be presented, a LES model that includes turbine dynamics.

3.2.2 Simulator fOr Wind Farm Applications (SOWFA) and WFSim

SOWFA predicts the 3D flow velocity vectors in a wind farm using LES and is based on the 3D incompressible Navier–

Stokes equations. For turbine modeling it employs the actuator line model (ALM), which is a more sophisticated model than5

the ADM (Sanderse et al., 2011). In addition, the Fatigue, Aerodynamics, Structures and Turbulence (FAST) model from

NREL is implemented (Jonkman and Buhl, 2005). This model calculates,i.a., turbine power production, blade forces on the

flow and structural loading on the turbine. In the presented SOWFA simulation, the NREL 5–MW wind turbine is simu-

lated (Jonkman et al., 2009).

The SOWFA data set used in this work for validation is equivalent to the set used in (van Wingerden et al., 2017). The thrust10

coefficientC′

T is not a control variable in SOWFA due to the employment of theALM and therefore has to be estimated. This

will be discussed in the following paragraph.

Turbine operating settings

For estimating the control signalsC′

Tn
, the turbine’s fore–aft bending momentM sowfa

k calculated by FAST is exploited. Using

the relationM sowfa
k = F sowfa

k zh with zh the hub height, the (indirect) measured thrust forceF sowfa
k can be derived. An estimation15

from SOWFA data of the rotor flow velocityU sowfa
k is obtained by averaging the flow velocity components acrossthe rotor.

Using the standard ADM yields for each turbine:

F sowfa
k =

1

2
AρC′

T

[
U sowfa
k

]2


cos(γk +ϕk)

sin(γk +ϕk)



 . (24)

SinceF sowfa
k ,U sowfa

k andρ can be obtained from SOWFA data and the yaw angles are given, all the variables in (24) are known

hence the control variableC′

T can for each turbine be estimated from SOWFA data.6 It will be used, together with the yaw20

angle, as an input to the WFSim model.

In the following, flow data at hub height from a 9–turbine SOWFA simulation case will be compared with WFSim data. See

Fig. 12 (a) for the simulated wind farm topology. The turbines are excited with thrust coefficients as depicted in Fig. 11.These

excitation signals are estimated from SOWFA data using the relation defined in (24). Table 4 presents the WFSim parameters

used during simulations. The tuning variables of the WFSim model are found using a grid–search and the inflow conditions25

ub,vb are estimated from SOWFA data.

6The estimatedC′

T from SOWFA data is relatively noisy hence filtered.
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Figure 11.Excitation signals for the 9–turbine simulation case. The yaw angels are set to zero.

Table 4.Summary of the WFSim simulation set–up.

Domain sizeLx ×Ly 2.5× 1.5 [km2] Turbine rotor diameterD 126.4 [m]

Grid sizeNx ×Ny 100× 42 Turbine arrangement 3× 3

Cell size∆x×∆y 25× 15 [m2] Turbine spacing 5D× 3D

Times ∆t= 1,∆tcpu = 0.1 [s] Atmospheric conditions ub = 12,vb = 0 [m/s], ρ= 1.2 [kg/m3]

Force and power factor cf = 5
2
, cp = 1.1 Turbulence model d= 635,d′ = 76.2 [m] ls = 0.17
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First row: WFSim (black) and SOWFA (blue dashed)

(b)
Figure 12.Topology simulated wind farm (a) and mean flow centreline at four time instances through the first row (b).
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Second row: WFSim (black) and SOWFA (blue dashed)
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Third row: WFSim (black) and SOWFA (blue dashed)

(b)
Figure 13.Mean flow centreline at four time instances through the second row (a) and third row (b) of turbines. The vertical red dashed lines

indicate the positions of the turbines.
Figure 12 (b) and Fig. 13 depict a mean flow centreline (see (23)) comparison for each row at four time instances. It can

be concluded that the mean flow centreline derived from WFSimdata approximates the mean flow centreline derived from

SOWFA data. In Fig. 14, time series of the power signals from SOWFA and WFSim are depicted. The signals from the latter

are more oscillating than the power signals from SOWFA. Thisis due to the fact that the power expression in WFSim is a5

nonlinear static map depending on theC′

T . Thus, no turbine dynamics are taken into account, which is contrary to SOWFA

in which the FAST turbine model is simulated. However, important characteristics can be captured with WFSim. A flow field

evaluated with both the WFSim model and SOWFA can be found in Appendix C.
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Figure 14.Wind farm power from SOWFA (blue dashed) and WFSim (black).
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WFSim is capable of estimating dominant wake dynamics, the objective of the control–oriented model WFSim. Smaller

scale and stochastic effects can be measured by sensors and incorporated using an estimator based on WFSim, as has been

shown in (Doekemeijer et al., 2016, 2017).
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4 Conclusions

Current literature on wind farm control can be categorized in model free and model based methods. This manuscript focused on

the latter category. In here, a distinction can be made between employed type of model, a steady–state or dynamic wind farm

model. In order to use the closed–loop control paradigm, andaccount for model uncertainties, we think it is important toutilize

a dynamic wind farm model for controller design and possibleonline wind farm control. In this paper, such a control–oriented5

dynamic wind farm model, referred to as WFSim, has been presented.7 It is a wind farm model that can predict flow fields and

power production and includes turbines that are modelled using actuator disk theory and is based on modified two–dimensional

Navier–Stokes equations. Completely neglecting the third(vertical) dimension is a too crude assumption to describe accurately

enough the flow in a wind farm for control purposes. In this paper, we included a correction term in the continuity equation.

It has been illustrated that the inclusion of this factor reduces the effect of neglecting the third (vertical) dimension. More10

precisely, it has been shown that the speed–up effect of the flow on the right and left downwind of a turbine will be reduced

when solving for the corrected Navier–Stokes equations compared to the standard two–dimensional Navier–Stokes equations.

It has been shown that this resulted in a better approximation of LES data.

In addition, a turbulence model was included taking into account the desired wake recovery. The heuristically found tur-

bulence model is based on Prandtl’s mixing length hypotheses, where the mixing length parameter is made dependent on the15

downstream distance from the turbine rotors and also dependent on the mean wind direction. After theoretically formulating

the WFSim model, this paper followed by illustrating that the computed flow velocities and power signals from the 2D–like

WFSim model can estimate flow velocity data and power signalsfrom the 3D high–fidelity wind farm models PALM and

SOWFA. The necessary computation time of the WFSim model is however a fraction of what is needed to do LES making the

WFSim model suitable for online control. This work focussedon axial induction actuation, but future work will also include the20

validation of yaw actuation and wind direction changes. Forthe presented simulation cases, no grid convergence studies have

been performed, but future work should entail this. In addition, future work will entail the online update of the tuning variables

cf , cp,d,d
′, ls by an observer and the employment of the presented dynamic wind farm model in an online closed–loop control

scheme.

7The WFSim repository can be found in (https://github.com/TUDelft DataDrivenControl/WFSim).
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Appendix A: Discretizing the Navier-Stokes equations.

This section will present the necessary derivations to go from Eq. (15) to Eq. (20),i.e., it will elaborate on the discretization of

the NS equations. In the following subsections, all terms inthe NS equations will be dealt with subsequently.

A1 Discretizing the convection (nonlinear) terms

The nonlinear term that occurs in the momentum equations canbe spatially discretized by deriving:5

∫

∆V

ρ(u · ∇)u dV =

∫

∆V

ρ




∂u2

∂x + ∂uv
∂y

∂vu
∂x + ∂v2

∂y


 dV.

x-momentum equation

Deriving the term in the x-momentum equation (first element in the above vector) yields:
∫

∆V

ρ

[
∂u2

∂x
+

∂uv

∂y

]
dV = ρ

[(
u2δy

)
e
−
(
u2δy

)
w
+(uv∆x)n − (uv∆x)s

]
,

where
(
u2δy

)
e
,
(
u2δy

)
w

are the quantitiesu2 at the east and west side of the cell having surfaceδye, δyw, respectively. Sim-10

ilarly, (uv∆x)n ,(uv∆x)s are the quantitiesuv at the north and south side of the cell having surface∆xn,∆xs, respectively.

Assumingδy = δye = δyw and∆x=∆xn =∆xs, the above can be written as:
∫

∆V

ρ

[
∂u2

∂x
+

∂uv

∂y

]
dV = ρ

[(
u2

)
e
δy−

(
u2

)
w
δy+(uv)n∆x− (uv)s∆x

]
,

DefineF ex = ρueδy,F
wx = ρuwδy,F

nx = ρvn∆x,F sx = ρvs∆x. This is in (Versteeg and Malalasekera, 2007) referred to

as a convective mass flux approximation. The above can then bewritten as:15

∫

∆V

ρ

[
∂u2

∂x
+

∂uv

∂y

]
dV = F exue−Fwxuw +Fnxun −F sxus,

In Fig. 5 we observe thatue,uw,un,us,vn,vs are not defined for the black cell. Applying central differencing approximates

the terms as follows:

ue =
ui+1,J + ui,J

2
, uw =

ui−1,J + ui,J

2
, un =

ui,J+1 + ui,J

2
, us =

ui,J−1 + ui,J

2
,

vn =
vI−1,j+1 + vI,j+1

2
, vs =

vI−1,j + vI,j
2

. (A1)20

We can now write:
∫

∆V

ρ

[
∂u2

∂x
+

∂uv

∂y

]
dV = F ex

i,Jui+1,J −Fwx
i,J ui−1,J +Fnx

i,J ui,J+1 −F sx
i,Jui,J−1 +

(
F ex
i,J −Fwx

i,J +Fnx
i,J −F sx

i,J

)
ui,J .

In Eq. (A1), central differencing is applied. A disadvantage of this method is that it does not use prior knowledge on the flow

direction. The upwind differencing scheme however employsthis prior knowledge as explained in (Versteeg and Malalasekera,
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2007). A combination of the central and upwind differencingscheme is the hybrid differencing scheme. When applying this,

the above can be written as:
∫

∆V

ρ

[
∂u2

∂x
+

∂uv

∂y

]
dV = cexi,Jui+1,J − cwx

i,Jui−1,J + cnxi,Jui,J+1 − csxi,Jui,J−1 + cpxi,Jui,J , (A2)

with cexi,J =max
[
−F ex

i,J ,0
]
, cwx

i,J =max
[
Fwx
i,J ,0

]
, cnxi,J =max

[
−Fnx

i,J ,0
]
, csxi,J =max

[
F sx
i,J ,0

]
andcpxi,J = cexi,J + cwx

i,J + cnxi,J +

csxi,J +F ex
i,J −Fwx

i,J +Fnx
i,J −F sx

i,J . In WFSim, the coefficientsc•i,J andF •

i,J are evaluated for timek while the other flow velocity5

components are computed for timek+1.

y-momentum equation

Deriving the nonlinear term in the y-momentum equation yields:

∫

∆V

ρ

[
∂v2

∂y
+

∂vu

∂x

]
dV = F ey

I,jvI+1,j −Fwy
I,j vI−1,j +Fny

I,jvI,j+1 −F sy
I,jvI,j−1 +

(
F ey
I,j −Fwy

I,j +Fny
I,j −F sy

I,j

)
vI,j ,

with F ey
I,j = ρue∆y,Fwy

I,j = ρuw∆y,Fny
I,j = ρvnδx,F

sy
I,j = ρvsδx and:10

ve =
vI+1,j + vI,j

2
, vw =

vI−1,j + vI,j
2

, vn =
vI,j+1 + vI,j

2
, vs =

vI,j−1 + vI,j
2

,

ue =
ui+1,J + ui+1,J−1

2
, uw =

ui,J + ui,J−1

2
.

The intermediate steps are omitted here since they are similar to the steps presented when handling the nonlinear term inthe

x-momentum equation. Note however that the discretizationis evaluated using the yellow cell (see Fig. 5). When applying the

hybrid differencing scheme, the above can be written as:15

∫

∆V

ρ

[
∂v2

∂y
+

∂vu

∂x

]
dV = ceyI,jvI+1,j − cwy

I,jvI−1,j + cnyI,jvI,j+1 − csyI,jvI,j−1 + cpyI,jvI,j , (A3)

with ceyI,j =max
[
−F ey

I,j ,0
]
, cwy

I,j =max
[
Fwy
I,j ,0

]
, cnyI,j =max

[
−Fny

I,j ,0
]
, csyI,j =max

[
F sy
I,j ,0

]
andcpyI,j = ceyI,j+ cwy

I,j+ cnyI,j+

csyI,j +F ey
I,j −Fwy

I,j +Fny
I,j −F sy

I,j. Similar as before, the coefficientsc•I,j andF •

I,j are evaluated for timek while the other flow

velocity components are computed for timek+1.

A2 Discretizing the pressure gradient20

For the pressure gradient we evaluate:

∫

∆V




∂p
∂x

∂p
∂y



 dV =



(pI,J − pI−1,J)δy

(pI,J − pI,J−1)δx



 .

The pressure components are evaluated for timek+1.
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A3 Discretizing the stress term

Evaluate:

∫

∆V

τ∇ dV =

∫

∆V




∂
∂x

[
lu(x,y)

2
∣∣∣∂u∂y

∣∣∣ ∂u
∂x

]
+ ∂

∂y
1
2

[
lu(x,y)

2
∣∣∣∂u∂y

∣∣∣
(

∂u
∂y + ∂v

∂x

)]

∂
∂y

[
lu(x,y)

2
∣∣∣∂u∂y

∣∣∣ ∂v
∂y

]
+ ∂

∂x
1
2

[
lu(x,y)

2
∣∣∣∂u∂y

∣∣∣
(

∂u
∂y + ∂v

∂x

)]



 dV. (A4)

x-momentum equation

Considering the x-momentum equation we have to evaluate multiple terms. The first term evaluates as:5

∫

∆V

∂

∂x

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
dV =

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]

e

δy−

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]

w

δy.

Here we have:

∂u

∂y

∣∣∣∣∣
e

=
ui,J+1 − ui,J

∆yJ,J+1
,

∂u

∂x

∣∣∣∣∣
e

=
ui+1,J − ui,J

δxi,i+1
,

∂u

∂y

∣∣∣∣∣
w

=
ui,J − ui,J−1

∆yJ−1,J
,

∂u

∂x

∣∣∣∣∣
w

=
ui,J − ui−1,J

δxi−1,i
,

andδy = δyj,j+1. Substituting these expressions yields:

∫

∆V

∂

∂x

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
dV = lu(xI−1,yJ)

2

∣∣∣∣
(ui,J+1 − ui,J)δyj,j+1

∆yJ,J+1δxi,i+1

∣∣∣∣
︸ ︷︷ ︸

T ex
i,J

(ui+1,J − ui,J) . . .10

−lu(xI ,yJ)
2

∣∣∣∣
(ui,J − ui,J−1)δyj,j+1

∆yJ−1,Jδxi−1,i

∣∣∣∣
︸ ︷︷ ︸

Twx
i,J

(ui,J − ui−1,J). (A5)

The second term evaluates as:
∫

∆V

∂

∂y

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
dV =

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]

n

∆x−
1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]

s

∆x.

Here we have:

∂u

∂y

∣∣∣∣∣
n

=
ui,J+1 − ui,J

∆yJ,J+1
,

∂v

∂x

∣∣∣∣∣
n

=
vI,j+1 − vI−1,j+1

∆xI−1,I
,

∂u

∂y

∣∣∣∣∣
s

=
ui,J − ui,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣∣
s

=
vI,j − vI−1,j

∆xI−1,I
,15

and∆x=∆xI−1,I . Substituting yields:

∫

∆V

∂

∂y

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
dV =

1

2

[
lu(xi,yj+1)

2

∣∣∣∣
ui,J+1 − ui,J

∆yJ,J+1

∣∣∣∣
(
ui,J+1 − ui,J

∆yJ,J+1
+

vI,j+1 − vI−1,j+1

∆xI−1,I

)]
∆xI−1,I . . .

−
1

2

[
lu(xi,yj)

2

∣∣∣∣
ui,J − ui,J−1

∆yJ−1,J

∣∣∣∣
(
ui,J − ui,J−1

∆yJ−1,J
+

vI,j − vI−1,j

∆xI−1,I

)]
∆xI−1,I ,

27



which can be rearranged to:

∫

∆V

∂

∂y

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
dV =

1

2
lu(xi,yj+1)

2

∣∣∣∣∣
(ui,J+1 − ui,J)∆xI−1,I

∆y2J,J+1

∣∣∣∣∣
︸ ︷︷ ︸

Tnx
i,J

(ui,J+1 − ui,J) . . .

+
1

2
lu(xi,yj+1)

2

∣∣∣∣
(ui,J+1 − ui,J)

∆yJ,J+1

∣∣∣∣
︸ ︷︷ ︸

Tnewx
i,J

(vI,j+1 − vI−1,j+1) . . .

−
1

2
lu(xi,yj)

2

∣∣∣∣∣
(ui,J − ui,J−1)∆xI−1,I

∆y2J−1,J

∣∣∣∣∣
︸ ︷︷ ︸

T sx
i,J

(ui,J − ui,J−1) . . .

−
1

2
lu(xi,yj)

2

∣∣∣∣
(ui,J − ui,J−1)

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

T sewx
i,J

(vI,j − vI−1,j). (A6)5

Summarizing the above:

∂

∂x

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂x

]
+

∂

∂y

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
= . . .

T ex
i,Jui+1,J +Twx

i,J ui−1,J +T nx
i,Jui,J+1 +T sx

i,Jui,J−1 +T px
i,Jui,J +T newx

i,J (vI,j+1 − vI−1,j+1)+T sewx
i,J (vI−1,j − vI,j),

with T px
i,J = T ex

i,J +Twx
i,J +T nx

i,J +T sx
i,J . The coefficientsT •

i,J will be computed for timek while the flow components will be

evaluated for timek+1.10

y-momentum equation

Considering the y-momentum equation, the first term evaluates as: At last we derive, also for the y-momentum equation:
∫

∆V

∂

∂y

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV =

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

n

∆x−

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

s

∆x.

Here we have:

∂u

∂y

∣∣∣∣∣
n

=
ui+1,J − ui+1,J−1

∆yJ−1,J
,

∂v

∂y

∣∣∣∣∣
n

=
vI,j+1 − vI,j

δyj,j+1
,

∂u

∂y

∣∣∣∣∣
s

=
ui,J − ui,J−1

∆yJ−1,J
,

∂v

∂y

∣∣∣∣∣
s

=
vI,j − vI,j−1

δyj−1,j
,15

and∆x= δxi,i+1. Substituting these expressions yields:
∫

∆V

∂

∂y

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV = lu(xI ,yJ )

2

∣∣∣∣
(ui+1,J − ui+1,J−1)δxi,i+1

∆yJ−1,Jδyj,j+1

∣∣∣∣
︸ ︷︷ ︸

Tny

I,j

(vI,j+1 − vI,j) . . .

−lu(xI ,yJ−1)
2

∣∣∣∣
(ui,J − ui,J−1)δxi,i+1

∆yJ−1,Jδyj−1,j

∣∣∣∣
︸ ︷︷ ︸

T sy

I,j

(vI,j − vI,j−1). (A7)
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The second term evaluates as:
∫

∆V

∂

∂x

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
dV =

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]

e

∆y−
1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]

w

∆y.

Here we have:

∂u

∂y

∣∣∣∣∣
e

=
ui+1,J − ui+1,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣∣
e

=
vI+1,j − vI,j
∆xI,I+1

,
∂u

∂y

∣∣∣∣∣
w

=
ui,J − ui,J−1

∆yJ−1,J
,

∂v

∂x

∣∣∣∣∣
w

=
vI,j − vI−1,j

∆xI−1,I
,

and∆y =∆yJ−1,J . Substituting these expressions yields:5
∫

∆V

∂

∂x

1

2

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
(
∂u

∂y
+

∂v

∂x

)]
dV =

1

2
lu(xi,yj)

2

∣∣∣∣
ui+1,J − ui+1,J−1

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

T ensy

I,J

(ui+1,J − ui+1,J−1) . . .

+
1

2
lu(xi,yj)

2

∣∣∣∣
ui+1,J − ui+1,J−1

∆xI,I+1

∣∣∣∣
︸ ︷︷ ︸

T ey

I,J

(vI+1,j − vI,j) . . .

−
1

2
lu(xi+1,yj)

2

∣∣∣∣
ui,J − ui,J−1

∆yJ−1,J

∣∣∣∣
︸ ︷︷ ︸

Twnsy

I,J

(ui,J − ui,J−1) . . .

−
1

2
lu(xi+1,yj)

2

∣∣∣∣
ui,J − ui,J−1

∆xI−1,I

∣∣∣∣
︸ ︷︷ ︸

Twy

I,J

(vI,j − vI−1,j). (A8)

Summarizing the above:10
∫

∆V

∂

∂y

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]
dV =

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

n

∆x−

[
lu(x,y)

2

∣∣∣∣
∂u

∂y

∣∣∣∣
∂v

∂y

]

s

∆x= . . .

T ey
I,jvI+1,j +Twy

I,j vI−1,j +T ny
I,jvI,j+1 +T sy

I,jvI,j−1 +T py
I,jvI,j +T ensy

I,j (ui+1,J − ui+1,J−1)+Twnsy
i,J (ui,J − ui,J−1),

with T py
I,j = T ey

I,j +Twy
I,j +T ny

I,j +T sy
I,j. The coefficientsT •

I,j will be computed for timek while the flow components will be

evaluated for timek+1.

A4 Discretizing the forcing term15

∫

∆V

1

2
ρC′

T [U cos(γ)]
2



cos(γ+ϕ)

sin(γ+ϕ)



 dV =
1

2
ρC′

T [U cos(γ)]
2



cos(γ+ϕ)

sin(γ+ϕ)



∆V

A5 Discretizing the unsteady term

Evaluate:
∫

∆V




∂u
∂t

∂v
∂t



 dV =




∂u
∂t

∂v
∂t



∆V
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Temporal discretization yields:uk+1−uk

∆t and vk+1−vk
∆t and we define:

apx0 =
∆V

∆t
and apy0 =

∆V

∆t

A6 Discretizing the Continuity equation

0 =

∫

∆V

∂u

∂x
+2

∂v

∂y
dV

= (ui+1,J − ui,J)δyj,j+1 +2(vI,j+1 − vI,j)δxi,i+1.5

All the coefficients derived above are given in Table 5.
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Table 5.Fully discretized Navier-Stokes equations and all its coefficients.

x-momentum equation:

apx
i,Jui,J =

(

anx
i,J asx

i,J awx
i,J aex

i,J

)(

ui,J+1 ui,J−1 ui−1,J ui+1,J

)T

− δyj,j+1 (pI,J − pI−1,J )+ fx
i,J + . . .

+
(

anwx
i,J aswx

i,J anex
i,J asex

i,J

)(

vI−1,j+1 vI−1,j vI,j+1 vI,J

)T

y-momentum equation:

apy
I,jvI,j =

(

any
I,j asy

I,j awy
I,j aey

I,j

)(

vI,j+1 vI,j−1 vI−1,j vI+1,j

)T

− δxi,i+1 (pI,J − pI,J−1)+ fy
I,j + . . .

+
(

anwy
i,J aswy

i,J aney
i,J asey

i,J

)(

ui,J ui,J−1 ui+1,J ui+1,J−1

)T

continuity equation:

0 = δyj,j+1 (ui+1,J − ui,J )+ 2δxi,i+1 (vI,j+1 − vI,j) ,

aex
i,J =max

[

−F ex
i,J ,0

]

+T ex
i,J , awx

i,J =max
[

Fwx
i,J ,0

]

+Twx
i,J , anx

i,J =max
[

−Fnx
i,J ,0

]

+Tnx
i,J , asx

i,J =max
[

F sx
i,J ,0

]

+T sx
i,J ,

aey
I,j =max

[

−F ey
I,j ,0

]

+T ey
I,j , awy

I,j =max
[

Fwy
I,j ,0

]

+Twy
I,j , any

I,j =max
[

−Fny
I,j ,0

]

+Tny
I,j , asy

I,j =max
[

F sy
I,j ,0

]

+T sy
I,j ,

anex
i,J = Tnewx

i,J , anwx
i,J = Tnewx

i,J , asex
i,J = T sewx

i,J , aswx
i,J = T sewx

i,J ,

aney
I,j = T ensy

I,j , anwy
I,j = Twnsy

I,j , asey
I,j = T ensy

I,j , aswy
I,j = Twnsy

I,j ,

apx
i,J = anx

i,J + aex
i,J + asx

i,J + awx
i,J +Fnx

i,J +F ex
i,J −F sx

i,J −Fwx
i,J +T px

i,J + apx
0 ,

apy
I,j = any

I,j + aey
I,j + asy

I,j + awy
I,j +Fny

I,j +F ey
I,j −F sy

I,j −Fwy
I,j +T py

I,j + apy
0 ,

in which:

F ex
i,J = 1

2
ρ (ui+1,J + ui,J )δyj,j+1, Fwx

i,J = 1
2
ρ (ui,J +ui−1,J )δyj,j+1,

Fnx
i,J = 1

2
ρ (vI,j+1 + vI−1,j+1)∆xI−1,I , F sx

i,J = 1
2
ρ (vI,j + vI−1,j)∆xI−1,I ,

F ey
I,j =

1
2
ρ (ui+1,J + ui+1,J−1)∆yJ−1,J , Fwy

I,j = 1
2
ρ (ui,J + ui,J−1)∆yJ−1,J ,

Fny
i,J = 1

2
ρ (vI,j+1 + vI−1,j+1)∆xI−1,I , F sy

i,J = 1
2
ρ (vI,j + vI−1,j)∆xI−1,I ,

apx
0 =

∆xI−1,Iδyj,j+1

∆t
, apy

0 =
∆yJ−1,Jδxi,i+1

∆t
,

∆xI−1,I = xI − xI−1, ∆yJ−1,J = yJ − yJ−1,

T px
i,J = T ex

i,J +Twx
i,J +T sx

i,J +Tnx
i,J , with T •

i,J given in Eq. (A5) and Eq. (A6),

T py
i,J = T ey

I,j +Twy
I,j +T sy

I,j +Tny
I,j , with T •

I,j given Eq. (A7) and Eq. (A8),

and:

fx
i,J = 1

2
δyj,j+1ρC

′

T [Uk cos(γk)]
2 cos(γk +ϕk), fy

I,j =
1
2
δyJ−1,JρC

′

T [Uk cos(γk)]
2 sin(γk +ϕk), Uk =

√

u2
i,J + v2I,j cos(γk)
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Appendix B: PALM case study

In this appendix, a resolved flow field for arbitrary chosen time step is depicted for the PALM case study presented in §3.2.1.

Table 6 gives a summary of the PALM simulation set–up.

Table 6.Summary of the simulation set–up.

Domain sizeLx ×Ly ×Lz 19.2× 2.56× 1.28 [km2] Turbine dimensions D =126 [m],zh =90 [m]

Grid sizeNx ×Ny ×Nz 1920× 256× 1280 Turbine arrangement 2× 1

Cell size∆x×∆y 10× 10× 15 [m2] Turbine spacing 6D

Sample period∆t 1 [s] Atmospheric conditions ub = 8,vb = 0,wb = 0 [m/s], ρ= 1.2 [kg/m3]

Simulation timet 1750 [s] Inflow uniform

WFSim u [m/s]
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Figure 15.Flow field obtained with PALM (below) and WFSim att= 750 [s]. The black lines indicate the turbines.
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Appendix C: SOWFA case study

In this appendix, a resolved flow field for arbitrary chosen time step is depicted for the SOWFA case study presented in §3.2.2.

The SOWFA data set presented in van Wingerden et al. (2017) isutilized.
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Figure 16.Flow field obtained with SOWFA (below) and WFSim att= 250 [s]. The black lines indicate the turbines.
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