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Abstract.

Wind turbines are often sited together in wind farms as ic@®mically advantageous. Controlling the flow within wind
farms to reduce the fatigue loads, maximize energy prodnetnd provide ancillary services is a challenging controbfem
due to the underlying time—varying nonlinear wake dynaricghis paper, we present a control—oriented dynamicatwin
farm model called the WindFarmSimulator (WFSim) that canged in closed—loop wind farm control algorithms. The three
dimensional Navier—Stokes equations were the startingtgor deriving the control-oriented dynamic wind farm mbde
Then, in order to reduce computational complexity, termsliving the vertical dimension were either neglected oingsted
in order to partially compensate for neglecting the vetilitenension. Sparsity of and structure in the system mainnake
this model relatively computational inexpensive. We shibeat by taking the vertical dimension partially into acoguhe
estimation of flow data generated with a high—fidelity windrdanodel is improved relative to when the vertical dimensgon
completely neglected in WFSim. Moreover we showed thattiferstudy cases considered in this work, WFSim is potentiall
fast enough to be used in an online closed—loop control fnarieincluding model parameter updates. Finally we showed
that the proposed wind farm model is able to estimate flow ameep signals generated by two different 3D high-fidelity &vin

farm models.

Table 1.Nomenclature.

Ly x Ly, domain size wind farm D turbine rotor diameter
Nz X Ny, number of cells Ax x Ay cell size

Th, turbinen N, number of turbines
Uy, hub-height flow velocity at the rotor Up, Vb, inflow conditions

Ue, flow centreline velocity Us, upstream flow velocity
Cr,Cp, thrust force and power coefficient f, wind turbine force

lu, turbulence model parameter TH, 2D stress tensor

At, sample period k, time index

qr = (uf vE ka,) T, state vector with longitudinal and lateral flow velocitesd pressure nq, number of states

wy = (y{ VE)T, control variables Zk, measurement vector
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1 Introduction

Optimizing the control of wind turbines in a farm is challémg due to the aerodynamic interactions among turbinessdhe
interactions come from the fact that downwind turbines dtenooperating in the wakes of upwind ones (Barthelmie et al.
2009). Two important wake characteristics are: 1) a flow sigfaleficit and 2) an increase in turbulence intensity. Toreer
reduces power production of the farm while the latter leads higher dynamic loading on downstream turbines, but also i
duces wake recovery. Individual turbine control variattias influence the wake’s flow velocity, turbulence intenaityl also
location. Hence, by changing the control variables of iitiial turbines, power production of and loading on thesdrotied
turbines and its downwind turbines can be manipulated. \fénd control aims to find control variables under changimgaat
spheric conditions such that demanded power productiofoaadninimization of the loading can be guaranteed, imprgvi
the cost and quality of wind energy. State—of-the—art clekmp dynamic wind farm controllers are based on companati
ally expensive wind farm models, which make these methotialda for analysis though unsuitable for online contrdieT
latter is important, because it allows for model adaptatiiothe time—varying atmospheric conditions using SCADA suga-
ments. As a consequence, more reliable control settingbeavaluated. A survey on wind farm control can be found in,
e.g., (Knudsen et al., 2015; Boersma et al., 2017). In the latelear distinction is made between model based and model fre
control algorithms. This manuscript is focussed on the frwhere it is assumed that controllers are based on a maticama
model of the system. Consequently, the controller perfocealepends highly on the model quality. Modelling is theref
crucial step towards successful implementation of modetbtavind farm control.

Overviews on wind farm models can be found in (Crespo et 8891 Vermeer et al., 2003; Sanderse, 2009; Sanderse et al.,
2011; Annoni et al., 2014; G6¢men et al., 2016; Boersma g2@17). The spectrum of these models ranges from low fidelity
to high fidelity. The latter tries to capture relatively pireewind farm flow and turbine dynamics, while the formersrie cap-
ture only the dominant characteristics (dynamic or statig)wind farm. Examples of high fidelity wind farm models aimS
ulator fOr Wind Farm Applications (SOWFA) (Churchfield et, &012), UTD Wind Farm (UTDWF) (Martinez-Tossas et al.,
2014), SP-Wind (Meyers and Meneveau, 2010) and PAraltbliEeS Model (PALM) (Maronga et al., 2015). These three di-
mensional (3D) high fidelity wind farm models can easily hao& or more states. The resulting computation time can be in
order of days or weeks using distributed computation foiugation times less than the computation time. In other wattts
computation time needed for LES is in general more than tiatime that is simulated. Clearly, these types of modedshat
applicable for online model-based control. Rather, theseels serve as analysis/validation tools.

One way to reduce the high complexity of wake modeling is hipgiswo—dimensional (2D) heuristic models that only
capture specific wake and turbine characteristics in a waneh fin the horizontal plane at hub height. These type of nsodel
are found on the low fidelity side of the spectrum. Most of theske models exclusively estimate a steady state situtation
given atmospheric conditions. Examples of static modeddtae Frandsen model (Frandsen et al., 2006) and the Jenden Pa
model (Jensen, 1983; Katic et al., 1986). One extensionefiémsen model resulted in the parametric model called FLOw
Redirection and Induction in Steady—state (FLORIS) (Gathet al., 2014b). Two examples of low fidelity dynamic models
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are SimWindFarm (Grunnet et al., 2010) and the model useshiagiro et al., 2017a), where relatively simple approxiomest
of the flow deficit are computed using heuristic expressions.

Medium fidelity models can be found in the middle of the spgutias they trade off the accuracy of high fidelity models,
with the computational complexity of low fidelity models. 8$e are in general based on simplified versions of the Navier—
Stokes equations. For example, in the 2D Dynamic Wake MeargléDWM) model (Larsen et al., 2007), assumptions are
made regarding the thin shear layer such that the NaviekeStxrjuations can be approximated using less computagifios!

The authors in (Trabucchi et al., 2016) present a model,misialso based on the thin shear layer approximation, butrdec
ing to the authors applicable for non—axisymmetric windioe wakes. WakeFarm (also referred to as Farmflow) simailate
the wind turbine wakes by solving the steady parabolizedéta@tokes equations in three dimensions (Crespo et &8;19
Ozdemir et al., 2013). Other wind farm models based on the 8nhBlds Averaged Navier-Stokes (RANS) are (Avila et al.,
2013; van der Laan et al., 2015). In (Annoni and Seiler, 20ti%)e averaging is applied on the Navier—Stokes equatiens r
sulting in the 2D RANS equations. The number of states is thdnced by employing a state reduction technique.

Also considered as medium fidelity models are the ones ptedém (Boersma et al., 2016b; Soleimanzadeh et al., 2014).
These wind farm models are based on the discretized 2D N&tigkes equations. However, these models do not contain a
turbulence model that allows for wake recovery. In addittbese 2D models do not take any neglected 3D effects intwatc
and no yaw actuation of the individual turbines is included.

In this paper, a model will be presented that can be considese building block for the closed-loop control framewosk a
illustrated in Fig. 1.

Wind farm

2k

)
N

Figure 1. General dynamic closed—loop dynamic control frameworkhwiteasurements, and its estimatiort, and state estimatiody.
The signals . andwy, are a reference and control signal, respectively. In thiepae present a dynamic model that is compatible with this

framework.
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In current practice, signals such as power can be measuwsddrwind farm, but current research is also focussing on
estimating wake characteristics using a LIDAR device (Raga@l., 2017). These and other wind farm measurements are
called SCADA data and can be used by an estimator that is abélapt the model parameters to current atmospheric
conditions and/or estimate the full state spagg,, all the flow velocities at hub height in the farm. The work g@eted
in (Doekemeijer et al., 2016) illustrates the latter and lypthe dynamic wind farm model presented in this papers8ub
quently, the estimation can then be used to compute optiordta variables using a model predictive controller. Tharky
presented in (Vali et al., 2016) illustrates the applicatd such a model predictive wind farm controller using thaalyic
model presented in this work.

The online closed—loop control paradigm as depicted in Figemands for a control-oriented dynamic wind farm model
that will be presented in this paper. Characteristics ohsantrol-oriented model area.:

1. Low computational cost such that online model updatée gstimation and control signal evaluation is possible.

2. Dynamic such that it can deal with varying atmospheriattions within relatively small time scales.

The dynamic control-oriented wind farm model presentetimpaper, referred to as WindFarmSimulator (WFSim), idiapp
cable in the framework discussed above and satisfies theawowpoints. It is based on corrected 2D Navier—Stokes amqsat
and contains a heuristic turbulence model. The Navier-Stekjuations are modified in order to partially correct fernie-
glected vertical dimension. Each turbine is modelled uliegactuator disk model (ADM) and features yaw and axial atid
actuation. An important model feature is the exploitatibthe sparse system matrices, leading to computationaleftiy.
WEFSim will be compared to high fidelity flow data and used in acgical control application.

The remainder of this paper is organized as follows. In $ac#, the mathematical background of the medium fidelity
wind farm model will be explained including a discussion twe trotor and turbulence model. This section ends with an
analysis regarding the wind farm model its computation timeSection 3, WFSim will be validated in two cases using flow
velocities in the longitudinal and lateral direction at kakight and turbine power signals computed with two difieteES
based wind farm models. The first case considered is a twintusind farm with turbines modelled using the ADM. The
second case is a nine turbine wind farm with turbines modelaploying Fatigue, Aerodynamics, Structures and Turimde
(FAST) (Jonkman and Buhl, 2005). This paper is concludeckrtiSn 4.
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2 Formulation of a dynamic control-oriented wind farm model

In the current section, a simplified wind—farm model is fofated that is sufficiently fast for online control, but retaisome

of the elemental features of three—dimensional turbulents] In order for the model to be fast, we envisage a 2D—likdeho

but adapted to account for three—dimensional flow relaratide will dub the resulting model WFSim (WindFarmSimulator
As starting point we use the standard incompressible thiieensional filtered Navier—Stokes equations, as usedde-ta

eddy simulations (LES),e.

ov . 1_ .

—U+(v-v)v+V-TM+ -Vp—f=0, momentum equations

ot p (1)
V-v=0, continuity equation

The velocity fieldv = (v1,72,73)T and pressure fielg represent filtered variable¥, = (0/0z,0/0y,0/0z)T, the air density
p, Which is assumed to be constant, angdrepresents the subgrid scale model, that will be defined.ih & common in LES
of high—Reynolds number atmospheric simulations with gegblutions in the meter range, direct effects of viscoresses
on the filtered fields are negligible, so that these termsedt@iit. Finally, the ternyf represents the effect of turbines on the
flow, as further detailed in §2.2.

Although LES filters are usually implicitly tied to the LESigiand filter length scale in the subgrid scale model, we pnesu
here that corresponds to a top—hat filtered velocity field, with filtadtk D, whereD is the turbine diameter. Thus,

z+D/2 y+D/2 z+D/2
1

v(z,y,2) = o / / / v(z',y,2") da'dy’dz". (2)
z—D/2 y—D/2 x—D/2

From a wind farm simulation perspective, we are mainly ie¢ézd at the flow velocity field at hub height i.e., v(x,y, z1).

Moreover, to evaluate turbine forces and power, it sufficekrtow the velocity at turbine locatiorts, = (x,,,1,)7 (with

n=1---X and® the number of turbines in the farm), sin®éx,,,y,, 2,) is a reasonable representation of the turbine disk-

averaged velocity.

Therefore, we focus on formulating a 2D—like set of equatitmmv(z,y, 21, ). To this end, define:
- . T
u= (Ul(%%%) vz(%@/»%)) ) 3)
T
andw = v3(x,y,2z,) andp = p(x,y, z1) /p. Moreover, we assume that~ 0, so that the LES equations given in (1) can be

reformulated in terms of as

a_u 3(uw—|—TM}13)e B 8(’[)10"‘7’]\/[}23)6

at-F(u-VH)u—FVH-‘rH+VHp—f:— 9% 1 92 2, (5)
ow
VH.U__£7 (6)

with Vg = (0/0x,0/0y)T, 7y a 2D tensor containing the horizontal components of the saistresses;, ande; ande,

the unit vectors inc andy direction, respectively.
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Finally, we further simplify above equations using two digtial assumptions. First of all, we presuide/0z ~ dv/dy.
When centred at the turbine axis, this is one of the conditimguired for axial symmetry, though axial symmetry also re
quires further conditions ofiv/9z and Ow/dy, which are not imposed. In generéky/0z ~ dv /90y implies equal diver-
gence/convergence of streamlinegjinandz—direction. Although this is a very simple condition, we grme it to be good
enough to resolve the lack of relaxation of purely 2D modéfecessary, a more general form £ 0 anddw/9z ~ ¢-0v/dy),
with ¢ a tuning parametee(g., obtained through state estimation) could be considergdelults in the current work indicate
that this may not be necessary. Secondly, we simply nedleaight—hand side of (5). Though this is a rather crude apsum
tion, the rationale is that the modelling term will suffice in the context of a control model, where modelfficents can be
updated online based on feedback (see also the discusgi@rilin Hence our final 2D—like model corresponds to:

0
a—?-k(u-VH)u-l—VH-TH-I—VHp—f:O, @)
ov

We emphasize here that above model is not a classical 2D ndo@elo the difference in formulation of the continuity
equation. In contrast to a standard 2D model, this allowdlfov relaxation in the third direction whem,g., encountering
slow down by a wind turbine. This can be seen in Fig. 2, whereikition results are shown obtained with the above model,
a standard 2D dynamic wind farm model and LES. The simulatase itself will be discussed more detailed in §3.2.1. Here
we depict the normalised flow deficit in the wakesd® downstream of the turbine along the cross—stream axis. Gheefi
illustrates that the standard 2D Navier—Stokes equatiad o a significant speed up at the wake edges. This is a fiesult
conservation of mass in two dimensions and the flow dec@earat front of the turbine, pushing part of the air around the
turbine. In the WFSim model, this speed up is smaller, as ee&sslso flow around the turbine in the third dimension. In Big
it can be seen that LES data is better estimated when impfisimgelaxation in the third dimension. Finally, note thattlly
modelling the missing vertical dimension as proposed ali®wevel with respect to the work presented in (Boersma gt al.
2016a).

This section is further organized as follows. First, in §2tte subgrid—scale model will be introduced. Then, in §tha,
turbine model will be explained. The discretization of tlygiations is presented in §2.4, and boundary and initial itiond
are discussed in §2.5.

2.1 Turbulence model

In the literature, many subgrid—scale models are docurdeatel to date, model accuracy remains a challenge in LESndse
(seeeg., (Sagaut, 2006)). However, in the current manuscript, gooiant factor in the selection of a model is simplicity
and computational efficiency, rather than accuracy. In faatontrast to conventional modelling, in a control-otezhmodel
completeness of the turbulence model is not a major issmeg sinknown model coefficients can be calibrated onlinegusin
measurements and feedback (Shapiro et al., 2017b), thmsa@isrolling the overall error. Therefore, in this work vedl back

to one of the simplest and first known turbulence models,®famixing length model.
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Figure 2. Results of two—turbine simulations. Normalised time—aged wake deficit at hub heighD downwind the downwind turbine
using standard 2D Navier—Stokes equations (red crossadpadel with adapted continuity equation (blue), and LE@& dblack dashed).

We formulate the stress tensay using an eddy—viscosity assumptiose,
TH = _VtS7 (9)

with § = £(Vru+ (Vyu)T) the 2D rate—of—strain tensor, angthe eddy viscosity. The latter is further modelled as (Ptiand
1925):

ou

0y

2

5 v =lu(z,y) , (10)

wherel, (x,y) is the mixing length. It could be interesting to define the imixlength for each position in the wind farm
separately, but this will lead to too many tuning variabMsreover, in (lungo et al., 2015), the authors illustratattim a
turbine’s near wake the mixing length is roughly invariamt dlifferent downstream locations, but in the far wake, thximg
length increases linearly with downstream distance. Wehise¢o formulate a simple heuristic parametrization fa thixing

10 length model so that the number of decision variables wiltdpkiced drastically. From now on we assume that the wind is
coming from the east, but can have a direction defineg.bjhen, the wind farm will be divided in segments as illustdain
Fig. 3.
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Figure 3. Schematic illustration of the mixing length.

Each segments has its oW, ,y/,) coordinate system located in the glolfaly) coordinate system. Now we propose the
following mixing length parametrization:

(g = Gz, yh) =1 (), yh), ifxeXandye ). 11)

0, otherwise
with G(z,y) a (smoothing) pillbox filter with radiu8, x the 2D spatial convolution operator aftl= {z : z/, <z <z +
cos(p)d} andy = {y : y,,— L2 +sin(p)z!, <y <y, +2Z +sin(p)z}, } andy defined as the mean wind direction (see Fig. 3),
which we in this work bound bj| < 45°. In addition we constraint by cos(¢)d < |z, — x| With z,, a turbines x—coordinate
andz, its downwind turbines x—coordinate. We can $gér/ ,y/,) as the local mixing length that belongs to turbimend

denote it as:

2! = (x), —d)ls, ifx,, € X andy,, € V.. 12)

0, otherwise
with X! ={«!, : d' <z, <d} andY, ={y., : |y.| < D} and tuning parametdg that defines the slope of the (linearly
increasing) local mixing length parameter. In fact, thisgpaeter could be related to turbulence intensity, the amount of
wake recovery. In this work we will not investigate this teda further. With the above formulation, the number of tumi
variables that belong to the turbulence modgld, d') is reduced t@X. Additionally, we assume that, d andd’ are equal for
each turbine in the farm, which reduces the amount of tunamtailes that belong to the turbulence modei,ta quantity that
could be dealt with by an online estimator. However, in otddrave only3 tuning variables, the included turbulence model is
defined as a simplified mixing length model found heurisljcasing and adapting information from (lungo et al., 2015).



2.2 Turbine model

Turbines are modelled using a classical non—rotating &atulisk model (ADM). In this method, each wind turbine ismep
sented by a uniformly distributed force acting on the griniaps where the rotor disk is located. Figure 4 depicts arsettie
top—view representation of a turbine with yaw angle

1/2

Figure 4. Schematic representation of a turbine with yaw angleand flow velocitylU = ([u(zn,yn)]? + [v(zn,yn)]*) '~ at the rotor.

Figure adapted from (Jiménez et al., 2010).
Using such an approach, the force exerted by the turbinebe&arpressed as

O VWD o] ol 4o (13
Sin(’Yn +90) 2

I
f=3 fu it f,= 5, [Uncos(y)?
with s = (z,y)7, H[-] the Heaviside functioni[] the Dirac delta functione , ,, the unit vector perpendicular to thd' rotor
disk with positiont,,. Furthermore more we hawg;, the disk—based thrust coefficient following (Meyers and Mesau,
2010), which can be expressed in terms of the classicalttbogsficientCr, using the following relationC7, = Cr,, /(1 —
a,)? with a,, the axial induction factor of the™” turbine. Interestingly, the coefficieat, can directly be related to the turbine
set—point in terms of blade pitch angle and rotational sggseee.g., Appendix A in (Goit and Meyers, 2015)). In the WFSim
model,C7. and yaw angley, are considered as the control variables and can thus be aisedulate the wakes and hence
wind farm performance. Furthermore, the scalain (13) can be regarded as a tuning variable and will in thiskvae set
equal for all turbines in the farm.

2.3 Power

From the resolved flow velocity components, the power geadday the farm is computed as:

N
1 .
P =2 5pACp,[Uycos(y)]*, (14)
n=1

It is stated in (Goit and Meyers, 2015) (Appendix A) that witieere is no drag and swirl is added to the wakg, = Cp, .
Since this is an idealized situation, a loss factor will beedduced such thaf's, = c,C7, . The scalar, can be seen as a

10
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tuning variable and will be set equal for all turbines in thenfi. In the above power expression, we have the fagtgry,, )3
with exponents. In literature such as.g., (Gebraad et al., 2014a) and (Medici, 2005) (page 37), nicaleralues for the
exponent were given according to LES and wind tunnel daspeetively. However, to date, the exact value for it is stiltler
research and since this is outside the scope of this stuglyatlne of the exponent will be three.

This concludes the formulation of the WFSim model. In ordeaesolve for flow velocity components and wind farm power,
the governing equations given in (7) and (8) need to be digers a topic that will be discussed in the following sewctio

2.4 Discretization

The set of equations are spatial discretized over a staggeicfollowing (Versteeg and Malalasekera, 2007). It iziea out
by employing the Finite Volume Method and the Hybrid Diffecing scheme. Temporal discretization is performed ugieg t
implicit method that is unconditionally stable (Versteegldalalasekera, 2007). This boils down to deriving thegrags:

// |:——|— u- VH)U—FVH T+ Vgp— f|dVdt =0
At AV

[ ] [ 2] avaco,

At AV

(15)

with AV the volume of one cell (see Fig. 5) aid the sample period. One obtains, for each cell, the folloviitlyg discretized
Navier—Stokes equations (for detailed derivation we refekppendix A):

— x-momentum equation for the, J)" cell (black in Fig. 5):

ST

T
pz _ r1:
a; jUi, g = (a% a;’y  a’y aff]) (ui,Jﬂ Ujj—1 Ui—1,] ui+1,]) —0yj+1(pry—pr-10)+ fi;+...

T
--+(a§f?}“ a;y"  apy afff) (UFLJ'H UI-1,j  UIj+1 ULJ) (16)

— y-momentum equation for the, 7)™ cell (yellow in Fig. 5):

T
ny sy wy ey o o o Y
ay JUIJ (azj arj Orj al,j) (Ul,j+1 ULj-1 VI-1, UH—LJ’) 0ii+1 (pr.g —Pra—1) + f1;+

T
-t (“T}W a;y’ aiy af,ef") (uu Ui -1 Uit1,J uz‘+1,J—1) (17)
— continuity equation for theZ, )" cell (pink in Fig. 5):
0= 0yjj+1 (Wit1,7 — Uig) +20Ti 41 (Vi1 — v15), (18)
The statesis o, e, pe,o are defined for the timeé + 1 while the coefficientsg , and the forcing termg; , depend on the

state at timé:. Detailed definitions of these coefficients are given in Apfir A, Table 5. Note in (18), the appearance of the
previously explained factar (see (8)).

11
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Figure 5. One cell for the x-momentum equation (grey with in its centyg), one for the y-momentum equation (yellow with in its centre

vr,;) and one for the continuity equation (pink with in its cengte;). All three cells have equal dimensions and overlap.

Next, the state vectors,, v, andp, and control variable vectots, and~y, at time stegk will be defined:

us,2

U3,N,—1

Ugq,2

Uk =
Ug, N, —1

UN,—1,2

UN,—1,Ny—1

Vg =

V2,3

U27N?1_1

V3,3

U3,N,—1

UN,—1,3

UN,—1,N,—1

PN,

P2,N,—1

P3,N,—1

PN,—1,3

P2,2

D32

—1,N,—2

Cﬁ"l ga!
/
T. Y2
= ’ NNUES 3 (19)
T T

with N, and N, the number of cells in the x— and y—direction, respectivafg® the number of turbines in the wind farm.

Each component im, v, andp; represents a flow velocity and pressure, respectively aird pothe field defined by the

5 subscript. For clarity reasons, an example of a staggerddsgiepicted in Fig. 6.

12
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Figure 6. Example of a staggered grid with cells each having voluxié. In WFSim, the grid is of the type quadrilateral.

2.5 Boundary and initial conditions

All the components that are not contained in the veatgw,, andpy, but do appear in the staggered grid need to be defined.
For the flow velocity components, first order conditions aawest side of the grid are prescribed assuming the wind isngbm
from the east. These Dirichlet inflow boundary conditiors r@lated to the ambient inflow definedw@asandv, and can vary
over time. Zero stress (also referred to as Neumann) boymdaditions are prescribed on the other boundaries. Toeref

for the flow velocity components on the boundaries we define:

U2,7 = Up for J=1,2,..., Ny, V1,j =Up forj=2,3,..., Ny,
Ui N, = Ui, N,—1  fori=3,4,..., Ny, vI,N, =VI,N,—1 forl1=23,... N,
Uil = Ui2 fori=3,4,..., Ny, vr2 =01,3 forI=23,...,N,,
UN,,J = UN,—1,7 TorJ=2,3,...,N;—1, UN,,j =UNy—1,; forj=3,4,...,N,—1.

For the initial conditions, we define all flow velocity componts in the field as:,, and v,, respectively, the boundary
velocity components. The initial pressure field is set tmzblote that by defining the boundary conditions as given abihe
assumption is that the wind is coming from the east in Fig. Bictv coincides with the definition of the mixing length (see
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§2.1). Finally, the equations given in (7) and (8) can bedfammed to the difference algebraic equation (DAE):

Ag(ug,ve)  Agy(ur)  Bi\ [ue+1 A 0 0\ fug b1 (uk, Vi, Vi, Vi)
Aya(ur)  Ay(ug,vg) Ba| | vk | = 0 Asa O | ve | + | b2(ur,ve, v, ) |- (20)
BT 2B 0 D+1 0 0 0/ \pk b3
—_—— —————
E(qx) qk+1 A ax b(qr,wi)

with n, = n,, +n, +n, andu;, € R™, v, € R™, p, € R™ containing all flow velocities in the longitudinal and leaédirec-
tion and the pressure vector at tirhgrespectively, and control variable, = (ykT ykT)T € R?X. The non-singular square
descriptor matrix?”(qx.) contains the coefficients, ,, appearing in (16) and (17), that depend on the state atitimie square
constant matrixA solely depends on grid spacing and sample pefiodNote that the state vector contains three states for
every cell hence an increase in grid resolution results imarease in matrix dimensions. However, the system matiicat
occur in (20) are sparse and efficient numerical solvers\aitahle for these kind of problems. This will be demonsidin
§ 2.6. The vectob(qx,wy, ) contains the forcing terms (turbines) and boundary coorukiti

By defining N, Ny, Az r+1,Ays 541 and the turbine positions, a wind farm topology is determiridext, ambient flow
conditionsu;, and vy, tuning parameters;,c,,d,d’,l, and the control variabley, need to be specified. The system given
in (20) is then fully defined and can be solved.

2.6 Computation time

When discretizing partial differential equations, a traofé has to be made between the computation time and grid reso
lution. Typically, a higher resolution results in more peeccomputation of the variables, but also increasing cdatun
time. In WFSim, computational cost is reduced by exploitsparsity and by applying the Reverse Cuthill-McKee algo-
rithm (George and Liu, 1988 The latter is applicable due to the fact that the matrix stmcis fixed. The interested reader is
referred to (Doekemeijer et al., 2016) for more informatiorthe Cuthill-McKee algorithm in WFSim.

In this section, the mean computation time needed for one stapAt°P* will be analysed. The presented results are
obtained on a regular notebook with Intel Core i7—-4600U 2z @rocessor employing one core and MATLAB. Since the
objective is to do online contrale, it is desired to reduce computational complexity, thigisadntroduces a second WFSim
representation. The first representation was given in (20ewhe second is defined as:

A (ug,vi) 0 B\ [ugs1 A 0 0\ fug b1 (uk, Vi, Vi, Vi)
0 Ay(ur,vr) Bo || ok [=] 0 A Of | v | + | b2(ur,vr, v, ) | - (21)
BT 2B7 0 Dk+1 0 0 0/ \pk b3
—_—— —————
E(qr) qk+1 A qxk b(qr,wi)

The difference can be found in the descriptor matrix. In theve representation, the elemewnts, (ux), Ay, (ui) that occur
in (20) are set to zero. This can be justified by the fact theit tontribution is negligible since these matrices conédéments

1This type of system can also be referred to as a quasi lineamuager varying model or descriptor model.
2The sparse toolbox and reverse Cuthill-McKee algorithmbath utilised in Matlab.
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that, for our case studies, are of ord2f1) while the elements it (uy,vy) and A, (ux,vi) are of orderO(3). Therefore,
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Figure 7. Mean computation time per simulation time stAp“®" versus number of states,. Red dashed is WFSim as presented in (20)
and blue is WFSim as presented in (21). Note that the numbeslisfis approximately., /3 with n, the number of states.

no significant change in the flow field computation has beeemes, but a decrease ltP" (see Fig. 7), the remainder of
this paper will continue with the WFSim representation giue(21). Table 2 depicts more numerical valueg\afP" for this
WFSim representation.

Table 2. Mean computation time per simulation time st&p°"" versus number of states, for the WFSim representation as given in (21).

Computation are done on a regular note book on one core.

g AP [s] Ny AP [s] g AP [s] g AP [s]
3.10° 0.02 27-10° 0.22 115-10°3 1.19 239-10° 3.1
6-10° 0.04 43-10° 0.37 147103 1.66 258 -10° 35
9.10° 0.06 64-10° 0.60 182103 2.12 268 -10° 3.7
14-103 0.10 88.10° 0.88 221-10° 2.50 276 -10° 3.8

From Table 2 we can conclude that°®" increases between quadratic and linear with respect touimber of states,, for
ng < 221-103. It depends on the computer properties how much you candserthe number of states until the CPU is out of

memory.

15



10

15

20

3 Simulation results

In this section, WFSim flow and power data will be comparedresid ES data and it is organised as follows. In §3.1, quality
measures are introduced. In 83.2.1, WFSim data is compaitedPALM data and in 83.2.2, WFSim is validated against
SOWFA data. In both simulation cases, the thrust coeffisi€fitis varied while the yaw angles are set to zero.

3.1 Quality measures

Suppose we have at timiea measurement of one quantity € RY and its estimatiort;, € RY. Define the prediction error
er = Zr — 2. The quality measure Root Mean Squared Error (RMSE) isjrive stepk, defined as:

/1
RMSE(Zk,ék) = Nefek, (22)

This measure is used to compare the flow centreline velégjty) and power signals from LES and WFSim data for differ-
ent model parameters. The flow centreline is, for one timp, stefined as the laterally—averaged longitudinal flow vigloc
throughout the simulation domain across the rotor diamktathematically this can, for LES data at time skegt longitudinal
positionz;, be defined as:

Ny
Ui(z;) = %Zuk(xwys)v (23)

Y s=1
with y, the y—coordinate of one cell across the lipe y, which containsVy; number of cells and having an equal length as
the rotor diameter. From WFSim data, the flow velocity comgrdrat the rotor centre will be taken accros the position
In this work we compare lateral and longitudinal flow velga@bmponents at hub height and power signals calculated with
LES with lateral and longitudinal flow velocity componenigigpower signals calculated with WFSim.

3.2 Axial induction actuation

Studies such as (Shapiro et al., 2017a), (Munters and Me3@13), (Vali et al., 2017) and (van Wingerden et al., 201u}
trate that axial induction actuation can be used in activego@ontrol where the objective is to provide grid faciltién order
to utilize the WFSim model in active power control, it is intpamnt to first validate it when exciting the thrust coeffidien

In the following, WFSim is compared against simulation deden PALM (Maronga et al., 2015) and SOWFA (Churchfield et al.
2012), both high—fidelity wind farm models that were briefigalissed in Section 1. The latter includes the actuator line
model (ALM) while the former employs the ADM.

3The LES flow data is mapped onto the grid of WFSim using bilirerpolation techniques.
4PALM also includes the rotating ADM, but in our case studg DM is employed.
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3.2.1 PArallelized LES Model (PALM) and WFSIim

PALM predicts the 3D flow velocity vectors and turbine powignals in a wind farm using LES and is based on the 3D
incompressible Navier—Stokes equatiéi@ble 3 gives a summary of the 2—turbine wind farm simulated/FSim. A sum-
mary of the PALM simulation set—up can be found in AppendixiBe applied control signals are depicted in Fig. 8 and are
chosen such that different system dynamics are excitedfifiievalues for the tuning parameters are obtained usingda gr
search. Figure 9 and Fig. 10 show a comparison of the mean #atvedine and the wind farm power, respectively. A flow
field evaluated with both the WFSim model and PALM can be fomnrdippendix B.

Table 3. Summary of the WFSim simulation set—up.

Domain sizeL, x L, 2 x 0.63 [km?] Turbine rotor diameteD  126.4 [m]

Grid sizeN, x Ny 50 x 25 Turbine arrangement 2x1

Cell sizeAx x Ay 40 x 23 [m?] Turbine spacing 5D

Times At =1, At®" =0.02 [s] Atmospheric conditions  u, = 8,v, = 0 [M/s], p = 1.2 [kg/m?]
Force and power factor ¢y =1.7,¢, = 0.95 Turbulence model d=530,d =122 [m] Is = 0.06

Ty (blue), Ty (red dashed)
T T

oT’

-

0 200 400 600 800 1000 1200 1400 1600

Figure 8. Excitation signals for the 2—turbine simulation case. Ta® yngles are set to zero.

In Fig. 9, the mean flow centreline through the farm of WFSird RALM are relatively similar. The PALM data exhibits
more turbulent fluctuations due to the presence of a moreigtiqated turbulence model, which allows for better caipmir
small-scale dynamics such as turbine induced turbulenoeeMer, the WFSim model is capable of estimating similaravak
recovery as the PALM model. The recovery in the WFSim modalissto the turbulence model as presented in 82.1. Itis in fact
the slope of the local mixing length parameters that carroéte the amount of wake recovery or more precise, the ldniger
slope, the more wake recovery will be observed. It is theegftteresting to link this tuning variable to the turbulerittensity

5In this work we consider PALM as a wind farm model since PALMisiulated with turbine models. However, PALM is also aggiie for simulating

oceanic behaviour.
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WFSim (black) and PALM (blue dashed)
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Figure 9. Mean flow centreline at four time instances through the farhe vertical red dashed lines indicate the positions ofthaines.
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5 Wind farm power: WFSim (black) PALM (blue dashed)
T T T

T T T T

~
TONTT

“

1 1 1

05 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

t[s]
Figure 10. Wind farm power from PALM (blue dashed) and WFSim (black).

in the farm. Furthermore, it can be seen in Fig. 10 that the MiFBodel is capable of estimating the wind farm power. Since
both the WFSim model and PALM employ the ADM, fast fluctuasam the power signal can be observed. This is due to the
lack of rotor inertia in both simulation cases. The simalattase presented in this section illustrates that the WkSaatel,
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in which the third dimension is partially neglected, is afol@stimate wind farm flow and power signals computed with a 3D
LES wind farm model. In 83.2.2, a SOWFA case study will be erésd, a LES model that includes turbine dynamics.

3.2.2 Simulator fOr Wind Farm Applications (SOWFA) and WFSim

SOWFA predicts the 3D flow velocity vectors in a wind farm @ginES and is based on the 3D incompressible Navier—
Stokes equations. For turbine modeling it employs the &otli@me model (ALM), which is a more sophisticated modelrtha
the ADM (Sanderse et al., 2011). In addition, the Fatiguerodgnamics, Structures and Turbulence (FAST) model from
NREL is implemented (Jonkman and Buhl, 2005). This modedudates,.a., turbine power production, blade forces on the
flow and structural loading on the turbine. In the present®VEA simulation, the NREL 5-MW wind turbine is simu-
lated (Jonkman et al., 2009).

The SOWFA data set used in this work for validation is eq@aato the set used in (van Wingerden et al., 2017). The thrust
coefficientC’. is not a control variable in SOWFA due to the employment ofAh# and therefore has to be estimated. This
will be discussed in the following paragraph.

Turbine operating settings

For estimating the control signals;. , the turbine’s fore-aft bending momehf$o@ calculated by FAST is exploited. Using
the relation)/3oVRa = 5w, with 2, the hub height, the (indirect) measured thrust far§&""@can be derived. An estimation
from SOWFA data of the rotor flow velocitgi,j""Vfa is obtained by averaging the flow velocity components actiossotor.
Using the standard ADM yields for each turbine:

1 o
F]gowfa: 514,005« [UEOWfa} 2 [ cos(vk + k) . (24)

sin(yx + or)
SinceFsoVa {7sowiaand can be obtained from SOWFA data and the yaw angles are gilvéing aariables in (24) are known
hence the control variabl€}. can for each turbine be estimated from SOWFA daltawill be used, together with the yaw
angle, as an input to the WFSim model.

In the following, flow data at hub height from a 9—turbine SOM#&tmulation case will be compared with WFSim data. See
Fig. 12 (a) for the simulated wind farm topology. The turlsiaee excited with thrust coefficients as depicted in Fig These
excitation signals are estimated from SOWFA data usingdlaion defined in (24). Table 4 presents the WFSim parameter
used during simulations. The tuning variables of the WFSiadeh are found using a grid—search and the inflow conditions
up, vp are estimated from SOWFA data.

6The estimated”’/, from SOWFA data is relatively noisy hence filtered.
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Figure 11. Excitation signals for the 9—turbine simulation case. The yngels are set to zero.

Table 4. Summary of the WFSim simulation set—up.

Domain sizeL, x L, 2.5 x 1.5 [km?] Turbine rotor diameteD  126.4 [m]

Grid sizeN, x Ny 100 x 42 Turbine arrangement 3x3

Cell sizeAx x Ay 25 x 15 [m?] Turbine spacing 5D x 3D

Times At =1,AtP" = 0.1 [s] Atmospheric conditions  u, = 12,v, = 0 [m/s], p = 1.2 [kg/m®]
Force and power factor cy = g,cp =11 Turbulence model d=635d =76.2[m]ls=0.17

First row: WFSim (black) and SOWFA (blue dashed)
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Figure 12. Topology simulated wind farm (a) and mean flow centrelineat time instances through the first row (b).
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Second row: WFSim (black) and SOWFA (blue dashed) Third row: WEFSim (black) and SOWFA (blue dashed)
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Figure 13.Mean flow centreline at four time instances through the sgcow (a) and third row (b) of turbines. The vertical red dakliees

indicate the positions of the turbines.
Figure 12 (b) and Fig. 13 depict a mean flow centreline (sep (28nparison for each row at four time instances. It can

be concluded that the mean flow centreline derived from WF&ata approximates the mean flow centreline derived from
SOWFA data. In Fig. 14, time series of the power signals frédW&A and WFSim are depicted. The signals from the latter
are more oscillating than the power signals from SOWFA. Téidue to the fact that the power expression in WFSim is a
nonlinear static map depending on #%&. Thus, no turbine dynamics are taken into account, whiclordgrary to SOWFA

in which the FAST turbine model is simulated. However, intpot characteristics can be captured with WFSim. A flow field
evaluated with both the WFSim model and SOWFA can be foundopefdix C.

«107 Wind farm power: WFSim (black) SOWFA (blue dashed)

T T T T T

3.5

0 100 200 300 400 500 600 700 800 900 1000

Figure 14.Wind farm power from SOWFA (blue dashed) and WFSim (black).
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WFSim is capable of estimating dominant wake dynamics, tijeative of the control-oriented model WFSim. Smaller
scale and stochastic effects can be measured by sensomcanpdrated using an estimator based on WFSim, as has been
shown in (Doekemeijer et al., 2016, 2017).
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4 Conclusions

Current literature on wind farm control can be categoriretiodel free and model based methods. This manuscript fdcuse
the latter category. In here, a distinction can be made lestweenployed type of model, a steady—state or dynamic wimd far
model. In order to use the closed—loop control paradigmaacdunt for model uncertainties, we think it is importanttitize

a dynamic wind farm model for controller design and posdiniine wind farm control. In this paper, such a control—otés
dynamic wind farm model, referred to as WFSim, has been ptedé|lt is a wind farm model that can predict flow fields and
power production and includes turbines that are modellegyectuator disk theory and is based on modified two—dinoerati
Navier—Stokes equations. Completely neglecting the {wiedical) dimension is a too crude assumption to descitbarately
enough the flow in a wind farm for control purposes. In thisqgrage included a correction term in the continuity equation
It has been illustrated that the inclusion of this factoruwek the effect of neglecting the third (vertical) dimensidore
precisely, it has been shown that the speed—up effect ofdhedh the right and left downwind of a turbine will be reduced
when solving for the corrected Navier—Stokes equationgpared to the standard two—dimensional Navier—Stokes mmsat

It has been shown that this resulted in a better approximafi€ES data.

In addition, a turbulence model was included taking intooatt the desired wake recovery. The heuristically found tur
bulence model is based on Prandtl’s mixing length hypothegbkere the mixing length parameter is made dependent on the
downstream distance from the turbine rotors and also depermoh the mean wind direction. After theoretically forntirg
the WFSim model, this paper followed by illustrating that tomputed flow velocities and power signals from the 2D-like
WFSim model can estimate flow velocity data and power sigfral® the 3D high—fidelity wind farm models PALM and
SOWFA. The necessary computation time of the WFSim modeahigeler a fraction of what is needed to do LES making the
WFSim model suitable for online control. This work focussadxial induction actuation, but future work will also inde the
validation of yaw actuation and wind direction changes.therpresented simulation cases, no grid convergence sthaie
been performed, but future work should entail this. In addijtfuture work will entail the online update of the tuningriables
cf,cp,d,d 15 by an observer and the employment of the presented dynamitfeim model in an online closed-loop control

scheme.

7The WFSim repository can be found in (https://github.codiDElft DataDrivenControl/WFSim).
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Appendix A: Discretizing the Navier-Stokes equations.

This section will present the necessary derivations to gmfEq. (15) to Eq. (20),e., it will elaborate on the discretization of
the NS equations. In the following subsections, all termth&éNS equations will be dealt with subsequently.

Al Discretizing the convection (nonlinear) terms

The nonlinear term that occurs in the momentum equationbeapatially discretized by deriving:

3_u2_|_‘9}“f
/ plu-Viudv = / p j;; Ju, | dv.
A \oe Tay

AV Oz

X-momentum equation

Deriving the term in the x-momentum equation (first elemarthe above vector) yields:

ou?  Ouv
/ p {% + a—y} dv =p [(u25y)e - (u25y)w + (uwvAz), — (uvAx)S] ,
AV

where(u?dy) _, (u*éy)  are the quantities” at the east and west side of the cell having surfacesy.,, respectively. Sim-

ilarly, (wwAz), ,(uvAz), are the quantitiesv at the north and south side of the cell having surfaes,, Az, respectively.
Assumingdy = dy. = dy,, andAzx = Azx,, = Ax,, the above can be written as:

ou?®  Ouv
[ o[5S v = p[(0) = (02), 0+ (), B (), ).
AV

Define F** = pu.dy, F** = pu,dy, F™* = pv, Ax, F** = pv,Azx. This is in (Versteeg and Malalasekera, 2007) referred to

as a convective mass flux approximation. The above can themitten as:

2
/p ai + % dv = F\el‘ue _meuw +Fna:un _ F”us,
ox dy

In Fig. 5 we observe that.,u.,,u,,us,v,,vs are not defined for the black cell. Applying central diffecgry approximates
the terms as follows:

U1, T UL U170 T Ui g Ui g1 T UG U g1 T U
Ue = 9 y o Uy = B ,  Un = B , Us = 9 ;
Vr—1,5+1 + VI j+1 Vr-1,5 + V1,5
Uy, = 5 , Vg = g (A1)

We can now write:

ou?  Ouv
exr waITr nr ST exr war nr ST
/p{ax + oy dV = FJui,s = Fi i, + FiFui g — Fluig o+ (F = BT+ FU5 = Fi) .

In Eq. (Al), central differencing is applied. A disadvargay this method is that it does not use prior knowledge on the fl
direction. The upwind differencing scheme however empthissprior knowledge as explained in (Versteeg and Mal&laise
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2007). A combination of the central and upwind differencéopeme is the hybrid differencing scheme. When applyirgy thi
the above can be written as:

au2 8uv ex wT ne ST pT
P oz + —ay dV = {5 uipr, g — ¢l guim1,g + ¢ g1 — 6w, -1+ ¢ g, (A2)

with ¢§ J—max[ Ff?},()] ¢;’j = max [F;‘?,O] o —maX[ Z"}",O] , ;% = max [FZ‘?},O] andcﬁ’f‘,:cff]+c;‘j§+c2§+
G+ FG — FY7 + F'5 — F5. In WESIim, the coefficients; ; andF;? ; are evaluated for time while the other flow velocity

components are computed for tirhe- 1.
y-momentum equation

Deriving the nonlinear term in the y-momentum equationdsel

ov?  Ovu
/ p |:a—y + O :| dV = F;Z-v]+1}j —F}"’jyvpl}j +F}tgvl,j+1 - Flszvv[’jf1 + (FIEZ' — F}‘j;l-i-Fﬁ;I _FISZ') VI,j5

with F7% = pue Ay, Fy'Y = puy Ay, F'Y = pvpd, T = pvsdx and:

VI, T U1  Ur—1,5 T VU1 V41TV V11TV
ve - 2 ) vw - 2 ) n — 2 ) vS - 2 bl
WUit1,J + Uit1,7—1 U g+ Ui g—1
U = Uy = —2—
e 2 ) w 2

The intermediate steps are omitted here since they areasitnithe steps presented when handling the nonlinear tethein
x-momentum equation. Note however that the discretizas@valuated using the yellow cell (see Fig. 5). When applyire
hybrid differencing scheme, the above can be written as:

aUZ dvu ey wy ny Cp
Py T or dV = i vra — epjor1 + criun e — €vn -1+ ¢, (A3)

with ¢§Y; = max [~ Ff%,0] c}'¥ = max [F}*¥,0] et = max [~ F},0] ,}?) = max [F{Y,0] andef?) = e, + ¢+ ¢} +

¢+ Fr% = Fy)+ Ff — FrY%. Similar as before, the coefficienty ; andF7 ; are evaluated for timé while the other flow

velocity components are computed for tie- 1.
A2 Discretizing the pressure gradient

For the pressure gradient we evaluate:

/ g_g dv — (p1,7 —P1-1,7)0Y
Idp -
AV \0y (p1,7 —p1,7-1) 0%

The pressure components are evaluated for timel .
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A3 Discretizing the stress term

Evaluate:
2 [lu(x,y)Q gu a_u}
v dV = ox Oy | Oz
o [l (z,y)* |34 8—]
% AV \O9y [ ¥\ dy | By

X-momentum equation

Q
S

BE
+ o+

IS

01 2|0
21
ox 2

{lu(x,y)Q g_:j (

Rle 8

ﬂ w 0

Q
<
_Q>|Q3 Q>|Qa
8§ e

5 Considering the x-momentum equation we have to evaluatéptaerms. The first term evaluates as:

0 oul| du ou| Oou ou| ou
— |1 dv = — | dy—
[ 5 [tte? G| 5] @V = [1ute?| 52| 52| o |t 52| 2] oo
AV
Here we have:
Oul  uigp1— Uiy Oul  Uiy1,g — Uiy Oul _ uig —uig—1 Ou|  _ wig—ui—1g
oy . AZJJ,J+1 ’ Oz . (5137:,1'-«-1 ’ 0y w AZJJ—l,J ’ Oz w 5137:—1,7: ’
anddy = dy;, j+1. Substituting these expressions yields:
0 ou| Ou (Wi, g+1 — Ui 7)0Yj j+1
10 l dv = _ 2 : : J.J i — U;
/8x[ (z,y)? oy ax} lu(zr-1,y7) Ayrri10Tein (Wig1,7 — Ui,g)
AV
60 — Wi, J—1)0Yj,j+1
—lu (27, 2| (Wi = i1 1)0Yj5+ Ui ] — Uj— . A5
(xr,97) Ay 10Ty (us, s 1,J) (A5)
Ty
The second term evaluates as:
01 ou| (Ou Ov 1 ou| (Ou Ov 1 ou| (Ou Ov
— — 4+ — =—1l, — 4+ — Az — = — 4+ — A
[ s w02 (55| (55 32 )] @ =5 w025 (afaxﬂn v w5 (5 )] &
AV
Here we have:
15 Ou _ Wi, g1~ Ui v _ ULt —VI-1j41 Ou _ Ui Ui g v _ UL Vi1
0y . Aysis1 Oz . Axr_qr ' dy . Ayj_v,g Oz . Axi_qr

andAx = Az;_ ;. Substituting yields:

01 ou| (Ou  Ov 1 Ui, g1 — Wi g | (Wi, g+1 — Ui,J  VIj4+1 — VI—1,j+1
—— |1, x, 2|7 <_+ >:| dV:—|: T,y 2 > > > Ly »J »J Az
J/ dy 2 { (@) oy|\ 0y Oz 2 (®i-4541) Ay Ay Az =
1 Uj, g — Ui J—1 (uu—uu—1 V1 —VI-1,j
- = lu T, Yj 2 : : ’ ’ + J - AJ?]_ I,
2 { (®i,95) Ayj_1,g Ayj_1,g Axp_q b
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which can be rearranged to:

01 Oul| (Ou Ov 9
[ o [tte? 5] (5 + 52 )| @V =5iutenasen)
AV

Ay

(Wi 41 —uig)Azr_1 1
3
AyJ,J+1

(Ui,J+1 _ui,J)---

nx
T3

(Wi, 741 — Ui,7)
Ay 41

? (Urj+1 = Vr-1,+41)- -

1
+ ilu(xivyj+1)

Trnews

(wi, g —wig—1)Azr_11
3
Anyl,J

1
—Elu(ﬂciayj)z (Ui,g —Ui,g—1) ...

55
(W,J - ui,J—l)
Anyl,J

1
_§lu($ivyj)2 (Ul,j —Ul—l,j)- (A6)

Summarizing the above:

Togwe
ﬁl(x )2 Ou| Ou +21[( )2 B_u_'_@ _
oz | Y Ayl ox|  dy2 oY oy ox)|

ex wxT nT ST pT newzxr sewx
Ti5uivr,g + T wim, g + 17 wi g1+ 15w g—1 + T Jui g + 175 (vrj1 — vi-1,41) + T35 (vr-1,5 — vr,5),

ou
dy

with T = T75 + TF + 15 + T7°%5. The coefficientd’? ; will be computed for time: while the flow components will be
evaluated for time; + 1.

y-momentum equation

Considering the y-momentum equation, the first term evatias: At last we derive, also for the y-momentum equation:

0 Oul| dv oul| ov oul| ov
— |ly(, dav = —| Az—|l(z,y)?|=—|=| A
/8y{ @)’ dy C%J [ (@,9)” oy 3y] ! { (=) dy 8yL !
AV
Here we have:
Ou _ Uig1, g~ Uit1,7-1 v _ Ut~V Ou _ Ui g —Uig v _ Ui — V-1
Oy . Ayj_1,7 ’ Jy . oyji+1 Jy . Ayj_1,y 0y . dyj—1j
andAz = dx; ;41. Substituting these expressions yields:
0 OJu| Ov (Ui+1J—Ui+1 J—1)5$i i+1
— |l dv =1, 2 : : ’ 1 —v15)...
/321[ (29)” dy 329] v (#r,7) Ay 1,70y j+1 (V141 = v15)
AV
Ty
w1 1)0T
—lu.’E, 3 2 (uz,J U, J 1) i,74+1 vr i —vr 1), A7
(xr,95-1) A1 1, (vrj —vr,j-1) (A7)

sy
TI,J‘
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The second term evaluates as:

01 ou| (Ou Ov 1 ou|(Ou Ov 1 ou| (Ou Ov

—— |l —+— || dV =21, 2 — || Ay—= |l 2 — || Ay.
[ s o2 |55 (5 + 50) | O =5 || 5 (ay*'ax)]e v g e | (ay*'ax>}w /
AV
Here we have:
Ou _ Wig1,) —Uit1,7-1 v _UI+1,j —VIj Ou _ Wi, Ui g v _ UL VI
8y . Ay‘]flﬂl ’ ox . AxI’IJrl ’ é)y w Ay‘]flﬂl ’ ox w A‘CC[,L]

andAy = Ay;_1,;. Substituting these expressions yields:
/ﬁl ()2 Oul| (Ou v Uit1,J — Witl,J-1

oz 2 |y Ays_1,7
AV

ensy
175

(ui+1,J - ui+1,J—1) cee

- __ . )2
ay ay + 8x>} dv u(xzay])

2 | Uit+1,J — Uit1,J—1
Axr 1

1
+ §lu(a:7:,yj) (Vr+1, — V1)

ey
TI,J

Ui J — Ui, J—1

1
_§lu($i+17yj)2 (Ui,J_Ui,J—l)---

ijfl,J
Ty
1 Ui, J — Uq,J—1
—Elu(xi—i-l,yj)z ﬁ (vrj —vi=1;)- (A8)
Ty
Summarizing the above:
0 ou| dv ou | Ov ou| Ov
— |l (z, dv = —| Az — Az =...
[ a5 e |55 5] v = [ G| 5 o= [ 5] 5] &2
AV

wnsy
Tr¥vre; +Tr vr—1; + T v g + T 5vn -1 + T vng + 175 (i, g — wipr,g-1) + T ™ (i g — wig-1),

with T7% = T7% + T}/ + T + T7". The coefficient7 ; will be computed for timek while the flow components will be
evaluated for time: + 1.

A4 Discretizing the forcing term

cos(y+¢) dv = %pC} U cos('y)]2 cos(y+¢) AV

1 , 2
—pCH U cos
/ 2T [ )] sin(y + ) sin(y + )

AV

A5 Discretizing the unsteady term

Evaluate:
ou du
%\ dv =9 | AV
oy ol

AV ot ot
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Temporal discretization yields#=—* and*-+—% and we define:

. AV
Clg = E and Clgy =

AV
At

A6 Discretizing the Continuity equation

ou ov
= [ —+4+2—dV
0 TREr T
AV

= (Wit1,7 — i.7) 0Yj j+1+2(vr 41 — V1) 0Ti iy

All the coefficients derived above are given in Table 5.
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Table 5. Fully discretized Navier-Stokes equations and all its ficiehts.

X-momentum equation:

px , — n sx wT ex
a; Wi, g = (ai,J a; g Qg ai,J) (Ui,J-H
nwr sSwx nexr sexr
+ (ai,J a; g [ ;. (Ul—l,j+1

y-momentum equation:

Py J— ny sy wy
a7,;V1.3 (al,j ary ar;j (UI,J-H

nwy swy
+ (at J

a; g
continuity equation:

ney sey
a; 5 Qg

0 =6y j+1 (Wit1,0 — wi,g) + 202 i41 (V1541

T
Wi, -1 Ui—1,J Ui+1,J2 —0yj 41 (Pr,g —pr-1,0) + [+ ...

VI-1j VIj+1 UI,J)

T
y
VI,j—1 VI-1;5 U1+1,j) _6$i,i+l(pI,J_pI,Jfl)"‘fI,j"‘

T
(Ui,J Ui, J—1  Wit1,J Ui+1,J—1)

—v1,5),

exr exr exr wxT wxT nT nT nT ST
azJ_maX[ iJ70}+ i,J ai,J:maX[FzJa] i,J a/i,J:maX[_ iJ70}+ i,J a/zJ_maX[zJaO]—'_ i,J
— wy ny __ SY __
aI,].—max[ FIJ,O]—i—TI], aI,.—max[FI],O}—Q—TI], ay;;=m ax [— FIJ,O]—i—TI], aI.—max[FLj,O} 7%,
nexr newar nwx newx sexr Sewx sSwx sewx
a; g =45 a; g =455 a; g =147 a; g =455
ney __ rmensy nwy __ qwnsy sey ensy sSwWyY __ rwnsy
ary =Tr;" 1 =T =17, g =T
pr __ _nx ex sx wx nx s pT
a; y=0a;;+ta; ;+a; ;+a; 7+ + ng = Fy+ 1Y 7Fag”,
a’;f’]—au—ka?y—&—a —|—a}” +F"y Ffz—FIS?;—F}”y pr+a
in which:
1 1
= 5P (Wit1,0 + i, 7)0Yj 541, wr = 5P (Ui +Ui-1,0) 0Yjj+1,
1 y 1
z"f 2P (Vrj+1 +vr-1541) Azr-11, iy = gp(Vr; +vr-1;) Az,
1 1
;,zzgp(uz+1J+uz+lJ 1) Ays-1,7, Fﬁfigp(uzJ-i-uzJ 1) Ays—1,7,
1 E 1
F = 5p(vrj+1 +vr-1j41) Azr-a, Fy =5 +vr-1;) Az,
Pl — Axzr_1,10Y5,5+1 al¥ — Ayj—1,70Ti it1
0o = At ) 0 At )
Axr 11 =21 —%1-1, Ayj—1,0 =Y —Yi—1,
TS =T+ T7 + 155 + 1715, with T7? ; given in Eq. (A5) and Eq. (A6),
Py __ ey wy SY ny i ° R
Ty =177 +T,’ +175+ 175, with 77 ; given Eq. (A7) and Eq. (A8),
and:

fig

= $6Y;.5+1pC7 [Uy, cos(y1)]? cos(vk + ¢,

£ = $6y5-1,0pC% [Ug cos(yx)]* sin(yx + @),

Us = i + 07 cos()
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Appendix B: PALM case study

In this appendix, a resolved flow field for arbitrary chosenetistep is depicted for the PALM case study presented in 83.2.

Table 6 gives a summary of the PALM simulation set—up.

Table 6. Summary of the simulation set-up.

Domain sizeL, x Ly x L. 19.2 x 2.56 x 1.28 [km?] Turbine dimensions D =126 [m], z,, =90 [m]
Grid sizeN, x Ny x N, 1920 x 256 x 1280 Turbine arrangement 2 x 1
Cell sizeAx x Ay 10 x 10 x 15 [m?] Turbine spacing 6D
Sample period\t 18] Atmospheric conditions u, = 8,v, = 0,w, = 0 [M/s], p = 1.2 [kg/m?]
Simulation timet 1750 [s] Inflow uniform
WFSim v [m/s]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 8
400 - 4 ;
L e—
= 200 F .
4
0 | | | | | | | | | |
PALM u [m/s]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 8
400 - - 7
S| e |
= 200 .
4
0 . . . \ \ \ \ \ | |

200 400 600 800 1000 1200 1400 1600 1800 2000
z [m]

Figure 15.Flow field obtained with PALM (below) and WFSim &at= 750 [s]. The black lines indicate the turbines.
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Appendix C: SOWFA case study

In this appendix, a resolved flow field for arbitrary chosemdistep is depicted for the SOWFA case study presented in283.2
The SOWFA data set presented in van Wingerden et al. (201ifl)ized.

WFSim u [m/s]

1500 | ' ' - 14
| |
~1000 t :
= | ——— || €
)
T e im—
6
0
SOWFA u [m/s]
1500 1 o b, ' I 7 14
o ] | RIS
M 12
__1000p gl 5 z
= e e 10
= g AN .
500 | l‘ 8
- Dt - P
> - » . 6
0 L 1 L f ‘PA L
500 1000 1500 2000 2500
z [m]

Figure 16.Flow field obtained with SOWFA (below) and WFSimtat 250 [s]. The black lines indicate the turbines.
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