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Abstract. Wind measurements can reduce the uncertainty in the prediction of wind energy production. Nowadays, commer-

cially available scanning lidars can scan the atmosphere up to several kilometres. Here, we use lidar measurements to forecast

near-coastal winds with lead times of five minutes. Using Taylor’s frozen turbulence hypothesis together with local topographic

corrections, we demonstrate that wind speeds at a downstream position can be forecast by using measurements from a scanning

lidar performed upstream in a very short-term horizon. The study covers ten periods characterized by neutral and stable atmo-5

spheric conditions. Our methodology shows smaller forecasting errors than those of the persistence method and the ARIMA

model. We discuss the applicability of this forecasting technique with regards to the characteristics of the lidar trajectories, the

site-specific conditions and the atmospheric stability.

1 Introduction

Wind energy is growing worldwide as a major source of green energy. In 2017 Denmark produced a record 43.4 % of the10

country’s electricity with wind energy (The Danish Wind Industry Association (DWIA), 2018). As the share of variable energy

into the grid grows, more effort is required to increase the flexibility of power systems in such a way that they can guarantee the

grid stability (Holttinen et al., 2016) and the reliability of energy supply (Ibanez and Milligan, 2012). For power systems with

high penetration of intermittent renewable energy, one of the most important sources of imbalances is wind energy forecast

errors (Gonzalez-Aparicio and Zucker, 2015). On short-time scales, Transmission System Operators maintain the balance15

between electricity production and demand, activating balancing reserves. Due to their high flexibility to respond to short-

term changes in power, balancing reserves mostly come from conventional power plants, which reduces the environmental and

economic benefits of wind energy. In countries like Belgium, the Netherlands and Germany, the electricity market participants

can submit their intraday bids until five minutes before delivery (EPEXSPOT, 2017). With potentially shorter gate closure

times wind power suppliers can better match production with demand, thus minimizing the costs arising from the deviation20

between scheduled wind energy production and real generation (Wang et al., 2016).

In very short-term horizons, i.e. from minutes to one hour, wind forecasts are normally based on statistical models. They

are built on relationships developed between historical measurements, assuming that these relationships are also applicable

in the future. Examples of statistical methods used to predict wind speed and power can be found in Hill et al. (2012) for

the autoregressive (AR) model, Torres et al. (2005) for the autoregressive moving average (ARMA) model and Kavasseri and25

Seetharaman (2009) for the autoregressive integrated moving average (ARIMA) model. Torres et al. (2005) applied the ARMA
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model to predict hourly average wind speeds in five weather stations in Navarre, Spain during different times of the year, with a

forecasting horizon from one to ten hours. They showed smaller errors for ARMA models compared to those of the persistence

method. The classical persistence model predicts that the future value will be the same as the current value. This is the simplest

version of the ARMA model and is often considered as a benchmark for other forecasting techniques (Giebel et al., 2011).

Another forecasting technique is the spatial correlation method, which uses the wind speed at upstream neighbouring points5

to predict the wind speed at a downstream location. First spatial correlation models were developed by Schlueter et al. (1986).

They predicted meteorological events based on cross-correlation curves of wind speeds at two sites using a constant delay

method. Alexiadis et al. (1998) tested this method in the Greek islands of Syros and Paros in a time horizon of 10 min to some

hours. Although there was a high correlation between the two sites in terms of fluctuations, the errors were higher than those

of the persistence method both in magnitude and phase. They later proposed a spatial correlation predictor method, which uses10

linear relations to correct magnitude and phase errors.

Recently, various techniques based on artificial neural networks, which are trained with large historic data from the location,

were developed (Cadenas and Rivera, 2009; Monfared et al., 2009; Li and Shi, 2010). Damousis et al. (2004) implemented a

wind forecasting fuzzy model in which wind data from neighboring meteorological stations at a radius up to 30 km were used

to predict wind speed and power in horizons of 30 min to two hours. The model results showed significant improvement in the15

forecasting error of wind speed and power compared to those of the persistence model, especially when applied on flat terrain.

Wind forecasting techniques can combine physical and statistical approaches. As an example, Larson and Westrick (2006)

used off-site observations at the vicinity of a wind farm in north-eastern Oregon as input variables in different forecast models

such as neural networks and support vector machines. They showed that the integration of real-time off-site observations

significantly improves the forecasting accuracy of those algorithms.20

Nowadays, remote sensing systems like lidars are intensively being deployed for wind resource assessment (Wharton et al.,

2015), turbine control (Mikkelsen et al., 2013) and turbulence characterization (Peña et al., 2017). Lidars are proven to be

relevant for very short-term forecasting (Frehlich, 2013) as the current generation of commercially available units can scan in

various atmospheric conditions up to 30 km. As an example, a 4 m s−1 wind speed could be observed by a lidar located in a

wind farm 3.6 km upstream, 15 min ahead, thus predicting the start of power generation. Remote sensing systems could also be25

used to better schedule maintenance of offshore wind farms (Barthelmie et al., 2008), e.g. during periods of low wind speeds.

With our study we want to (i) experimentally investigate how lidar observations can be used to forecast wind speeds in a

very short-term horizon assuming Taylor’s frozen turbulence hypothesis (Taylor, 1938) and (ii) test if with the use of lidar

measurements we can predict wind speeds better than with the benchmarks ARIMA and persistence model. For this, we

use lidar observations up to 6 km in a near-coastal area in Denmark as an input for an advection-based wind speed forecast30

technique. The observations are characterized by rather high wind speeds, which limit the forecasting horizon to 5 min. The

lidar measurements are described in Sect. 2.1. An insight into the wind conditions is given in Sect. 2.2. The location of the

lidars in the near-coastal area made necessary to consider the topographic local conditions, which are modelled in Sect. 3.

Section 4 gives a detailed description of the methodology used to forecast wind speeds using the lidar measurements. In Sect.

5 results are presented through comparisons between the accuracy of forecasting wind speeds based on the advection models35
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and with persistence and ARIMA models. We discuss the suitability of using long-range lidars for very short-term forecasting

and provide main conclusions in Sect. 6.

2 Wind data analysis

Our study is based on measurements performed during the Reducing Uncertainty of Near-shore wind resource Estimates

(RUNE) campaign (Simon and Courtney, 2016; Floors et al., 2016b). The experiment was conducted at the western coast of5

Denmark, north of the area of Høvsøre (see Fig. 1) and close to one of DTU’s wind turbine test station. A comprehensive

analysis of the wind conditions at Høvsøre during a ten years period from the test station’s meteorological mast, located 1.7 km

east of the North Sea (see Fig. 1, position 8) is presented in Peña et al. (2016). A pronounced cliff at the coastline (see Fig. 2)

is the main feature of the terrain, which is mainly covered with grass and crops.

Figure 1. Map of the area of the RUNE campaign indicating the positions of the dual-setup lidars (1 and 3), the PPI lidar (2), the profiling

lidars (2, 4, 5, 6 (7)) the met-mast (8) and the wave buoy (9) located 150 m away from position 6. The colorbar shows the height above mean

sea level in meters.

During the RUNE campaign, which took place during November 2015 to February 2016, profiling and scanning lidars were10

deployed to measure near-coastal wind conditions (see Fig.1). Four short-range (positions 2, 4, 5 and 6 (later 7)), and one long-

range (position 2) profiling lidars measured the wind profile. One scanning lidar (position 2) was operated in Plan Position

Indicator (PPI) mode, also known as the "sector-scan" scenario. Simultaneously, two more scanning lidars (positions 1 and 3)

were configured in a dual trajectory to match at positions along three horizontal virtual lines. In what follows we will refer to

them as the dual-setup. In Fig. 2 the positions of the dual-setup and the PPI are shown. The PPI and the dual-setup trajectories15

were designed so that the measurements will intersect at 5000 m offshore at 50, 100 and 150 m AMSL. Further, a directional

wave buoy (position 9) was deployed to measure waves, currents and sea surface temperature (Floors et al., 2016a; Sanchez

and Rørbæk, 2016). Detailed information about the campaign can be found in Floors et al. (2016b). For this work we also
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use data from the sonic and cup anemometers located at the height of 100 m on the Høvsøre meteorological mast (position 8).

Table 1 summarizes the operational availability of all systems used in this study.
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Figure 2. Scanning trajectories of the dual-setup (black dots) and the PPI (light blue points) scenarios. The red lines show two laser beams

from the dual-setup lidars (magenta boxes) focusing at position 7 (see Fig. 1). The grey lines indicate the terrain height above sea level.

2.1 Lidar data processing and filtering

2.1.1 Dual-setup measurements

The two lidars measuring in the dual-setup trajectory acquired 45 line-of-sight (LOS) wind velocities (1 s per LOS) per hori-5

zontal virtual line, separated by a distance of ≈ 200 m between points from 4 km onshore to 5 km offshore. Every trajectory,

i.e. three horizontal lines at 50, 100 and 150 m AMSL, took 145 s. In total, every position was swept 4 times every 10 min. Data

that did not fulfil a certain distance threshold between the two lidar measurement positions were discarded. Regarding data

quality, a carrier-to-noise ratio (CNR) threshold of − 26.50 dB was set. For every 10-min period and each point, the horizontal

wind speed components were reconstructed as described in Simon and Courtney (2016). Due to the low availability in the re-10

construction at positions further away from the coast (Floors et al., 2016b), we only consider data up to 2950 m. Observations

close to the lidar systems (range < 500 m) were also discarded since here the angle between the beams approaches 180 ◦ and,

consequently, the uncertainty of the reconstructed speed becomes very high (Stawiarski et al., 2013).
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Table 1. Measurement periods, positions and operational availability for all of the systems used in the analysis.

Position System
Easting (m)/

Northing (m)

Height

AMSL (m)
Measurement

Start/End

Day/Month
Data (h)

Operational

availability (%)

1
Scanning

lidar

446,080.03
12.36 dual-setup 03/12-17/02 1250.4 70.62

6,259,660.30

2
Scanning

lidar

445,915.64
26.38 PPI 26/11-17/02 1575.2 79.38

6,261,837.49

3
Scanning

lidar

445,823.66
42.97 dual-setup 03/12-17/02 1289.4 71.04

6,263,507.90

Sonic (100 m) 01/11-29/02 2740.7 96.51

8
Høvsøre

mast

447,642.00
0.32

Wind vane (100 m) 01/11-29/02 2756.3 97.07

6,255,431.00 Wind cup (100 m) 01/11-29/02 2757.0 97.09

Temperature

sensor (100 m)
01/11-29/02 2168.0 76.37

9 Wave buoy
438,236.00

0.00 SST 04/11-11/01 1636.0 100.00
6,262,181.00

2.1.2 PPI measurements

The lidar at position 2 measured 45 different azimuthal positions over three different elevations, performing a 60 ◦ sweep every

45 s, scanning in the westerly direction (240−300 ◦). The elevation angles were 0.27, 0.84 and 1.41◦. The full trajectory lasted

145 s accounting for the 10 s that the scan needed to return to its initial position. For every azimuthal position, 156 range gates

from 100 to 8150 m (separated every 50 m) were measured. The horizontal wind speed was reconstructed for every single scan5

and range gate, resulting in a horizontal wind speed at each range gate and elevation every 145 s, so four measurements were

performed within a 10-min period. Due to the low availability of data at long ranges when using a filtering threshold (Floors

et al., 2016b), a dynamic filter is applied to "rescue" LOSs as shown in Beck and Kühn (2017). For every 10-min period, the

probability density function of the data is calculated using a 2D-histogram. Measurement points fulfilling a lower threshold

of − 26.5 dB and an upper threshold of − 5 dB are considered. LOSs below the CNR lower threshold are still considered, if10

their local probability density lies within one standard deviation of the mean probability density. LOS measurements below

− 30 dB are always discarded. A final visual checking is applied to remove outliers. In Fig. 3, a comparison of the two filtering

techniques is presented. As shown in the range-CNR plot, for these data the use of a dynamic filter extends the range of
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measurements from 4.6 to 6 km. The availability of LOS measurements for the two filtering techniques is shown in Fig. 4. For

a distance of 6000 m from the coast, the use of the dynamic filter increases the data availability from 33.65 to 73.29 %.
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Figure 3. LOS-CNR plot (left) and range-CNR plot (right) for the original lidar data (red and blue colors) and the data filtered with the dy-

namic filter (DF) (blue) for a 10-min measurement period. The dashed line represents the threshold line of − 26.5 dB used in the conventional

filter.
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Figure 4. Availability of LOS measurements as a function of the range with a CNR threshold of -26.5 dB (green) and a dynamic filter (blue).

A comparison of the wind speeds observed by the dual-setup and the PPI at their matching positions 5 km offshore can be

found in Floors et al. (2016b). In general, the 10-min mean reconstructed wind speeds from the PPI shows a good agreement

with the dual-setup ones, especially close to the coast. At further distances to the coast, higher mean differences are found.5

These are related to the different size of the measuring volume of the lidars, the inherent temporal and spatial variability of the

wind speed and the distinct reconstruction methods. While the reconstruction in the PPI is performed with a sinusoidal fit of

60 ◦, the dual-setup uses two LOSs from the two lidars at a similar position in space. The uncertainties arising from the nature

of the two systems are not clearly addressed. For the PPI, we need to assume horizontal flow homogeneity. At distant ranges

wider areas are covered, and there is a higher uncertainty in the reconstruction. Besides, the PPI trajectories are not horizontal.10
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For the dual-setup, we do not assume horizontal flow homogeneity, but the measurement ranges are longer than in the PPI and,

consequently, the uncertainty in the sensing height will be higher.

2.2 Observed wind conditions

The campaign was characterized by strong south-westerly winds. For subsequent analysis we want to estimate the atmospheric

stability conditions during the campaign. Since there are no measurements of this type in the offshore area, we estimate5

the offshore stability based on sonic anemometer measurements from the Høvsøre met-mast. We select the highest sonic

anemometer, at 100 m, since this is the less influenced by the land effects and by internal boundary layers growing during

westerly winds. The analysis based on the derived Obukhov length L at the 100 m sonic, reveals that during the winter months,

there were mostly stable conditions (56.5%) followed by neutral (27.8%) and unstable (15.7%). Three classes are used for the

stability classification, with z/L <− 0.1 for unstable, -0.1 ≤ z/L≤ 0.1 for neutral and z/L > 0.1 for stable conditions. To10

test if we can estimate the offshore stability based on the onshore measurements, we conduct a comparison of the gradient

of the potential temperature between the sea and the air, and the L estimated from the sonic measurements. The directional

wave buoy located at position 9 measured the sea surface temperature every 30 min. Due to a major failure in the buoy system,

only measurements until the beginning of January 2016 were recorded (see Table. 1 for more details). A comparison with

the sea surface temperature (SST) derived from satellite images is shown in Fig. 5. The SST was computed from night-time15

observations from NOAA, AVHRR, Metop AVHRR, Terra MODIS, Aqua MODIS, Aqua AMSR-E, Envisat AATSR and MSG

Seviri satellites based on the interpolation method described in Høyer and She (2007). The spatial resolution of the satellite

SST is 0.02 ◦× 0.02 ◦ and its temporal resolution is 24 h. Figure 5 shows that the differences between both SSTs are small and

both SSTs do not vary as much as the air temperature measured by the temperature sensor at 100 m on the mast.

01/11/15 01/12/15 01/01/16 01/02/16 01/03/16
-5

0

5

10

15

Figure 5. Time series of temperatures measured by the satellites, mast and buoy.

To conduct the comparison with the stability from the met-mast, we calculate the potential temperature gradient between the20

sea surface (buoy) and the air (met mast 100 m) for every 30-min period, first clustering the data according to the wind direction

and second using the 30-min averaged L (sonic at 100 m). Only westerly and easterly sectors were analysed. The sign of the
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Figure 6. Potential temperature gradient between the SST and the air temperature at 100 m for three stability classes. The diamond (easterlies)

and the star (westerlies) represent the mean. The error bars represent the standard deviation within each stability class. Numbers above and

below the error bars refer to the number of periods used for the analysis.

mean gradient of the potential temperature between the sea surface and the air for westerly winds (see Fig. 6) is in agreement

with the stability from the sonic anemometer at 100 m. For easterly winds there is no such correspondence, as expected. For

westerly winds we will assume that the stability measured by the onshore met-mast at 100 m is a good indicator of the stability

of the offshore area. Our further analysis refers to data from westerly winds during neutral and stable conditions.

2.2.1 Coastal gradient for westerly winds5

We analyse the influence of the land on the wind speed in the near-coastal area by using the dual-setup lidar observations at

offshore positions. Due to the reduced availability of measurements at distant positions, we look at 10-min periods up to 3 km

offshore. Figure 7 shows the ensemble average wind speed of all 10-min mean wind speeds reconstructed from the dual-setup

observations at 50, 100 and 150 m AMSL for periods with neutral stratification. For all heights, the flow slows down when

approaching the coast.10

3 Modelling coastal effects for wind speed forecasting correction

We will use the PPI measurements further upstream of the coast to forecast winds at positions close to the coast where we also

have PPI measurements. Our forecasting technique is first based on an advection component, in which it is assumed that large

turbulent structures are advected with the mean wind. Second we need to vertically extrapolate the wind because the upstream

PPI observations are at different heights than those closer to the coast. Last we need corrections due to the influence of the15

coast; as seen in Fig. 7 the wind has been observed as decreasing as it approaches the coast. Here, we will first show the method

used to account for the coastal effects. This is done based on the dual-setup measurements as they are independent of PPI scans
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Figure 7. Normalized coastal wind gradient along the dual-setup transect of reconstructed wind speed measurements for westerly winds at

50, 100 and 150 m AMSL for neutral periods. U0 is the mean wind speed at 2950 m to the coast at 150 m height.

and are always performed at the same heights. In this section we will only use dual-setup measurements up to 3 km during

neutral conditions.

For a homogeneous and stationary flow, the mean wind speed profile is given as:

U(z) =
u∗
κ

[
ln
(
z

z0

)
−Ψ

( z
L

)]
(1)

where U is the mean wind speed, z the height above the ground, u∗ the friction velocity, κ the von Kármán constant (≈ 0.4)5

and z0 the roughness length. To account for stability effects Ψ is included, which depends on the Obukhov length L. To model

the effects of the orography and roughness on the wind, which depend on the distance to the coast, we assume that the observed

(obs) wind speed is:

Uobs(x,z,dd) = U(z0(x),z)O(x,z,dd) (2)

where O is an orography correction that depends on the height z, the distance to the coast x and the wind direction dd. Note10

that we assume that z0 varies with the distance to the coast.

3.1 Orography effects

The orography effects are estimated using the microscale IBZ model, which is part of the Wind Atlas Analysis and Application

Program (WAsP) (Troen and Lundtang Petersen, 1989). The orography correction was determined at each position measured by

the dual-setup and for all wind directions using as an input a digital terrain model (Geostyrelsen, 2016). In Fig. 8 the orography15

corrections for the positions 500 and 2950 m from the coast and for all wind directions are shown. For westerly winds, at 500 m

from the coast and 50 m AMSL, the wind speed slows down ≈ 2 %. On the other hand, for northerly and southerly winds the

flow speeds up due to the presence of the cliff. The effects are reduced the further from the coast and with increasing height.
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Figure 8. Directional orography effects O(x,z,dd) at x=500 m (left) and x=2950 m (right) from the coast at two heights AMSL.

3.2 Roughness effects

We model the influence of the wind on the roughness of the water using the expression of Charnock (1955),

z0 = αc
u2∗
g
, (3)

where αc is the Charnock parameter and g the acceleration due to gravity. For open ocean αc = 0.011 has been reported (Smith,

1980) while for a near-coastal area, values between 0.008 and 0.06 can be found (Kraus, 1972). To determine the roughness5

length dependency with distance to shore we apply the following strategy. Once the dual-setup observations at the different

range gates are corrected by using the orography corrections, these are used together with Eqs. (1) and (3) to determine both

u∗ and z0, and thus αc. Figure 9 left shows the dependency of the estimated roughness length with distance to the coast after

applying the orography corrections for the neutral cases. The roughness length decreases with distance from the coast. Without

orography corrections, the roughness length is slightly higher than the case with corrections close to the coast, as expected.10

Since the roughness length varies with distance to the coast, so does the Charnock parameter (see Fig. 9 right).

We test the estimated Charnock parameter dependency with distance to shore by selecting 10-min periods during neutral

conditions where both PPI and dual-setup measurements were performed simultaneously. We fit Eqs. (1) and (3) to the orog-

raphy corrected PPI measurements at those positions where we estimated the αc dependency on distance to the coast with the

dual-setup measurements. The comparison of the estimation of the wind using Eqs. (1) and (3) is shown in Fig. 10. As shown,15

with increasing distance to the coast, there is an increasing deviation of the fit from Eqs. (1) and (3) to the data, especially at

the lowest height observations.

4 Very short-term wind speed forecast

As mentioned earlier, we want to forecast wind speeds in a very short-term horizon by assuming Taylor’s frozen turbulence

hypothesis. For this purpose we consider two positions: the upstream position (1) and the downstream position or forecasting20
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Figure 9. Mean estimated roughness length dependency with distance to the coast for the dual-setup mean wind profiles after and before

applying orography corrections (left). Charnock’s parameter dependency with the distance to the coast (right).
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Figure 10. Comparison of the PPI observations with Eqs. (1) and (3) using the αc dependency on distance to the coast at positions 500, 1500

and 2950 m from the coast.

position (2), with the wind blowing from (1) to (2). If at a time t a considerable change in wind speed occurs at position (1),

this event will appear at the position (2) after some time ∆t. In other words, this event can be foreseen at position (2) with a

time ahead ∆t. In our analysis, the downstream position is set to 500 m from the PPI lidar (position 2) in the westerly direction

at z2 = 33.76 m, which corresponds to the height of the intermediate PPI elevation scan. Lidar measurements are performed

at multiple upstream positions (range gates) from which the forecast can be originated. This can be understood as having5

multiple virtual met-masts over several distances west from the downstream position. To keep a fixed forecast horizon, the

upstream position (1) and height z1, from which the wind is advected, are determined dynamically at each time stamp using

the 5-min moving-average wind speed v2(t) and direction at the downstream position. But because the vector v2(t) might

not be parallel to the line of virtual met-masts, we use the vector projection of the advected distance on the wind direction

|r12|= |∆tv2(t)| · cos(θ), with θ defined as the angle between the wind direction and 270 ◦. Because high wind speeds were10
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observed during the measurement campaign, and the limit for high quality PPI measurements is≈ 6 km, we establish a forecast

horizon of 5 min. We assume that a change in wind speed, observed 5 min ahead at the position (1) will propagate and travel

the distance r12 in the time ∆t= 5 min:

Table 2. Computed statistics of wind speed (U ), wind direction (dd), turbulence intensity (TI) and Obukhov Length (L) for all evaluated

periods, based on the Høvsøre met-mast at 100 m.

Period Starting time Duration U [m/s] dd [◦] TI [%] L [m] stability class

1 02.12.2015 04:20 6 h 10 min 13.50 [239-260] 4.21 268 stable

2 04.12.2015 12:50 7 h 50 min 16.56 [229-275] 6.60 2217 neutral

3 06.12.2015 19:10 6 h 20 min 17.18 [277-288] 7.39 -1640 neutral

4 09.12.2015 10:10 3 h 40 min 12.89 [240-273] 6.36 -4560 neutral

5 10.12.2015 22:50 5 h 10 min 13.37 [242-261] 6.97 1383 neutral

6 12.12.2015 10:50 4 h 50 min 8.15 [256-304] 5.91 166 stable

7 23.12.2015 15:50 7 h 30 min 15.89 [238-269] 6.98 2178 neutral

8 27.12.2015 10:50 6 h 50 min 16.34 [248-282] 7.38 -10122 neutral

9 25.01.2016 23:50 8 h 14.28 [225-290] 3.17 128 stable

10 31.01.2016 23:00 5 h 20 min 7.48 [250-301] 3.80 37 stable

To incorporate the local effects and the changes in height between the upstream and downstream positions, we consider

corrections in the wind speed due to height, roughness and orography. To evaluate the appropriateness of those corrections,5

we will compare a simple advection model (A), an advection model with height corrections (AH), an advection model with

height and roughness length correction (AHR) and, finally, an advection model with corrections due to height, roughness length

change and orography changes (AHRO). We evaluate our forecasting method against the well-known persistence method and

an ARIMA model. A summary of the time periods in which the very short-term forecasting method is applied is shown in

Table. 2. We select periods with mean wind speeds below 18 m/s and westerly periods, with a minimum duration of 3 h and10

with high availability of the data. No unstable periods fulfilled this criteria, therefore we focus here on neutral and stable

conditions.

4.1 Advection model (A)

For the advection model, U2(t) is estimated as follows:

1. The upstream position (1) at (x1,z1) from the PPI scan is determined dynamically using the 5-min moving average wind15

speed at the downstream position and the forecast time horizon k (here 5 min). The wind direction from the previous
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forecasted step is used to calculate the projected distance from which the forecast is originated. For the positions in time

and space in which observations at the upstream position are missing, the previous observation is used.

2. The observed wind speed at the upstream position is therefore advected, which means that the forecasted wind speed at

the downstream position is considered to be the same as the wind speed in the upstream position, U2,z2(t) = U1,z1(t−k)

4.2 Advection model with height correction (AH)5

This is similar as the A model but the wind speed is extrapolated to match the height of the downstream observation. To do so,

following steps are followed:

1. Step 1 from model A is conducted.

2. The logarithmic profile in Eq. (1) is fit to three consecutive PPI wind speed observations at the position (1). The friction

velocity u∗,1 and a roughness length z0,1 are thus estimated.10

3. The roughness length z0,1 is used to correct the advected wind speed to the downstream height by using:

U2,z2(t) = U1,z1(t− k)
ln(z1/z0,1(t− k))

ln(z2/z0,1(t− k))
. (4)

4.3 Advection model with height and roughness correction (AHR)

1. Steps 1 and 2 from the AH model are conducted.

2. The friction velocity u∗,1 and the roughness length z0,1 are used to calculate the geostrophic wind at position (1)15

G1(t) =
u∗,1(t)

κ

√(
ln
(
u∗,1(t)

fz0,1

)
−A

)2

+B2, (5)

where f refers to the Coriolis parameter and A= 1.8, B = 4.5. We assume here that the geostrophic wind at the position

(2) is the same as at the position (1):

G2(t) =G1(t− k). (6)

3. The geosthropic wind is used to estimate the roughness length z0,2 and the friction velocity u∗,2. To solve for both20

parameters in position (1), we assume a fixed Charnock parameter derived from the dual-setup analysis (see Fig. 9

right):

G2(t) =
u∗,2(t− k)

κ

√(
ln
(

g

fαc,2u∗,2(t− k)

)
−A

)2

+B2, (7)

z0,2 = αc,2

u2∗,2
g
. (8)25
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4. The forecasted wind speed is:

U2,z2(t) =
u∗,2(t− k)

κ
ln
(

z2
z0,2(t− k)

)
. (9)

4.4 Advection model with height, roughness and orography correction (AHRO)

1. It is assumed that the corrections due to orography at positions further away are negligible.

2. Steps 1–3 from the AHR model are conducted.5

3. The orography corrections at the downstream position are applied using the measured wind direction at (1), i.e.

Uo
2,z2(t) = U2,z2(t)O(x2,z2,dd1). (10)

4.5 Statistical models

To evaluate the goodness of the forecasting techniques in Sect. 4, we use the benchmarks persistence and ARIMA models.

– ARIMA: denoted as ARIMA(p,d,q) is a statistical model widely used in very short-term predictions of wind speeds10

(Kavasseri and Seetharaman, 2009). It uses recent past values (Autoregressive (AR)) and recent residuals of the forecast

(Moving Average (MA)) to predict current values. This model is suitable to analyse non-stationary processes, since it

uses non-seasonal differences (d) to build the forecasting model. A general equation for the ARIMA model is:

U(t+ k) =

p∑
i=1

ΦiU(t+ k− i) + a(t+ k)−
q∑

j=1

Θja(t+ k− j), (11)

where Φi is the i-th autoregressive parameter, Θj is the j-th moving average parameter, a(t) is the error term at time t, k15

is the forecasting horizon and U(t) is the value of the wind speed observed at the time t. Here we build a new ARIMA

model for each period. To test the stationarity of the time-series, we first look at its autocorrelation function (ACF) and

its partial autocorrelation (PACF). If it has positive autocorrelations out to a high number of lags, we include an order of

differentiation d. To test if this order is sufficient, we look at the residuals of the differentiated time-series and perform

a unit root test using the Dickey-Fuller test (Dickey and Fuller, 1979). To determine the order p and q of the ARIMA20

model, we compute the ACF and the PACF of the stationarized time series, following the method explained in Cadenas

and Rivera (2007). The model chosen for every period is the one which minimises the residuals. For every individual

set, the previous hour of observations is used to derive the AR and MA parameters using the method by Box and Jenkins

(1976).

– Persistence: This is a particular case of the ARIMA model in which q = 0, p = 1, d = 0 and the AR coefficient is set to25

1, since it assumes that the previous and the current values are high correlated. Our predicted wind speed is defined as:

U(t) = U(t− k). (12)
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5 Results

We evaluate the accuracy of the 5-min forecast of wind speeds based on the described advection techniques, and compare it

with the results of the statistical methods persistence and ARIMA. To do so, three criteria are employed, namely the Root Mean

Square Error (RMSE), the Mean Bias Error (MBE) and the Maximum Absolute Error (MaxAE). Table 3 includes the RMSE,

MBE and MaxAE for all periods stated in Table 2. Minimum values are indicated in bold. The improvements of the advection5

models over the benchmarks persistence and ARIMA are shown in Table 4. Values corresponding to best performance are

indicated in bold.

For neutral conditions (periods 2, 3, 4, 5, 7 and 8), the advection model with corrections performs in general better than the

statistical forecasting models. The improvement over persistence using the best calibrated advection model for each period,

ranges from 21-38% (see Table. 4). Compared to the benchmark ARIMA the improvement ranges from 4-28%. As an example,10

the distribution of errors produced by all models for period 7 can be seen in Fig. 11. The forecasting error ε is defined as

εi = Up,i−Uob,i, where Uob,i is the actual observation for a time position ti and Up,i is the forecast for the same period. The

statistical methods show a broader distribution of errors. This is because ARIMA and persistence fail to predict the phase of

the events, since they construct their predictions according to the previous observations.

Figure 11. Histogram of the forecast errors ε for period 7 (neutral) for all evaluated models. The red line represents a normal distribution

with the same mean µ and standard deviation σ as the distribution of errors.
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Table 3. RMSE, MBE and MaxAE statistics for all periods evaluated.

Period Stability A AH AHR AHRO P ARIMA
p,d,q

parameters

1 stable

RMSE (m/s) 2.69 1.84 1.26 0.99 0.49 0.44

3,1,0MBE (m/s) 2.64 1.78 1.19 0.90 -0.01 -0.04

MaxAE (m/s) 4.12 2.91 2.28 1.95 1.21 1.54

2 neutral

RMSE (m/s) 2.61 1.29 0.75 0.71 1.01 0.93

3,1,1MBE (m/s) 2.48 1.08 0.26 -0.10 -0.01 -0.15

MaxAE (m/s) 4.64 2.71 2.29 2.65 3.29 2.87

3 neutral

RMSE (m/s) 2.16 0.87 0.91 1.05 1.10 0.91

2,0,1MBE (m/s) 1.95 0.37 -0.48 -0.73 0.04 0.34

MaxAE (m/s) 4.10 2.25 2.87 3.04 3.22 2.63

4 neutral

RMSE (m/s) 1.51 0.68 0.59 0.74 0.81 0.73

1,0,1MBE (m/s) 1.36 0.37 -0.19 -0.49 -0.09 -0.29

MaxAE (m/s) 2.79 1.49 1.55 1.83 2.03 1.75

5 neutral

RMSE (m/s) 1.81 0.93 0.70 0.76 1.13 0.97

1,0,0MBE (m/s) 1.56 0.60 0.01 -0.29 0.05 0.34

MaxAE (m/s) 4.42 3.09 2.41 2.09 3.21 2.22

6 stable

RMSE (m/s) 0.78 0.53 0.52 0.54 0.70 0.72

1,1,1MBE (m/s) 0.53 0.18 -0.08 -0.20 0.05 0.01

MaxAE (m/s) 2.11 2.01 2.30 2.31 2.67 2.78

7 neutral

RMSE (m/s) 2.33 1.15 0.90 0.97 1.20 1.16

2,0,0MBE (m/s) 2.10 0.74 -0.02 -0.37 0.07 0.33

MaxAE (m/s) 5.39 2.95 3.89 4.23 3.69 2.92

8 neutral

RMSE (m/s) 2.62 1.15 0.79 0.87 1.02 0.96

2,1,1MBE (m/s) 2.45 0.83 -0.03 -0.37 -0.02 -0.01

MaxAE (m/s) 4.54 2.73 1.98 2.20 2.95 2.65

9 stable

RMSE (m/s) 3.01 2.22 1.62 1.36 0.43 0.44

1,0,1MBE (m/s) 2.96 2.16 1.55 1.28 0.01 0.07

MaxAE (m/s) 4.52 3.43 2.62 2.27 1.39 1.30

10 stable

RMSE (m/s) 0.44 0.34 0.42 0.48 0.43 0.45

1,0,0MBE (m/s) 0.20 -0.06 -0.26 -0.35 0.04 0.22

MaxAE (m/s) 1.39 1.00 1.21 1.28 1.46 1.10

The dependency of the forecasting errors on the mean wind speed of the downstream observation for all advection models

is shown in Fig. 12. From there it can be inferred that the local topographic corrections are required, since the AH model

overestimates wind speeds. For the neutral periods 4, 5, 7 and 8, the forecasting accuracy of the AHR model is higher than that

16



Table 4. Improvement of all advection models over the benchmarks persistence (ImpP ) and ARIMA (ImpA).

A AH AHR AHRO

Period stability ImpP (%) ImpA (%) ImpP (%) ImpA (%) ImpP (%) ImpA (%) ImpP (%) ImpA (%)

1 stable -448.98 -511.36 -275.51 -318.18 -157.14 -186.36 -102.04 -125.00

2 neutral -158.42 -180.65 -27.72 -38.71 25.74 19.35 29.70 23.66

3 neutral -96.36 -137.36 20.91 4.40 17.27 0.01 4.55 -15.38

4 neutral -86.42 -106.85 16.05 6.85 27.16 19.18 8.64 -1.37

5 neutral -60.18 -86.60 17.70 4.12 38.05 27.84 32.74 21.65

6 stable -11.43 -8.33 24.29 26.39 25.71 27.78 22.86 25.01

7 neutral -94.17 -100.86 4.17 0.86 25.02 22.41 19.17 16.38

8 neutral -156.86 -172.92 -12.75 -19.79 22.55 17.71 14.71 9.37

9 stable -600.02 -584.09 -416.28 -404.55 -276.74 -268.18 216.28 -209.09

10 stable -2.33 2.22 20.93 24.44 2.33 6.67 -11.63 -6.67

of any other advection model. In those periods, introducing the orography correction results in an underestimation of the wind

speed, as can be seen in the MBE of those periods. For wind speeds close to 16 m/s and neutral conditions, AHRO produces

smaller errors (Fig. 12 left). Therefore for period 2, which has a higher mean wind speed, introducing the orography correction

results in a more accurate forecast than that of any other model. This is because both the roughness change correction and the

orography corrections are estimated with mean neutral profiles, whose mean wind speed at the forecasting height is also close5

to 16 m/s. For period 3, the one with the highest wind speed, the increasing underprediction of AHRO and AHR with wind

speed results in AH predicting better than the other models.
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Figure 12. Forecasting error dependency on wind speed for the advection models A, AH, AHR and AHRO for neutral (left) and stable (right)

periods.

For stable cases (periods 1, 6, 9 and 10) the performance of the advection-based models is quite similar to the performance

seen in neutral cases. During periods 6 and 10, the AHR model produces smaller errors than the statistical models. Figure 13
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shows the comparison of the observed and forecasted wind speeds for all models during period 6. The figure shows that there is

more scatter for the persistence and ARIMA models than for the advection models. For wind speeds above 8 m/s a high scatter

between the advection models and the observations is also found.
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Figure 13. Comparison between the observed ob and predicted p wind speed for all evaluated models for period 6 (stable) with N=95.

For periods 1 and 9, all advection models show larger errors than the conventional models. This is because these periods are

characterized by higher wind speeds than periods 6 and 10. The effect of the mean wind speed in the forecasting error of stable5

cases is shown in Fig. 12 right. Above 6 m/s the forecast error tends to increase with wind speed. For higher wind speeds, the

forecast originates from further upstream positions and consequently higher heights. If we now look at the differences between

the PPI observations at 2950 m and the estimation of wind speeds using Eqs. (1) and (3) from the dual-setup observations (see

Fig. 10), we can see that the differences are more pronounced at further distances. Thus, it is difficult to accurately predict the

magnitude of the wind speed during stable conditions and high wind speeds, due to the increasing height in the observations at10

further positions, the differences in the dual-setup and PPI observations and the assumption of neutral stabilities during stable

conditions. Although we include the shear in our advection models we are not considering the atmospheric stability.

However, in quantifying the errors for the best fitted advection model in both stable and neutral cases, the RMSE of the stable

cases is in general smaller than those of the neutral periods, because during stable conditions the inflow is less turbulent. For

stable cases, disregarding the periods of high wind speed (1 and 9), the best calibrated advection models give improvements15

over persistence of 21-26 % and over ARIMA of 24-28 %.
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When looking at the forecast of wind speeds during period 7 (see Fig. 14), we can see that the advection models are able

to forecast the phase of the events, but the forecast does not contain as many fluctuations as the observed wind speed at the

downstream position. To analyse if this is due to the model or to the nature of the observations, the dependency of the level

of fluctuations on the horizontal reconstructed wind speeds with the distance of the measurements is investigated. In Fig.

15, the ensemble average of the standard deviation of U , computed for every hour and elevation angle during periods where5

all measurements are available, is displayed. The standard deviation observed by the lidar is higher the closer to the coast.

We attribute this to a combination of two sources: site-specific conditions and measurement artifacts. In the first source we

consider the higher roughness length close to the coast, compared to positions further offshore, and the topographic effects. In

the second source we include the different height in the observations for the different ranges and the different arc length used

for the reconstruction of horizontal wind speeds from the lidar. Since the arc length used for the measurement increases with10

the distance, the reconstruction of wind speeds acts as a low-pass filter for further distances. This filtering effect deteriorates

the prediction of the magnitude of the events, and consequently influences the maximum absolute error.
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Figure 14. Time series of wind speed observations (Obs) and predictions with the A, AH, AHR and AHRO models for period 7.
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Figure 15. Ensemble average standard deviation of the horizontal wind speed with distance to shore for the three elevations angles during

all periods analysed.
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6 Concluding remarks

This paper evaluated the use of wind lidar observations for very short-term forecast of near-coastal winds, using wind speed

advection-based models. From our analysis on periods with neutral atmospheric conditions, the best fitted advection-based

model with corrections showed an improvement over the benchmarks persistence and ARIMA of 21-38 % and 4-28 %, respec-

tively. Due to the different turbulent conditions experienced at every range position, the forecasting technique was not able5

to predict the turbulence of the fluctuations. We attribute these differences partly due to the presence of the coast increasing

the turbulence level as the flow approaches and the low-pass filtering inherent in the wind speed reconstruction from the lidar

measurements. During stable periods, we could only produce an accurate prediction of the magnitude of the wind speed during

low wind speeds. This is a reflection of the increasing difficulty of predicting winds as i) the observations height increase at

further positions ii) the differences in the dual-setup and PPI observations and iii) the assumption of neutral stability during10

stable conditions, due to a lack of a precise estimate of the offshore stability.

In this paper the forecasting horizon is limited to 5 min due to the maximum range of the lidar measurements (6 km) and

the high wind speeds experienced during the measurement campaign. A long-range lidar system with a maximum range of 10

km could forecast wind speeds up to 17 m/s, thus generating forecasts with a horizon of 10 min. Since commercially available

ultra-range lidars can now measure up to 30 km (Kameyama et al., 2012) the forecasting horizon for this application could be15

extended up to 30 min ahead.

The corrections applied in our advection-based models to forecast the magnitude of the wind speed observations are neces-

sary due to the tilted trajectories and local effects of the coastline and the cliff. However, the corrections are not perfect. The

results are based on a limited amount of dual-setup measurements and it is clear that we could not find a model with a zero

mean bias error. The best performing advection model depends on the wind speed and stability. Despite all these limitations,20

we showed that lidars i) provide range-resolved information to derive site-specific effects influencing the wind speed and ii)

are promising candidates for very short-term wind power applications since they can forecast wind speeds with more accuracy

than the benchmarks persistence and ARIMA. To use an advection-based wind speed forecasting technique, one could better

benefit from horizontal trajectories that do not require height corrections. Additionally, applying this technique in pure offshore

areas improves the results, since no corrections due to local effects are required. An operational lidar-based forecasting system25

on an offshore wind farm would need no corrections at all. Thus, it is reasonable to expect that the forecasting performance of

such a system would be better than the best results we have achieved since the many corrections might not have benefited the

forecasting accuracy.

Very short-term wind power forecasts typically use statistical techniques that learn from the wind speed and power data at

the location of interest and surroundings. Based on our results, a long-range lidar system is likely to decrease the uncertainty in30

the prediction of offshore wind power, especially during ramp events, i.e., large variation in wind speed within a short period

of time, where statistical methods do not perform well.

Our analysis is a first input component to a decision-making model that may include spot market prices, scheduled supply

and demand, and balancing costs. Thus, here it is not intended to quantify the economic impact of using a lidar-based wind
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speed forecast. However, as the balancing costs are proportional to the root mean square error, it can be assumed that they will

decrease. In particular, as in most of the periods analysed the maximum absolute error is lower than that of the benchmarks,

using a lidar-based wind speed forecast might have a positive impact on integrating offshore wind power into the grid.

Further research will focus on using long-range, remotely sensed wind speed observations to predict the power produced by

a single wind turbine or a wind farm.5
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