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Referee #1 

 10 

What are the new findings and what are the inventions 

The primary finding is that a computational design strategy, involving the evaluation of a numerical solution of the ducted 

flow field as an input to the design code for the rotor itself, has been experimentally validated. This enables one to design a 

ducted turbine to a different size with a much higher degree of confidence in the real world performance. It also enables us to 

achieve higher Cp values. These points were re-emphasized in the text and noted in the abstract and conclusions 15 

 

For the numerical method, what kind of grid type did the author employ?  

The following was added to the text: 

The grid had a boundary layer mesh with a growth rate of 1.1 and the first mesh point was set at 𝑦" ≈ 1. The boundary 

layer thickness was calculated as a function of 𝑅𝑒' for each case and enough inflation layers were used to span the entire 20 

boundary layer. A layer of quadrilateral elements covered the actuator disc which was used to model the turbine in our 2D 

axisymmetric model. There was a refined unstructured triangular grid around duct which was surrounded by a large 

structured quadrilateral grid covering further the upstream and downstream of the actuator disc. The rest of domain was 

meshed with unstructured quadrilateral elements  

 25 

What is the resolution around the turbine?  

The following was added to the text: 

The actuator disc is covered with 200 elements (i.e. for the 2.5m rotor each element in our axisymmetric model covered 6.25 

mm) 
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Did the authors pay attentions to the Reynolds number effect and the grid resolution dependence to make clear the flow 

characteristics around the ducted wind turbine which shows flow separation and reattachment inside the duct, and vortex 

shedding from the duct. 

The following was added to the text: 5 

…the boundary layer thickness and y+ was calculated for each case to make sure the most accurate results that one can 

obtain from a RANS CFD solution can be obtained. The 𝑘 −𝜔	SST turbulence model was utilized, which among the two-

equation turbulence model gives better prediction of flow separation.  

 

The authors discussed the surface flow feature near the exit of the duct in the 4.2 Flow Field Issues. It strongly suggest 10 

that the flow around the ducted turbine both inside and outside of the duct are highly unsteady, unstable and turbulent 

flows. The reviewer cannot understand the accuracy of CFD presented in this paper. 

Although the predictions of power output from the CFD model agreed very well with the experimental results, as you 

suggested there was a difference between CFD predictions and experimental results. The following was added to the text: 

The CFD model showed no flow separation whereas flow separation was observed in the experimental tests. This could be 15 

due to simplifications of the CFD model like using a 2D axisymmetric model where the turbine was replaced with an 

actuator disc, or the limited accuracy of two-equation turbulence models. It could also have resulted from the differences of 

the manufactured model from the CFD model; from the final geometry of the duct, to the actual physical supporting 

structures used for the duct, and the influence of the individual rotor blades (as opposed to a uniform disc) which affect the 

flow field. Lastly, the proximity of the ducted wind turbine to the floor could have aggravated the flow separation.  20 

 

For the wind tunnel experiments, what is the uniformity of approaching wind in the wind tunnel of the University of 

Waterloo?  

The following was added to the text: 

The uniformity of the wind was not explicitly mapped. The flowfield is generated by a bank of 6 100 hp fans with independent 25 

variable speed control. Data was acquired with a single location sonic anemometer. At a given velocity setting the flowfield 

was sampled with a hand held anemometer and compared to the single point. The average variation of the incoming flow to 

the turbine varied by a +/- 1-2%. 

 

What is the turbulence intensity and its uniformity?  30 

The following was added to the text: 

The turbulence of the flow filed was sampled over the range of the incoming velocities and was found to vary over the range 

of 5-10% 
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What is the blockage ratio?  

The following was added to the text: 

The blockage ratio, based on the projected frontal area of the duct and the rotor, for a stationary rotor, was 4.1%. If the 

rotating rotor is considered to act as a solid blockage, the ratio would be 11.7%  No blockage corrections were made. 

 5 

For the ducted wind turbine prototype employed here, the authors should describe the figure of the curved shape of the 

duct with the inlet diameter, throat diameter and exit diameter 

A figure of the detailed geometry of the duct was added to as Figure 8. Figures 7, 12 and 13 were deleted from the earlier 

copy as they were not value added. 

 10 

The referee recommends that the author should evaluate the modified Cp which adopts the maximum duct area, i.e., the 

projected area of the duct as the refer- ence area. For reference, please check a paper of Energies 2010, 3, 634–649; 

doi:10.3390/en3040634 “A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology” 

The following was added to the text: 

One possibility is to non-dimensionalize the data by the exit area of the duct. Scaling by the maximum projected area of the 15 

duct can be argued to be a more ‘fair’ evaluation of the data, when compared to a conventional open rotor turbine. In the 

case here, the exit diameter is 3.3 m and the rotor diameter is 2.5 m. Hence the Cp values would all be scaled by the ratio 

2.52/3.32 or a factor of 0.574. Cp values for the ducted configuration would then be in the range of 0.49 – 0.52, still better 

than an open rotor of this size. 

 20 

Detailed points 

1. p. 4, l 18-20; the author should explain “a” in more detail. And in also Figure 6, what are ωr(1+a’), Vo(1-a). Please 

describe the definitions of all the symbols in the present paper. 

A more detailed explanation of a and a’, and the other variables was put in the manuscript. The following was added to the 

text: 25 

… the factor by which the upstream flow velocity is slowed to by the time it reaches the rotor plane. For an ideal open rotor, 

a = 1/3 to maximize the power extracted. Other local variables at radius, r, to be noted include: Q, the blade pitch angle; a, 

the angle of attack; ø, the angle the velocity vector, W, makes with the rotor plane; w, the angular velocity; dQ, the 

elemental torque; dT, the elemental thrust; Vo, the upstream velocity; L, lift; D drag; and a’, the angular velocity induction 

factor. 30 

 

2. Figure 5 b); the scales are written in so small letters 

The font size of the scales in Figure 5 were increased in size 
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Referee #2 

 

The first is that no detailed description of the rotor or the diffuser is given so that future developers of DAWT models do 

not have the necessary information to test their theories.  

Additional details of the geometry were added to the text including a drawing with dimensions, Figure 8 5 

 

Secondly, the tests used a permanent magnet generator for which the manufacturer provides the efficiency curve for only 

one load. The experimental procedure of varying the load in search of the maximum power point is a sensible one, but it 

does not address the issue of the varying turbine efficiency. This is required to determine the extracted aerodynamic 

power, which is the usual target of the theories mentioned above. 10 

Unfortunately, the efficiency of the generator was unknown. No load vs speed maps were provided from the manufacturer, 

despite requests, and we were simply told it was 95% efficient at rated output. Since the purpose of the test was to evaluate 

the potential of the design, and if the generator efficiencies were actually lower in reality, that would be supportive of the 

aero results, we simply varied the load in search of the best power point. Hence the Cp values represent the Cp for the 

turbine system, not the aero specifically. The aero efficiency would actually be higher, but no claim is made to that beyond 15 

system efficiency. 
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Abstract. A synergistic design strategy for ducted horizontal axis wind turbines (DWTs), utilizing the numerical solution of 

a ducted actuator disk system as the input condition for a modified blade element momentum method, is presented. 

Computational results of the ducted disk have shown that the incoming flow field for a DWT differs substantially from that 

of a conventional open rotor. The rotor plane velocity is increased in the ducted flow field, and more importantly, the axial 

velocity component varies radially. An experimental full scale 2.5m rotor and duct were designed, using this numerical 10 

strategy, and tested at the University of Waterloo’s wind turbine test facility. Experimental results indicated a very good 

correlation of the data with the numerical predictions, namely a doubling of the power output at a given velocity, suggesting 

the numerical strategy can provide a means for a scalable design methodology. 

1 Introduction 

Wind energy has long been acknowledged as having the potential to supplement and even displace the carbon-based fuel 15 

needs of our society.  The wide adoption of small wind energy, namely that with a swept rotor area of less than 200 m2, has 

been hampered, however, by higher unit costs and lower efficiency than that of their large-scale counterparts. Studies on 

small turbines at Clarkson University have focused on improving their efficiency, particularly at lower wind speeds, with a 

focus on the key metric of cost per unit energy produced, namely $/kWh. Increasing the energy extraction for a given turbine 

size or reducing the manufacturing and operating costs, are both options that increase the adoption of small wind by 20 

consumers. Other important factors that must also be considered include noise signature issues, sensitivity to wind 

directional changes, and issues of visibility and community acceptance. 

 

The ducted wind turbine (DWT) concept has been fraught with controversy over the years, yet still shows promise in 

improving the $/kWh issue. DWTs are created by enclosing a conventional horizontal axis wind turbine with a lifting surface 25 

geometry revolved around the rotor axis. The duct captures a larger stream tube than an open rotor, as illustrated in Figure 1. 

A substantial increase in velocity, exceeding even the free stream, is observed at the rotor face and the associated increase in 

mass flow rate increases the power output of the turbine. A properly designed DWT can improve the key areas mentioned 

above, leading to a much more effective small turbine design. There are, however, issues with DWTs that need to be 
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addressed before their full potential can be realized, the foremost being the tradeoff of increased energy production against 

the increased use of materials, which usually results in a higher unit cost.  

 

This paper reports on recent experimental results that validate a synergistic design strategy of the duct and the rotor. The 

numerical flow field of the optimized ducted actuator disk geometry is used as the input to the blade element momentum 5 

rotor design code. In this way, the influence of the duct on the flow field of the rotor is accounted for and the rotor geometry 

modified appropriately. 

2 Background 

Although studies on the potential performance gains of ducted turbines can be traced back to the 1920s, Gilbert and 

Foreman’s (1978, 1979) extensive testing in the 1970s proposed that this occurred because the duct reduces the pressure 10 

behind the turbine, relative to that behind a conventional wind turbine, causing more air to be drawn through. They 

suggested that they could have a performance efficiency of Cp = 1.57, defined as 

 

𝐶- = 	
Power	Extracted
Power	in	Wind 	= 	

2P>?@ABCD
𝜌AVH 		15 

  

where A = rotor area. The maximum Cp for an un-ducted open rotor is 0.593, commonly known as the Betz limit.  This leads 

to the definition of an ‘augmentation ratio’ of r = 2.65 where 

 

𝑟 = 	
𝐶-,K?'>DL	M?@ABCD

𝐶-,ND>O
		20 

 

Hanson (2008) suggested that it is the lift generated by the shroud, as shown by de Vries (1979), that induces an increased 

mass flow through the rotor, resulting in an increase in the power coefficient proportional to the mass flow. Although one 

might surmise that, via this increased mass flow rate and velocity, a DWT can then exceed the Betz limit, this is incorrect, 

because a much larger stream tube has been captured, and the assumptions applied to the open rotor case do not apply, per 

se. Unfortunately, such claims by inventers that they have ‘beaten Betz’ have only served to give DWTs a bad reputation. 25 

 

Many studies have investigated the feasibility and associated augmentation factors seen in DWTs in an effort to further their 

development (Hu et al, 2008; Igra, 1976, 1984; Hansen et al, 2000; Werle and Presz, 2008; van Bussel, 2007; Oman et al, 

1977; Leoffler, et al, 1978; Ohya et al, 2002, 2008; Politis and Koras, 1995; and Jamieson, 2009) with the largest prediction 

of 7 by Badawy and Aly (2000), however conclusions have been quite varied. Werle and Presz (2008) used fundamental 30 
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momentum principles and concluded that the possible augmentation factor could only approach 2, and that earlier studies 

had incorrect assumptions, leading to overly optimistic predictions. Hansen’s (2000) viscous CFD results predicted ideal Cp 

values approaching 0.94, and an augmentation factor of 1.6. He also indicated that if the duct geometry could be made to 

keep the flow attached, the augmentation factor could be improved further.  

 5 

A review article by van Bussel (2007) substantiates the above arguments regarding mass flow and indicates that the increase 

of the mass flow, and thus the augmentation ratio, is proportional to the ratio of the diffuser area to the rotor area.  He 

concludes that the amount of energy extracted per unit volume of air with a DWT remains the same as for a bare rotor, but 

since the volume of air has increased, so has the total energy extracted.  He also noted that Cp values above 1, corresponding 

to augmentation ratios on the order of 2, are achievable with diffuser to inlet area ratios on the order of 2.5. In addition to the 10 

experimental data, van Bussel reported on the effect of reducing the back pressure, which can also have a profitable effect on 

the performance. 

 

This potential increase in power generation has continued to drive DWT research, however no commercial design has been 

able to realize these augmentation factors and no commercially viable DWT has been successful. A good example of this 15 

type of failure is seen in the Vortec 7 from New Zealand in Figure 2a. (Phillips et al, 2003; Windpower Monthly, 2001). A 

more recent example is that of the demise of Ogin (Boston Globe, 2017) in Figure 2b.  Perhaps the most promising 

experimental field results have been that of Ohya at Kyushu University in Japan on ducted turbines with a brim at the trailing 

edge. (Ohya, 2014). Experimental data has been obtained on several units, including 500W, 3 kW, 5kW and 100kW units, 

with measured power coefficients approaching a Cp = 1.0.  He has also reported no appreciable increase in the noise levels 20 

generated by the turbine while running. 

 

Recent results of a synergistic design strategy coupling the duct flow field to the rotor design at Clarkson University have 

indicated two key design aspects. First, the presence of the duct modifies the axial velocity at the rotor, as shown in Figure 

3a (Jedamski and Visser, 2013) from a nominally uniform distribution to one with a radial variation. Second, moving the 25 

rotor to a location aft of the throat, Figure 3b, provides an increased power output for a given duct geometry (Visser, 2016). 

Most rotor designs seek to exploit the high velocity at the throat of the duct, however the presence of the rotor modifies the 

velocity where it is stationed, and more power can be extracted from the design, for a given duct, by moving the rotor aft.  

The optimum blade design for the rotor is not that which would be required of an open rotor, but is different in planform 

shape and twist, due to the presence of the flow field generated by the duct. Venters et al (2017) has also indicated Cp 30 

values, based on the duct exit area, of greater than 0.593, possibly pointing the way for a wind energy extraction device that 

is more efficient than a turbine of equal diameter. 

 

. 
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Perhaps the most enticing aspect of the DWT concept is the potential for increased energy production in lower speed wind 

regimes, opening up many more areas to a viable distributed wind energy solution. Based on the above promising results, 

this investigation was undertaken to experimentally validate the synergistic design strategy. 

3 Investigative Methods 

In order to make a comparison of the experimental data to existing available turbines, a rotor diameter of 2.5 meters was 5 

selected for the design to compare to a commercially available turbine, the Excel 1 by Bergey Windpower (2017). The Excel 

1, illustrated in Figure 4, is a 2.5 m diameter open rotor with a maximum output of 1.2 kW.  The blades are constant chord 

and untwisted. The 2.5 m ducted prototype rotor was designed specifically for the ducted turbine environment.  The test plan 

focused first on evaluating the open rotor design against the Bergey open rotor, and then examining the effect of the duct.  

Details of the numerical design are presented below followed by the experimental methods overview. 10 

3.1 Numerical Approach 

The numerical design strategy used a two part scheme.  First, the flow field of the duct, with an actuator disc, was 

determined using the Navier-Stokes solver FLUENT.  The grid had a boundary layer mesh with a growth rate of 1.1 and the 

first mesh point was set at 𝑦" ≈ 1. The boundary layer thickness was calculated as a function of 𝑅𝑒', based on duct chord, 

for each case and enough inflation layers were used to span the entire boundary layer, to make sure the most accurate results 15 

that one can obtain from a RANS CFD solution were obtained. The actuator disc was covered with 200 quadrilateral 

elements (i.e. for the 2.5m rotor each element in our axisymmetric model covered 6.25 mm), to model the turbine in the 2D 

axisymmetric model. There was a refined unstructured triangular grid around duct which was surrounded by a large 

structured quadrilateral grid covering further the upstream and downstream of the actuator disc. The rest of domain was 

meshed with unstructured quadrilateral elements. As mentioned above the boundary layer thickness and y+ was calculated 20 

for each case The 𝑘 −𝜔	SST turbulence model was utilized, which among the two-equation turbulence model gives better 

prediction of flow separation. Further details of the methods employed can be found in Bagheri-Sadeghi et al (2018) and an 

example of the solution is shown in Figure 5a. 

 

From the field solution, the axial velocity field was then extracted, Figure 5b, and used as an input for Clarkson’s in-house 25 

Blade Element Momentum (BEM) code, mRotor. The rotor design in mRotor uses a fairly standard BEM strategy by Glauert 

to determine the optimum rotor shape (Kanya and Visser, 2010). Figure 6 illustrates the typical forces and velocities, 

including the axial interference factor ‘a’, the factor by which the upstream flow velocity is slowed to by the time it reaches 

the rotor plane. For an ideal open rotor, a = 1/3 to maximize the power extracted. Other local variables at radius, r, to be 

noted include: Q, the blade pitch angle; a, the angle of attack; ø, the angle the velocity vector, W, makes with the rotor 30 
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plane; w, the angular velocity; dQ, the elemental torque; dT, the elemental thrust; Vo, the upstream velocity; L, lift; D drag; 

and a’, the angular velocity induction factor. 

 

In addition to obtaining the rotor plane velocity profile from the CFD solution, a second piece of information, the thrust 

coefficient at the rotor, 𝐶M,@P>P@, was also extracted and the axial interference factor, a, was determined for input to mRotor 5 

from the relation: 

𝑎 = 	
𝐶M,@P>P@

4 +	𝐶M,@P>P@
	 

where 

𝐶M,@P>P@ = 	
2∆P

𝜌𝑉@P>P@V
	 

 10 

It is important to note that when designing a rotor, one is often, as is the case here, designing for a given generator. In this 

case, as the generator was a 1.8 kW unit, requiring about 45 Nm at the 480 RPM rated speed, it was critical that the rotor 

could deliver this torque at that RPM. This usually means a compromise with the ideal aerodynamic tip speed ratio, TSR, 

that being the ratio of the tip speed of the blade to that of the oncoming velocity. In addition, it was desired to use a simple 

airfoil, namely a curved flat plate like the GOE417a, because of the lower RPM. Airfoils, such as these, work well in low 15 

Reynolds number environments and an additional goal for the turbine was a cheaper manufacturing strategy. Since the 

optimum TSR is a function of the airfoil performance (Kanya and Visser, 2010), the selection of a less than optimal airfoil 

can be a better choice for a lower TSR, rather than having a better performing airfoil operating in an off-design condition.  

 

The design TSR was set to 4 and the blade number selected was 3, despite the slightly higher aerodynamic gain potential 20 

with added blades. The presence of the duct mitigates the tip losses to some extent and when coupled with a constraint on the 

budget, pushed the design to a 3 bladed configuration. Figure 7 illustrates the final design of the rotor with a solidity of 

9.8%. 

 

3.2 Experimental Setup 25 

The Clarkson DWT was designed as a prototype for the NEXUS-NY competition funded by the New York State Energy and 

Research Development Authority.  Since the goal was to undergo wind tunnel testing, many of the requirements of a 

commercially viable turbine, such as a yaw bearing and weatherproofed materials, were not required, and were not included 

in this prototype build. 

 30 
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The duct, illustrated by the geometry of Figure 8, was constructed out of EPS foam covered in a StyroSpray polymer, as 

shown in Figure 9. The exit diameter of the duct was 3.3m leading to a ratio of the exit area to the rotor area of 1.74.  The 

ratio of the duct length to rotor diameter and to exit area was 0.25, and 0.19 respectively . The rotor blades, one of which is 

shown in Figure 10, were numerically milled from aluminium to match the BEM design with a mounting boss that enabled 

them to be bolted to the hub. The rotor was attached to a 1.8 kW radial flux permanent magnet generator from Ginlong, 5 

model GL-PMG-1800. The 3 phase AC generator output was rectified through a Microsemi MSD52 Glass Passivated Three 

Phase Rectifier Bridge and the DC measured with a BK Precision 8522 Programmable DC Electronic Loads Unit.   

 

Wind tunnel testing was conducted in November 2016 at the University of Waterloo Wind Turbine Test Facility in 

Waterloo, Ontario, Canada.  An exterior view of the facility highlighting the 6 external fan/blower array is shown in Figure 10 

11. The uniformity of the wind was not explicitly mapped. The flow field was generated by a bank of 6 100 hp fans with 

independent variable speed control. Data was acquired with a single location sonic anemometer. At a given velocity setting 

the flow field was sampled with a hand-held anemometer and compared to the single point. The average variation of the 

incoming flow to the turbine varied by a +/- 1-2%. The turbulence of the flow filed was sampled over the range of the 

incoming velocities and was found to vary over the range of 5-10%.  The blockage ratio, based on the projected frontal area 15 

of the duct and the rotor, for a stationary rotor, was 4.1%. If the rotating rotor is considered to act as a solid blockage, the 

ratio would be 11.7%.  No blockage corrections were made. 

 

The turbine was first tested in an open rotor configuration, without a duct, and after a suitable amount of data was acquired, 

including repeat runs, the duct was attached to the turbine stand, and the runs repeated. A ¾ view of the test setup including 20 

the upstream sonic anemometer is shown in Figure 12. The duct was subsequently removed and the open rotor tests repeated. 

Tunnel velocity was varied in 1m/s increments to a speed that caused to generator to slightly exceed the maximum rating of 

1800W. Velocity was measured upstream of the rotor with a sonic anemometer. At each velocity test point, the resistive load 

on the turbine was varied until the power output, namely the product of the voltage and current, was the greatest. RPM was 

recorded using a magnetic bicycle switch. Since there was no electronic braking circuitry or dump load, for each test point 25 

the resistive load was first increased (Ohms were lowered), followed by an increase in tunnel speed, to prevent a runaway 

condition. 

4 Results 

The results of the wind tunnel testing are discussed below, with a focus on the power performance. Power results are 

followed by additional observations on the energy production implications and the behaviour of the flow field. During the 30 

test, a hand-held anemometer was positioned at various locations in the flow field to gain some understanding of the velocity 
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field near the rotor, as the duct did not have pressure taps.  It was observed that the velocity at the duct inlet face was about 

10-15% above the upstream reference value across the entire speed range. 

4.1 Power Performance  

Figure 13 is a plot of the wind tunnel results. The black triangles represent the published power curve of the Bergey Excel 1 

turbine.  The solid filled circles are the data for the Clarkson open rotor configuration. These open rotor tests were conducted 5 

with the hub pitch set to 45° (nominal) and then 46° as an after check. It can be seen that the performance of the current rotor 

is slightly better than the Bergey, and is to be expected.  The Bergey uses an untwisted constant chord blade, while the 

Clarkson blade has an optimum twist and planform distribution. Both sets of data sit below the upper theoretical limit for a 

2.5 meter open rotor, the Betz limit, as they should, which is denoted by the solid line. 

 10 

The ducted data is marked by the open circles in Figure 13. It was observed that the power output substantially increased 

with the presence of the duct. At 9 m/s, for instance, the Bergey generated about 700W, while the Clarkson open rotor 

configuration puts out about 925W. With the duct installed, the turbine output was increased to about 1880W. Thus, the duct 

increased the power output to approximately twice the un-ducted configuration. Unfortunately, 9 m/s was the highest speed 

that could be tested, as the generator was producing above the rated output at that speed and could not be increased further. 15 

 

Perhaps most interesting, however, are the two light grey dotted lines bracketing the data in Figure 13.  These are the 

predicted output curves from mRotor, with and without the tip loss corrections included, indicating that the ability to 

synergistically design and predict the performance of the ducted turbine, with the numerical simulation input to the mRotor 

code, was validated by the wind tunnel data.  The last curve on the plot, denoted by the heavy dashed line, is the numerical 20 

prediction by the actuator disk model in FLUENT, namely the solution used to generate the input velocity field profile for 

the mRotor design. The power predicted represents the possible upper limit to the turbine performance.  For more details on 

the numerical input solution, see Bagheri-Sadeghi et al (2017). 

 

The Cp values, based on the rotor area, were also calculated for the data and are presented in Figure 14.  The Bergey reaches 25 

a peak value of about Cp = 0.37 at 7 m/s.  The Clarkson open rotor configuration remains fairly constant at about at Cp = 

0.41 from 5 – 9 m/s.  The ducted configuration generated values of about Cp = 0.85 – 0.90 over the same range.  It is 

important to note that although these values lie above the Betz limit line, this does not in any way indicate the theoretical 

Betz limit has been exceeded. That limit applies only to an open rotor. A ducted turbine captures a larger stream tube and 

one would need to determine what amount of power was in that stream tube to get a sense of the ‘efficiency’ of the ducted 30 

turbine.  
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One possibility is to non-dimensionalize the data by the exit area of the duct. Scaling by the maximum projected area of the 

duct can be argued to be a more ‘fair’ evaluation of the data, when compared to a conventional open rotor turbine. In the case 

here, the exit diameter is 3.3 m and the rotor diameter is 2.5 m. Hence the Cp values would all be scaled by the ratio 2.52/3.32 

or a factor of 0.574. Cp values for the ducted configuration would then be in the range of 0.49 – 0.52, still better than an 

open rotor of this size. 5 

 

A closer look at the data revealed that the torque was consistently lower than what was predicted, and conversely the RPM 

values were higher, at each of the operating points.  At 1800W, for instance, there should be around 45-50Nm of torque at 

350 rpm, however an 450-500 rpm was observed implying the torque to be only 35-37 Nm. A check on the tip speed ratio 

values indicated they were also high, above 6, when they were designed to be below 5.  Overall, the torque was consistently 10 

30-40% low across the speed range, while the RPM values were about 35% higher than expected. 

 

A series of additional tests were run at a wind speed of approximately 3.3 m/s to vary the pitch angle of the blades and 

observe if the power output could be improved beyond the numerically predicted geometry. Table 1 lists the geometries 

tested and the output. 15 

 
 Table 1: Impact of Hub Pitch Angle on Ducted Configuration 

 Hub Pitch Angle   Power Output at 3.3 m/s 

 Decreased (42°)    83 W 

 Nominal (45°)    93 W 20 

 Increased (48°)    92 W 

 

At each condition, the load was varied until the maximum power was obtained. It appeared that the nominal hub pitch angle 

of 45°, as predicted by mRotor, was close to, if not the correct setting predicted by mRotor.  It also seems that a variation of a 

degree or two would not impact the performance significantly. 25 

4.2 Energy  

Although the efficiency of the power curve is an important characteristic of a turbine’s performance, it is the energy 

generated that is the most important.  Society pays for energy, and power is simply the rate at which it is used. Table 2 

contains the Annual Energy Produced (AEP) for each configuration based on the typical 5 m/s Rayleigh probability 

distribution (PDF) and their respective power curves. As can be seen, if the ducted 2.5 m rotor was limited in power output 30 

to that of the Bergey Excel 1, namely 1.2 kW, the Clarkson turbine would still produce twice as much energy.  Fitting the 

rotor to a 3.5 kW generator would increase the energy output to approximately 2.7 times that of the Excel 1. This highlights 
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the inadequacy of simply rating a turbine by the power it produces at a given speed, typically 11 m/s for small turbines.  It is 

the AEP at a given wind PDF that should be the defining quality. 
 

 Table 2: AEP Comparison of 2.5 m Rotors Using Standard Rayleigh Distributions (kWh) 

 Turbine   Vavg = 4 m/s  Vavg = 5 m/s 5 

 Bergey Excel 1         1055         1923 

 Clarkson (1.2 kW)        2497 (2.4x Excel)        3931 (2.0x Excel) 

 Clarkson (3.5 kW)        2845 (2.7x Excel)        5263 (2.7x Excel) 

 

The observed improvement results primarily from an increased performance output of the ducted turbine at low speeds. This 10 

can be inferred from the power plot of Figure 13, but what isn’t so obvious is the role the PDF of the average wind speed 

plays. For the 5 m/s PDF, the wind is blowing below 6 or 7 m/s for the majority of the time. This is why the improved low 

speed performance from the duct is so effective on the energy extracted. If a wind regime with the average speed of 4 m/s is 

now considered, the results are even more illustrative, as noted in Table 2. At 4 m/s the 1.2kW ducted configuration now 

generates 2.4 times more energy than the Bergey. Note, however, that the 3.5 kW advantage is about the same, indicating 15 

perhaps that the generator needs to be sized according to the local wind regime as well. 

 

4.2 Flow Field Issues  

In an effort to understand the flow field a little better, a lower quadrant of the duct was tufted to examine the surface flow as 

shown in Figure 15a.  The tufts indicated substantial separation behind the support struts and near some regions of the 20 

trailing edge.  There were also regions of fluctuating separation from the mid-chord of the duct aft to the trailing edge.  

Figure 15b illustrates an example of this region. The observed fluctuations in the surface flow, causing periodic separation 

and reattachment, may have been in part due to the upstream blade passage, but was clear that there were also other 

frequencies involved. Although only subjective observations were made, a time averaged separation of more than 50% could 

be seen in some regions.   In light of this, it is surprising the overall performance was as good as it was and suggests that 25 

changes can be made to the duct geometry to improve the performance. 

 

Although the predictions of power output from the CFD model agreed quite well with the experimental results, there was a 

notable difference between CFD predictions and experimental results. The CFD model showed very little flow separation on 

the duct, whereas flow separation was clearly observed in the experimental tests. This could be due to simplifications of the 30 

CFD model like using a 2D axisymmetric model where the turbine was replaced with an actuator disc, or the limited 

accuracy of two-equation turbulence models. It could also have resulted from the differences of the manufactured model 
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from the CFD model; from the final geometry of the duct, to the actual physical supporting structures used for the duct, and 

the influence of the individual rotor blades (as opposed to a uniform disc) which affect the flow field. A third factor is the 

proximity of the ducted wind turbine to the floor.  Since proper expansion would not have been possible to the extent of a 

turbine mounted far away from the ground, this may have aggravated the flow separation. 

 5 

4.3 Final Considerations  

An argument could be made, and has been made to the authors, that rather than using a duct, one could simply increase the 

size of the rotor and accomplish the same increase in energy output, and this is absolutely true. In fact, the material required 

for the rotor would likely be less than that needed for the duct.  For the case at hand, assuming the power is proportional to 

the area, all else being equal, one would need an increase of a factor of 2.7 times the area, from d=2.5m (8.2ft) to d=4.1m 10 

(13.5 ft), or an increase in diameter of over 50%, not an insignificant increase in the blade size, but certainly doable. Note 

that the duct exit diameter for the prototype was 3.3 m, 20% smaller than the required rotor size increase would have to be. 

 

In light of arguments such as this, it is important to highlight the additional advantages of a ducted turbine. First, for a given 

energy requirement, the DWT can be made smaller than an open rotor. Or stated in another way, for the same size rotor, the 15 

DWT would produce more energy. Second, one could utilize a lower tower to achieve the same AEP.  Finally, and most 

importantly, is that a lower wind speed regime can be utilized to provide the same energy when using a ducted turbine and 

this is, arguably, the most significant factor, for it opens up many more areas to wind energy, currently not even being 

considered. 

 20 

From a design point of view, one significant cost and weight advantage is that a smaller generator can be used to achieve the 

same output AEP. A smaller generator also reduces the mast head weight and ease of installation, possibly alleviating the 

need for a crane. More subjective arguments, such as redundancy, can be debated, but if two turbines can produce the same 

amount of energy as one turbine, and the cost is the same, the advantage is quite obvious. The current design uses a low 

RPM generator, which helps alleviate noise issues and the duct helps a bit in this area as well.  Issues of ice throw from the 25 

blades can be mitigated with the duct, as well as blade throw, should a failure occur.  Although a contentious topic, the 

impact on avian life can be argued to be lessened as birds can always see the duct and have even been seen to perch on the 

top of ducts in the past. 

 

A final consideration is the key metric mentioned previously: cost per unit energy.  Despite all the well-mannered intentions 30 

of those seeking a greener method of energy generation, it is this $/kWh, particularly over the life of the unit, also known as 

the Levelized Cost of Energy (LCOE), that will be the defining factor for the Ducted Wind Turbine. Whether or not a viable 

solution to this issue exists is a question that is still to be answered. 
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5 Conclusions 

The primary conclusions of this study were: 

 

1. The ability to predict the performance of a ducted turbine using a synergistic combination of a numerical flow field model 5 

as the input to a blade element momentum model was experimentally confirmed, suggesting the numerical strategy can 

provide a means for a scalable design methodology. 

 

2. A prototype 2.5 m ducted rotor, with a ratio of the duct length to rotor diameter and to exit area of 0.25, and 0.19 

respectively, was tested and exhibited the potential for generating twice as much energy as a conventional open rotor, 10 

Experimental Cp values, based on the rotor area, of 0.8 to 0.95 were measured, almost three times that of small 

commercially available turbines of the same rotor size. 

 

3. The use of a ducted turbine configuration can reduce the size of the required generator and the weight of the entire turbine 

at the mast head, leading to a reduction in the cost per kWh of the turbine. 15 
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Figure 1: Stream Tube Capture Regions for Open Rotor and a Ducted Rotor Turbines. 

 5 

  
Figure 2: Commercial Attempts at Large Ducted Turbines a) Vortec 7  b) Ogin (FloDesign) 

 

 

 10 
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Figure 3: Key Design Aspects for the Clarkson Ducted Turbine a) Non-uniform Velocity Distribution  b) Aft Rotor Location. 

 

 
Figure 4: Bergey Excel 1. 5 

          
Figure 5:  Numerical Duct Results  a) Flow Field Solution   b) Extracted Velocity Profile. 
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Figure 6: Blade Element Momentum Forces and Velocities. 

 

 5 
 

Figure 7: 2.5 m Rotor Blade Designed using Clarkson University mRotor software. 
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Figure 8: Duct Cross-sectional Geometry 
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Figure 9: Construction of Duct at Clarkson University. 

 

 
Figure 10: Aluminium Rotor Blade. 5 
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Figure 11: University of Waterloo Wind Turbine Test Facility. 

 
Figure 12: Ducted Rotor Under Test Conditions. 
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Figure 13: Wind Tunnel Power Curve Performance. 
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Figure 14: Experimental Cp Values (based on rotor area). 
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Figure 15: Tufting on the Ducted Surface. 


