
Thank you for taking the time to review the manuscript and for your             

comments. We have updated the manuscript to reflect all of your           

comments as detailed below. 

 

In the manuscript the authors introduce methods common in the uncertainty           

quantification (UQ) community to the problem of determining the optimal layout of            

wind farms. The manuscript is nicely written and the results are clearly presented             

and explained. As far as I know this is one of the first applications of UQ methods to                  

this problem and therefore the manuscript has a clear added value for the             

community. 

 

After reading the manuscript I had the impression that the authors are            

"overselling" how well the polynomial chaos approach works to optimize the           

Annual Energy Production (AEP) of windfarms when compared to the more           

traditional methods. The authors use 200,000 Monte Carlo simulations to evaluate           

the performance for each layout and they report that this results in a 1%              

uncertainty. However, the AEP obtained using polynomial chaos theory is only           

about 1% higher than using the traditional methods (I am not arguing that a 1%               

improvement is not important as it clearly is). But the question arises whether the              

obtained improvement is actually statistically significant and consistent (is it just           

obtained for this test case or also for other testcases?). Some additional analysis             

could better solidify this point. 

 

To ensure our results are consistent, we have re-run all the convergence            

and optimization studies with the wind speed upper limit set at 25 m/s             

(the turbine’s cut-out speed). In addition, to avoid any potential          

uncertainty introduced by the MC samples, we used the same 200,000 MC            

samples (wind direction, wind speed pairs) to evaluate the optimal          

layouts obtained by each method. Also, for the optimization, we          

considered three starting layouts (as opposed to two). And we considered           

optimizations using polynomial chaos and the rectangle rule with both a           

fine and coarse set of samples. And as before, for each combination of the              

method to compute the AEP and starting layout, we perform ten           

optimizations. 

 

The conclusion from this extended new set of results stays the same:            

polynomial chaos is better than the rectangle rule. 

 

To address the “overselling” how well the polynomial chaos works, we           

now always report improvements on average over all cases (layouts,          



number of samples), before we had considered improvements still on          

average (over 10 realizations) but for particular cases, like optimizations          

with a particular starting layout. 

 

We have significantly updated the section with the optimization results,          

and all the figures and tables in that section (Sect 6.3.2). 

 

 

Related to emphasizing the 1% the authors claim while using the polynomial chaos             

theory they mention, but do not discuss too much, that the result obtained using the               

actual Amalia layout as starting position is about 0.62% better than using a             

random starting layout. Should the introduced optimization method not reach at           

least the same power production for the optimal case as obtained using the Amalia              

layout as starting position? Now one gets the impression that the method that was              

used to set the Amalia wind farm layout is even better than the approach discussed               

here. As a different cost function is used in the present study than the one used to                 

set the Amalia wind farm layout it is of course obvious that a different optimal               

layout is obtained in this study. 

 

The problem has many local optima. Of the more than 100 optimizations            

we ran, every single optimization converged to a different local optimum.           

Figure 10 shows a subset of the different local optima found. The Random             

layout was bad to start (some of the turbines are clustered very tightly             

and almost on top of each other), so the optimizer can end up finding              

not-so-good local optima. Starting from a good layout will usually result in            

a better local optimum than starting from a bad layout, which helps            

explain the better performance of the optimal layouts found starting from           

the Amalia than those starting from the Random layout. We’ve added           

some discussion on this in the rewritten optimization results section. 

 

For the new results, we considered a new random layout that was            

required to satisfy some minimum spacing constraints between the         

turbines. In this case, the optimums starting from the Amalia layout are on             

average 0.2% better than those starting from the Random layout. We also            

consider the Grid layout as a starting layout as discussed in the            

optimization results section. 

 

 

 



Based on these points above one gets the impression that indications that the             

polynomial chaos approach may be better are really emphasized, while potential           

shortcomings are not discussed at equal footing.  

 

Some additional questions are: 

 

1. Would the introduced method be able to handle correlated uncertain variables?            

Now the authors decided to take wind speed and wind direction as uncorrelated             

and this may influence the results.  

 

Yes, the polynomial chaos method is able to handle correlated uncertain           

variables. We have added subsection 4.4 in the polynomial chaos section           

discussing in detail how to handle correlated uncertain variables. 

 

2. In section 5.1 the authors set an upper limit for the wind speed of 20 m/s. When I                   

look at figure 5 the different wind farm configurations do not necessarily reach full              

production (320 MW) for each wind direction at this wind speed. How does this              

influence the result? 

 

We have re-run everything with the upper limit set at 25 m/s (the cut-off              

speed of the turbine). As shown in the results the conclusions stay the             

same. Of course, the AEP values are higher now. 

 

3. In the present study the authors only consider wind speed and direction to be               

uncertain. As the authors rightfully argue that there can be much more uncertain             

variables when considering wind farm design? How will the polynomial chaos           

approach in comparison to other methods when there are much more uncertain            

variables one wants to consider? 

 

The polynomial chaos method will continue to perform better until 5-10           

uncertain variables when the Monte Carlo method will start to perform           

better because it does not suffer from the curse of dimensionality. The            

curse of dimensionality---the sampling requirements for the rectangle rule         

and polynomial chaos increase exponentially with increasing dimension.        

We’ve added a discussion on this in the Discussion and Conclusions           

section. Also, we’ve added some more details in the polynomial chaos           

section. 

 

 

 



4. The authors mention in the reply to referee 2 that the number of model               

evaluations is reduced by a factor of 10 when the polynomial chaos method is used.               

However, it is unclear to me on what this statement is based. Even in figure 6-8 I                 

struggle to see such a large improvement, maybe apart from some specific cases.             

When we look at one of the actual test cases (table 2) we see that for the same                  

number of iterations the polynomial chaos indeed gives a better result than using             

the rectangle rule. However, the results obtained using the rectangle rule using less             

than 3 times the number of simulation is already better (so not 10 times more               

simulations). Again this gives the impression the authors are overselling the           

benefits of the polynomial chaos method too much.  

 

As mentioned above, we now always report improvements on average          

over all cases. We’ve updated the abstract, conclusions and results section           

with the updated improvements numbers. 

With regards to the factor of ten, it was referring to computing the AEP to               

a certain accuracy for one of the layouts. The up to a factor of ten was not                 

meant for the optimizations.  

 

 

 

My overall impression is that the work provides valuable contribution to the field of              

windfarm optimization. The problem is very challenging and the paper shows that            

polynomial chaos approach may be a good additional tool to do this; and             

combinations of different optimization approaches are particularly useful for this          

problem. However, it would be nice when the authors can indicate (or extend when              

possible) the approach to include correlated dependent variables, the effect of           

setting an upper limit for the wind speed of 20 m/s, and how the method would                

work when there are more independent variables. And it would be particularly            

important to give a more balanced summary of the strengths and potential            

drawbacks of the polynomial chaos approach as outlined in my report above. 

 

Thanks again for your comments. As discussed above, we have          

incorporated your suggestions and strived to give a balance summary of           

the results. 
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Abstract.

In this paper, we develop computationally-efficient techniques to calculate statistics used in wind farm optimization with the

goal of enabling the use of higher-fidelity models and larger wind farm optimization problems. We apply these techniques to

maximize the Annual Energy Production (AEP) of a wind farm by optimizing the position of the individual wind turbines. The

AEP (a statisticitself) is the expected power produced by the wind farm over a period of one year subject to uncertainties in the5

wind conditions (wind direction and wind speed) that are described with empirically-determined probability distributions. To

compute the AEP of the wind farm, we use a wake model to simulate the power at different input conditions composed of wind

direction and wind speed pairs. We use polynomial chaos (PC), an uncertainty quantification method, to construct a polynomial

approximation of the power over the entire stochastic space and to efficiently (using as few simulations as possible) compute

the expected power (AEP). We explore both regression and quadrature approaches to compute the PC coefficients. PC based10

on regression is significantly more efficient than the rectangle rule (the method most commonly used to compute the expected

power). With PC based on regression, we have reduced by as much as an order of magnitude
::
on

::::::
average

:::
by

::
a

:::::
factor

::
of

::::
five

the number of simulations required to accurately compute the AEP, thus enabling the use of more expensive, higher-fidelity

models or larger wind farm optimizations. We show how the PC method can be used to efficiently compute the gradients of

the AEP and we perform a large suite of gradient-based optimizations with different initial turbine locations and with different15

numbers of samples to compute the AEP. The
:::
We

::::
find

:::
that

:::
the

:
optimizations with PC based on regression result in optimized

layouts that produce the same
::::::::::
comparable AEP as the optimized layouts found with the rectangle rule but using only one-third

of the samples
::::::::
(one-third

:::
of

:::
the

::::::::::::
computational

::::
cost). Furthermore, for the same number of samples, the AEP of the optimal

layouts found with PC is 1 % higher than the AEP of the layouts found with the rectangle rule
::::::::::::
computational

::::
cost,

::::::::::
polynomial

:::::
chaos

::::
finds

:::::::
optimal

::::::
layouts

::::
with

:::
0.4

::
%

::::::
higher

::::
AEP

::
on

:::::::
average.20

1 Introduction

In 2015, wind energy growth accounted for almost half of the global electricity supply growth. In the United States, it accounted

for 41 % of new power capacity, raising the wind energy supply to 4.7 % of the total electricity generated in 2015 and on target

to reach 10 % by 2020 (U.S. Department of Energy, 2015; AWEA, 2016; GWEC, 2016). Most of the current and upcoming
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wind energy comes from large turbines (greater than 1 MW) situated in clusters—wind farms. A problem with putting turbines

together in confined spaces is that they operate in the wakes of other turbines, i.e., in regions of reduced speed and increased

turbulence. This leads to an underproduction of power and decreased (10–20 %) energy output for the farm (Barthelmie et al.,

2007, 2009; Briggs, 2013) when compared to ideal conditions. This loss in energy capture results in millions of dollars of loss

for operators and investors and increased economic uncertainty for new installations. Many current wind farms have grid-like5

layouts, where wind turbines are aligned in rows, which further exacerbate the wake losses. By optimizing the layout of the

wind farm, the wake losses can be minimized, with a corresponding increase in energy production and revenue.

Wind farm optimization is a complex, multi-disciplinary and high-dimensional problem. The wind farm may contain dozens

or even hundreds of wind turbines, where each turbine may be parameterically described using several design variables. Fur-

thermore, the wind conditions (wind direction, wind speed, wind turbulence, etc.) are stochastic (uncertain), and thus we need10

a statistic to evaluate the performance of the wind farm. A common statistic is the expected power or the Annual Energy

Production (AEP). Many model simulations are needed to estimate the statistic (Padrón et al., 2016; Murcia et al., 2015). The

statistic is usually the objective function of the optimization (Herbert-Acero et al., 2014); thus, the wind farm optimization

is an optimization under uncertainty problem (Fig. 1). Optimization under uncertainty (OUU) differs from deterministic op-

timization in that it contains a nested uncertainty quantification loop to compute statistics. In the OUU problem, for every15

optimization step many model evaluations are needed to compute the relevant statistics. Thus, even with a very small number

of design variables per turbine, the total number of variables and simulations required by the wind farm optimization can grow

very rapidly (Gebraad et al., 2017) and quickly make the problem infeasible, especially when using a high-fidelity model for

the wind farm simulation.

We see three approaches to improving wind farm optimization capabilities. Each approach focuses on the different blocks20

of the optimization under uncertainty problem (Fig. 1c). The first approach is to improve the modeling quality of entire wind

farms, i.e., improve the models in all the disciplines (aerodynamics, structures, controls, electrical, acoustics, atmospheric

physics, policy, economics, etc.) that are relevant to building and operating a wind farm, as well as the interaction between the

different turbines. The second approach is to improve the optimization problem formulation and the algorithms to solve the

optimization. And the third approach is to improve the treatment of the stochastic nature of the problem, i.e., develop better25

uncertainty quantification methods to efficiently compute the relevant wind farm statistics (and their gradients with respect to

the design variables of the problem) used in the optimization under uncertainty problem.

The first approach increases the fidelity of the model whereas the second (optimization) and third (uncertainty quantification)

approaches seek to reduce the number of model evaluations, as this enables the study of larger and more realistic problems.

Here, we focus on the uncertainty quantification approach (the third approach), as it has not been considered in detail before.30

The most recent and thorough review of the wind farm optimization literature (Herbert-Acero et al., 2014) does not mention

it. It only mentions the first two approaches. In the existing work in the literature, the third approach typically focuses on

simple integration methods to compute the statistics, which quantify the effect of the stochastic inputs (Kusiak and Song,

2010; Kwong et al., 2012; Chowdhury et al., 2013; Fleming et al., 2016; Gebraad et al., 2017). Simple integration methods,

such as the rectangle rule, are inefficient in the number of samples (simulations of the model) needed to accurately estimate a35
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Figure 1. Examples of applications that require many model evaluations. In deterministic optimization (a), we evaluate the model at different

values of the design variables while searching for an optimum response. In uncertainty quantification (b), we query the model multiple times

at different instances of the uncertain variables to generate an ensemble of responses from which we can compute statistics and probabilities

of the model response. In optimization under uncertainty (OUU), we optimize a statistic. OUU is computationally expensive as it requires

many model evaluations because of the nested loop in the problem formulation (c).

statistic, such as the AEP. They are especially inefficient if multiple stochastic inputs are considered simultaneously. Normally

only the wind direction and/or the wind speed are considered as stochastic input variables. Recent work (Padrón et al., 2016;

Murcia et al., 2015) is starting to move beyond these simple integration techniques to compute the AEP and instead using the

uncertainty quantification method of polynomial chaos to compute the AEP.

In this paper, which is meant as a comprehensive introduction to uncertainty quantification methods applied to wind-farm5

simulations, we describe in detail the polynomial chaos (PC) method and show that, for the efficient (small number of model

simulations) computation of the AEP, the PC method based on regression should be used. An additional benefit of the PC

method is that it makes it feasible to consider multiple uncertain variables (e.g., wind direction, wind speed, wind turbulence,

wake model parameter) that impact the computation of the AEP(Padrón, 2017).
:
.
:::
An

:::::::
example

:::::
where

::
a

::::
wake

::::::
model

::::::::
parameter

::
is

:::::::::
considered

::
as

::
an

::::::::
uncertain

:::::::
variable

::
in

:::::::
addition

::
to

:::
the

::::
wind

:::::
speed

:::
and

:::::
wind

:::::::
direction

:::
can

:::
be

:::::
found

::
in

::::::::::::
Padrón (2017).

:
In addition,10

the PC method can be used to efficiently compute the gradient of statistics, such as the AEP. Eldred (2011) describes how to

compute the gradients for PC based on quadrature. Here we show how to compute the gradients for PC based on regression

(Sect. 4.3). The use of gradients allows us to efficiently tackle much larger optimization problems (Gebraad et al., 2017). To

compute the gradients of the wake model, we use the recently developed Floris wake model with the modifications by Thomas

et al. (2017) that provide analytic and continuous gradients of the wake model.15

We first discuss the details of computing the power and the AEP of a wind farm in Sect. 2. Then, we discuss uncertainty

quantification in Sect. 3 and the polynomial chaos method in Sect. 4. Finally, we discuss the details of the problem formulation

in Sect. 5 and the results in Sect. 6.
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Note: Dw,q := f(ke, me,q), q � {1, 2, 3}
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Figure 2. Schematic of the Floris wake model. The model has three zones with varying diameters, Dw,q , that depend on tuning parameters

ke and me,q . The effective hub velocity is computed using the overlap ratio, AOL

q , of the part of the rotor-swept area overlapping each wake

zone respectively to the total rotor-swept area.

2 Computing the power and the annual energy production of a wind farm

We first describe the aerodynamic wake model we use (Sect. 2.1). The wake model gives an estimate of the hub-height velocity

at each wind turbine, from which we can compute the power produced by the wind farm (Sect. 2.2). Then, to obtain the Annual

Energy Production (AEP) we need to integrate the power over all wind conditions that occur in a year (Sect. 2.3) and weigh

the results proportionally to the frequency with which such wind conditions manifest themselves.5

2.1 Floris

The Floris (FLow Redirection and Induction in Steady-state)1 (Gebraad et al., 2016) wake model is an enhancement of the

Jensen wake model (Jensen, 1983) and the wake deflection model presented in (Jiménez et al., 2009). The Floris model builds

on the Jensen model by defining three separate wake zones with differing expansion and decay rates (controlled by tunable

coefficients) to more accurately describe the velocity deficit across the wake region. A simple overlap ratio of the area of10

the rotor in each zone of each shadowing wake to the full rotor area is used to determine the effective hub velocity of a given

turbine. A simple overview of the Floris model, showing the zones and overlap areas, is shown in Fig. 2. We use the Floris wake

model with changes to remove discontinuities and add curvature to regions of non-physical zero gradient to make the model

more suitable for gradient-based optimization (Thomas et al., 2017). In this work, we use the parameter values recommended

in (Gebraad et al., 2016) and (Thomas et al., 2017) and set the yaw-offset angle of each turbine to zero.15

1We use the name Floris for the model, instead of FLORIS, the name used in (Gebraad et al., 2016).
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Table 1. The variables used for calculating the power.

Uncertain ⇠
wind direction.

freestream wind speed.

Design x
x - The x location of each turbine.

y - The y location of each turbine.

Parameters ✓
yaw angles, turbine characteristics,

and wake model parameters.

2.2 Computing the power of a wind farm

We will consider the power of the wind farm to be a function of three classes of variables: uncertain variables ⇠, design variables

x, and parameters ✓,

P = P (⇠,x,✓). (1)

Uncertain variables are variables that follow a probability distribution, design variables are variables that an optimizer can vary,5

and parameters are important constants that govern the behavior of the system. The classification of the variables is problem

dependent. For instance, the rotor yaw could be considered a design variable, a parameter, or an uncertain variable to account

for yaw-offset measurement error. A tunable parameter of a wake model, such as the wake expansion coefficient, could be

considered as a parameter or as an uncertain variable given by a particular distribution.

For the problems considered in this work, Table 1 lists in which category we place each variable that influences the power10

computation. The uncertain variables are the wind direction and wind speed with probability distributions described in Sect. 5.1.

The power of the wind farm for a given wind direction and wind speed is equal to the sum of the power produced by each

turbine P =
P

nturb

i=1 Pi. The power of each turbine is calculated from

Pi =
1

2
⇢CPAU

3
i
, (2)

where ⇢ is the air density, A is the rotor swept area, CP is the power coefficient, and Ui is the effective hub velocity for each15

turbine, which is calculated by the wake model and is a function of the three types of variables described above

Ui = f(⇠,x,✓).

:
,
:::::::::::::
Ui = f(⇠,x,✓). The power coefficient captures both the aerodynamic and electromechanical properties of the wind turbine.

It is a complex function of many variables (Herbert-Acero et al., 2014) and is usually reported by wind turbine manufacturers

as a function of the tip-speed ratio, which depends on wind speed at hub height Ui. A simple expression for Cp can also be20

computed using the classical actuator disk theory (Sanderse, 2009).
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2.3 Computing the Annual Energy Production (AEP) of a wind farm

The Annual Energy Production (AEP) is an important metric used to describe a wind farm. The AEP is a statistic. Specifically,

it is a mean, as it is a function of the expected power multiplied by the number of hours in a year,

AEP = 8760
hr

yr
E[P (⇠)]. (3)

The expected power, E[P (⇠)], or the mean of the power, µP , is defined as5

µP = E[P (⇠)] =

Z

⌦

P (⇠)⇢(⇠)d⇠, (4)

where ⇠ = (⇠1,⇠2, . . . ,⇠n) is a vector of random variables, which we refer to as the uncertain variables, ⇢(⇠) is the joint

probability density function of the uncertain variables, ⌦ is the domain of the uncertain variables, and P is the power produced

by the wind farm (Eq. (1)). Common uncertain variables are the wind direction and the freestream wind speed.

The expected power, and hence the AEP, is normally computed as a weighted average, which amounts to the rectangle rule of10

integration (Sect. 3.1.1). Other uncertainty quantification methods (Sect. 3) can be used to compute the expected value (AEP).

Specifically, we can compute the AEP efficiently by polynomial chaos (Sect. 4).

3 Uncertainty quantification

Uncertainty quantification (UQ) is the process of (1) characterizing input uncertainties, and then (2) propagating these in-

put uncertainties through a computational model with the goal of quantifying their effect on the model’s output. There are15

many sources of uncertainty in the modeling of a problem, and different classifications of the uncertainties have been pro-

posed (Kennedy and O’Hagan, 2001; Oberkampf et al., 2001; Beyer and Sendhoff, 2007). A common classification is to divide

the uncertainty into aleatory and epistemic uncertainties (Oberkampf et al., 2001).

In this work, we consider aleatory uncertainties that arise from the variability in the inputs to our model caused by changing

environmental conditions. We describe this input variability as random variables with associated probability distributions. Thus,20

the first step of characterizing the input uncertainties is concerned with finding the probability distributions that describe the

model’s inputs. This process is known as statistical inference, model calibration and inverse uncertainty quantification (Smith,

2014). Here, we assume that this step has been completed, i.e., we have distributions that characterize the uncertain inputs

(Sect. 5.1). We focus on the second step of propagating the input uncertainties to find the statistics that describe the output.

3.1 Uncertainty propagation methods25

The goal of uncertainty propagation methods is to compute the statistics that describe the effect of the uncertain inputs on

the model output. There are several methods to propagate the uncertainties and compute statistics (Le Maître and Knio, 2010;

Smith, 2014), where each method has its advantages/disadvantages depending on the type and size of the problem. The most

common methods are sampling or Monte Carlo methods (Caflisch, 1998). Other methods include direct integration methods
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and stochastic expansion methods. Direct integration methods are the currently used method to compute the AEP of a wind

farm; we briefly describe them below (Sect. 3.1.1). We describe the stochastic expansion method of polynomial chaos in detail

in Sect. 4, and compare the different methods to propagate the uncertainties to compute the AEP in Sect. 6.2.

3.1.1 Direct numerical integration (Rectangle rule)

As the name implies, this method numerically evaluates the integrals in the definition of the statistics. The integrals to evaluate5

the mean (or expected value) and the variance are

µR = E[R] =

Z

⌦

R(⇠)⇢(⇠)d⇠, (5)

�
2
R

= Var[R] = E[(R(⇠) � E[R(⇠)])2] (6)

= E[R(⇠)2] � (E[R(⇠)])2 (7)

=

Z

⌦

R(⇠)2⇢(⇠)d⇠� µ
2
R
, (8)10

where R(⇠) is the model output and ⇠ the uncertain input variables. The random vector ⇠ = (⇠1,⇠2, . . . ,⇠n) with joint proba-

bility distribution ⇢(⇠) describes the input variability over the domain ⌦. Each random input can follow a particular distribu-

tion ⇢i(⇠i). For the case of independent random variables, the joint distribution is the product of each univariate distribution

⇢(⇠) =
Q

n

i=1 ⇢i(⇠i).

There are many quadrature methods to evaluate integrals (Ascher and Greif, 2011). We describe the rectangle rule, as this is15

what is currently used in the wind farm community to compute the AEP.

Rectangle rule. The rectangle rule, or mid-point rule, is the simplest and most straightforward quadrature method. To

approximate the mean or expected value,

µR = E[R] =

Z

⌦

R(⇠)⇢(⇠)d⇠ (5 revisited)

with the rectangle rule, we divide the domain of the uncertain variable2 ⌦ = [a,b] into m equal subintervals of length �⇠ =20

(b � a)/m. Next, we construct rectangles with base B = �⇠ and height equal to the product of the response of the model and

the density evaluated at the mid-point of the subinterval H = R(⇠j)⇢(⇠j). Then, the rectangle rule approximates the expected

value by adding up the areas of the m rectangles

E[R] =

bZ

a

R(⇠)⇢(⇠)d⇠ ⇡
mX

j=1

R(⇠j)⇢(⇠j)�⇠. (9)

A simple improvement is to integrate the density exactly within each subinterval25

E[R] =

bZ

a

R(⇠)⇢(⇠)d⇠ ⇡
mX

j=1

R(⇠j)

⇠j+1/2Z

⇠j�1/2

⇢(⇠)d⇠. (10)

2For simplicity, we describe the 1-dimensional case, ⇠ = ⇠.
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This
:::::::::::
improvement is easily done as the density is known. This modification is helpful for a small number of evaluations m. We

will use this modified rectangle rule and simply refer to it as the rectangle rule.

4 Polynomial chaos

Polynomial chaos (PC) is the name of an uncertainty quantification (UQ) method that approximates a function with a polyno-

mial expansion made up of orthogonal polynomials. This function has random variables as inputs, and we are interested in the5

effects of the random (uncertain) inputs on the output of this function. Statistics of the output can describe the effects of the

inputs. We use the polynomial chaos method to efficiently compute these statistics and the gradients of these statistics.

We first describe the polynomial chaos method in Sect. 4.1. We then discuss two methods—quadrature and regression—to

compute the coefficients used in the PC expansion (Sect. 4.2). We finish with a description of
::
In

::::
Sect.

::::
4.3,

:::
we

:::::::
describe how to

compute the gradients of statistics from the polynomial chaos expansion(.
:::::
And,

::
in Sect. 4.3)

:::
4.4,

::
we

:::::::
discuss

::::
how

::
the

:::
PC

:::::::
method10

:::
can

::
be

::::::::
extended

::
to

::::::
include

:::::::::
correlated

::::::
random

::::::
inputs.

4.1 Polynomial chaos expansion

Let R(⇠) be a function of interest that depends on the uncertain variable ⇠. We can approximate the function by a polynomial

expansion

R(⇠) ⇡ R̂(⇠) =
pX

i=0

↵i�i(⇠). (11)15

The approximate response R̂(⇠) is a polynomial of order p. Usually, the larger the polynomial order the closer the approxima-

tion is to the true response R(⇠).

The polynomial basis {�i(⇠)}pi=0 is determined by the distribution of the uncertain variable—the polynomial basis is or-

thogonal with a weight function that corresponds up to a constant to the probability density function of the uncertain vari-

able. Common random (uncertain) variables (Normal, Uniform, Exponential, Beta) have corresponding classical orthogonal20

polynomials (Hermite, Legendre, Laguerre, Jacobi) (Eldred et al., 2008). Empirically-determined distributions, such as those

obtained from wind conditions, do not have corresponding classical orthogonal polynomials. For the distributions obtained

from the wind conditions, we need to numerically generate custom orthogonal polynomials in order to preserve the optimal

convergence property of the polynomial chaos expansion (Oladyshkin and Nowak, 2012). Details about the numerical genera-

tion of orthogonal polynomials can be found in Gautschi (2004) and an example of the generation of orthogonal polynomials25

for wind distributions in Padrón (2017). In addition to the optimal convergence properties, the use of orthogonal polynomials

allows us to analytically compute statistics from the polynomial chaos expansion (Sect. 4.1.1).

In addition to the orthogonal polynomials, the other component of the expansion Eq. (11) are the coefficients ↵i. The

coefficients can be computed either by quadrature or regression as described in Sect. 4.2.
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For the case of multiple uncertain variables ⇠ = (⇠1,⇠2, . . . ,⇠n) and using a multi-index i = (i1, i2, . . . , in), we write the

multi-dimensional polynomial approximation as

R(⇠) ⇡ R̂(⇠) =
X

i2Ip

↵i�i(⇠). (12)

The multi-dimensional basis functions �i(⇠) are given by products of the 1-dimensional orthogonal polynomials

�i(⇠) =
nY

j=1

�ij (⇠j). (13)5

When the uncertain variables are independent, the multi-dimensional basis functions are also orthogonal .
:::::
(Sect.

::::
4.4).

:
The

values of the elements ij of the multi-index depend on how the expansion is truncated, i.e., on how the index set Ip is defined.

There are two common ways in which to define the index set: total-order expansion and tensor-product expansion.

In total-order expansion a total polynomial order bound p is enforced:

Ip = {i : |i|  p}, |i| = i1 + i2 + · · · + in., (14)10

:::::
which

:::
for

::
an

:::::::::
expansion

::
of

::::
total

:::::
order

:
p
::::
with

::
n

::::::::
uncertain

::::::::
variables

:::::
results

::
in

:::
an

::::::::
expansion

::::
with

:::::::::::::
NTO = (n+p)!

n!p! :::::
terms.

:

And in
::
In tensor-product expansion a per-dimension polynomial order bound pj is enforced

Ip = {i : ij  pj , j = 1, . . . ,n}., (15)

:::::
which

::::::
results

::
in

::
an

:::::::::
expansion

::::
with

::::::::::::::::::
NTP =

Q
n

i=1(pi + 1)
:::::
terms.

:

An example showing the multi-dimensional basis polynomials Eq. (13) for both the total-order expansion and tensor-product15

expansion can be found in Padrón (2017).

::::
Note

:::
that

:::
for

::::
both

:::::::::
total-order

:::::::::
expansion

:::
and

:::::::::::::
tensor-product

::::::::
expansion

::
the

:::::::
number

::
of

:::::
terms

:::::::
exhibits

::
an

::::::::::
exponential

:::::::
increase

::::
with

::
an

:::::::
increase

::
in
::::

the
::::::
number

:::
of

::::::::
uncertain

::::::::::
dimensions

::
n.

::::
This

:::::
result

::
is
::::::
known

:::
as

:::
the

:::::
curse

::
of

::::::::::::
dimensionality

:
. The tensor-

product expansion is the preferred approach when the coefficients are computed with quadrature (Sect. 4.2.1) because of

increased monomial coverage and accuracy (Eldred and Burkardt, 2009). The total-order expansion is the preferred approach20

when the coefficients are computed with regression (Sect. (4.2.2)
::::
4.2.2) because it keeps the sampling requirements lower (El-

dred and Burkardt, 2009).

4.1.1 Mean and variance from the polynomial chaos expansion

The mean and variance of the function of interest R(⇠) are a function of the coefficients ↵i of the polynomial chaos expansion.

The statistics are obtained by substituting the polynomial chaos expansion Eq. (12) into the definitions of the mean Eq. (5) and25

variance Eq. (8), and by integrating the expansion and simplifying using the orthogonality of the polynomials.

The mean is the zeroth coefficient

µR = ↵0 (16)
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and the variance is the sum of the product of the square of the coefficients—excluding the zeroth coefficient—with the inner

product h�2
i (⇠)i,

�
2
R

=
X

i2Ip\{0}

↵
2
i h�2

i (⇠)i, (17)

where the inner product is defined as h�2
i (⇠)i =

R
⌦�i(⇠)�i(⇠)⇢(⇠)d⇠ and 0 is the first multi-index—the one with all zero

elements.5

4.2 Calculating polynomial chaos coefficients

The coefficients of the polynomial chaos expansion Eq. (12) can be calculated via quadrature or by linear regression.

4.2.1 Quadrature

To obtain the coefficients of the polynomial chaos expansion

R(⇠) =
X

i2Ip

↵i�i(⇠), (18)10

via quadrature, we take the inner product of both sides of Eq. (18) with respect to �j(⇠) to yield

hR,�ji =
X

i2Ip

↵ih�i,�ji. (19)

Making use of the orthogonality of the polynomials and solving for the coefficients in Eq. (19), we obtain

↵i =
hR(⇠),�i(⇠)i

h�2
i (⇠)i

=
1

h�2
i (⇠)i

Z

⌦

R(⇠)�i(⇠)⇢(⇠)d⇠, (20)

where the domain ⌦ is the Cartesian product of 1D domains ⌦j for each dimension, ⌦ = ⌦1⇥· · ·⇥⌦n, and ⇢(⇠) =
Q

n

j=1 ⇢j(⇠j)15

is the joint probability density of the stochastic parameters. The inner product h�2
i (⇠)i is known analytically or inexpensively

computed. Thus, most of the computational expense in solving for the coefficients resides in evaluating the model R(⇠) in the

multi-dimensional integral
R
⌦R(⇠)�i(⇠)⇢(⇠)d⇠. This integral is solved with quadrature (numerical integration). Note that the

zero coefficient in Eq. (20) reduces to the definition of the mean

µR = ↵0 =

Z

⌦

R(⇠)⇢(⇠)d⇠, (21)20

which the direct numerical integration methods attempt to compute directly (Sect. 3.1.1).

4.2.2 Regression

To obtain the coefficients of the polynomial chaos expansion Eq. (12) via regression, we construct a linear system

�↵ = R (22)
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and solve for the coefficients ↵ that best represent a set of responses R. The set of responses is generated by evaluating the

model at m realizations of the uncertain vector ⇠. The m uncertain vectors are most commonly obtained by sampling the

density of the uncertain variables (Hosder et al., 2007).

Each row of the matrix � contains the orthogonal polynomials �j evaluated at a sample ⇠i
2

6664

�0(⇠1) · · · �n�1(⇠1)
...

. . .
...

�0(⇠m) · · · �n�1(⇠m)

3

7775

2

6664

↵0

...

↵n�1

3

7775
=

2

6664

R1

...

Rm

3

7775
. (23)5

The size of the m ⇥ n matrix is determined by the number of samples m and by how the polynomial chaos expansion is

truncated (Sect. 4.1) which results in n terms. It is common to specify a total order expansion along with a collocation ratio

cr = m/n to determine the number of samples m. The collocation ratio determines if the system is overdetermined cr > 1 or

underdetermined cr < 1.

For overdetermined systems, the most popular method (and the one we use) to estimate the coefficients is least squares, in10

which we pick coefficients ↵ = (↵0,↵1, . . . ,↵n�1) that minimize the residual sum of squares

↵ = arg min ||�↵� R||22. (24)

For underdetermined systems, solving a regularized least squares problem is preferred (Doostan and Owhadi, 2011).

For a given number of samples m in the linear system Eq. (23) we can use cross-validation (Hastie et al., 2009) to pick the

best polynomial order n to approximate the response.15

4.3 Gradients of statistics with polynomial chaos

Let R(⇠,x) be a function of interest that depends on uncertain variables ⇠ and also on design variables x. We assume inde-

pendence between the design and uncertain variables3. Now the polynomial chaos expansion—over the uncertain variables—

becomes

R(⇠,x) ⇡ R̂(⇠,x) =
X

i2Ip

↵i(x)�i(⇠). (25)20

This expansion is only valid for a particular design vector—the coefficients ↵i(x) are a function of the design variables.

Therefore, the statistics are also a function of the design variables. Specifically the mean and the variance are

µR(x) = ↵0(x), (26)

�
2
R
(x) =

X

i2Ip\0

↵
2
i (x)h�2

i (⇠)i. (27)

3For most applications, the design and uncertain variables are independent. For instance, the design variables are the wind turbines location and the

uncertain variables are the wind conditions.
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4.3.1 Gradients of the statistics with polynomial chaos

We want to know the gradients of the statistics with respect to the design variables, and we proceed to derive them below. For

simplicity, we drop the subscript from the statistics µR = µ, the explicit variable dependence R(⇠,x) = R, the bolded notation,

and we use the following notation for the gradient df

dx
⌘ rf .

The gradient of the mean from Eq. (26) is5

dµ

dx
=

d↵0

dx
, (28)

and the gradient of the variance from Eq. (27) is

d�
2

dx
=

X

i2Ip\0

h�2
i i

d↵
2
i

dx
= 2

X

i2Ip\0

h�2
i i↵i

d↵i

dx
. (29)

Both, the mean and the variance gradients, depend on the gradient of the coefficients d↵i
dx

.

4.3.2 Gradients of the coefficients10

The gradient of the coefficients can be computed with quadrature or regression, similarly to how the coefficients can be calcu-

lated with quadrature (Sect. 4.2.1) or regression (Sect. 4.2.2).

Quadrature. We start from the equation for the coefficients Eq. (20) and take the gradient to obtain

d↵i

dx
=

1

h�2
i i

Z

⌦

dR

dx
�i⇢d⇠ =

hdR
dx

,�ii
h�2

i i
. (30)

Replacing this equation into the gradient of the mean Eq. (28) we obtain15

dµ

dx
=

⌧
dR

dx

�
. (31)

And replacing Eq. (30) into the gradient of the variance Eq. (29) we obtain

d�
2

dx
= 2

X

i2Ip\0

↵i

⌧
dR

dx
,�i

�
. (32)

To obtain the gradients of the statistics with respect to each design variable we need to evaluate the multi-dimensional

integral containing dR

dx
. The integral is evaluated with quadrature (Sect. 4.2.1) and requires the computation of the gradient of20

the response at each of the quadrature points. Ideally, one would use adjoint methods Giles and Pierce (2000) or algorithmic

differentiation Griewank and Walther (2008) to compute the gradients, dR

dx
, efficiently.

12



Regression. We start from the linear system Eq. (22) and take the gradient to obtain

d�↵

dx
=

dR

dx
(33)

�
d↵

dx
=

dR

dx
(34)

2

6664

�0(⇠1) · · · �n�1(⇠1)
...

. . .
...

�0(⇠m) · · · �n�1(⇠m)

3

7775

2

6664

d↵0
dx1

· · · d↵0
dxd

...
. . .

...
d↵n�1

dx1
· · · d↵n�1

dxd

3

7775
=

2

6664

dR1
dx1

· · · dR1
dxd

...
. . .

...
dRm
dx1

· · · dRm
dxd

3

7775
. (35)

To solve for the gradient of the coefficients, we solve the linear system one column at a time of the d↵
dx

matrix with the5

corresponding column of the matrix of the gradients dR

dx
. The linear system for the multiple right hand sides can be solved with

the methods described in Sect. 4.2.2.

Again, the gradient of the mean Eq. (28) and the gradient of the variance Eq. (29) are a function of the gradient of the

coefficients. Thus, to obtain the gradient of the mean take the first row of the d↵
dx

matrix; and for the gradient of the variance

use the gradient of the coefficients from all the other rows.10

4.3.3 Gradients of the statistics by direct numerical integration

Similarly to computing the mean and variance with direct numerical integration (Sect. 3.1.1), we can also compute the gradients

of the mean and variance directly with numerical integration by differentiating the definitions of the mean, Eq. (5), and the

variance, Eq. (8).

4.4
:::::::::

Correlated
:::::::
random

::::::::
variables15

::
As

:::::::::
described,

:::
the

::::::::::
polynomial

:::::
chaos

:::::::
method

:::::::
assumes

::::
that

:::
the

::::::::
uncertain

::::::::
variables

:::
are

:::::::::
statistically

:::::::::::
independent.

:::
In

::::
wind

:::::
farm

:::::
layout

:::::::::::
optimization,

::::
the

::::::::
uncertain

::::::::
variables

::
of

:::::
wind

::::::
speed

:::
and

:::::
wind

::::::::
direction

:::
are

:::::::
usually

:::::::::
correlated.

::::::
There

:::
are

::::::::
different

:::::::::
approaches

::
to
::::

use
::::::::::
polynomial

:::::
chaos

:::
for

:::::::::
problems

::::
with

::::::
inputs

:::::
made

:::
up

::
of

:::::::::
correlated

::::::::::
(dependent)

:::::::
random

:::::::::
variables.

::::
One

:::::::
approach

::
is
:::

to
:::::::
perform

::
a

::::::
(linear

::
or

::::::::::
non-linear)

:::::::
variable

::::::::::::
transformation

::::::::::::::::::::::::::::::
(Feinberg and Langtangen, 2015) to

::::::::::
uncorrelate

:::
the

:::::::
variables

::::::
before

:::::::
applying

::::::::::
polynomial

:::::
chaos.

:::::::
Another

::::::::
approach

:
is
::
to

::::::::
construct

::::::::::
polynomials

::::
that

::
are

:::::::::
orthogonal

::
to
:::
the

::::::::::
multivariate20

:::::::::
distribution

::::::
instead

:::
of

:::::::::
orthogonal

::::::::::
polynomials

:::
for

::::
each

:::::::::
dimension

::::::::::::::::::
(Navarro et al., 2014).

::
A
:::::
third

::::::::
approach,

:::::
which

::
is
:::
the

:::::
most

::::::::
applicable

:::
for

:::
the

:::::
wind

::::
farm

::::::
layout

::::::::::
optimization

::::::::
problem,

:::::::
consists

::
of

::::::::
breaking

::
up

:::
the

:::::::
domain

::
of

:::
the

::::::::
uncertain

::::::::
variables

::::
into

::::::
smaller

:::::::
domains

::::::::::
(elements).

:::::
Then,

::::::::::
constructing

::
a
::::::::::
polynomial

:::::
chaos

::::::::
expansion

:::
for

:::::
each

::
of

:::
the

:::::
small

:::::::
domains

::::
and

:::::::::
combining

::::
them

::
in

:
a
::::::::::
piece-wise

::::::
manner

::
to

:::::
cover

:::
the

:::::
whole

:::::::
domain.

::::
This

::::::::
approach

:::
of

:::::::
breaking

:::
up

:::
the

::::::
domain

::
is

::::::
known

::
as

::::::::::::
multi-element

:::::::::
polynomial

:::::
chaos

::::::::::::::::::::::::
(Wan and Karniadakis, 2006).

::
In
:::
the

:::::::
context

::
of

::
the

:::::
wind

::::
farm

:::::
layout

:::::::::::
optimization

:::::::
problem,

:::
the

::::
new

::::::::::
distributions25

::
for

:::
the

::::::::
uncertain

::::::::
variables

:
in
:::
the

:::::
small

::::::::
elements

:::
can

::
be

:::::::::
considered

:::::::::::
independent.

:::
For

:::::::
example,

:::
the

:::::
wind

:::::::
direction

:::
and

:::::
wind

:::::
speed

:
at
::
a
::::::::
particular

:::::
wind

::::
farm

:::
site

:::
are

::::::
usually

:::::::::
correlated,

:::
but

::
if
:::
the

:::::
wind

:::::::
direction

:::::::
domain

::
is

::::::
broken

:::
into

:::::::
sectors,

::
it

:::
can

::
be

::::::::
assumed

:::
that

::::::
within

::::
each

:::::
sector

:::
the

::::
wind

::::::::
direction

:::
and

:::::
wind

:::::
speed

:::
are

::::::::::
independent

::::::::::::::::::::::::::::::::::::::::
(Herbert-Acero et al., 2014; Murcia et al., 2015).
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5 Problem details

Here,
:

we describe the details of computing AEP in the wind farm. We first describe and discuss the inputs, which are the

wind direction and wind speed (uncertain variables) (Sect. 5.1) and the wind turbine positions (design variables) (Sect. 5.2).

Then, we describe details about the output, the average AEP error (Sect. 5.3), that we use to compare the different methods we

consider to compute the AEP (Sect. 5.4).5

5.1 Probability distributions of the uncertain wind conditions

We consider the wind direction and the wind speed as uncertain variables with probability distributions shown in Fig. 3. The

distributions show the likelihood of a particular wind direction or wind speed occurring during a year. For simplicity, we

assume that the wind direction and wind speed distributions are independent (Sect. 4.1
::
4.4). We construct the independent

distributions starting from the wind measurements taken near the Princess Amalia wind farm (Sect. 5.2) by the NoordZeeWind10

meteorological mast during a year (Brand et al., 2012). For a wind rose of the measurements, see Gebraad et al. (2017). The

wind rose has a wind direction bin width of 5� and a wind speed bin width of 1 m / s throughout the operational range of the

turbine.

We construct the wind direction distribution (Fig. 3a) by linearly interpolating the wind measurements of the likelihood of

the wind coming from a particular binned wind direction for all wind speeds. The zero degree direction is set at North and15

increases clockwise.

For the wind speed, instead of linearly interpolating the data, we fit a Weibull distribution4 and then truncate it5 (Fig. 3b).

The
::
We

:::::::
truncate

:::
the

::::::::::
distribution

::
to

:::::::::
correspond

::
to
:::

the
:
operational range of the turbine is from the cut-in speed of 3 m / s to the

cut-out speed of 25 m / s. We truncate instead at the upper limit of 20 m / s as, above this speed, the power produced by the

wind farms is almost always constant at its rated power and thus contributes only a constant term to AEP.20

The probability distributions are the weight functions of the orthogonal polynomials used in the polynomial chaos method

(Sect. 4.1). For both of the distributions (weight functions), we use a histogram of 50 equal width bins to describe each

distribution. Using these weight functions, we then numerically generate their corresponding orthogonal polynomials.

5.2 The wind farm layouts

To showcase the results, we will focus on four representative layouts: Grid, Amalia, Optimized and Random (Fig. 4). The25

layouts have sixty turbines represented by individual dots in each of the figures we show in the results. Each dot is to scale,

where the diameter
::::
Each

:::::
layout

:::
has

:::::
sixty

:::::::
turbines

:::
and

::
in

:::
the

::::::
figures

::::
each

::::::
turbine

::
is

:::::::::
represented

:::
by

:
a
:::
dot

::
to

:::::::::
scale—the

::::::::
diameter

::
of

:::
the

:::
dot represents the rotor swept area

:::::::
diameter. The Grid layout fits in a box of equivalent area to that of the Amalia layout.

4The fitted Weibull—⇢(⇠; ↵,�) = ↵

�

⇣
⇠

�

⌘↵�1
e�(⇠/�)↵ , ⇠ � 0—has shape parameter ↵= 1.8 and scale parameter � = 12.55. The Weibull distribution

is the preferred distribution to model the wind speed distribution (Belu and Koracin, 2013; Herbert-Acero et al., 2014).
5The truncated distribution is no longer a

::
full

:
Weibull distribution and needs to be scaled to ensure it is a valid probability density function (it integrates to

1).
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Export as pdf to maintain quality. Then open in Preview and crop to only get the figure.

(a) Wind direction distribution. (b) Wind speed distribution.

Figure 3. The uncertain variables probability distributions. We assume the distributions are independent and construct them based on wind

measurements taken by the NoordZeeWind meteorological mast during a year. The wind direction distribution is a linear interpolation of the

data, and the wind speed distribution is a truncated Weibull fit to the meteorological wind speed data averaged over all wind directions. The

vertical lines show the cut-in and cut-out speed of a single wind turbine.

The Amalia layout, which is grid-like, is that of the Princess Amalia wind farm located 23 km off the coast of the Nether-

lands. The Optimized layout is a representative optimal layout obtained by running the optimization problem (Sect. 6.3.1).

:
;
::::::::::
specifically,

:
it
:::

is
:::
the

:::::
layout

::::::
shown

::
in
:::::

(Fig.
:::::
11a). When we refer to this particular optimized layout, we will capitalize the

word optimized. The Random layout was generated by random sampling and keeping the turbines that are contained within

the convex hull of the Amalia wind farm without enforcing any spacing constraints between the turbines
::::
while

::::
also

::::::::
satisfying

::
a5

::::::::
minimum

::::::::::
inter-turbine

:::::::
spacing

::
of

::::
three

:::::::::
diameters. We will refer to the Grid and Amalia as grid-like layouts and the Optimized

and Random as non-grid-like layouts.

In reality, the 60 turbines in the Princess Amalia wind farm are the Vestas V80 model. For each of the layouts in our study,

we use the NREL 5-MW reference turbine (Jonkman et al., 2009), as this turbine has an open source design.

5.3 Convergence metric — the average AEP error10

We use an ensemble of 10 AEP results to compute the average AEP error. The average AEP error allows us to better illustrate the

differences between the different methods used to compute the AEP and to avoid drawing conclusions from one-off solutions.

We found that averaging over 10 AEP results is enough to illustrate the difference between methods and to smooth out the

convergence of the AEP error (Fig. 8). The ensemble of results account for the fact that the zero (starting) position for the wind

direction is arbitrary (it could be North, South, East, West, etc.). Also, averaging the AEP errors helps smooth out the AEP15

convergence curves by reducing the sensitivity of the AEP to the quadrature (sample) points used to compute the AEP. We

generate the ensemble of AEP results by selecting 10 different input sets. For example, for the rectangle rule, if we consider

36 wind directions the 10 sets are {[0,10,20, . . . ,340,350degrees]; [1,11,21, . . . ,341,351]; . . . ; [9,19,29,349,359]}. For the

polynomial chaos based on quadrature, the quadrature points are the numerically generated Gaussian quadrature points for

15
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(a) Grid (b) Amalia (c) Optimized (d) Random
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Figure 4. Representative wind farm layouts used in the results. Each dot represents a wind turbine to scale—the dot represents the swept

area of the rotor.

the interval. Thus, to create 10 different sets, we pick 10 different intervals, i.e., we pick different starting positions. When

considering 36 wind directions the chosen intervals are {[0,360]; [10,370]; [20,380]; . . . ; [340,700]; [350,710]}. For both the

rectangle and polynomial chaos based on quadrature, the wind speed points for each set are the same. For the polynomial chaos

based on regression and for Monte Carlo, the wind directions and wind speed pairs are generated by sampling the distribution.

Thus, to obtain 10 different sets, 10 different samplings are performed. We use the average AEP error as the convergence metric5

averageAEP error =
1

10

10X

i=1

����
AEPi � baselineAEP

baselineAEP

����⇥ 100%. (36)

5.3.1 Baseline AEP

We take as the baseline or true AEP the AEP computed with 200,000 Monte Carlo samples. We picked 200,000 MC samples

to ensure the 99 % confidence interval for the true AEP was smaller than 1 % of the computed AEP value for all layouts.10

We consider an AEP within 1 % of the baseline AEP to be accurate, and we will use it as a reference for the results. AEP

predictions of real wind farms usually have an error of 10–20 % (Barthelmie et al., 2007; Briggs, 2013) due to uncertainty in

wind conditions and to the errors of wake models, thus resolving the AEP to less than 1 % is unnecessary.

5.4 Methods to compute the AEP

Here, we provide the details of the methods used to compute the AEP, as well as, the abbreviations for the methods:15

rect rectangle rule (Sect. 3.1.1)

PC-Q polynomial chaos based on quadrature (Sect. 4.2.1)

PC-R polynomial chaos based on regression (Sect. 4.2.2)

MC Monte Carlo (Caflisch, 1998)
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For the quadrature-based methods (rect, PC-Q), we use tensor product quadrature to compute multi-dimensional integrals. We

use the same number of points for each dimension because we did not see any benefit in favoring a particular dimension. For

PC-Q, we use Gaussian quadrature. For Monte Carlo, we use the traditional Monte Carlo method, i.e., random samples. For

PC-R, we use Latin-Hypercube sampling (McKay et al., 1979) to generate the samples needed to construct the linear system.

We solve the linear system with least-squares. For a given number of samples, given by the total polynomial order p, we use5

10-fold cross-validation to find the least-squares best fit from polynomials of total order 1 up to total order p. The sampling

methods and the polynomial chaos methods we use are implemented in the open-source DAKOTA toolkit (Adams et al., 2017).

6 Results

The Annual Energy Production (AEP) of a wind farm is obtained by integrating the power output of the farm over the different

wind conditions. Thus, we first characterize the power output of the wake model for different input conditions (Sect. 6.1). Next,10

we focus on the convergence of the AEP (Sect. 6.2), and then on the wind farm layout optimization problem to maximize the

AEP (Sect. 6.3).

6.1 Power response as a function of the uncertain variables

The power production, computed with the Floris wake model, for the four wind farm layouts (Sect. 5.2) as a function of both

the wind direction and the wind speed is shown in Fig. 5. The wind direction is measured from North and increases clockwise.15

The power response as a function of the wind direction is highly oscillatory, and for layouts with structure6, it is periodic. The

peaks in the contour lines identify wind directions for which there is a poor performance (low power). The grid-like layouts

(top row of Fig. 5) have larger peaks due to wind turbines being aligned along particular directions and thus experiencing

full-wake conditions. The worst wind direction for the Grid layout is directly from North (0�) or South (180�) when rows of

ten turbines are aligned. The power for the Optimized layout is worst at around 125. This shows that the optimizer took into20

account that the likelihood of the wind coming from the 125direction is minimal (Fig. 3a).

The power response as a function of the wind direction has similar shapes for different wind speeds, until the speed is high

enough (larger than the rated speed of the layout) that the response gets clipped at 300MW (all sixty turbines are operating at

their rated power 5MW). As a function of the wind speed, for each wind direction, the power response starts after the cut-in

speed of 3 m
:
/
:
s and is cubic (concave up) until individual turbines start reaching rated power. After that, the power increases25

more slowly (concave down) until the farm reaches its rated power. The less grid-like layouts show a smoother transition to the

maximum power because each turbine reaches its rated speed
::::
(11.4

:::::
m / s) at different freestream speeds.

The power response as a function of the uncertain variables (wind direction and wind speed) is a complicated function,

which needs to be integrated, weighted by the likelihood of the wind conditions, to obtain the AEP of the wind farm. Next, we

show that using polynomial chaos, instead of the rectangle rule, results in better estimates of the AEP.30

6Wind turbines are aligned in particular directions. The layouts are grid-like and have symmetry planes.
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Figure 5. Power contours as a function of wind direction and wind speed for the Grid, Amalia, Optimized and Random layouts. The grid-like

layouts (top row) have larger peaks due to wind turbines being aligned along particular directions and thus experiencing full-wake conditions.

For all layouts as the speed increases the power increases until the wind farm reaches its rated power 300 MW.

6.2 AEP convergence: polynomial chaos vs. rectangle rule

We consider the AEP as a function of two uncertain variables: the wind speed and the wind direction. The AEP is usually

considered a function of these two variables. We compare the convergence of the AEP for the different methods to compute

the AEP: polynomial chaos (based on quadrature and regression), the rectangle rule and Monte Carlo (Fig. 6). The polynomial

chaos based on regression (PC-R) performs the best for all layouts. It is followed, by the polynomial chaos based on quadrature5

(PC-Q) and the rectangle rule, which perform similarly. The worst performer is Monte Carlo. The slow convergence of statistics

with Monte Carlo is well known. Monte Carlo will start to outperform the other methods when the AEP is a function of a large

number (5–10) of uncertain variables, as it does not suffer from the curse of dimensionality.

The superior performance of the polynomial chaos based on regression, especially for the grid like-layouts (Grid and

Amalia), is due to the following: the polynomial chaos fit based on regression does not chase all the high-frequency oscil-10

lations in the power response (Fig. 5), i.e., it smooths out the response. The PC-R fit is usually not higher than an eight
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Figure 6. The average AEP error as a function of the number of samples for polynomial chaos (based on regression and quadrature), the

rectangle rule and Monte Carlo. The AEP is a function of two uncertain variables the wind direction and wind speed. The polynomial chaos

based on regression performs best for all layouts.

total-order polynomial (Sect. 4.1). Whereas, the PC-Q order fit is higher, as it is directly proportional to the number of samples

per dimension7. A downside of the PC-R being able to predict the mean (AEP) accurately, is that it can underpredict the true

variance (standard deviation) of the response (Fig. 7). Usually, the standard deviation of the power response (energy) over

a year is not considered as a function to optimize. A common objective in wind farm optimization is to maximize the total

amount of energy produced over a year independent of the variability in the power production over the year. For a wind farm,5

the variability of the energy produced over a year is less important than the variability caused by the changing wind conditions

during the day.

In what follows we will compare the PC-R (the best performing method) with the rectangle rule (the method currently

used in practice) to quantify the reduction of samples needed to compute the AEP accurately. Also, we will sometimes use
7For the two-dimensional problem at 625 samples (25⇥ 25 grid) the polynomial order in each dimension is 24.
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Figure 7. The average standard deviation of the energy (STD) error as a function of the number of samples for polynomial chaos (based

on regression and quadrature), the rectangle rule and Monte Carlo. The STD is a function of two uncertain variables the wind direction and

wind speed. Note that the PC-R response is biased for the Grid and Amalia layouts. The PC-R underpredicts the true STD at the expense of

computing the mean (AEP) more accurately (see Fig. 6).

polynomial chaos to refer to polynomial chaos based on regression. Figure 8 only keeps PC-R and the rectangle rule results

from Fig. 6, and in addition, the figure shows the average AEP error computed with 10 and 100 sets of samples for each

method. For the rectangle rule, there is hardly any difference between the average AEP error computed with 10 or 100 sets.

For the PC-R method, the average error with 100 sets shows a smoother convergence. In general, averaging the AEP error over

10 sets of samples is enough to minimize the AEP’s sample location sensitivity and to clearly see the differences between the5

methods used for computing the AEP (Sect. 5.3).

In Fig. 8, we see that the PC-R convergence curve is consistently below the rectangle rule curve, i.e., PC-R has a smaller

error for the same number of samples or the same error for a smaller number of samples. Using the 1 % average AEP error

as a metric, we see that PC-R achieves this error with fewer samples than the rectangle rule. The reduction in the number of
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Figure 8. The average AEP error as a function of the number of samples for both the rectangle rule and polynomial chaos based on regression

(this is the same as Fig. 6, with only keeping the PC-R and the rectangle rule results). In addition, we show the average AEP error computed

with 10 (solid line) and 100 (dashed line) sets of samples (Sect. 5.3). The AEP is a function of two uncertain variables the wind direction and

wind speed. The polynomial chaos method computes the AEP more accurately with fewer samples.

samples is on the order of six
:::
four times for the Grid layout, eight times for the Amalia, ten

::::
four times for the Optimized and no

significant improvement for the Random. These reductions in the number of samples are considerable. In addition to providing

faster convergence of the AEP, the polynomial chaos based on regression method converges the AEP more smoothly—less

oscillatory, more monotone convergence. Smooth convergence is always a desired property, and it especially useful when

performing an optimization. Both methods, PC-R and the rectangle rule, perform better for the less grid-like layouts because5

there is less variability in the power responses as a function of wind direction (see Fig. 5). This is beneficial as in the first few

iterations of an optimization the starting grid-like layouts become non-grid-like and start to resemble the Optimized layout.

The polynomial chaos based on regression is not only better on average, as we have seen in Fig. 8, but it is also better in

general, as shown in Fig. 9. The shaded area in Fig. 9 shows the spread between the maximum and minimum AEP for 10
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Figure 9. Variability in the convergence of the AEP. The figures of the left column are for polynomial chaos based on regression and those

of the right column for the rectangle rule. The shaded area shows the spread between the maximum and minimum AEP for 10 realizations of

each of the number of samples. The range in the plots corresponds to ±5 % of the true AEP for each layout. The variability is significantly

smaller for polynomial chaos, which shows that in general, it outperforms the rectangle rule. The PC-R method obtains the smaller variability

by smoothing out the high-frequency oscillations present in the power response (Fig. 5).

realizations of each of the number of samples (Sect. 5.3). The solid line shows the average of those 10 realizations and the

dashed lines the ±1 % of the baseline AEP. We see that the spread is significantly smaller for the polynomial chaos based

on regression and that by around 300 samples the predictions are almost always within 1 % of the true AEP for the grid-like

layouts (Grid and Amalia) and around 100 samples for the non-grid-like layouts (Optimized and Random). In contrast, for the

rectangle rule, the error in the AEP is still larger than 1 % at 600
:::
400 samples for the Amalia layout and 500

::::
Grid

:::::
layout

::::
and5

:::
600

:
samples for the Optimized

::::::
Amalia

:
layout.
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6.3 Wind farm layout optimization

6.3.1 Optimization problem

The objective of the wind farm layout optimization is to maximize the AEP (Sect. 2.3) by changing the position of the wind

turbines. We assume a fixed number of turbines, 60, of the same type (NREL 5-MW (Jonkman et al., 2009)) and constrain the

turbines to stay within a given area and with a minimum separation between them. This objective and constraints result in a5

nonlinear optimization under uncertainty problem with deterministic constraints:

maximize
x,y

AEP (x,y,⇠)

subject to Si,j � 2 2D
::

i, j = 1 . . .60 nTurbines,
::::::::::

i 6= j

Ni,b � 0 i = 1 . . .60 nTurbines,
::::::::::

b = 1 . . .14nBoundaries
:::::::::::

,

(37)

where Si,j is the distance between each pair of turbines i and j, and D is the turbine diameter. The normal distance, Ni,b, from

each turbine i to each boundary b is defined as positive when a turbine is inside the boundary, and negative when it is outside of

the boundary. The boundary is the convex hull of the Princess Amalia layout—a fourteen-sided convex polygon (dashed-line10

boundary in the upper-left of Fig. 10). The design variables are the x, y coordinates of the 60 wind turbines, resulting in 120

design variables. The uncertain variables ⇠ in the objective are the wind direction and wind speed.

We solve the optimization problem with the gradient-based sequential quadratic programming optimizer SNOPT (Gill et al.,

2005). We use OpenMDAO (Gray et al., 2010) and its wrapper for pyOptSparse (Perez et al., 2012) to call SNOPT from

Python. We scale the variables, constraints and the objective to make them of order one, and set the tolerances to 1⇥ 10�4 per15

the function (AEP) precision.

6.3.2 Optimization results

The AEP in the optimization objective is a function of two uncertain variables the wind direction and wind speed, with

probability distributions given in Sect. 5.1. We solve the optimization under uncertainty problem, Eq. (37), for two different

starting layouts: Amalia and Random. We compute the AEP (objective) with different precision (number of samples) and20

with different methods: the rectangle rule ,
::::
using

:::
the

::::::::
rectangle

::::
rule and polynomial chaos based on quadrature and regression

::::::::
regression

::::::::
methods

::
to

:::::::
compute

:::
the

:::::
AEP. For each method, we

:::::::
consider

:
a
::::::
coarse

::::
and

:::
fine

:::::::
number

::
of

:::::::
samples

::
to

::::::::
compute

:::
the

::::
AEP.

:::::
Also,

:::
for

::::
each

:::::::
method,

:::
we

:
run 10 optimizations, where each optimization uses different sample points to compute the

AEP (see Sect. 5.3). The 10 optimizations enable us to get a better understanding of which method is better at finding layouts

with high AEP and to avoid drawing conclusions from one-off local optima.25

The results of the optimizations are reported in Table 2. The table contains the statistics of the AEP of the optimal
::::::::::
Furthermore,

::
we

::::::::
consider

:::::
three

:::::::
different

:::::::
starting

:
layouts for the 10 optimizations of each method.The values of the AEP

:::::::::::
optimization:

::::::
Amalia,

:::::
Grid

:::
and

::::::::
Random

:::::
(Sect.

:::::
5.2).

:::
The

::::::
results

:::
of

:::
the

::::::::::::
optimizations

:::
are reported in Table 2are computed with 200,000
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Table 2. The AEP statistics of the optimized layouts. We generate the
:::
AEP

:
statistics for each method from a set of 10 different optimizations.

Polynomial
::
For

:
a
::::::
similar

::::::
number

::
of

::::::
samples,

::::
both

:::::
coarse

:::
and

::::
fine,

::::::::
polynomial

:
chaos based on regression on average produces

::::
better

::::::
optimal

:::::
layouts

::::
than the best optimums when the different methods to compute the AEP use roughly the same number of samples (⇠ 225)

:::::::
rectangle

:::
rule. Furthermore,

::::
using

:::::
about

:::::::
one-third

::
of

::
the

:::::::
samples, PC-R optimums

:::::
optima

:
are comparable with the optimums

:::::
optima obtained with the

rectangle rule that used 625 samples to compute the AEP. Starting the optimizations from an already good layout (Amalia), will in general,

find layouts that are better than starting from a bad layout (Random). The values of the AEP reported are computed with 200,000 Monte

Carlo samples.

Starting layout: Amalia Starting layout: Grid Starting layout: Random -2pt
:::
-4pt>-2pt

:::
-4pt

AEP (GWh) AEP (GWh) AEP (GWh)

::::::
Method

:
#
:::::::
Samples mean

::
±

::
std

:
max min

::::
mean

::
± std

::::
max mean

::
±

::
std

:
max min std

PC-Q
:::::::::
PC-R-coarse 225

:::
231 1174

::::
1359

::
±

::
1.5

:
1179

::::
1362 1168 3

:::
1362

::
±

:::
2.0

::::
1365 1163 1169

::::
1357

::
±

::
2.0

:
1151 5

:::
1360

:

PC-R [
:::
-3pt]

:::::::
PC-R-fine

:
231

:::
630 1182

::::
1362

::
±

::
1.8

:
1184

::::
1367 1179 1

:::
1367

::
±

:::
1.2

::::
1369 1178 1183

::::
1363

::
±

::
1.8

:
1173 3

::::
1367

rect
::::::::
rect-coarse 225 1179

::::
1356

::
±

::
1.1

:
1180

::::
1358 1177 1

:::
1354

::
±

:::
2.2

::::
1357 1169 1173

::::
1349

::
±

::
1.4

:
1162 3

::::
1351

rect-fine 625 1183
::::
1360

::
±

::
1.0

:
1184

::::
1361 1182 1

:::
1365

::
±

:::
1.3

::::
1367 1179 1182

::::
1358

::
±

::
1.0

:
1176 2

::::
1360

Monte Carlo samples. The same 200,000 samples—wind direction, wind speed pairs—are used to test the optimal layouts

obtained by each method.

Polynomial .
:

:::
The

::::::::
optimum

::::::
layouts

:::::::
obtained

::::
with

::::::::::
polynomial chaos based on regression on average produces the best optimums when the

different methods to compute the AEP use roughly the same number of samples (⇠ 225). Furthermore, PC-R optimums are5

comparable with the optimums
::
are

:::::
better

::::
than

:::::
those

:
obtained with the rectangle rulethat used 625

:
.
:::
For

::
a

::::::
similar

::::::
number

:::
of

samples to compute the AEP.

Starting the optimizations from an already good layout (Amalia) will, in general, find layouts that are better than starting

from a bad layout (Random). When considering all the methods, on average , the optimal layouts starting from the Amalia

have an AEP that is 0.62 % higher than those starting from the Random layout. However, starting from random layouts gives10

the turbines more freedom to move around the design space with ,
:
the potential of finding novel and better

:::::::::::
optimizations

::::
with

:::::::::
polynomial

:::::
chaos

:::::::
produce

:::
on

:::::::
average

::::::
optimal

:
layouts

::::
with

:::
0.4

::
%

::::::
higher

::::
AEP

::::
than

:::
the

::::::::::::
optimizations

::::
with

:::
the

::::::::
rectangle

::::
rule.

::::
Also,

:::::
using

:::::
about

::::::::
one-third

::
of

:::
the

::::::::
samples,

::
the

:::::::
optima

:::::::
obtained

::::
with

::::::::::
polynomial

:::::
chaos

:::
are

:::::::::
comparable

:::
to

::::
those

::::::::
obtained

::::
with

::
the

::::::::
rectangle

::::
rule.

:::::::::::
Furthermore,

::::::::::
polynomial

:::::
chaos

:::::
finds

:::::
better

::::
local

::::::
optima

::::
than

:::
the

::::::::
rectangle

::::
rule

::
for

:::
all

:::
the

:::::::
different

:::::::
starting

::::::
layouts

:::::::::
considered

::::::
(Table

::
2).15

The optimal layouts with the maximum AEP for each method and starting layout are shown in Fig. 10. For the optimums
::
As

:::
can

::
be

::::
seen

::
in

::::
that

:::::
figure,

:::
the

:::::
wind

::::
farm

::::::
layout

::::::::::
optimization

:::::::
problem

:::::::
contains

:::::
many

:::::
local

::::::
optima.

::
In

:::::::
general,

:::
the

:::::::::::
turbines—in

::
the

:::::
local

::::::::::::::
optima—position

::::::::::
themselves

::
in

:::::::::::
non-grid-like

:::::::
patterns

::
to

::::::::
minimize

:::::
wake

::::::
losses.

:::::
Also,

::
to

::::::::
minimize

:::::
wake

::::::
losses,

:::
the

::::::
turbines

:::
try

::
to

::::::
spread

:::
out

::
as

:::::
much

:::
as

:::::::
possible

:::
and

:::::::
position

:::::::::
themselves

::
at
:::
the

:::::::::
boundary

::
of

:::
the

:::::
layout

:::::
(Fig.

:::
11).

::::
For

:::
the

::::::
optima
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Figure 10. Optimal wind farm layouts achieved for each method to compute the AEP. The layouts in the first column show the turbines

starting position for the optimization along with the boundary constraint (dashed-line). The optimal layouts correspond to those with the

maximum AEP from Table 2.The first row shows the optimums obtained starting from the Amalia layout; we see that the distribution of the

turbines is similar to the one of the starting layout. The second row shows the optimums starting from the Random layout; we see that the

optimal layouts obtained are less grid-like and produce more novel layouts. For each method, the optimal layouts starting from the Amalia

have a higher AEP than those from the Random.
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Export as pdf to maintain quality. Then open in Preview and crop to only get the figure.

(a) Amalia starting position. (c) Random starting position.(b) Grid starting position.

Figure 11. The initial and optimized position of the turbines . The turbines starting from
::
for

:
the Random layout move more and explore more

of the design space. These are the optimum layouts obtained with the PC-R
::::::::
PC-R-fine method from Fig. 10.

::
To

:::::::
minimize

:::::
wake

:::::
losses,

:::
the

::::::
turbines

::
try

::
to

:::::
spread

:::
out

::
as

::::
much

::
as
:::::::
possible

:::
and

::::::
position

::::::::
themselves

::
at
:::
the

:::::::
boundary

::
of

:::
the

:::::
layout.

obtained starting from the Amalia layout, we see that the distribution of the turbines is
::::::::
somewhat

:
similar to the one of the

starting layout. And for the optimums
::
As

:::
the

:::::::
Amalia

:::::
layout

::
is

::::::
already

::
a
::::
good

::::::
layout,

::
it
::
is

:::
not

:::::::::
surprising

:::
that

:::
the

:::::
local

::::::
optima

::::::::
somewhat

::::::::
resemble

:::
the

::::::
Amalia

:::::::
layout.

:::
The

::::::
optima

::::::
found starting from the Random layout , we see that the optimal layouts

obtained are less grid-like and produce more novel layouts. For each method, as shown in
::::
Grid

::::::
layout

::::
have

:::
on

:::::::
average

:::
the

::::::
highest

::::
AEP

::::::
(Table

:
2
::::

and
:
Fig. 10,

::
).

:::::
When

::::::::::
considering

::
all

::::::::
methods,

:::
on

:::::::
average,

:
the optimal layouts

:::::
found starting from the5

Amalia have a higher AEP than those
::::
Grid

:::::
layout

:::
are

:::
0.2

::
%

::::::
higher

:::
than

:::
the

:::::::
optimal

::::::
layouts

::::::
starting

:::::
from

:::
the

::::::
Amalia

:::::
layout

::::
and

:::
0.4

::
%

:::::
higher

::::
than

:::
the

:::::::
optimal

::::::
layouts

:::::::
starting from the Random . But a random start has the potential to find better optimums

as the turbines explore more of the design space
:::::
layout.

::::
The

::::
Grid

::::::
layout

::
is

:::::::::
infeasible,

::
as

:::::
many

::
of

:::
the

:::::::
turbines

:::
do

:::
not

::::::
satisfy

::
the

::::::::
boundary

:::::::::
constraint (Fig. 11).

Convergence history of the optimization. The top row shows the objective convergence and bottom row shows the design10

variable convergence. The left column is for the optimization with the Amalia starting position, and the right column is for

the optimization with the Random starting position (note the different scales). The optimization of the Amalia starting layout

converges in fewer AEP computations. The final AEP for both starting layouts is similar. The turbines move more and thus

explore more of the design space for the Random starting layout.

A typical optimization history as a number function calls is shown in Fig. 12. A function call is the AEP computation which15

requires hundreds (the number of samples specified for each method in Table 2) of calls to the wake model for the wind farm

resulting in tens of thousands of calls to the wind farm wake model per optimization. If the gradients of the AEP are computed

with a first-order finite difference, 120 (the number of design variables) times as many wind farm wake model calls would be

needed per optimization. The optimization
:::::::
However,

:::::::
starting

::::
from

:::
the

:::::::::
infeasible

:::::
layout

::
is
:::::::::
beneficial

::
as

:
it
:::::::

nudges
:::
the

:::::::
turbines

::
to

::::::
position

::::::::::
themselves

::
on

:::
the

:::::::::
boundary.

:::
The

::::::
optima

:::::
found

:
starting from the Amalia layout (Fig. 12a) converges faster than that20
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The improvement in AEP

Figure 12.
:::::::::
Convergence

::::::
history

:
of the optimized layouts from Fig. 10 over their

:::::::::
optimization

:::
for

:::
the

:::::::
different starting layouts. The

improvements are smaller when measured by 200,000 Monte Carlo samples rather than directly by
:::::::::
convergence

::::::
history

:
is
:::

for
:
the method

used to compute the AEP
:::::
layouts in the optimization

::
Fig.

:::
11.

-20pt-3ptby Monte Carlo by method by Monte Carlo by method -3ptPC-Q -0.09 1.23 14.91 21.34 PC-R 0.35 2.02 16.34 17.18 rect 0.02

1.35 15.33 17.75 -3ptrect-fine 0.30 2.36 16.23 17.22 -3pt0.14 1.74 15.70 18.37

starting from the Random layout (Fig. 12b). The optimization with the Amalia starting layout converges in 114 optimization

iterations as opposed to 367 for the Random starting layout . The design variables (turbines’ positions) change an order of

magnitude less for the Amalia starting layout (Fig. 12c) than for the Random starting
:::::::
Random

:
layout

::::
have

:::
on

:::::::
average

:::
the

:::::
lowest

:::::
AEP,

:::
but

::::
they

::::
have

:::
the

::::
most

:::::::::::
improvement

::
in
:::::
AEP

::::
over

:::
the

::::::
starting

::::::
layout

:::::::
showing

:::
that

:::
we

::::
can

:::
find

::
a

::::
good

::::::
layout

::::
even

::::
from

:
a
::::
poor

:::::::
starting

:::::::
position

:
(Fig. 12d). For the Amalia case, the cumulative displacement of all turbines measured in turbine5

diameters is 315 and for the Random case 2790. In general, most optimizations we performed behaved similarly to those shown

in Fig. 12. The optimizations starting from the Amalia layout run for fewer iterations (usually on the order of 100) with less

design variable change
:
).
::::
Due

::
to

:::
the

::::::::
presence

::
of

:::::
many

::::
local

:::::::
optima,

::::::
starting

:::::
from

:
a
:::::
good

:::::
layout

::::
will

::::::
usually

::::
find

::::::
layouts

::::
that

::
are

:::::
better

:
than those starting from the Random layout. Most of the optimizations we ran either successfully converged or were

on their way to satisfying the convergence criteria before they reached the time limit we set to save computational cost.
:
a
::::
bad10

::::::
layout,

:::::
such

::
as

:::
the

::::::::
Random.

To properly compare the results obtained by the different methods used to compute the AEP in the optimization, we should

compute the AEP of the optimal layout with a method that was not used for
::
in

:
the optimization. We use

::::
The

:::::
values

:::
of

:::
the

::::
AEP

:::::::
reported

::
in

:::::
Table

:
2
::::
and

:::
Fig.

:::
10

:::
are

::::::::
computed

::::
with

:
200,000 Monte Carlo

::::::
samples.

::::
For

::::::::::
consistency,

:::
and

::
to

:::::
avoid

::::::::
potential

:::::::::
uncertainty

::
in

:::
the

::::::
results

:::::::::
introduced

:::
by

:::
the

::::::
sample

::::::::
locations,

:::
we

:::
use

:::
the

:::::
same

:::::::
200,000 samples—wind direction, wind speed15

pairs—to test the AEP
:::::::
evaluate

:::
the

:::::::
optimal

::::::
layouts

::::::::
obtained

::
by

:::::
each

:::::::
method.

:::::
Using

:::
the

:::::
AEP

::::::::
computed

:::::
with

::::::
Monte

:::::
Carlo

::
to

:::::::
measure

:::
the

::::::::::::
improvement of the optimal layouts. For

:::::
layout

:::::
over

:::
the

:::::::
starting

:::::
layout

::::
will

:::
in

::::::
general

:::
be

:::::
lower

:::::
than

:::
the

:::::::::::
improvement

::
in

::::
AEP

::
as

:::::::::
measured

::
by

:::
the

:::::::
method

::::
used

::
in

:::
the

:::::::::::
optimization

::::::
(Table

::
3).

::::
For

::::::::
example,

::
for

:
the optimal layouts in

Fig. 10, with the Amalia starting layout, the average improvement in AEP over the starting layout for all the methods is 0.14
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::::
0.36 % when measured with the Monte Carlo samples and 1.74

::::
1.50 % when measured by the method used in the optimization.

For the optimizations starting from the Random layout, the average AEP improvements are 15.70
::::
2.06 % for Monte Carlo and

18.37
::::
3.20 % for the method used in the optimization(see Table 3). The reporting of the AEP computed by Monte Carlo

explains why some of the results reported .
:::
As

:::
the

:::::::::::
optimizations

:::::::
starting

::::
from

:::
the

::::
Grid

:::::
layout

:::
are

:::::::::
infeasible,

:::
we

::
do

:::
not

:::::::
include

::
the

::::::::::::
improvement

::
in

::::
AEP

:::
for

:::
the

::::
Grid

:::::
layout

:
in Table 2 and Fig. 10 have a smaller AEP than its starting layout.5

The improvements
:
3.

::::
The

::::::::::::
improvements

:::
we

::::
have

:::::
found

:
starting from the Amalia layout are similar to those found by Ge-

braad et al. (2017) for turbine position optimization. The large improvements in AEP

::::
Most

::::::::::::
optimizations

:::::::
required

::
on

::::
the

::::
order

:::
of

:::
one

:::::::
hundred

::::::::
function

::::
calls

::
to

:::::::
compute

:::::
AEP.

::::
The

:::::::::::
optimization

::::::
history for the

layouts starting from the Random layout show that the optimizer can find good layouts from a bad starting position.Thus, to

search for the best layout, we would perform many optimizations with random starts.10

From all the optimizations runs, we conclude that computing the AEP with polynomial chaos based on regression produces

the best layouts—around 1 % higher AEP when starting from a random start—for the same
::
in

:::
Fig.

:::
11

:::
are

::::::
shown

::
in

::::
Fig.

:::
12.

::::
Note

:::
that

:::::
each

::::
AEP

:::::::::::
computation

:::::::
requires

::::::::
hundreds

:::
(the

:
number of samples . This is because PC-R computes the AEP more

accurately than the other methods for the same number of samples (Sect. 6.2) . Furthermore, the optimization with PC-R finds

optimums comparable to those found with the rectangle rule that used roughly three
::::::::
specified

::
for

:::::
each

::::::
method

::
in

:::::
Table

::
2)
:::

of15

::::
calls

::
to

:::
the

::::
wake

::::::
model

::::::::
resulting

::
in

:::
tens

:::
of

::::::::
thousands

::
of

:::::
calls

::
to

:::
the

::::
wind

::::
farm

:::::
wake

::::::
model

:::
per

:::::::::::
optimization.

::
If

:::
the

::::::::
gradients

::
of

:::
the

::::
AEP

:::
are

::::::::
computed

::::
with

::
a

::::::::
first-order

:::::
finite

:::::::::
difference,

:::
120

::::
(the

:::::::
number

::
of

:::::
design

:::::::::
variables) times as many simulations8.

We found that starting an optimization from a good layout will, in general, find better optimums than starting from a random

layout, but starting from the random layout can lead to novel layouts and possibly better layouts as the turbines explore more

of the design space. Finally, to properly compare between methods an ensemble of optimizations should be used and evaluated20

in the same way
::::
wind

::::
farm

:::::
wake

:::::
model

:::::
calls

:::::
would

::
be

:::::::
needed

:::
per

:::::::::::
optimization.

:::
We

::::::
showed

::::
that

:::::
using

:::::::::
polynomial

:::::
chaos

:::::
finds

:::::::::
comparable

::::::
optima

::
to

:::
the

::::::::
rectangle

::::
rule

:::
but

::::
using

::::
only

:::::
about

::::::::
one-third

::
of

:::
the

:::::::
samples

:::
per

::::
AEP

:::::::::::
computation.

:::::
Thus,

::::::::::
polynomial

:::::
chaos

::::
finds

::::::::::
comparable

::::::
optima

:::
for

::::::
roughly

::::::::
one-third

::
of

:::
the

:::::::::::
optimization

::::::::::::
computational

::::
cost.

::::
And,

:::
for

:::
the

:::::
same

::::::::::::
computational

::::
cost,

:::::::::
polynomial

:::::
chaos

::::::::
produces

:::::::
optimal

::::::
layouts

::::
with

:::
0.4

::
%

::::::
higher

::::
AEP

:::
on

::::::
average.

7 Discussion and conclusions25

A single wind farm layout optimization requires tens to hundreds of thousands of model evaluations. During the design phase

of a new wind farm, designers would need to perform many optimizations. The designers may explore scenarios with different

turbine types, different sites, larger farms with a different number of turbines and possibly even systems of wind farms. Also,

the presence of local optima would require many optimizations with different restarts to find the best layout. And, furthermore,

there is a desire to increase the fidelity of the models used to simulate the wind farm, which will increase the time and compu-30

8The rectangle rule used almost three times as many simulations to compute the AEP for each optimization iteration (see the number of samples in Table 2),

which results in the optimization using roughly three times as many simulations.
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Table 3.
:::
The

::::::::::
improvement

::
in

::::
AEP

::
of

::
the

::::::::
optimized

::::::
layouts

::::
from

:::
Fig.

:::
10

:::
over

::::
their

::::::
starting

::::::
layouts.

::::
The

:::::::::::
improvements

::
are

::::::
smaller

:::::
when

:::::::
measured

::
by

::::::
200,000

::::::
Monte

::::
Carlo

::::::
samples

:::::
rather

:::
than

::::::
directly

:::
by

::
the

::::::
method

::::
used

::
to

::::::
compute

:::
the

::::
AEP

::
in

::
the

::::::::::
optimization.

::::
-20pt>

::::
-20pt

Starting layout: Amalia Starting layout: Random
:::
-4pt>

:::
-4pt

AEP % improvement as measured AEP % improvement as measured
:::
-6pt>

:::
-6pt

::::::
Method

::
by

:::::
Monte

:::::
Carlo

::
by

::::::
method

::
by

:::::
Monte

:::::
Carlo

::
by

::::::
method

:::
-3pt>

:::
-3pt

:::::::::
PC-R-coarse

: :::
0.36

: :::
0.75

:::
2.08

: :::
2.86

::::
-3pt>

:::
-3pt

:::::::
PC-R-fine

: :::
0.73

: :::
1.19

:::
2.62

: :::
2.93

::::::::
rect-coarse

:::
0.07

: :::
2.45

:::
1.46

: :::
3.93

::::
-3pt>

:::
-3pt

::::::
rect-fine

:::
0.30

: :::
1.62

:::
2.09

: :::
3.07

::::
-3pt>

:::
-3pt

::::::
average

:::
0.36

: :::
1.50

:::
2.06

: :::
3.20

tational cost of the optimizations8. Thus, to facilitate the design phase of new wind farms and to incorporate the use of higher

fidelity models in the design phase requires significant improvements to reduce the simulation requirements (computational

cost) of performing the wind farm optimization under uncertainty (OUU) problem (Fig. 1c).

We proposed the use of polynomial chaos (PC) to improve the uncertainty quantification step of the OUU problem. We

::::::::
computed

::::
AEP

:::::::::::
convergence

:::::
plots

:::
and

:
showed that polynomial chaos based on regression (PC-R) could compute the AEP5

accurately using up to an order of magnitude fewer simulations than
::
on

:::::::
average

:::::::
one-fifth

::
of

::::
the

:::::::::
simulations

::::::::
required

:::::
using

the rectangle rule, the method currently used in practice in the wind industry. For the case when the AEP is a function of two

uncertain variables, wind direction and wind speed, PC-R computes the AEP accurately (error less than 1 %) usually with

only two hundred simulations or less depending on the wind farm layout—a significant improvement over the current industry

practice of using more than a thousand model evaluations to compute the AEP.10

The layout of the wind farm influences the convergence of the AEP because the layout has a significant effect on the power

output of the farm as the wind conditions vary (Fig. 5). We considered four representative layouts: Grid, Amalia, Optimized

and Random. The power response of the grid-like layouts (Grid and Amalia) has large oscillations caused by the large drops

in power that occur when rows of wind turbines are aligned with particular wind directions. Because of the larger variability in

the power response, the grid-like layouts require more simulations than the non-grid-like layouts (Optimized and Random) to15

converge the AEP. An extension of this work that could potentially further improve the convergence of the AEP, especially for

the grid-like layouts, would be to build an approximation to the power output that takes into consideration the oscillatory and
8If instead of using the Floris wake model in the optimization, we had used a high-fidelity fully resolved Large Eddy Simulation to model the wind farm, a

back of the envelope calculation shows that the optimization would require the total Annual Energy Production (AEP) of the wind farm to power the computers

used in the simulation.
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periodic behavior of the wind farm response with respect to the wind direction (Fig. 5). For instance, by using Fourier series to

approximate the wind direction response and polynomials for the wind speed response.

The
:
In

:::::::
addition

:::
to

:::::::::
computing

:::
the

::::
AEP

:::::::::
efficiently,

::
a benefit of using polynomial chaos is that in addition to computing the

AEP efficiently it can also compute the gradient of the AEP efficiently. The use of gradients is essential to enable large-scale

wind farm optimization. We described how to compute the gradients of the AEP in (Sect. 4.3).
:
A

::::::
benefit

::
of

:::::
using

:::
the

::::::::
rectangle5

:::
rule

::
is

:::
that

:::
no

::::::
special

:::::::::::
consideration

::
is
::::::::
necessary

:::
for

:::::::::
correlated

::::::::
uncertain

::::::::
variables;

::::::::
whereas,

::
for

::::::::::
polynomial

::::::
chaos,

::::
some

:::::
extra

::::::::::::
considerations

:::
are

::::::::
necessary

::
as

:::::::::
discussed

::
in

::::
Sect.

::::
4.4.

:
Another benefit of using PC is that it can easily incorporate multiple

fidelity models to accelerate the convergence of statistics (Ng and Eldred, 2012; Palar et al., 2016), such as the AEP (Padrón,

2017). Furthermore, the effect of other uncertain variables (such as wake model parameters(Padrón, 2017)) on the AEP, can

easily be incorporated in the polynomial chaos framework.10

Here, we assumed that the
::
As

:::
the

:::::::
number

:::
of

::::::::
uncertain

::::::::
variables

:::::::::
increases,

:::::::::
polynomial

::::::
chaos

:::::
based

:::
on

:::::::::
regression

::::
will

:::::::
continue

::
to

:::::::::
outperform

:::
the

::::::::
rectangle

:::
rule

::::
(see

:::::::::::::::
Padrón (2017) for

::
an

:::::::
example

::::
with

::::
three

:
uncertain variables—wind direction and

wind speed—are independent. In general, this is not the case as the wind directionand wind speed are usually correlated. The

polynomial chaos method has been generalized to accommodate correlated variables. One approach is to perform a (linear or

non-linear) variable transformation (Feinberg and Langtangen, 2015) to uncorrelate the variables before applying polynomial15

chaos. These transformations can degrade the convergence rate (Eldred et al., 2008; Oladyshkin and Nowak, 2012). Another

approach is to construct polynomials that are orthogonal to the multivariate distribution instead of orthogonal polynomials for

each dimension (Navarro et al., 2014). A third approach is to find subsets of the wind direction in which the wind direction

and wind speed can be considered independent, and then combine the polynomial chaos expansions of each of the subsets

(Murcia et al., 2015). This is known as multi-element polynomial chaos (Wan and Karniadakis, 2006). An interesting extension20

of this work would be to study the effect of different wind distributions, including correlated distributions, on the convergence of

the AEP.
:::::
speed,

:::::
wind

::::::::
direction,

:::
and

:::::
wake

:::::
model

::::::::::
parameter).

:::
For

:
a
:::::
large

::::::
number

::::::
(5-10)

::
of

::::::::
uncertain

::::::::
variables,

:::
the

::::::
Monte

:::::
Carlo

::::::
method

:::::
will

::::
start

::
to

:::::::::
outperform

::::::::::
polynomial

:::::
chaos

:::::::
because

:
it
::::
does

:::
not

::::::
suffer

::::
from

:::
the

:::::
curse

::
of

::::::::::::
dimensionality

::::::::::::
(Smith, 2014).

:

We performed multiple gradient-based wind farm layout optimizations to compare the optimization results obtained with

the different methods to compute the AEP: polynomial chaos based on regression , polynomial chaos based on quadrature,25

and the rectangle rule. The goal of the optimization was to maximize the Annual Energy Production (AEP) of the wind farm.

The layout optimization is an optimization under uncertainty (OUU) problem (Fig. 1c) with the wind speed and wind direction

as uncertain variables and the positions of the wind turbines as design variables. In the resulting optimal layouts, the turbines

position themselves in non-grid-like patterns
:::
and

:::::
spread

::::::
toward

::::
the

::::::::
boundary to minimize wake losses. For the optimization

problem posed, the are many local optima with different patterns and nearly equivalent AEP .
:::::
similar

:::::
AEP

::::
(Fig.

::::
10). To search30

for the best optima, different starting layouts should be considered. We observed that starting from a good layout (
::::
Grid, Amalia)

will, in general, find better optimums
::::::
optima than starting from a bad layout (Random).

An ensemble of optimizations should be used to properly compare the optimal layouts obtained using the different methods

to compute the AEP. Also, for proper comparison, the AEP of the optimized layouts should be evaluated in the same way

and with a method different from the one used in the optimization. To be confident about the differences between the optimal35
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layouts, we evaluated the AEP of each optimized layout using the same 200,000 Monte Carlo samples. We found that the

benefits of being able to efficiently compute the AEP with PC-R translate to being able to find better optimums
::::::
optima than

those obtained when computing the AEP with the rectangle rule when using the same number of simulations. With
:::
On

:::::::
average,

::::
with PC-R we find optimums that are 1

::::::
optima

:::
that

:::
are

:::
0.4 % better than those found with the rectangle rule. This is a significant

improvement as a 1 % increase in the AEP for a modern large wind farm can increase its annual revenue by millions of dollars.5

::::
Also,

:::::
using

:::::
about

::::::::
one-third

::
of

:::
the

::::::::::
simulations,

:::::
PC-R

:::::
finds

:::::::::
comparable

::::::
optima

::
to
:::::
those

:::::
found

:::
by

:::
the

::::::::
rectangle

::::
rule.

An interesting and relevant extension of the optimization workpresented here
:::::::
extension

:::
of

:::
this

::::::
work,

:::
that

::::::
could

::::::
further

:::::::
improve

:::
the

::::
AEP,

:
would be to allow for yaw-based wake control .

:::::
control

:::
in

:::
the

::::::::::
optimization

::::::::
problem

::
to

::::
take

::::::::
advantage

:::
of

::::
wake

:::::::::
deflection.

:::::::::::::::::::::::
Gebraad et al. (2017) found

::::
that

::::::::
including

::::
yaw

:::
for

::::
each

:::::
wind

:::::::
direction

:::
in

:
a
:::::::::
secondary

:::::
layout

::::::::::::
optimization,

::::
after

:::::
layout

:::::::::::
optimization

:::::::
without

:::::
yaw,

:::::::
resulted

::
in

:::
an

:::::::::
additional

:::
3.7

::
%

::::::::
increase

::
in

:::::
AEP. Including wake deflection in the10

wind farm layout optimization increases the complexity of the problem in terms of the number of design variables because

every wind direction (and to a lesser extent, wind speed) calls for different yaw values for each turbine. The increased num-

ber of design variables makes the problem much more difficult for gradient-free optimization methods and can slow down

gradient-based optimization methods as well (Thomas et al., 2017). As we have seen, polynomial chaos reduces the number

of simulations (wind directions and wind speeds considered). Thusit could ,
::
it
:::::
could

::::
also greatly reduce the number of simula-15

tions in optimization with yaw control. The layouts obtained by including yaw in the layout optimization are similar to those

obtained without yaw in the layout optimization (Gebraad et al., 2017). However, the expected gains from optimized yaw are

non-trivial. Gebraad et al. (2017) found that including yaw for each wind direction in a secondary layout optimization, after

layout optimization without yaw, resulted in an additional 3.7 % increase in AEP.
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