
Polynomial chaos to efficiently compute the annual energy
production in wind farm layout optimization
Andrés Santiago Padrón1, Jared Thomas2, Andrew P. J. Stanley2, Juan J. Alonso1, and Andrew Ning2

1Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, USA
2Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA

Correspondence to: Andrew Ning (aning@byu.edu)

Abstract.

In this paper, we develop computationally-efficient techniques to calculate statistics used in wind farm optimization with

the goal of enabling the use of higher-fidelity models and larger wind farm optimization problems. We apply these techniques

to maximize the Annual Energy Production (AEP) of a wind farm by optimizing the position of the individual wind turbines.

The AEP (a statistic) is the expected power produced by the wind farm over a period of one year subject to uncertainties in5

the wind conditions (wind direction and wind speed) that are described with empirically-determined probability distributions.

To compute the AEP of the wind farm, we use a wake model to simulate the power at different input conditions composed

of wind direction and wind speed pairs. We use polynomial chaos (PC), an uncertainty quantification method, to construct a

polynomial approximation of the power over the entire stochastic space and to efficiently (using as few simulations as possible)

compute the expected power (AEP). We explore both regression and quadrature approaches to compute the PC coefficients.10

PC based on regression is significantly more efficient than the rectangle rule (the method most commonly used to compute

the expected power). With PC based on regression, we have reduced on average by a factor of five the number of simulations

required to accurately compute the AEP, thus enabling the use of more expensive, higher-fidelity models or larger wind farm

optimizations. We show how the PC method can be used to efficiently compute the gradients of the AEP and we perform

a large suite of gradient-based optimizations with different initial turbine locations and with different numbers of samples15

to compute the AEP. We find that the optimizations with PC based on regression result in optimized layouts that produce

comparable AEP as the optimized layouts found with the rectangle rule but using only one-third of the samples (one-third of

the computational cost). Furthermore, for the same computational cost, polynomial chaos finds optimal layouts with 0.4 %

higher AEP on average.

1 Introduction20

In 2015, wind energy growth accounted for almost half of the global electricity supply growth. In the United States, it accounted

for 41 % of new power capacity, raising the wind energy supply to 4.7 % of the total electricity generated in 2015 and on target

to reach 10 % by 2020 (U.S. Department of Energy, 2015; AWEA, 2016; GWEC, 2016). Most of the current and upcoming

wind energy comes from large turbines (greater than 1 MW) situated in clusters—wind farms. A problem with putting turbines
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Figure 1. Examples of applications that require many model evaluations. In deterministic optimization (a), we evaluate the model at different

values of the design variables while searching for an optimum response. In uncertainty quantification (b), we query the model multiple times

at different instances of the uncertain variables to generate an ensemble of responses from which we can compute statistics and probabilities

of the model response. In optimization under uncertainty (OUU), we optimize a statistic. OUU is computationally expensive as it requires

many model evaluations because of the nested loop in the problem formulation (c).

together in confined spaces is that they operate in the wakes of other turbines, i.e., in regions of reduced speed and increased

turbulence. This leads to an underproduction of power and decreased (10–20 %) energy output for the farm (Barthelmie et al.,

2007, 2009; Briggs, 2013) when compared to ideal conditions. This loss in energy capture results in millions of dollars of loss

for operators and investors and increased economic uncertainty for new installations. Many current wind farms have grid-like

layouts, where wind turbines are aligned in rows, which further exacerbate the wake losses. By optimizing the layout of the5

wind farm, the wake losses can be minimized, with a corresponding increase in energy production and revenue.

Wind farm optimization is a complex, multi-disciplinary and high-dimensional problem. The wind farm may contain dozens

or even hundreds of wind turbines, where each turbine may be parameterically described using several design variables. Fur-

thermore, the wind conditions (wind direction, wind speed, wind turbulence, etc.) are stochastic (uncertain), and thus we need

a statistic to evaluate the performance of the wind farm. A common statistic is the expected power or the Annual Energy10

Production (AEP). Many model simulations are needed to estimate the statistic (Padrón et al., 2016; Murcia et al., 2015). The

statistic is usually the objective function of the optimization (Herbert-Acero et al., 2014); thus, the wind farm optimization

is an optimization under uncertainty problem (Fig. 1). Optimization under uncertainty (OUU) differs from deterministic op-

timization in that it contains a nested uncertainty quantification loop to compute statistics. In the OUU problem, for every

optimization step many model evaluations are needed to compute the relevant statistics. Thus, even with a very small number15

of design variables per turbine, the total number of variables and simulations required by the wind farm optimization can grow

very rapidly (Gebraad et al., 2017) and quickly make the problem infeasible, especially when using a high-fidelity model for

the wind farm simulation.
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We see three approaches to improving wind farm optimization capabilities. Each approach focuses on the different blocks

of the optimization under uncertainty problem (Fig. 1c). The first approach is to improve the modeling quality of entire wind

farms, i.e., improve the models in all the disciplines (aerodynamics, structures, controls, electrical, acoustics, atmospheric

physics, policy, economics, etc.) that are relevant to building and operating a wind farm, as well as the interaction between the

different turbines. The second approach is to improve the optimization problem formulation and the algorithms to solve the5

optimization. And the third approach is to improve the treatment of the stochastic nature of the problem, i.e., develop better

uncertainty quantification methods to efficiently compute the relevant wind farm statistics (and their gradients with respect to

the design variables of the problem) used in the optimization under uncertainty problem.

The first approach increases the fidelity of the model whereas the second (optimization) and third (uncertainty quantification)

approaches seek to reduce the number of model evaluations, as this enables the study of larger and more realistic problems.10

Here, we focus on the uncertainty quantification approach (the third approach), as it has not been considered in detail before.

The most recent and thorough review of the wind farm optimization literature (Herbert-Acero et al., 2014) does not mention

it. It only mentions the first two approaches. In the existing work in the literature, the third approach typically focuses on

simple integration methods to compute the statistics, which quantify the effect of the stochastic inputs (Kusiak and Song,

2010; Kwong et al., 2012; Chowdhury et al., 2013; Fleming et al., 2016; Gebraad et al., 2017). Simple integration methods,15

such as the rectangle rule, are inefficient in the number of samples (simulations of the model) needed to accurately estimate a

statistic, such as the AEP. They are especially inefficient if multiple stochastic inputs are considered simultaneously. Normally

only the wind direction and/or the wind speed are considered as stochastic input variables. Recent work (Padrón et al., 2016;

Murcia et al., 2015) is starting to move beyond these simple integration techniques to compute the AEP and instead using the

uncertainty quantification method of polynomial chaos to compute the AEP.20

In this paper, which is meant as a comprehensive introduction to uncertainty quantification methods applied to wind-farm

simulations, we describe in detail the polynomial chaos (PC) method and show that, for the efficient (small number of model

simulations) computation of the AEP, the PC method based on regression should be used. An additional benefit of the PC

method is that it makes it feasible to consider multiple uncertain variables (e.g., wind direction, wind speed, wind turbulence,

wake model parameter) that impact the computation of the AEP. An example where a wake model parameter is considered as25

an uncertain variable in addition to the wind speed and wind direction can be found in Padrón (2017).

In addition, the PC method can be used to efficiently compute the gradient of statistics, such as the AEP. Eldred (2011)

describes how to compute the gradients for PC based on quadrature. Here we show how to compute the gradients for PC based

on regression (Sect. 4.3). The use of gradients allows us to efficiently tackle much larger optimization problems (Gebraad et al.,

2017). To compute the gradients of the wake model, we use the recently developed Floris wake model with the modifications30

by Thomas et al. (2017) that provide analytic and continuous gradients of the wake model.

We first discuss the details of computing the power and the AEP of a wind farm in Sect. 2. Then, we discuss uncertainty

quantification in Sect. 3 and the polynomial chaos method in Sect. 4. Finally, we discuss the details of the problem formulation

in Sect. 5 and the results in Sect. 6.
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Figure 2. Schematic of the Floris wake model. The model has three zones with varying diameters, Dw,q , that depend on tuning parameters

ke and me,q . The effective hub velocity is computed using the overlap ratio, AOLq , of the part of the rotor-swept area overlapping each wake

zone respectively to the total rotor-swept area.

2 Computing the power and the annual energy production of a wind farm

We first describe the aerodynamic wake model we use (Sect. 2.1). The wake model gives an estimate of the hub-height velocity

at each wind turbine, from which we can compute the power produced by the wind farm (Sect. 2.2). Then, to obtain the Annual

Energy Production (AEP) we need to integrate the power over all wind conditions that occur in a year (Sect. 2.3) and weigh

the results proportionally to the frequency with which such wind conditions manifest themselves.5

2.1 Floris

The Floris (FLow Redirection and Induction in Steady-state)1 (Gebraad et al., 2016) wake model is an enhancement of the

Jensen wake model (Jensen, 1983) and the wake deflection model presented in (Jiménez et al., 2009). The Floris model builds

on the Jensen model by defining three separate wake zones with differing expansion and decay rates (controlled by tunable

coefficients) to more accurately describe the velocity deficit across the wake region. A simple overlap ratio of the area of10

the rotor in each zone of each shadowing wake to the full rotor area is used to determine the effective hub velocity of a given

turbine. A simple overview of the Floris model, showing the zones and overlap areas, is shown in Fig. 2. We use the Floris wake

model with changes to remove discontinuities and add curvature to regions of non-physical zero gradient to make the model

more suitable for gradient-based optimization (Thomas et al., 2017). In this work, we use the parameter values recommended

in (Gebraad et al., 2016) and (Thomas et al., 2017) and set the yaw-offset angle of each turbine to zero.15

1We use the name Floris for the model, instead of FLORIS, the name used in (Gebraad et al., 2016).
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Table 1. The variables used for calculating the power.

Uncertain ξ
wind direction.

freestream wind speed.

Design x
x - The x location of each turbine.

y - The y location of each turbine.

Parameters θ
yaw angles, turbine characteristics,

and wake model parameters.

2.2 Computing the power of a wind farm

We will consider the power of the wind farm to be a function of three classes of variables: uncertain variables ξ, design variables

x, and parameters θ,

P = P (ξ,x,θ). (1)

Uncertain variables are variables that follow a probability distribution, design variables are variables that an optimizer can vary,5

and parameters are important constants that govern the behavior of the system. The classification of the variables is problem

dependent. For instance, the rotor yaw could be considered a design variable, a parameter, or an uncertain variable to account

for yaw-offset measurement error. A tunable parameter of a wake model, such as the wake expansion coefficient, could be

considered as a parameter or as an uncertain variable given by a particular distribution.

For the problems considered in this work, Table 1 lists in which category we place each variable that influences the power10

computation. The uncertain variables are the wind direction and wind speed with probability distributions described in Sect. 5.1.

The power of the wind farm for a given wind direction and wind speed is equal to the sum of the power produced by each

turbine P =
∑nturb
i=1 Pi. The power of each turbine is calculated from

Pi =
1

2
ρCPAU

3
i , (2)

where ρ is the air density, A is the rotor swept area, CP is the power coefficient, and Ui is the effective hub velocity for each15

turbine, which is calculated by the wake model and is a function of the three types of variables described above,Ui = f(ξ,x,θ).

The power coefficient captures both the aerodynamic and electromechanical properties of the wind turbine. It is a complex

function of many variables (Herbert-Acero et al., 2014) and is usually reported by wind turbine manufacturers as a function of

the tip-speed ratio, which depends on wind speed at hub height Ui. A simple expression for Cp can also be computed using the

classical actuator disk theory (Sanderse, 2009).20
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2.3 Computing the Annual Energy Production (AEP) of a wind farm

The Annual Energy Production (AEP) is an important metric used to describe a wind farm. The AEP is a statistic. Specifically,

it is a mean, as it is a function of the expected power multiplied by the number of hours in a year,

AEP = 8760
hr

yr
E[P (ξ)]. (3)

The expected power, E[P (ξ)], or the mean of the power, µP , is defined as5

µP = E[P (ξ)] =

∫
Ω

P (ξ)ρ(ξ)dξ, (4)

where ξ = (ξ1, ξ2, . . . , ξn) is a vector of random variables, which we refer to as the uncertain variables, ρ(ξ) is the joint

probability density function of the uncertain variables, Ω is the domain of the uncertain variables, and P is the power produced

by the wind farm (Eq. (1)). Common uncertain variables are the wind direction and the freestream wind speed.

The expected power, and hence the AEP, is normally computed as a weighted average, which amounts to the rectangle rule of10

integration (Sect. 3.1.1). Other uncertainty quantification methods (Sect. 3) can be used to compute the expected value (AEP).

Specifically, we can compute the AEP efficiently by polynomial chaos (Sect. 4).

3 Uncertainty quantification

Uncertainty quantification (UQ) is the process of (1) characterizing input uncertainties, and then (2) propagating these in-

put uncertainties through a computational model with the goal of quantifying their effect on the model’s output. There are15

many sources of uncertainty in the modeling of a problem, and different classifications of the uncertainties have been pro-

posed (Kennedy and O’Hagan, 2001; Oberkampf et al., 2001; Beyer and Sendhoff, 2007). A common classification is to divide

the uncertainty into aleatory and epistemic uncertainties (Oberkampf et al., 2001).

In this work, we consider aleatory uncertainties that arise from the variability in the inputs to our model caused by changing

environmental conditions. We describe this input variability as random variables with associated probability distributions. Thus,20

the first step of characterizing the input uncertainties is concerned with finding the probability distributions that describe the

model’s inputs. This process is known as statistical inference, model calibration and inverse uncertainty quantification (Smith,

2014). Here, we assume that this step has been completed, i.e., we have distributions that characterize the uncertain inputs

(Sect. 5.1). We focus on the second step of propagating the input uncertainties to find the statistics that describe the output.

3.1 Uncertainty propagation methods25

The goal of uncertainty propagation methods is to compute the statistics that describe the effect of the uncertain inputs on

the model output. There are several methods to propagate the uncertainties and compute statistics (Le Maître and Knio, 2010;

Smith, 2014), where each method has its advantages/disadvantages depending on the type and size of the problem. The most

common methods are sampling or Monte Carlo methods (Caflisch, 1998). Other methods include direct integration methods
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and stochastic expansion methods. Direct integration methods are the currently used method to compute the AEP of a wind

farm; we briefly describe them below (Sect. 3.1.1). We describe the stochastic expansion method of polynomial chaos in detail

in Sect. 4, and compare the different methods to propagate the uncertainties to compute the AEP in Sect. 6.2.

3.1.1 Direct numerical integration (Rectangle rule)

As the name implies, this method numerically evaluates the integrals in the definition of the statistics. The integrals to evaluate5

the mean (or expected value) and the variance are

µR = E[R] =

∫
Ω

R(ξ)ρ(ξ)dξ, (5)

σ2
R = Var[R] = E[(R(ξ)−E[R(ξ)])

2
] (6)

= E[R(ξ)
2
]− (E[R(ξ)])

2 (7)

=

∫
Ω

R(ξ)
2
ρ(ξ)dξ−µ2

R, (8)10

where R(ξ) is the model output and ξ the uncertain input variables. The random vector ξ = (ξ1, ξ2, . . . , ξn) with joint proba-

bility distribution ρ(ξ) describes the input variability over the domain Ω. Each random input can follow a particular distribu-

tion ρi(ξi). For the case of independent random variables, the joint distribution is the product of each univariate distribution

ρ(ξ) =
∏n
i=1 ρi(ξi).

There are many quadrature methods to evaluate integrals (Ascher and Greif, 2011). We describe the rectangle rule, as this is15

what is currently used in the wind farm community to compute the AEP.

Rectangle rule. The rectangle rule, or mid-point rule, is the simplest and most straightforward quadrature method. To

approximate the mean or expected value,

µR = E[R] =

∫
Ω

R(ξ)ρ(ξ)dξ (5 revisited)

with the rectangle rule, we divide the domain of the uncertain variable2 Ω = [a,b] into m equal subintervals of length ∆ξ =20

(b− a)/m. Next, we construct rectangles with base B = ∆ξ and height equal to the product of the response of the model and

the density evaluated at the mid-point of the subinterval H =R(ξj)ρ(ξj). Then, the rectangle rule approximates the expected

value by adding up the areas of the m rectangles

E[R] =

b∫
a

R(ξ)ρ(ξ)dξ ≈
m∑
j=1

R(ξj)ρ(ξj)∆ξ. (9)

A simple improvement is to integrate the density exactly within each subinterval25

E[R] =

b∫
a

R(ξ)ρ(ξ)dξ ≈
m∑
j=1

R(ξj)

ξj+1/2∫
ξj−1/2

ρ(ξ)dξ. (10)

2For simplicity, we describe the 1-dimensional case, ξ = ξ.
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This improvement is easily done as the density is known. This modification is helpful for a small number of evaluations m. We

will use this modified rectangle rule and simply refer to it as the rectangle rule.

4 Polynomial chaos

Polynomial chaos (PC) is the name of an uncertainty quantification (UQ) method that approximates a function with a polyno-

mial expansion made up of orthogonal polynomials. This function has random variables as inputs, and we are interested in the5

effects of the random (uncertain) inputs on the output of this function. Statistics of the output can describe the effects of the

inputs. We use the polynomial chaos method to efficiently compute these statistics and the gradients of these statistics.

We first describe the polynomial chaos method in Sect. 4.1. We then discuss two methods—quadrature and regression—

to compute the coefficients used in the PC expansion (Sect. 4.2). In Sect. 4.3, we describe how to compute the gradients of

statistics from the polynomial chaos expansion. And, in Sect. 4.4, we discuss how the PC method can be extended to include10

correlated random inputs.

4.1 Polynomial chaos expansion

Let R(ξ) be a function of interest that depends on the uncertain variable ξ. We can approximate the function by a polynomial

expansion

R(ξ)≈ R̂(ξ) =

p∑
i=0

αiφi(ξ). (11)15

The approximate response R̂(ξ) is a polynomial of order p. Usually, the larger the polynomial order the closer the approxima-

tion is to the true response R(ξ).

The polynomial basis {φi(ξ)}pi=0 is determined by the distribution of the uncertain variable—the polynomial basis is or-

thogonal with a weight function that corresponds up to a constant to the probability density function of the uncertain vari-

able. Common random (uncertain) variables (Normal, Uniform, Exponential, Beta) have corresponding classical orthogonal20

polynomials (Hermite, Legendre, Laguerre, Jacobi) (Eldred et al., 2008). Empirically-determined distributions, such as those

obtained from wind conditions, do not have corresponding classical orthogonal polynomials. For the distributions obtained

from the wind conditions, we need to numerically generate custom orthogonal polynomials in order to preserve the optimal

convergence property of the polynomial chaos expansion (Oladyshkin and Nowak, 2012). Details about the numerical genera-

tion of orthogonal polynomials can be found in Gautschi (2004) and an example of the generation of orthogonal polynomials25

for wind distributions in Padrón (2017). In addition to the optimal convergence properties, the use of orthogonal polynomials

allows us to analytically compute statistics from the polynomial chaos expansion (Sect. 4.1.1).

In addition to the orthogonal polynomials, the other component of the expansion Eq. (11) are the coefficients αi. The

coefficients can be computed either by quadrature or regression as described in Sect. 4.2.
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For the case of multiple uncertain variables ξ = (ξ1, ξ2, . . . , ξn) and using a multi-index i = (i1, i2, . . . , in), we write the

multi-dimensional polynomial approximation as

R(ξ)≈ R̂(ξ) =
∑
i∈Ip

αiΦi(ξ). (12)

The multi-dimensional basis functions Φi(ξ) are given by products of the 1-dimensional orthogonal polynomials

Φi(ξ) =

n∏
j=1

φij (ξj). (13)5

When the uncertain variables are independent, the multi-dimensional basis functions are also orthogonal (Sect. 4.4). The values

of the elements ij of the multi-index depend on how the expansion is truncated, i.e., on how the index set Ip is defined. There

are two common ways in which to define the index set: total-order expansion and tensor-product expansion.

In total-order expansion a total polynomial order bound p is enforced:

Ip = {i : |i| ≤ p}, |i|= i1 + i2 + · · ·+ in, (14)10

which for an expansion of total order p with n uncertain variables results in an expansion with NTO = (n+p)!
n!p! terms.

In tensor-product expansion a per-dimension polynomial order bound pj is enforced

Ip = {i : ij ≤ pj , j = 1, . . . ,n}, (15)

which results in an expansion with NTP =
∏n
i=1(pi + 1) terms.

An example showing the multi-dimensional basis polynomials Eq. (13) for both the total-order expansion and tensor-product15

expansion can be found in Padrón (2017).

Note that for both total-order expansion and tensor-product expansion the number of terms exhibits an exponential increase

with an increase in the number of uncertain dimensions n. This result is known as the curse of dimensionality. The tensor-

product expansion is the preferred approach when the coefficients are computed with quadrature (Sect. 4.2.1) because of

increased monomial coverage and accuracy (Eldred and Burkardt, 2009). The total-order expansion is the preferred approach20

when the coefficients are computed with regression (Sect. 4.2.2) because it keeps the sampling requirements lower (Eldred and

Burkardt, 2009).

4.1.1 Mean and variance from the polynomial chaos expansion

The mean and variance of the function of interest R(ξ) are a function of the coefficients αi of the polynomial chaos expansion.

The statistics are obtained by substituting the polynomial chaos expansion Eq. (12) into the definitions of the mean Eq. (5) and25

variance Eq. (8), and by integrating the expansion and simplifying using the orthogonality of the polynomials.

The mean is the zeroth coefficient

µR = α0 (16)

9



and the variance is the sum of the product of the square of the coefficients—excluding the zeroth coefficient—with the inner

product 〈Φ2
i (ξ)〉,

σ2
R =

∑
i∈Ip\{0}

α2
i 〈Φ2

i (ξ)〉, (17)

where the inner product is defined as 〈Φ2
i (ξ)〉=

∫
Ω

Φi(ξ)Φi(ξ)ρ(ξ)dξ and 0 is the first multi-index—the one with all zero

elements.5

4.2 Calculating polynomial chaos coefficients

The coefficients of the polynomial chaos expansion Eq. (12) can be calculated via quadrature or by linear regression.

4.2.1 Quadrature

To obtain the coefficients of the polynomial chaos expansion

R(ξ) =
∑
i∈Ip

αiΦi(ξ), (18)10

via quadrature, we take the inner product of both sides of Eq. (18) with respect to Φj(ξ) to yield

〈R,Φj〉=
∑
i∈Ip

αi〈Φi,Φj〉. (19)

Making use of the orthogonality of the polynomials and solving for the coefficients in Eq. (19), we obtain

αi =
〈R(ξ),Φi(ξ)〉
〈Φ2

i (ξ)〉 =
1

〈Φ2
i (ξ)〉

∫
Ω

R(ξ)Φi(ξ)ρ(ξ)dξ, (20)

where the domain Ω is the Cartesian product of 1D domains Ωj for each dimension, Ω = Ω1×·· ·×Ωn, and ρ(ξ) =
∏n
j=1 ρj(ξj)15

is the joint probability density of the stochastic parameters. The inner product 〈Φ2
i (ξ)〉 is known analytically or inexpensively

computed. Thus, most of the computational expense in solving for the coefficients resides in evaluating the model R(ξ) in the

multi-dimensional integral
∫

Ω
R(ξ)Φi(ξ)ρ(ξ)dξ. This integral is solved with quadrature (numerical integration). Note that the

zero coefficient in Eq. (20) reduces to the definition of the mean

µR = α0 =

∫
Ω

R(ξ)ρ(ξ)dξ, (21)20

which the direct numerical integration methods attempt to compute directly (Sect. 3.1.1).

4.2.2 Regression

To obtain the coefficients of the polynomial chaos expansion Eq. (12) via regression, we construct a linear system

Φα =R (22)
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and solve for the coefficients α that best represent a set of responses R. The set of responses is generated by evaluating the

model at m realizations of the uncertain vector ξ. The m uncertain vectors are most commonly obtained by sampling the

density of the uncertain variables (Hosder et al., 2007).

Each row of the matrix Φ contains the orthogonal polynomials Φj evaluated at a sample ξi
Φ0(ξ1) · · · Φn−1(ξ1)

...
. . .

...

Φ0(ξm) · · · Φn−1(ξm)



α0

...

αn−1

=


R1

...

Rm

 . (23)5

The size of the m×n matrix is determined by the number of samples m and by how the polynomial chaos expansion is

truncated (Sect. 4.1) which results in n terms. It is common to specify a total order expansion along with a collocation ratio

cr =m/n to determine the number of samples m. The collocation ratio determines if the system is overdetermined cr > 1 or

underdetermined cr < 1.

For overdetermined systems, the most popular method (and the one we use) to estimate the coefficients is least squares, in10

which we pick coefficients α = (α0,α1, . . . ,αn−1) that minimize the residual sum of squares

α = arg min ||Φα−R||22. (24)

For underdetermined systems, solving a regularized least squares problem is preferred (Doostan and Owhadi, 2011).

For a given number of samples m in the linear system Eq. (23) we can use cross-validation (Hastie et al., 2009) to pick the

best polynomial order n to approximate the response.15

4.3 Gradients of statistics with polynomial chaos

Let R(ξ,x) be a function of interest that depends on uncertain variables ξ and also on design variables x. We assume inde-

pendence between the design and uncertain variables3. Now the polynomial chaos expansion—over the uncertain variables—

becomes

R(ξ,x)≈ R̂(ξ,x) =
∑
i∈Ip

αi(x)Φi(ξ). (25)20

This expansion is only valid for a particular design vector—the coefficients αi(x) are a function of the design variables.

Therefore, the statistics are also a function of the design variables. Specifically the mean and the variance are

µR(x) = α0(x), (26)

σ2
R(x) =

∑
i∈Ip\0

α2
i (x)〈Φ2

i (ξ)〉. (27)

3For most applications, the design and uncertain variables are independent. For instance, the design variables are the wind turbines location and the

uncertain variables are the wind conditions.
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4.3.1 Gradients of the statistics with polynomial chaos

We want to know the gradients of the statistics with respect to the design variables, and we proceed to derive them below. For

simplicity, we drop the subscript from the statistics µR = µ, the explicit variable dependenceR(ξ,x) =R, the bolded notation,

and we use the following notation for the gradient dfdx ≡∇f .

The gradient of the mean from Eq. (26) is5

dµ

dx
=
dα0

dx
, (28)

and the gradient of the variance from Eq. (27) is

dσ2

dx
=
∑

i∈Ip\0

〈Φ2
i 〉
dα2

i

dx
= 2

∑
i∈Ip\0

〈Φ2
i 〉αi

dαi

dx
. (29)

Both, the mean and the variance gradients, depend on the gradient of the coefficients dαi

dx .

4.3.2 Gradients of the coefficients10

The gradient of the coefficients can be computed with quadrature or regression, similarly to how the coefficients can be calcu-

lated with quadrature (Sect. 4.2.1) or regression (Sect. 4.2.2).

Quadrature. We start from the equation for the coefficients Eq. (20) and take the gradient to obtain

dαi

dx
=

1

〈Φ2
i 〉

∫
Ω

dR

dx
Φiρdξ =

〈dRdx ,Φi〉
〈Φ2

i 〉
. (30)

Replacing this equation into the gradient of the mean Eq. (28) we obtain15

dµ

dx
=

〈
dR

dx

〉
. (31)

And replacing Eq. (30) into the gradient of the variance Eq. (29) we obtain

dσ2

dx
= 2

∑
i∈Ip\0

αi

〈
dR

dx
,Φi

〉
. (32)

To obtain the gradients of the statistics with respect to each design variable we need to evaluate the multi-dimensional

integral containing dR
dx . The integral is evaluated with quadrature (Sect. 4.2.1) and requires the computation of the gradient of20

the response at each of the quadrature points. Ideally, one would use adjoint methods Giles and Pierce (2000) or algorithmic

differentiation Griewank and Walther (2008) to compute the gradients, dRdx , efficiently.
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Regression. We start from the linear system Eq. (22) and take the gradient to obtain

dΦα

dx
=
dR

dx
(33)

Φ
dα

dx
=
dR

dx
(34)

Φ0(ξ1) · · · Φn−1(ξ1)
...

. . .
...

Φ0(ξm) · · · Φn−1(ξm)




dα0

dx1
· · · dα0

dxd
...

. . .
...

dαn−1

dx1
· · · dαn−1

dxd

=


dR1

dx1
· · · dR1

dxd
...

. . .
...

dRm
dx1

· · · dRm
dxd

 . (35)

To solve for the gradient of the coefficients, we solve the linear system one column at a time of the dα
dx matrix with the5

corresponding column of the matrix of the gradients dR
dx . The linear system for the multiple right hand sides can be solved with

the methods described in Sect. 4.2.2.

Again, the gradient of the mean Eq. (28) and the gradient of the variance Eq. (29) are a function of the gradient of the

coefficients. Thus, to obtain the gradient of the mean take the first row of the dα
dx matrix; and for the gradient of the variance

use the gradient of the coefficients from all the other rows.10

4.3.3 Gradients of the statistics by direct numerical integration

Similarly to computing the mean and variance with direct numerical integration (Sect. 3.1.1), we can also compute the gradients

of the mean and variance directly with numerical integration by differentiating the definitions of the mean, Eq. (5), and the

variance, Eq. (8).

4.4 Correlated random variables15

As described, the polynomial chaos method assumes that the uncertain variables are statistically independent. In wind farm

layout optimization, the uncertain variables of wind speed and wind direction are usually correlated. There are different ap-

proaches to use polynomial chaos for problems with inputs made up of correlated (dependent) random variables. One approach

is to perform a (linear or non-linear) variable transformation (Feinberg and Langtangen, 2015) to uncorrelate the variables

before applying polynomial chaos. Another approach is to construct polynomials that are orthogonal to the multivariate dis-20

tribution instead of orthogonal polynomials for each dimension (Navarro et al., 2014). A third approach, which is the most

applicable for the wind farm layout optimization problem, consists of breaking up the domain of the uncertain variables into

smaller domains (elements). Then, constructing a polynomial chaos expansion for each of the small domains and combining

them in a piece-wise manner to cover the whole domain. This approach of breaking up the domain is known as multi-element

polynomial chaos (Wan and Karniadakis, 2006). In the context of the wind farm layout optimization problem, the new distri-25

butions for the uncertain variables in the small elements can be considered independent. For example, the wind direction and

wind speed at a particular wind farm site are usually correlated, but if the wind direction domain is broken into sectors, it can

be assumed that within each sector the wind direction and wind speed are independent (Herbert-Acero et al., 2014; Murcia

et al., 2015).
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5 Problem details

Here, we describe the details of computing AEP in the wind farm. We first describe and discuss the inputs, which are the

wind direction and wind speed (uncertain variables) (Sect. 5.1) and the wind turbine positions (design variables) (Sect. 5.2).

Then, we describe details about the output, the average AEP error (Sect. 5.3), that we use to compare the different methods we

consider to compute the AEP (Sect. 5.4).5

5.1 Probability distributions of the uncertain wind conditions

We consider the wind direction and the wind speed as uncertain variables with probability distributions shown in Fig. 3.

The distributions show the likelihood of a particular wind direction or wind speed occurring during a year. For simplicity,

we assume that the wind direction and wind speed distributions are independent (Sect. 4.4). We construct the independent

distributions starting from the wind measurements taken near the Princess Amalia wind farm (Sect. 5.2) by the NoordZeeWind10

meteorological mast during a year (Brand et al., 2012). For a wind rose of the measurements, see Gebraad et al. (2017). The

wind rose has a wind direction bin width of 5◦ and a wind speed bin width of 1 m / s throughout the operational range of the

turbine.

We construct the wind direction distribution (Fig. 3a) by linearly interpolating the wind measurements of the likelihood of

the wind coming from a particular binned wind direction for all wind speeds. The zero degree direction is set at North and15

increases clockwise.

For the wind speed, instead of linearly interpolating the data, we fit a Weibull distribution4 and then truncate it5 (Fig. 3b).

We truncate the distribution to correspond to the operational range of the turbine from the cut-in speed of 3 m / s to the cut-out

speed of 25 m / s.

The probability distributions are the weight functions of the orthogonal polynomials used in the polynomial chaos method20

(Sect. 4.1). For both of the distributions (weight functions), we use a histogram of 50 equal width bins to describe each

distribution. Using these weight functions, we then numerically generate their corresponding orthogonal polynomials.

5.2 The wind farm layouts

To showcase the results, we will focus on four representative layouts: Grid, Amalia, Optimized and Random (Fig. 4). Each

layout has sixty turbines and in the figures each turbine is represented by a dot to scale—the diameter of the dot represents25

the rotor diameter. The Grid layout fits in a box of equivalent area to that of the Amalia layout. The Amalia layout, which is

grid-like, is that of the Princess Amalia wind farm located 23 km off the coast of the Netherlands. The Optimized layout is a

representative optimal layout obtained by running the optimization problem (Sect. 6.3.1); specifically, it is the layout shown in

4The fitted Weibull—ρ(ξ; α,β) = α
β

(
ξ
β

)α−1
e−(ξ/β)α , ξ ≥ 0—has shape parameter α= 1.8 and scale parameter β = 12.55. The Weibull distribution

is the preferred distribution to model the wind speed distribution (Belu and Koracin, 2013; Herbert-Acero et al., 2014).
5The truncated distribution is no longer a full Weibull distribution and needs to be scaled to ensure it is a valid probability density function (it integrates to

1).
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Export as pdf to maintain quality. Then open in Preview and crop to only get the figure.

(a) Wind direction distribution. (b) Wind speed distribution.

Figure 3. The uncertain variables probability distributions. The vertical lines show the cut-in and cut-out speed of a single wind turbine.

Export as pdf to maintain quality. Then open in Preview and crop to only get the figure.

(a) Grid (b) Amalia (c) Optimized (d) Random

Maybe make the text weight different, from medium to regular.

Figure 4. Representative wind farm layouts used in the results. Each dot represents a wind turbine to scale—the dot represents the swept

area of the rotor.

(Fig. 11a). When we refer to this particular optimized layout, we will capitalize the word optimized. The Random layout was

generated by random sampling and keeping the turbines that are contained within the convex hull of the Amalia wind farm

while also satisfying a minimum inter-turbine spacing of three diameters. We will refer to the Grid and Amalia as grid-like

layouts and the Optimized and Random as non-grid-like layouts.

In reality, the 60 turbines in the Princess Amalia wind farm are the Vestas V80 model. For each of the layouts in our study,5

we use the NREL 5-MW reference turbine (Jonkman et al., 2009), as this turbine has an open source design.

5.3 Convergence metric — the average AEP error

We use an ensemble of 10 AEP results to compute the average AEP error. The average AEP error allows us to better illustrate the

differences between the different methods used to compute the AEP and to avoid drawing conclusions from one-off solutions.

We found that averaging over 10 AEP results is enough to illustrate the difference between methods and to smooth out the10
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convergence of the AEP error (Fig. 8). The ensemble of results account for the fact that the zero (starting) position for the wind

direction is arbitrary (it could be North, South, East, West, etc.). Also, averaging the AEP errors helps smooth out the AEP

convergence curves by reducing the sensitivity of the AEP to the quadrature (sample) points used to compute the AEP. We

generate the ensemble of AEP results by selecting 10 different input sets. For example, for the rectangle rule, if we consider

36 wind directions the 10 sets are {[0,10,20, . . . ,340,350degrees]; [1,11,21, . . . ,341,351]; . . . ; [9,19,29,349,359]}. For the5

polynomial chaos based on quadrature, the quadrature points are the numerically generated Gaussian quadrature points for

the interval. Thus, to create 10 different sets, we pick 10 different intervals, i.e., we pick different starting positions. When

considering 36 wind directions the chosen intervals are {[0,360]; [10,370]; [20,380]; . . . ; [340,700]; [350,710]}. For both the

rectangle and polynomial chaos based on quadrature, the wind speed points for each set are the same. For the polynomial chaos

based on regression and for Monte Carlo, the wind directions and wind speed pairs are generated by sampling the distribution.10

Thus, to obtain 10 different sets, 10 different samplings are performed. We use the average AEP error as the convergence metric

averageAEP error =
1

10

10∑
i=1

∣∣∣∣AEPi− baselineAEPbaselineAEP

∣∣∣∣× 100%. (36)

5.3.1 Baseline AEP

We take as the baseline or true AEP the AEP computed with 200,000 Monte Carlo samples. We picked 200,000 MC samples15

to ensure the 99 % confidence interval for the true AEP was smaller than 1 % of the computed AEP value for all layouts.

We consider an AEP within 1 % of the baseline AEP to be accurate, and we will use it as a reference for the results. AEP

predictions of real wind farms usually have an error of 10–20 % (Barthelmie et al., 2007; Briggs, 2013) due to uncertainty in

wind conditions and to the errors of wake models, thus resolving the AEP to less than 1 % is unnecessary.

5.4 Methods to compute the AEP20

Here, we provide the details of the methods used to compute the AEP, as well as, the abbreviations for the methods:

rect rectangle rule (Sect. 3.1.1)

PC-Q polynomial chaos based on quadrature (Sect. 4.2.1)

PC-R polynomial chaos based on regression (Sect. 4.2.2)

MC Monte Carlo (Caflisch, 1998)

For the quadrature-based methods (rect, PC-Q), we use tensor product quadrature to compute multi-dimensional integrals. We

use the same number of points for each dimension because we did not see any benefit in favoring a particular dimension. For

PC-Q, we use Gaussian quadrature. For Monte Carlo, we use the traditional Monte Carlo method, i.e., random samples. For25

PC-R, we use Latin-Hypercube sampling (McKay et al., 1979) to generate the samples needed to construct the linear system.

We solve the linear system with least-squares. For a given number of samples, given by the total polynomial order p, we use

10-fold cross-validation to find the least-squares best fit from polynomials of total order 1 up to total order p. The sampling

methods and the polynomial chaos methods we use are implemented in the open-source DAKOTA toolkit (Adams et al., 2017).
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Figure 5. Power contours as a function of wind direction and wind speed for the Grid, Amalia, Optimized and Random layouts. The grid-like

layouts (top row) have larger peaks due to wind turbines being aligned along particular directions and thus experiencing full-wake conditions.

For all layouts as the speed increases the power increases until the wind farm reaches its rated power 300 MW.

6 Results

The Annual Energy Production (AEP) of a wind farm is obtained by integrating the power output of the farm over the different

wind conditions. Thus, we first characterize the power output of the wake model for different input conditions (Sect. 6.1). Next,

we focus on the convergence of the AEP (Sect. 6.2), and then on the wind farm layout optimization problem to maximize the

AEP (Sect. 6.3).5

6.1 Power response as a function of the uncertain variables

The power production, computed with the Floris wake model, for the four wind farm layouts (Sect. 5.2) as a function of both

the wind direction and the wind speed is shown in Fig. 5. The wind direction is measured from North and increases clockwise.

The power response as a function of the wind direction is highly oscillatory, and for layouts with structure6, it is periodic. The

6Wind turbines are aligned in particular directions. The layouts are grid-like and have symmetry planes.
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peaks in the contour lines identify wind directions for which there is a poor performance (low power). The grid-like layouts

(top row of Fig. 5) have larger peaks due to wind turbines being aligned along particular directions and thus experiencing

full-wake conditions. The worst wind direction for the Grid layout is directly from North (0◦) or South (180◦) when rows of

ten turbines are aligned.

The power response as a function of the wind direction has similar shapes for different wind speeds, until the speed is high5

enough (larger than the rated speed of the layout) that the response gets clipped at 300MW (all sixty turbines are operating at

their rated power 5MW). As a function of the wind speed, for each wind direction, the power response starts after the cut-in

speed of 3 m / s and is cubic (concave up) until individual turbines start reaching rated power. After that, the power increases

more slowly (concave down) until the farm reaches its rated power. The less grid-like layouts show a smoother transition to the

maximum power because each turbine reaches its rated speed (11.4 m / s) at different freestream speeds.10

The power response as a function of the uncertain variables (wind direction and wind speed) is a complicated function,

which needs to be integrated, weighted by the likelihood of the wind conditions, to obtain the AEP of the wind farm. Next, we

show that using polynomial chaos, instead of the rectangle rule, results in better estimates of the AEP.

6.2 AEP convergence: polynomial chaos vs. rectangle rule

We consider the AEP as a function of two uncertain variables: the wind speed and the wind direction. The AEP is usually15

considered a function of these two variables. We compare the convergence of the AEP for the different methods to compute

the AEP: polynomial chaos (based on quadrature and regression), the rectangle rule and Monte Carlo (Fig. 6). The polynomial

chaos based on regression (PC-R) performs the best for all layouts. It is followed, by the polynomial chaos based on quadrature

(PC-Q) and the rectangle rule, which perform similarly. The worst performer is Monte Carlo. The slow convergence of statistics

with Monte Carlo is well known. Monte Carlo will start to outperform the other methods when the AEP is a function of a large20

number (5–10) of uncertain variables, as it does not suffer from the curse of dimensionality.

The superior performance of the polynomial chaos based on regression, especially for the grid like-layouts (Grid and

Amalia), is due to the following: the polynomial chaos fit based on regression does not chase all the high-frequency oscil-

lations in the power response (Fig. 5), i.e., it smooths out the response. The PC-R fit is usually not higher than an eight

total-order polynomial (Sect. 4.1). Whereas, the PC-Q order fit is higher, as it is directly proportional to the number of samples25

per dimension7. A downside of the PC-R being able to predict the mean (AEP) accurately, is that it can underpredict the true

variance (standard deviation) of the response (Fig. 7). Usually, the standard deviation of the power response (energy) over

a year is not considered as a function to optimize. A common objective in wind farm optimization is to maximize the total

amount of energy produced over a year independent of the variability in the power production over the year. For a wind farm,

the variability of the energy produced over a year is less important than the variability caused by the changing wind conditions30

during the day.

In what follows we will compare the PC-R (the best performing method) with the rectangle rule (the method currently

used in practice) to quantify the reduction of samples needed to compute the AEP accurately. Also, we will sometimes use

7For the two-dimensional problem at 625 samples (25× 25 grid) the polynomial order in each dimension is 24.
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Figure 6. The average AEP error as a function of the number of samples for polynomial chaos (based on regression and quadrature), the

rectangle rule and Monte Carlo. The AEP is a function of two uncertain variables the wind direction and wind speed. The polynomial chaos

based on regression performs best for all layouts.

polynomial chaos to refer to polynomial chaos based on regression. Figure 8 only keeps PC-R and the rectangle rule results

from Fig. 6, and in addition, the figure shows the average AEP error computed with 10 and 100 sets of samples for each

method. For the rectangle rule, there is hardly any difference between the average AEP error computed with 10 or 100 sets.

For the PC-R method, the average error with 100 sets shows a smoother convergence. In general, averaging the AEP error over

10 sets of samples is enough to minimize the AEP’s sample location sensitivity and to clearly see the differences between the5

methods used for computing the AEP (Sect. 5.3).

In Fig. 8, we see that the PC-R convergence curve is consistently below the rectangle rule curve, i.e., PC-R has a smaller

error for the same number of samples or the same error for a smaller number of samples. Using the 1 % average AEP error

as a metric, we see that PC-R achieves this error with fewer samples than the rectangle rule. The reduction in the number of

samples is on the order of four times for the Grid layout, eight times for the Amalia, four times for the Optimized and no10
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Figure 7. The average standard deviation of the energy (STD) error as a function of the number of samples for polynomial chaos (based

on regression and quadrature), the rectangle rule and Monte Carlo. The STD is a function of two uncertain variables the wind direction and

wind speed. Note that the PC-R response is biased for the Grid and Amalia layouts. The PC-R underpredicts the true STD at the expense of

computing the mean (AEP) more accurately (see Fig. 6).

significant improvement for the Random. These reductions in the number of samples are considerable. In addition to providing

faster convergence of the AEP, the polynomial chaos based on regression method converges the AEP more smoothly—less

oscillatory, more monotone convergence. Smooth convergence is always a desired property, and it especially useful when

performing an optimization. Both methods, PC-R and the rectangle rule, perform better for the less grid-like layouts because

there is less variability in the power responses as a function of wind direction (see Fig. 5). This is beneficial as in the first few5

iterations of an optimization the starting grid-like layouts become non-grid-like and start to resemble the Optimized layout.

The polynomial chaos based on regression is not only better on average, as we have seen in Fig. 8, but it is also better in

general, as shown in Fig. 9. The shaded area in Fig. 9 shows the spread between the maximum and minimum AEP for 10

realizations of each of the number of samples (Sect. 5.3). The solid line shows the average of those 10 realizations and the
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Figure 8. The average AEP error as a function of the number of samples for both the rectangle rule and polynomial chaos based on regression

(this is the same as Fig. 6, with only keeping the PC-R and the rectangle rule results). In addition, we show the average AEP error computed

with 10 (solid line) and 100 (dashed line) sets of samples (Sect. 5.3). The AEP is a function of two uncertain variables the wind direction and

wind speed. The polynomial chaos method computes the AEP more accurately with fewer samples.

dashed lines the ±1 % of the baseline AEP. We see that the spread is significantly smaller for the polynomial chaos based

on regression and that by around 300 samples the predictions are almost always within 1 % of the true AEP for the grid-like

layouts (Grid and Amalia) and around 100 samples for the non-grid-like layouts (Optimized and Random). In contrast, for the

rectangle rule, the error in the AEP is still larger than 1 % at 400 samples for the Grid layout and 600 samples for the Amalia

layout.5
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Figure 9. Variability in the convergence of the AEP. The figures of the left column are for polynomial chaos based on regression and those

of the right column for the rectangle rule. The shaded area shows the spread between the maximum and minimum AEP for 10 realizations of

each of the number of samples. The range in the plots corresponds to ±5 % of the true AEP for each layout. The variability is significantly

smaller for polynomial chaos, which shows that in general, it outperforms the rectangle rule. The PC-R method obtains the smaller variability

by smoothing out the high-frequency oscillations present in the power response (Fig. 5).

6.3 Wind farm layout optimization

6.3.1 Optimization problem

The objective of the wind farm layout optimization is to maximize the AEP (Sect. 2.3) by changing the position of the wind

turbines. We assume a fixed number of turbines, 60, of the same type (NREL 5-MW (Jonkman et al., 2009)) and constrain the

turbines to stay within a given area and with a minimum separation between them. This objective and constraints result in a5
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nonlinear optimization under uncertainty problem with deterministic constraints:

maximize
x,y

AEP (x,y,ξ)

subject to Si,j ≥ 2D i,j = 1 . . .nTurbines, i 6= j

Ni,b ≥ 0 i= 1 . . .nTurbines, b= 1 . . .nBoundaries,

(37)

where Si,j is the distance between each pair of turbines i and j, and D is the turbine diameter. The normal distance, Ni,b, from

each turbine i to each boundary b is defined as positive when a turbine is inside the boundary, and negative when it is outside of

the boundary. The boundary is the convex hull of the Princess Amalia layout—a fourteen-sided convex polygon (dashed-line5

boundary in the upper-left of Fig. 10). The design variables are the x, y coordinates of the 60 wind turbines, resulting in 120

design variables. The uncertain variables ξ in the objective are the wind direction and wind speed.

We solve the optimization problem with the gradient-based sequential quadratic programming optimizer SNOPT (Gill et al.,

2005). We use OpenMDAO (Gray et al., 2010) and its wrapper for pyOptSparse (Perez et al., 2012) to call SNOPT from

Python. We scale the variables, constraints and the objective to make them of order one, and set the tolerances to 1× 10−4 per10

the function (AEP) precision.

6.3.2 Optimization results

We solve the optimization under uncertainty problem, Eq. (37), using the rectangle rule and polynomial chaos based on regres-

sion methods to compute the AEP. For each method, we consider a coarse and fine number of samples to compute the AEP.

Also, for each method, we run 10 optimizations, where each optimization uses different sample points to compute the AEP (see15

Sect. 5.3). The 10 optimizations enable us to get a better understanding of which method is better at finding layouts with high

AEP and to avoid drawing conclusions from one-off local optima. Furthermore, we consider three different starting layouts for

the optimization: Amalia, Grid and Random (Sect. 5.2). The results of the optimizations are reported in Table 2.

The optimum layouts obtained with polynomial chaos based on regression are better than those obtained with the rectangle

rule. For a similar number of samples to compute the AEP, the optimizations with polynomial chaos produce on average optimal20

layouts with 0.4 % higher AEP than the optimizations with the rectangle rule. Also, using about one-third of the samples, the

optima obtained with polynomial chaos are comparable to those obtained with the rectangle rule. Furthermore, polynomial

chaos finds better local optima than the rectangle rule for all the different starting layouts considered (Table 2).

The optimal layouts with the maximum AEP for each method and starting layout are shown in Fig. 10. As can be seen

in that figure, the wind farm layout optimization problem contains many local optima. In general, the turbines—in the local25

optima—position themselves in non-grid-like patterns to minimize wake losses. Also, to minimize wake losses, the turbines

try to spread out as much as possible and position themselves at the boundary of the layout (Fig. 11). For the optima obtained

starting from the Amalia layout, we see that the distribution of the turbines is somewhat similar to the starting layout. As

the Amalia layout is already a good layout, it is not surprising that the local optima somewhat resemble the Amalia layout.

The optima found starting from the Grid layout have on average the highest AEP (Table 2 and Fig. 10). When considering30

all methods, on average, the optimal layouts found starting from the Grid layout are 0.2 % higher than the optimal layouts
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Table 2. The AEP of the optimized layouts. We generate the AEP statistics for each method from a set of 10 different optimizations. For a

similar number of samples, both coarse and fine, polynomial chaos based on regression produces better optimal layouts than the rectangle

rule. Furthermore, using about one-third of the samples, PC-R optima are comparable with the optima obtained with the rectangle rule that

used 625 samples to compute the AEP. The values of the AEP reported are computed with 200,000 Monte Carlo samples.

Starting layout: Amalia Starting layout: Grid Starting layout: Random

AEP (GWh) AEP (GWh) AEP (GWh)
Method # Samples mean ± std max mean ± std max mean ± std max

PC-R-coarse 231 1359 ± 1.5 1362 1362 ± 2.0 1365 1357 ± 2.0 1360

PC-R-fine 630 1362 ± 1.8 1367 1367 ± 1.2 1369 1363 ± 1.8 1367

rect-coarse 225 1356 ± 1.1 1358 1354 ± 2.2 1357 1349 ± 1.4 1351

rect-fine 625 1360 ± 1.0 1361 1365 ± 1.3 1367 1358 ± 1.0 1360

starting from the Amalia layout and 0.4 % higher than the optimal layouts starting from the Random layout. The Grid layout is

infeasible, as many of the turbines do not satisfy the boundary constraint (Fig. 11). However, starting from the infeasible layout

is beneficial as it nudges the turbines to position themselves on the boundary. The optima found starting from the Random

layout have on average the lowest AEP, but they have the most improvement in AEP over the starting layout showing that we

can find a good layout even from a poor starting position (Fig. 12). Due to the presence of many local optima, starting from a5

good layout will usually find layouts that are better than those starting from a bad layout, such as the Random.

To properly compare the results obtained by the different methods used to compute the AEP in the optimization, we should

compute the AEP of the optimal layout with a method that was not used in the optimization. The values of the AEP reported in

Table 2 and Fig. 10 are computed with 200,000 Monte Carlo samples. For consistency, and to avoid potential uncertainty in the

results introduced by the sample locations, we use the same 200,000 samples—wind direction, wind speed pairs—to evaluate10

the optimal layouts obtained by each method. Using the AEP computed with Monte Carlo to measure the improvement of the

optimal layout over the starting layout will in general be lower than the improvement in AEP as measured by the method used

in the optimization (Table 3). For example, for the optimal layouts in Fig. 10, with the Amalia starting layout, the average

improvement in AEP over the starting layout for all the methods is 0.36 % when measured with the Monte Carlo samples

and 1.50 % when measured by the method used in the optimization. For the optimizations starting from the Random layout,15

the average AEP improvements are 2.06 % for Monte Carlo and 3.20 % for the method used in the optimization. As the

optimizations starting from the Grid layout are infeasible, we do not include the improvement in AEP for the Grid layout in

Table 3. The improvements we have found starting from the Amalia layout are similar to those found by Gebraad et al. (2017)

for turbine position optimization.

Most optimizations required on the order of one hundred function calls to compute AEP. The optimization history for the20

layouts in Fig. 11 are shown in Fig. 12. Note that each AEP computation requires hundreds (the number of samples specified

for each method in Table 2) of calls to the wake model resulting in tens of thousands of calls to the wind farm wake model per

optimization. If the gradients of the AEP are computed with a first-order finite difference, 120 (the number of design variables)
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Figure 10. Optimal wind farm layouts achieved for each method to compute the AEP. The layouts in the first column show the turbines

starting position for the optimization along with the boundary constraint (dashed-line). The optimal layouts correspond to those with the

maximum AEP from Table 2.

times as many wind farm wake model calls would be needed per optimization. We showed that using polynomial chaos finds

comparable optima to the rectangle rule but using only about one-third of the samples per AEP computation. Thus, polynomial

chaos finds comparable optima for roughly one-third of the optimization computational cost. And, for the same computational

cost, polynomial chaos produces optimal layouts with 0.4 % higher AEP on average.

7 Discussion and conclusions5

A single wind farm layout optimization requires tens to hundreds of thousands of model evaluations. During the design phase

of a new wind farm, designers would need to perform many optimizations. The designers may explore scenarios with different

turbine types, different sites, larger farms with a different number of turbines and possibly even systems of wind farms. Also,
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Figure 11. The initial and optimized position of the turbines for the layouts obtained with the PC-R-fine method from Fig. 10. To minimize

wake losses, the turbines try to spread out as much as possible and position themselves at the boundary of the layout.
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Figure 12. Convergence history of the optimization for the different starting layouts. The convergence history is for the layouts in Fig. 11.

Table 3. The improvement in AEP of the optimized layouts from Fig. 10 over their starting layouts. The improvements are smaller when

measured by 200,000 Monte Carlo samples rather than directly by the method used to compute the AEP in the optimization.

Starting layout: Amalia Starting layout: Random

AEP % improvement as measured AEP % improvement as measured
Method by Monte Carlo by method by Monte Carlo by method

PC-R-coarse 0.36 0.75 2.08 2.86

PC-R-fine 0.73 1.19 2.62 2.93

rect-coarse 0.07 2.45 1.46 3.93

rect-fine 0.30 1.62 2.09 3.07

average 0.36 1.50 2.06 3.20
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the presence of local optima would require many optimizations with different restarts to find the best layout. And, furthermore,

there is a desire to increase the fidelity of the models used to simulate the wind farm, which will increase the time and compu-

tational cost of the optimizations8. Thus, to facilitate the design phase of new wind farms and to incorporate the use of higher

fidelity models in the design phase requires significant improvements to reduce the simulation requirements (computational

cost) of performing the wind farm optimization under uncertainty (OUU) problem (Fig. 1c).5

We proposed the use of polynomial chaos (PC) to improve the uncertainty quantification step of the OUU problem. We

computed AEP convergence plots and showed that polynomial chaos based on regression (PC-R) could compute the AEP

accurately using on average one-fifth of the simulations required using the rectangle rule, the method currently used in practice

in the wind industry. PC-R computes the AEP accurately (error less than 1 %) usually with only two hundred simulations or

less depending on the wind farm layout—a significant improvement over the current industry practice of using more than a10

thousand model evaluations to compute the AEP.

The layout of the wind farm influences the convergence of the AEP because the layout has a significant effect on the power

output of the farm as the wind conditions vary (Fig. 5). We considered four representative layouts: Grid, Amalia, Optimized

and Random. The power response of the grid-like layouts (Grid and Amalia) has large oscillations caused by the large drops

in power that occur when rows of wind turbines are aligned with particular wind directions. Because of the larger variability in15

the power response, the grid-like layouts require more simulations than the non-grid-like layouts (Optimized and Random) to

converge the AEP. An extension of this work that could potentially further improve the convergence of the AEP, especially for

the grid-like layouts, would be to build an approximation to the power output that takes into consideration the oscillatory and

periodic behavior of the wind farm response with respect to the wind direction (Fig. 5). For instance, by using Fourier series to

approximate the wind direction response and polynomials for the wind speed response.20

In addition to computing the AEP efficiently, a benefit of using polynomial chaos is that it can also compute the gradient

of the AEP efficiently. The use of gradients is essential to enable large-scale wind farm optimization. We described how to

compute the gradients of the AEP in (Sect. 4.3). A benefit of using the rectangle rule is that no special consideration is necessary

for correlated uncertain variables; whereas, for polynomial chaos, some extra considerations are necessary as discussed in

Sect. 4.4. Another benefit of using PC is that it can easily incorporate multiple fidelity models to accelerate the convergence of25

statistics (Ng and Eldred, 2012; Palar et al., 2016), such as the AEP (Padrón, 2017). Furthermore, the effect of other uncertain

variables (such as wake model parameters) on the AEP, can easily be incorporated in the polynomial chaos framework. As the

number of uncertain variables increases, polynomial chaos based on regression will continue to outperform the rectangle rule

(see Padrón (2017) for an example with three uncertain variables—wind speed, wind direction, and wake model parameter).

For a large number (5-10) of uncertain variables, the Monte Carlo method will start to outperform polynomial chaos because30

it does not suffer from the curse of dimensionality (Smith, 2014).

8If instead of using the Floris wake model in the optimization, we had used a high-fidelity fully resolved Large Eddy Simulation to model the wind farm, a

back of the envelope calculation shows that the optimization would require the total Annual Energy Production (AEP) of the wind farm to power the computers

used in the simulation.
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We performed multiple gradient-based wind farm layout optimizations to compare the optimization results obtained with the

different methods to compute the AEP: polynomial chaos based on regression and the rectangle rule. The goal of the optimiza-

tion was to maximize the Annual Energy Production (AEP) of the wind farm. The layout optimization is an optimization under

uncertainty (OUU) problem (Fig. 1c) with the wind speed and wind direction as uncertain variables and the positions of the

wind turbines as design variables. In the resulting optimal layouts, the turbines position themselves in non-grid-like patterns5

and spread toward the boundary to minimize wake losses. For the optimization problem posed, the are many local optima with

different patterns and similar AEP (Fig. 10). To search for the best optima, different starting layouts should be considered. We

observed that starting from a good layout (Grid, Amalia) will, in general, find better optima than starting from a bad layout

(Random).

An ensemble of optimizations should be used to properly compare the optimal layouts obtained using the different methods to10

compute the AEP. Also, for proper comparison, the AEP of the optimized layouts should be evaluated in the same way and with

a method different from the one used in the optimization. To be confident about the differences between the optimal layouts,

we evaluated the AEP of each optimized layout using the same 200,000 Monte Carlo samples. We found that the benefits of

being able to efficiently compute the AEP with PC-R translate to being able to find better optima than those obtained when

computing the AEP with the rectangle rule when using the same number of simulations. On average, with PC-R we find optima15

that are 0.4 % better than those found with the rectangle rule. This is a significant improvement as a 1 % increase in the AEP for

a modern large wind farm can increase its annual revenue by millions of dollars. Also, using about one-third of the simulations,

PC-R finds comparable optima to those found by the rectangle rule.

An interesting extension of this work, that could further improve the AEP, would be to allow yaw-based control in the

optimization problem to take advantage of wake deflection. Gebraad et al. (2017) found that including yaw for each wind20

direction in a secondary layout optimization, after layout optimization without yaw, resulted in an additional 3.7 % increase in

AEP. Including wake deflection in the wind farm layout optimization increases the complexity of the problem in terms of the

number of design variables because every wind direction (and to a lesser extent, wind speed) calls for different yaw values for

each turbine. The increased number of design variables makes the problem much more difficult for gradient-free optimization

methods and can slow down gradient-based optimization methods as well (Thomas et al., 2017). As we have seen, polynomial25

chaos reduces the number of simulations (wind directions and wind speeds considered). Thus, it could also greatly reduce the

number of simulations in optimization with yaw control.
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