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Response to comments from anonymous reviewer #1 

 

Moderate comments: 

1. P8 & 9. Confirming that the temporal variability is more important than the spatial variability.  
This is an original thought derived from Veers’ model. We have not come across any literature 
studying this fact.  
Here is another way to look at it. Hopefully this clarifies our thoughts:  
Assuming Veer’s spectral model is adequate, we note that phase angles are independent over 
frequencies Cov(Θmk, Θnk)=0, but somehow dependent between points |Cov(Θmk, Θml)|>0.  
Without further discussion of the actual structure of this dependence we infer that the phase 
angle matrix Θ contains more randomness in the columns (time) than in the rows (space). Thus 
we decide to include randomness in time, but neglect randomness in space. The results 
presented in section 3 confirm the validity of this assumption.  
We have revised the manuscript (see pp. 8, 9) to better reflect these thoughts.  
 

2. P9 & 10. Regarding Eq. (3), choosing ΔΘmk to be deterministic. 
This indeed boils down the comment 1:  
In order to arrive at a reduced order model something needs to be simplified. We choose to set 

ΔΘm(kl)= Θml - Θmk as deterministic constant. Thus we generate a realization for one part of the 

stochastic process, i.e. we collapse a part of the random domain of the problem into one 

sample, but we retain randomness in the other part. Comment 1 provides the reason for this 

choice, and although this means we neglect the randomness in the rows of Θ, and with it some 

part of the randomness in the wind field, the good agreement of our results with Veers original 

wind model justify this choice. 

We have revised the manuscript (see p. 10) to better reflect these thoughts.  
 

3. P9 and later in the text. The concept of ΔΘmk. 

We have adopted this nice way to put paraphrase our concept. See changes under Eq. (6), p. 10.   

We hope this will explain our concept more graphically.  

 

4. P10. L9. Spatial and temporal variability.  

See comment 1. This is a new thought, and we have not come across any studies in this 

direction.  

 

5. Figure 7. Difference between for the times lags less than 10 s? 

The cross correlation curves do not perfectly agree. The difference is most prominent in the 

oscillations of the (P1, P5) curve, and in the (P1, P6) curves around 10s and 50s. We do not think 

that this is related to high or low frequencies, but due to the fact that our model uses 

significantly less frequencies than TurbSim. Hence the turbulent energy is discretized over fewer 

modes in our model, and the curves are not as smooth.  

 



6. More emphasis on Figure 10. 

We fully agree. However, representing the underlying BEM model and the modifications made 

to transform it into a stochastic BEM model would exceed the scope of a single paper. These 

results will be presented in a separate paper (Fluck and Crawford: “A fast stochastic solution 

method for the Blade Element Momentum equations for long-term load assessment”, Wind 

Energy, submitted). We included a reference at the end of Section 3.4.  

 

7. Validity of our method would be for the case of highly unsteady winds.  

Our method (like Veers’ method) is a spectral representation of a random process. The wind 

field is generated through inverse Fourier transform with random phase increments. Thus the 

underlying process is (per definition) assumed to be stationary.  

Consequently, fronts, downbursts, and other singular transient events can naturally not be 

modelled directly in any spectral model.  

 

It might be possible to model these event through superposition of a discrete deterministic 

event with our random model, similar to Chay et al. (2006) who superposes a deterministic 

downburst profile over an ARMA model for the turbulent fluctuations. However, it is our goal to 

derive a formulation for wind as input to stochastic models. These models will have difficulties 

dealing with singular deterministic events themselves. We doubt if moving this way is beneficial. 

Nonetheless, this could obviously be the subject of a future study.  

 

We have included this in Section 3.5.  

 

Minor comments: 

1. P4, L24. Correction of “Moreover the stochastic wind…”  
This should be: “Moreover this model is driven by the decomposition (bi-orthogonal and 
Karhunen-Loève) of a specific set of wind.”  
We have changed this accordingly.  
 

2. P5, L7-9 difficult to understand.  
We have changed this to: “However, none of the previous models had an application in 
stochastic aerodynamic models in mind. Since random numbers can be generated very quickly, 
existing models rely on a large set of random variables to be used as a seed for a wind field 
realization. However, this random seed usually contains too many random variables to be 
applicable to a direct stochastic modeling of the aerodynamic wind turbine equations (path C in 
Fig. 1).”  
 

3. P5, L12. It should be Veers (1988). 
We have reviewed our references and believe they are correct now.  
 

4. P6. L2-6. 
We believe it is important to state why Veers model is briefly revisited. To avoid repetition, we 
rephrase this paragraph:   
“Veers’ method represents the established method for synthesizing turbulent wind (Nielsen et 
al., 2007; Lavely et al., 2012) and at the same time is the baseline for our contribution. Hence 



the method is briefly summarized here to lay out the basics for the following work. For a 
complete introduction the reader is referred to Veers’ original paper (Veers, 1988) and 
successive work, e.g. Kelley (1992); Nielsen et al. (2004); Burton et al. (2011).“ 
 

5. P6. L13. 
We have reworded this accordingly.  
 

6. Figure 2. 

We have clarified this in the caption.  

 
7. P8, L15, “block of wind”. 

We have discarded the footnote and reword the sentence: “This is indeed the streamwise and 
thus the temporal variability of the wind field.” 

 
8. P11, L21. “I; the results” and Veersred. 

This is a typo, which was removed. We also removed the bold typeface for the labels.  

 

9. 9. P12, L1. 

We have also removed the bold typeface for this label. 

 

10. Figure 5 caption. 

We have changed this accordingly.  

 

11. Figure 6 caption. 

We have changed this accordingly.  

 

12. Eq. 9. 

We have changed this accordingly.  

 

13. Figure 9. 

We have changed this accordingly. 

 

14. Figure 10 caption. 

We have changed this accordingly. 

 

15. References.  

We have changed this accordingly. 

 

Grammatical and stylistic comments: 

We have revised the manuscript and correct the errors pointed out.  

  



Response to comments from anonymous reviewer #2 

 

1. Page 5, line 15-17: main advantage of Veers’ model.  

We consider three main advantages of Veers model and write:  
“Due to its comparatively high independence of site specific parameters, ease of use, 
and low resource requirements, Veers’ model is the preferred model for many 
applications (Lavely et al., 2012).”  
 

2. Page 7, line 10-15: reduction of numbers of frequencies.  

In a frequency model the frequency bins as chosen arbitrarily, but such that the energy 

in the frequency spectrum can be represented adequately. As discussed on P5, L7-9, 

using a large set of frequencies (i.e. a large set of random numbers) was not a problem 

for deterministic models. However, moving to stochastic models requires a significant 

reduction of random variables, and hence frequencies. We show, that using 10 to 20 

random variables for 10 to 20 frequencies is sufficient. This choice is not driven by 

physical arguments, but by the limitations of the stochastic models where such a 

reduced order wind field formulation is to be used.  

We have amended the first paragraph of Section 2.2. to clarify this.  

 

3. Page 8, line 1:  experimental of theoretical justification for grid resolution.  
The choice of grid resolution is a tradeoff between accuracy and computational effort. 
For a typical D = 90 m diameter rotor 15 x 15 points is a common choice. We change the 
bracket to “(for a D = 90 m diameter rotor somewhere in the order of 15 x15 points over 
the rotor disk is are typically used)”.  
 

4. Page 11, line 19: The number of frequencies.  
The number of frequencies does affect the quality of the resultant wind field. Too few 
frequencies result either in periodic wind speeds or distinct wind speed oscillations. 
Eight to ten frequencies for a 333 s sample was found to be the minimum.  
We hope the additions to the first paragraph of Section 2.2. clarify this, too.  

 
5. Location of Figure 4.  

We leave this to the final setting in the journal print.   
 

6. Size of Figure 5.  
We have increased the size.  

 
 

7. Page 12, line 16: grid resolution.  

In this study we are not concerned with wind turbine loads. Hence it is not necessary to 

model the wind field over the full wind turbine rotor disc. To assess the reduced order 



wind model it is important to show that it adequately represents wind field properties 

both for close and distant points. In order to do this without unnecessary computational 

effort, we use a study grid, which contains only a few close and a few distant points.  

To make this clearer we changed p13, ll 6ff to:  

“Since the goal here is not to calculate wind turbine loads, but to merely asses the quality of the 

reduced order wind model, we used a dummy wind field generated on NPy x NPz = 5 x 3 = 15 

points located on a regular grid as depicted in Fig. 4. This is fewer points than the usual grid for 

the analysis of a modern D = 90 m rotor diameter wind turbine. However, the reduced number 

of grid points enabled us to solve the equations quickly with all models and more clearly 

illustrate the method. At the same time, the configuration of Fig. 4 still allowed us to study both 

the wind speed time series of points in close proximity (e.g. P1 and P6), as well as at more 

distant points (e.g. P1 and P5). The origin […]” 

 

8. Page 15, line 2-10: model names 

Thank you for catching this! We erroneously swapped model names in line 3. We 

changed this paragraph (p. 13, ll 2ff):  

“From Fig. 8 it can be seen that the covariance from all three model agrees fairly well. Our 

implementations of Veers’ model, Veersred and Veersred, ΔΘ, which both use a limited set of 

frequencies, agree almost perfectly. The TurbSim version with the full set of roughly 3,000 

frequencies, on the other hand, yields slightly different covariance. A more detailed 

investigation reveals the reason for this: the covariance depends on the cross-spectrum and 

thus the spectrum at each individual point. Consequently, the discrepancy between the 

covariance functions is connected to the fact that Veers’ model distorts the spectrum at each 

individual point, such that with Eq. 3 |𝑈 𝑚𝑘|  = √𝑆̃𝑚𝑘 ≠ √𝑆𝑚𝑘  (see discussion in section 2.1). 

When we replace S in our implementation by the distorted spectrum 𝑆̃ at each particular point 

Pk in Eq. 8 all three curves do match. However, 𝑆̃ does not in fact represent the prescribed 

Kaimal spectrum. Thus we conclude that our phase increment model actually represents the 

desired covariance better than Veers’ original model and TurbSim.” 

 

9. Page 16, line 7-8: logarithmically spaced bins.  

With a logarithmic spacing more bins are located at low frequencies and fewer at high 

frequencies. This enables us to represent the wind and its spectrum more efficiently.   

For clarity we changed on p. 12, ll. 13-14 to:  

“[…] with Nf = 10 logarithmically spaced frequencies, which allowed a more efficient 

representation of the wind and its spectrum. We set f= […]” 

 

 



10. Page 18, line 15: auto spectrum 
The auto-spectrum is included in Fig. 2. We realize that this might get lost towards the 
end of the paper. We have changed the heading of section 3.3. to “Power spectra” and 
changed the beginning of the section:  

“Wind speed spectra are again obtained as average from 100 realizations (from 100 different 
random seeds). However, this time 6,000 s were sampled to obtain sufficiently long data sets 
for a proper resolution of the low frequency components. Note that the same set of 20 
frequencies [𝑓𝑘] ∈  [1 = 600;  5] Hz are used for both the 20 frequency (Veersred) and the 
phase increment (Veersred, ΔΘ) implementations. Hence the T = 6,000 s signal repeats after 
600 s. The spectrum is binned into discrete bins of frequencies fm equal to the logarithmically 
spaced frequencies initially used to generate the wind speed time series. 
 
The wind speed auto-spectrum is included in Fig. 2. By definition (Eq. 8) the reduced order 
model produces the prescribed (auto-) spectrum exactly. Fig. 9 shows a comparison of the 
cross-spectra estimates for different […]” 
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Abstract. Emerging stochastic analysis methods are of potentially great benefit for wind turbine power output and loads

analysis. Instead of requiring multiple (e.g. ten-minute) deterministic simulations, a stochastic approach can enable quick

assessment of a turbine’s long term performance (e.g. 20 year fatigue and extreme loads) from a single stochastic simulation.

However, even though the wind inflow is often described as a stochastic process, the common spectral formulation requires a

large number of random variables to be considered. This is a major issue for stochastic methods, which suffer from the ‘curse of5

dimensionality’ leading to a steep performance drop with an increasing number of random variables contained in the governing

equations. In this paper a novel engineering wind model is developed which reduces the number of random variables by 4–5

orders of magnitude compared to typical models while retaining proper spatial correlation of wind speed sample points across

a wind turbine rotor. The new model can then be used as input to direct stochastic simulations models under development. A

comparison of the new method to results from the commercial code TurbSim and a custom implementation of the standard10

spectral model shows that for a 3D wind field the most important properties (cross-correlation, covariance, auto- and cross-

spectrum) are conserved adequately by the proposed
:::::::
reduced

:::::
order method.

Nomenclature

Latin Letters:

e Euler’s number

f = [fm] frequency

i=
√
−1 imaginary unit

NF number of frequencies

NP number of wind speed points

NR number of random variables

P a point in Euclidean space

Skk (auto) power spectrum

Skj cross power spectrum

t time

1



U wind speed Fourier coefficient

u wind speed

Greek Letters:

θ phase angle

∆θ phase angle increment

ξ random number

ω = [ωm] angular frequency

Indices:

j, k points in space

m frequencies

1 Introduction

Engineering design tasks frequently face uncertain or random model parameters (e.g. imprecise component geometries), sys-

tem properties (e.g. tolerances on manufacturing quality), and/or boundary conditions (e.g. varying wind conditions). In a

deterministic modeling framework the analysis of such uncertain systems produces one specific solution for each realization

of the random quantity. A ‘realization’ (also referred to as one ‘sample’) is one specific observation of the random quantity,5

for example a specific solution for one specific geometry, or one specific set of inflow conditions. In a numerical experiment
:
,

a realization is usually obtained based on the generation of
::::
from

:
one specific random seed. However, through this process

the stochastic dimension of the problem at hand is either ignored entirely, by analyzing the most likely case only (the purely

deterministic approach), or it requires multiple parallel solutions to asses the statistics of the results a posteriori, for example

via extreme value, sensitivity analysis, or Monte Carlo simulation. Often the first two options are insufficient, and the latter is10

computationally too expensive. To solve this dilemma the focus of recent research has lately moved towards stochastic analyses

and uncertainty quantification (Sudret, 2007; Najm, 2009; Le Maître and Knio, 2010; Sullivan, 2015). Rather than generating

one specific solution for each realization of a random input or model quantity, a stochastic analysis can help assess uncer-

tainties quicker and even include uncertain quantities directly into the system analysis. This is because it not only provides

:
A
:::::::::
stochastic

:::::::
analysis

::::
may

:::
not

::::
only

:::::::
provide one specific solution, but it solves

:::
also

:::::
solve

:
the problem for the whole ensemble15

of all possible realizations at once, see Fig. 1. This is made possible via stochastic methods that
::::
Thus

::
it

:::::::
becomes

::::::::
possible

::
to

transform the problem from multiple deterministic realizations with random seeds to a
::::::::
stochastic formulation of the govening

::::::::
governing

:
equations that directly describe

::::::
handles

:
the stochastic variables in the system. The stochastic solution then directly

describes the statistics (e.g. the probability distributions) of the outputs, based on the properties given for the input variables in

the forcing terms of the governing system equations.20

2



  

wind
model

A

stochastic model

time
in

pu
t

time

in
pu

t

time
ou

tp
utone 

stochastic 
solution

input 
realizations

time

in
pu

t

several deterministic solutions

one deterministic solution

solution statistics B

C
output realizations

output

pr
ob

ab
ili

ty

Figure 1. Comparison of the solution processes in a pure deterministic (A), a deterministic-statistic (B), and a stochastic framework (C).

In wind turbine engineering, the driving force ,
:
is
:

the turbulent atmospheric wind ,
:::::
which

:
is commonly described as a

stochastic field , derived from turbulent wind models developed around stochastic ten-minute mean wind speed distributions.

This naturally invites the use of stochastic methods to asses extreme and fatigue loads, annual power production, power fluc-

tuations, etc. in a stochastic sense and thus exploit the advantages of stochastic methods. However, wind turbine design and

analysis is usually carried out in a deterministic fashion, or at best as a Monte-Carlo-like set of several subsequent determinis-5

tic solutions (path A and B in Fig. 1 respectively). The wind turbine design standard IEC 61400-1, Ed. 3 (2005) is indicative

of this deterministic framework. It bases the turbine load analysis on multiple deterministic simulations, carried out at many

different mean wind speeds, for about 20 different load cases, each simulated for ten minutes and repeated several times with

different realizations of the turbulent inflow, each generated from a different numerical random seed. For a land based turbine

this quickly amounts to evaluating several hundred ten-minute samples. For offshore turbines, where various wind conditions10

(wind speed and direction) additionally have to be combined with various sea states (combinations of wave height and direc-

tion) this number increases to several thousand ten-minute evaluations. However, even with a large number of deterministic

simulations, extrapolation to extreme loads is a delicate exercise and results can vary greatly (Moriarty, 2008; Burton et al.,

2011). Moreover,
::
For

::
a
:::::
single

::::
load

::::
case

::::
and

:::
one

:::::
mean

:::::
wind

:::::
speed

:::
bin

:
Zwick and Muskulus (2015) show that basing a wind

turbine analysis on six ten-minute wind speed simulations, generated from six different random seeds, results in a difference15

of up to 34% in the ultimate loads for the most extreme 1% of seed combinations. Tibaldi et al. (2014) present a study, which

3



indicates that turbine loads extracted even from 20 different ten-minute wind fields, generated from 20 different random seeds,

vary greatly. This shows that in a deterministic framework load variations from different random seeds can dominate effects

from design parameter changes even with a fairly large number of realizations analyzed. Obviously this constitutes a severe

problem, particularly when concerned with gradient-based optimization where not only relatively fast solutions times, but also

reliable design variable gradients are vital.5

A direct stochastic treatment of the wind loading (path C in Fig. 1), on the other hand, considers the wind as a stochastic

process throughout the turbine simulation procedure. It postpones the generation of realizations until after the calculation of

a solution for the system equations, which thus become stochastic equations. Hence it can be a means to efficiently include

stochastic parameters, directly obtain a stochastic solution, and arrive at the statistics of the resulting loads much quicker.10

Fluck and Crawford (2017a) present an example of a stochastic analysis for wing loads in turbulent inflow, and show that such

a stochastic approach does not rely on the repeated analysis of multiple (e.g. 600 s) realizations of the wind field. Instead,
:
one

(possibly short, e.g. 10 s) stochastic result yields all possible realizations and hence contains the full spectrum of uncertainties.

Thus it will enable the analyst to obtain a more complete description of the resulting load ensemble at large, calculate its statis-

tics, and eventually arrive at more precise estimates of e.g. the probability of exceedance of some load threshold more quickly.15

Recently, progress has been made towards stochastic analysis of wind turbines. For example, results have been shown for an

aeroelastic analysis with one uncertain system parameter, stiffness or damping (Desai and Sarkar, 2010), and for the a stochastic

formulation of airfoil lift, drag, and pitching moment in stall conditions (Bertagnolio et al., 2010). Moreover, stochastic models

have been used for wake modeling, treating wake center and shape as random processes (Doubrawa et al., 2017). However,20

only very early steps have been completed to include the biggest source of uncertainty: the uncertain inflow from turbulent

atmospheric wind. On a wind farm scale
:
, Padrón et al. (2016) recently presented a layout optimization based on a polynomial

chaos formulation for the freestream wind speed and direction. Finally Guo (2013) offers a stochastic wind model used for a

stochastic analysis of wind turbine loads. However, he still bases the stochastic analysis on deterministic sampling (i.e. path B

in Fig. 1). Moreover this model
:
is
:
driven by the decomposition (bi-orthogonal and Karhunen-Loève) of a specific set of wind25

field data. It hence
::::::
Hence,

:
it
:
is not generally applicable, but relies on the availability of sufficient data.

As turbulent wind is already represented as a stochastic field in many common wind models, a transition from a deterministic

aerodynamic model for specific wind realizations , to a stochastic model yielding the whole stochastic load ensemble at once ,

seems an obvious step. However, this step comes with a simple, yet fundamental challenge: current wind models, even simple30

spectral models, rely on a large number of random variables to set the wind sample’s phase angles. Since realizations of large

sets of random variables can be generated very quickly, this is not a problem for deterministic load analyses. However, the

computational cost of stochastic analysis methods increases dramatically with the number of random variables included, a fact

commonly known as the ‘curse of dimensionality’ (Majda and Branicki, 2012). This renders current wind models inaccessible

to stochastic methods, and thus poses a major barrier to the further development of stochastic models for the analysis of wind35
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turbine loads based on a stochastic description of the turbulent wind input.

To address this problem we reformulate an industry standard wind model into a reduced order engineering model. The aim

of our work is to develop a wind model that can generate a realistic wind field with appropriate (long term) dynamic properties

from considerably less random variables than the current models. In the last three decades numerous turbulent wind models5

have been proposed. Kleinhans et al. (2008) summarizes
::::::::::::::::::::::::::::
Kleinhans et al. (2008) summarize a few. However, none of the pre-

vious models had an application in stochastic aerodynamic models in mind. Hence, as generating
::::
Since

:::::::
random

:::::::
numbers

::::
can

::
be

::::::::
generated

::::
very

:::::::
quickly,

:::::::
existing

::::::
models

::::
rely

::
on a large set of random numbers

:::::::
variables

::
to

::
be

:::::
used as a seed for a wind field

realizationis usually no problem, the existing models we are aware of rely on a large number of random variables – too large
:
.

::::::::
However,

:::
this

:::::::
random

::::
seed

::::::
usually

:::::::
contains

:::
too

:::::
many

:::::::
random

:::::::
variables

:
to be applicable to a direct stochastic modeling of the10

aerodynamic wind turbine equations (path C in Fig. 1).

In the following
:::::
present

::::::
study, we focuses on a formulation for the IEC standard spectral wind description (IEC 61400-1,

Ed. 3, 2005), so that it may be directly useful in industry
:::
used

:::
for

:::::::::
stochastic

::::::::::
aerodynamic

:::::::
models. Veers’ model (Veers, 1988)

was chosen as baseline and starting point. This model is widely used, for example in the stochastic wind simulator TurbSim15

(described by Jonkman and Kilcher (2012)), which synthesizes a sample of turbulent atmospheric wind from Veers’ spectral

formulation. Although it is well known that Veers’ model does not capture all physical details of ‘real’ atmospheric wind (e.g.

Mücke et al. (2011); Morales et al. (2012); Lavely et al. (2012); Park et al. (2015)), it is for many cases an appropriate engi-

neering model (Nielsen et al., 2007). Due to its comparatively high independence of site specific parameters, ease of use, and

low resource requirements, Veers’ model is the preferred model for many applications (Lavely et al., 2012). Moreover, it is20

endorsed by the governing wind turbine design standard IEC 61400-1, Ed. 3 (2005), and thus is widely used in the wind energy

industry. This underlines that its fidelity is accepted as a reasonable compromise in engineering practice for wind energy. As

such, Veers’ model provided
:::::::
provides a well accepted foundation to base further development on. Note that our goal is not

improving on known deficiencies of Veers’ model, but to arrive at a model that can generate a wind samples of comparable

(and accepted) fidelity with significantly less random variables, geared towards eventual inclusion in a stochastic wind turbine25

simulation.

The following sections will first briefly review Veers’ model to set the stage for the proposed modifications. Subsequently,

the new reduced order wind model is introduced, and finally results are presented, which confirm that key statistical proper-

ties (cross-correlation, covariance, auto- and cross-spectrum) are conserved by the new model. The paper concludes by giving30

direction for continued work on integrating the wind model into a turbine simulation and on refinements with other turbulent

wind descriptions. To not overload this paper, the focus is solely on the details and validation of the stochastic wind inflow

model itself. Interested readers should refer to Fluck and Crawford (2017a) for the basic stochastic aerodynamic model, or

Fluck and Crawford (2016b)
::::::::::::::::::::::::
Fluck and Crawford (2016b) for an example how the reduced order wind model is used to calcu-

late stochastic loads on a stationary wing.35
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2 Method

In this section we first briefly summarize Veers’ method , as it
:::::
Veers‘

::::::
method

:
represents the established method for synthesizing

turbulent wind (Nielsen et al., 2007; Lavely et al., 2012) , and at the same time is the baseline for our contribution. Subsequently,

we will introduce our new reduced order method . Note that section 2.1 is only meant as a summary
:::::
Hence

:::
the

::::::
method

::
is

::::::
briefly

::::::::::
summarized

::::
here to lay out the basics for the following work. For a complete introduction , the reader is referred to Veers’

:
‘5

original paper (Veers, 1988) and successive work, e.g. Kelley (1992); Nielsen et al. (2004); Burton et al. (2011).

2.1 Veers’ method

In a
:::::
Veers’

:
spectral method, the wind speed time series uk(t) at each point Pk, k = 1...NP , in the sampled wind field is

obtained through the inverse discrete Fourier transform of a set of discrete frequencies components from the double-sided

(symmetric) spectrum Umk at ωm = 2πfm, m=−NF ...NF10

uk(t) =
∑
m

Umke
iωmt (1)

Here m is used to index the frequency bins, and k is used to index the points in space where wind speed data is recorded.

Usually, the terms Umk are binned Fourier amplitudes centered at the frequency ωm, prescribed by the wind speed spectrum

S(ωm)at each point Pk. Often a
:
.
::
In

:::::
many

:::::
cases, Kaimal spectrum is used (IEC 61400-1, Ed. 3, 2005)

::::::::::::::::
(Kaimal et al., 1972).

15

Following Veers’ method (Veers, 1988), Umk ∈ C contains not only the amplitude but also the random phase angles at point

Pk for each frequency ωm. To obtain the desired coherence for all frequencies and between any two points in the wind field,

all phase angles

θmk = arctan

(
Im(Umk)

Re(Umk)

)
(2)

need to be correlated correctly. To achieve this, Veers multiplies the
::::
starts

:::::
with

:
a set of NR =NF ·NP independent, uniformly20

distributed random variables ξjm ∼ U(0,1) with the
:::
and

:::::::::
multiplies

:::::
these

::::
with

:
a
:

weighting tensor Hjkm, obtained from the

discrete cross spectrum Sjk(ωm)
:::::
(given

:::
by

:::
the

:::::::
relevant

::::::
design

:::::::
standard

:::
or

::::::
physics

:::::::
model), to obtain the complex Fourier

coefficients Umk at
::
for

:
each frequency band ωm:

Umk =

k∑
j=1

Hjkm e
i2πξjm (3)

where Sjk(ωm) is given by the relevant design standard or physics model. Note that through
:::::::
Through Eq. 3 the phase angles at25

::::
each point Pk are related to the phases at all previously computed points Pj<k. Thus, correctly correlated Fourier coefficients

are obtained, which can now be inserted into Eq. 1 to obtain a correlated wind field.

This method works well to generate multiple (deterministic)
::::
wind

:::::
speed

:
data sets at many points. However, as already

noted by Veers in his original publication (Veers, 1988), Eq. 3 changes the amplitude of each Fourier coefficient, such that30
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Figure 2. Raw wind spectra from a single wind speed sample, no averaging. Kaimal: the analytic spectrum; Veers: sample of the spectrum

resulting from Eq. 3 at two different points P1 and P6; Phase increments: the spectrum from the reduced order phase increment model Eq. 8

(identical for all points).
:::
The

:::::
values

::::
from

::::::
Kaimal,

::::
Veers

::::::
original

:::::
(P1),

:::
and

::
the

:::::
phase

:::::::
increment

::::::
models

::
all

:::::::
collapse

::
to

::
the

::::
same

:::
line

:

|Umk| 6=
√
Skk(ωm) for all but the point computed first. Thus, the prescribed (e.g. Kaimal) spectrum Skk(ωm) is not conserved

anymore at each point for any single realization, see Fig. 2. However, if spectra are averaged over either several points or sev-

eral realizations, the wind field’s average spectrum converges to the prescribed spectrum as limN→∞ 1/N
∑N
k=1 |Umk(ωm)|=√

Skk(ωm), with N the number of samples or realizations. This means the field still is stochastically homogeneous, as ex-

pected. However, for a stochastic analysis where only a limited number of samples might be used, this may pose a challenge. In5

the following we
::
We

:
introduce a reduced order model based on phase angle increments. This model not only yields a significant

reduction in random variables required to synthesize a stochastic wind field, but it also analytically preserves the prescribed

spectrum at any single point for each realization (see Fig. 2 ‘phase increments’).

2.2 The reduced order model with phase increments10

To arrive at a reduced order model we follow a two step process. First is a reduction in the number of frequencies necessary

for the spectral composition of the wind speed time series at a single point in space, and with it
:::::
which

::::::
yields

:
a reduction

in the number of random phase angles associated with each frequency. This frequency reduction has been done before. For

example Fluck and Crawford (2017a) showed that with ten frequencies from the IEC Kaimal spectrum, logarithmically spaced

in [0.003,5] Hz (a T = 333 s sample, resolved at 10 Hz, a reasonable time step for wind turbine simulations, cf. Bergami15

and Gaunaa (2014)), a realistic wind speed time series can be produced, with probability distribution (and thus turbulence

intensity), as well as the wind speed auto-correlation
:
.
:::
The

::::::
choice

::
of

:::
10

::::::::::
frequencies

::
is

:::
not

:::::
driven

:::
by

:::::::
physical

::::::::::
arguments,

:::
but

::
by

:::
the

::::
fact

:::
that

::
it
::
is

::::::::
sufficient

::
to

::::::
obtain

:
a
:::::

wind
:::::
speed

:::::
time

:::::
series similar to results from a full TurbSim simulation at 10 Hz

7



for 10,000 s (roughly 5 ·104 frequency bins). Ten ,
::::::::
including

::::::
similar

::::::::::
probability

:::::::::
distribution

::::
(and

::::
thus

:::::::::
turbulence

:::::::::
intensity),

::
as

:::
well

:::
as

::::::
similar

::::
wind

::::::
speed

:::::::::::::
auto-correlation.

::::
ON

:::
the

:::::
other

:::::
hand,

:::
ten frequencies, and thus ten random variables for the phase

angles
:
, is manageable as input to a stochastic model. However, when dealing with a wind field big enough to be used for wind

turbine calculations, many points (typically a grid
::
for

::
a
::
D

:
=
:::
90

::
m

:::::::
diameter

:::::
rotor

:::::::::
somewhere

:
in the order of 15×15 points over

the rotor disk
::
is

:::
are

:::::::
typically

:::::
used) of correlated wind speed are necessary. The challenge is to extend this limited frequency5

wind description from a single point to a spatially varying wind field without excessively increasing the number of random

variables required. Fung et al. (1992)
:::::::::::::::
Fung et al. (1992) introduced a wind model which models

::::::::
describes both the spatial and

the temporal dimension through Fourier modes. They reduced the number of modes down to as little as 38, however, the

model then relied on several random numbers associated with each mode. Fung et al. (1992)
:::::::::::::::
Fung et al. (1992) did not report

in detail how many random variables they used for their model, but the equations indicated that this number was still consid-10

erably larger than manageable by stochastic methods. The following paragraphs will introduce a new approach, which will

allow to create a stochastic wind field from a significantly reduced number of random variables, independently of the (spatial )

:::::
spatial

:
size of the wind field, i.e. independently of both, the number of data points over the rotor discas well as the lateral extent.

In Veers’ model the phase angle matrix Θ = [θmk] is populated with random numbers. We note that random phase angles in15

the rows and columns of Θ carry out two distinctly different functions. At each individual point Pi the different phase angles in

the column vector [θm]i = Θi generate constructive/destructive interference of the ensemble of base sinusoids. Thus, different

realizations of Θi generate the ”gusty“ nature of the wind speed time series at that point. This is indeed the
:::::::::
streamwise

::::
and

:::
thus

:::
the

:
temporal variability of the wind .1

::::
field.

:
On the other hand, the wind speed structure in space, for example the fact that

strong winds at one point correlate with strong winds at a nearby point, is captured through the relation of phase angles for the20

one particular frequency ωl at different points Pi and Pj – that is in each row of Θ, [θk]l = Θ̄l. This is the spatial variability

of the wind.

While the phase angles at each point (the columns Θi) are uncorrelated, the phase angles between two points (the rows

Θ̄l) have to be correlated
:::::::
somehow

:::::::::
dependent

:::
on

::::
each

:::::
other to reproduce the spatial structure correctly. For two column vec-25

tors [θm]i and [θm]j this means while the entries within each
::::::
column

:
vector are uncorrelated the two vectors themselves are

element-wise correlated ,
:::::::::::::::::
(cov(θmk,θnk) = 0)

::
the

::::::::
elements

:::::
within

::::
each

:::::::
vectors

::
are

:::
not

:::::::::::
independent,

:::
i.e.

::::::::
correlated

::::::::::::::::::
(|cov(θmk,θml)|> 0),

::
cf.

:
Fig. 3. For wind, this correlation decreases with both, increasing frequency and increasing distance.

Schematic of random phase angle vectors and deterministic phase increments.

For
:::::
Based

:::
on

::::
these

:::::::::::
observation,

:::
we

::::
note

:::
the

::::::::
following

:::
for our use-case of turbulent wind as input to dynamic wind turbine30

analysis, we observe the following: :
:

1Note that one dimension of the block of wind, in the average wind direction, corresponds to a temporal correlation as the wind moves downwind.
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Figure 3.
::::::::
Schematic

::
of

::::::
random

::::
phase

:::::
angle

:::::
vectors

:::
and

::::::::::
deterministic

:::::
phase

::::::::
increments.

:

1. The temporal variability
::
(in

::::
the

:::::::
columns

::
of

:::
Θ)

:
is of primary importance, since it drives the dynamic excitation of the

system under investigation. This is the duration
:::::::
structure

:
of gusts and lulls, captured by the energy distribution in the

frequency spectrum of the wind sample.

2. The spatial variability
::::
Also

:::
the

:::::
spatial

:::::::::
variability

:::
(in

:::
the

::::
rows

::
of

:::
Θ)

:
needs to be represented correctly to yield represen-

tative wind loads, since the length scale of spatial wind structures needs to be correct to
:::::
which

:::::::::
eventually result in the5

correct integral loads. For example, for
::
at any instance when a sensor A

:::::::::
somewhere

:
on the blade experience an increased

load, another sensor B a certain distance away from A needs to experience a load correctly correlated to the load at A.

::::::::
However,

::::
since

:::::
there

:::
will

::::::::::
necessarily

::
be

:::::
some

::::::::
averaging

::
of

:::
the

:::::
loads

:::::
across

:::
the

::::::
blades

:::
this

::
is
::
of

:::::::::
secondary

::::::::::
importance.

:

3. For each point, all elements in each column vector Θi are independent (Fig. 3). However, the column vectors Θi and Θj

at two points Pi and Pj are element-wise correlated. This means the phases in each row vector Θ̄l are not independent.10

Following Veers’ method, only the elements in Θ1 are independent, while the phases at all other points are mapped from

i.i.d. random variables ξmi such that they are correlated to the phases at the base point P1 (and thus to each other), Eq. 3.

::::
This

:::::
means

:::::
there

::
is

::::
more

::::::::::::
“randomness”

::
in
:::
the

::::::::
columns

::
of

::
Θ

::::
than

::
in
::::

the
::::
rows

:
–
:::

an
::::::::
important

::::
fact,

::::::
which

:::
we

:::
will

:::::
soon

::::::
exploit.

15

To obtain a reduced order model which requires fewer random variables we propose splitting the complex Fourier coefficients

Umk, into a temporal and a spatial part. The temporal part will contain the amplitude of each Fourier mode as well as the random

phase angles. It therefore will determine the structure of the wind speed sample in time. The spatial part will contain the phase

correlation between different points across the wind field. It will thus set the wind field structure in space. To reflect this

9



approach we can write:

Umk = Um1︸︷︷︸
temporal

·ei∆θmk︸ ︷︷ ︸
spatial

(4)

The temporal part contains the amplitude according to the prescribed power spectrum S(ωm) and a vector of random phase

angles θm1 = 2πξm at an arbitrary base point P1 within the wind field:5

Um1 =
√
S(ωm)eiθm1 (5)

with independent and identically distributed ξm ∼ U(0,1) as before. Similar to the wind speed increments used for wind

interpolation by Fluck and Crawford (2016a), the spatial part is based on the idea of phase increments ∆θmk, which are

specific to each point and each frequency relative to the base point P1:

∆θmk = θmk − θm1 (6)10

The increment ∆θmk holds the correlated phase information to generate the correct spatial structures. Since θmk and θm1 are

random numbers, the increments ∆θmk are
:::::
should

::
be

:
random, too. In

::::::::
However,

::
in contrast to Veers’ approach of employing

the cross spectrum to map a set of uncorrelated random variables to a set of correlated phases for each point in the wind field,

we neglect the random nature of ∆θmk and consider the phase increments deterministic constantsto move between points as

illustrated in Fig..
::::
This

::::::
means

::::
that

:::
for

:::::::
different

::::
wind

:::::
field

:::::::::
realizations

:::
the

::::::::::
correlation

::::::::
coefficient

::::::::
between

:::
two

::::::
points

::
in

:::::
space15

:
is
:::::
fixed

:::
for

::::
each

:::::::::
frequency

::::
(n.b.

:::
this

::
is

:::
the

:::::::::
stochastic

:::::::::
correlation;

::
It
::::
does

:::
not

:::::::
establish

:
a
:::::::::::

deterministic
::::::::::

one-to-one
::::::::::
dependence

::
of

:::
the

::::
wind

::::::
speeds

::
at

:::
two

::::::::
points!).

:::
For

::::::::
example,

:::
for

:
a
::::::::
frequency

::::
bin

::
at

::::::
f1 = 10

:
Hz

:::
and

::::
point

:::
P4,

:::::
∆θ14:::

has
:::

the
:::::
same

:::::
value

:::
for

::::
each

:::::::::
realization.

::::::::
Similarly,

:::
for

::
a

::::::::
frequency

:::
bin

::::::::
f5 = 0.1 3. Note Hz

:::
and

:::
the

:::::
same

:::::
point,

:::::
∆θ54 :::

has
::::
once

:::::
again

::::::
always

:::
the

:::::
same

::::
value

::::
(but

:::
but

:::::::
different

:::::
from

::::::
∆θ14).

20

::::::::
Assuming

::::::
∆θmk ::

to
::
be

::::::::
constant

:
is
:::

the
::::

core
::::::::::

assumption
::
of

:::
the

:::::::::
presented

:::::::
reduced

::::
order

::::::
model.

::
It
::::::
clearly

::
is
::
a

::::::::::::
simplification,

:::
but

:::::::
essential

::
to

:::::::
arriving

::
at

::
a

:::::
model

::::::
reliant

::
on

::
a
:::::::
reduced

:::::::
number

::
of

:::::::
random

::::::::
variables.

::::
The

:::::
results

:::::::::
presented

::
in

::::::
Section

::
3
::::
will

::::::
confirm

:::
the

:::::::
validity

::
of

:::
this

::::::::::
assumption.

:::::
Note

::::::::
moreover that ∆θmk only contains the spatial structure, but not the temporal part.

That means ‘gusty’ features of the wind (lulls and gusts at different points) are still generated from random numbers; only

the wind field’s structure in space
:::::
spatial

::::::::::
correlation is fixed with each specific set of phase increments. Based on the three25

observations above (1-3) this seems justified for two reasons. Firstly, the phases in each row vector Θ̄l are correlated, while

the phases in each column vector Θi are uncorrelated (3). This means there is more ‘randomness’ in the temporal dimension

then in the spatial dimension. Secondly, for the dynamic analysis of a wind energy device, the temporal part is of primary im-

portance. While the spatial structures have to be represented correctly, their
::::
exact

:
variability can be considered secondary (1,2).

30

It is important to note that focusing on the temporal part does not mean that each realization of the reduced order wind

field will exhibit the same spatial structure of gusts and lulls, i.e. that a gust at point Pi would e.g. necessarily come with a

10



lull at another point Pj . IN
:
In

:
contrary, the proposed method does not alter the original correlation between wind speeds at

two distinct points which is generally smaller than unity. Graphically speaking gusts and lulls result from the interference of

different frequency component sinusoids and phase offsets. Based on the specific realization θm1 the phase angles at each point

θmk = ∆θmk+θm1 will be different each time. Thus, the interference between the frequency components and consequently the

structure of the gusts and lulls will be different with each different realization of phases at the base point θm1. Figure 6, which5

will be discussed later, demonstrates this fact. Nonetheless, the proposed reduction of random variables necessarily causes a

certain increase in dependence of wind speeds across the wind field. An investigation into how this dependence actually looks

like in detail is left for
:::
will

:::
be

:::
the

::::::
subject

::
of

:
future work.

Inserting Eqs. 5 and 6 into Eq. 4 yields the Fourier coefficients based on only one vector
:::::
[θm1] of random phases [θm1] and10

the (auto-) spectrum:

Umk =
√
S(ωm)ei(θm1+∆θmk) (7)

Substituting θm1 = 2πξmwith ξm ∼ U(0,1) as before, Eq. 1 can be turned into our reduced order model
:::::
(with

:::::::::::
ξm ∼ U(0,1)

::
as

::::::
before):

uk(t) =
∑
m

√
S(ωm)ei(ωmt+2πξm+∆θmk) (8)15

Note that while Eq. 3 changes the amplitude of each Fourier coefficient and thus distorts the spectrum at each point, Eq. 8 fully

conserves the spectrum.

In contrast to Veers’ original model, where NR =NF ·NP , in the reformulated model NR =NF . This means the number of

random variablesNR only depends on the number of frequenciesNF used for the wind
::::
speed

:
Fourier series, not on the number20

of wind speed measurement points NP in the 3D wind field. With the available strategies to reduce the number of frequencies

required in a spectral wind model Eq. 8 now allows expression of a turbulent wind field consistent with Veers’ model, but with

significantly fewer frequencies.

What remains is to obtain the phase angle increments ∆θmk. Since these determine the cross-correlation between any two25

points in the wind field, and since the cross-correlation and the cross-spectrum are linked as a Fourier transform pair (corre-

lation theorem, see e.g. (Kauppinen and Partanen, 2011)
::::::::::::::::::::::::::
Kauppinen and Partanen (2011)), it should be possible to analytically

generate one set (one realization) of phase increments directly from the cross-spectrum. For now, however, we extract one

phase angle increment set from one realization of Veers’ Eq. 3, with an analytic solution left to future work.

30
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Figure 4. Schematic of grid points of wind speed data (minimal test case). We arbitrarily chose the right hand top point (P1) to be the base

point.

3 Results and discussion

In the following,
:
we will take a closer look at statistical metrics of the synthetic reduced order wind field. As mentioned earlier

our goal is not to develop a more physically faithful wind model, but rather to reduce the number of random variables required

while retaining similar fidelity as the methods currently in use. TurbSim (Jonkman and Kilcher, 2012) is widely used in industry

and the de facto standard to generate synthetic wind fields for wind turbine analysis. Hence we use TurbSim wind speed data5

sets as the benchmark. In the following
:
, we compare results obtained from TurbSim to two different reduced order models.

The first is our implementation of Veers’ model, which allowed us to freely choose the number of frequencies at each

data point and the frequency binning. As suggested by Veers equations
::::::::
Following

:::::
Veers

:::
this

:
implementation relies on the

conventional
:
a inverse discrete Fourier transform with random phase angles at each frequency bin. This model was validated10

directly against TurbSim. If many frequencies are used and identical phase angles are enforced perfect agreement of the re-

sulting data set was found as expected. As shown by Fluck and Crawford (2017a) the wind speed time series at a single

point for a 333 s sample can be well represented with Nf = 10 logarithmically spaced frequencies
:
,
:::::
which

:::::::
allowed

::
a
:::::
more

:::::::
efficient

:::::::::::
representation

:::
of

::
the

:::::
wind

:::
and

:::
its

::::::::
spectrum.

:::
We

:::
set

:
f = ω/(2π) = [fm] ∈ [f1,fNF

] = [0.003,5] Hz with fm = 10am

and am = log10

(
fNF

f1

)
m−1
NF−1 for m= 1, . . . ,NF . For better comparison (equal sample length T = 600 s),

:
we use NF = 2015

frequencies in f = [fm] ∈ [1/600,5] Hz. I; the
:::
The

:
results of this model are labeled ‘Veers red:::::::

Veers red’ in the following dis-

cussion. This model does not include new theory, yet it is a critical step between TurbSim (and thus Veers’ original model) and

our reduced order model. The second model presented is our reduced order model as described above (Eq. 8). The newly in-

troduced theory of deterministic phase increments ∆θ is employed here, together with a limited number frequencies NF = 20

and thus a reduced number of stochastic variables NR = 20. These results are labeled ‘Veers red, ∆θ::::::::::
Veers red, ∆θ’.20

Tab. 1 gives a comparison of the three models. Note particularly the total number of random variables required by each

model, assuming a typical grid resolution in the order of 15× 15 points over a rotor disk of D = 90 m diameter. While the

use of a limited set of frequencies (Veers red) yields a noticeable reduction in random numbers, for a turbulent wind field with

several wind speed data points in x- and y-direction, this alone is not enough to arrive at a wind model with few enough random25

12



Table 1. Comparison of random numbers used in different wind models for a common grid size.

TurbSim Veers red Veers red, ∆θ

sample length 10 min 10 min 10 min

grid size NPy ×NPz 15× 15 15× 15 15× 15

frequencies NF ∼3,000 20 20

total number of random variables NR 6.75 · 105 4,500 20

numbers to be applicable in a stochastic method (several dozen random variables to be tractable). Only the additional intro-

duction of deterministic phase increments (Veers red, ∆θ) to decouple the number of random variables from the number of wind

speed data points reduces the number of random variables drastically enough to obtain a wind model which can be reasonably

handled by a stochastic method.
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Figure 5. Three 50 s excerpts of a wind speed time series sample
::::::
samples

:
at four points generated from different models and different random

seeds. TurbSim: NREL’s original TurbSim model; Veers red: Veers model with a limited number of frequencies (NF = 20); Veers red, ∆θ: Veers

model with a limited number of frequencies and
:::::::::
deterministic

:
phase incrementsto model spatial structures at different points, see .

:::
See Tab. 1

::
for

::::::::
additional

:::::::::
information.

As a test case we study a
:::::
Since

:::
the

::::
goal

::::
here

::
is

:::
not

::
to

::::::::
calculate

::::
wind

:::::::
turbine

:::::
loads,

:::
but

::
to

::::::
merely

:::::
asses

:::
the

::::::
quality

:::
of

:::
the

::::::
reduced

:::::
order

:::::
wind

::::::
model,

:::
we

::::
used

::
a

::::::
dummy

:
wind field generated on NPy ×NPz = 5× 3 = 15 points located on a regular

grid as depicted in Fig. 4. The origin of the wind field was located 100 above ground with mean wind speed ū= 10 and no

wind shear. The IEC class A normal turbulence model with a Kaimal spectrum (IEC 61400-1, Ed. 3, 2005) and homogeneous

turbulence was used. Data was sampled at 10 . We arbitrarily chose the top left hand point (P1) as the base point. Note that the10

grid used here contains
::::
This

::
is fewer points than the usual grid for the analysis of a modern D = 90

:
D
::
=
:::
90

::
m rotor diameter

wind turbine(where NPy =NPz = 15 is more likely). However, the reduced number of grid points enabled us to solve the

13



equations quickly with all models and more clearly illustrate the method. At the same time, the configuration of Fig. 4 still

allowed us to study both the wind speed time series of points in close proximity (e.g. P1 and P6), as well as at more distant

points (e.g. P1 and P5).
:::
The

::::::
origin

::
of

:::
the

:::::
wind

::::
field

::::
was

::::::
located

::::
100

:
m

:::::
above

::::::
ground

::::
with

:::::
mean

:::::
wind

:::::
speed

:::::::
ū= 10 m/s

:::
and

::
no

:::::
wind

:::::
shear.

::::
The

:::
IEC

:::::
class

::
A

::::::
normal

:::::::::
turbulence

:::::
model

::::
with

::
a
::::::
Kaimal

::::::::
spectrum

:::
and

::::::::::::
homogeneous

:::::::::
turbulence

::::
was

::::
used

::::::::::::::::::::::
(IEC 61400-1, Ed. 3, 2005).

:::::
Data

:::
was

:::::::
sampled

::
at
:::
10 Hz.

:::
We

:::::::::
arbitrarily

:::::
chose

:::
the

:::
top

:::
left

:::::
hand

::::
point

::::
(P1)

::
as

:::
the

::::
base

:::::
point.

:
5

Fig. 5 shows realizations of the wind speed time series sampled at four points (P1, P5, P6, and P10 in Fig. 4) from the three

different models. For each model the samples are generated from different random seeds. Thus the time series are not identical.

Still, it can be seen that the fundamental structures are conserved through both reduced order models. In particular, even if

wind samples are synthesized with only 20 random numbers and deterministic phase increments (Veers red, ∆θ) the wind speeds10

at two points in close proximity (P1 and P6, or P5 and P10) are highly correlated, while at more distant points (e.g. P1 and P5)

the correlation is weaker. It is important to note that this holds not only for points in relation to the base point, but for all point

pairs. For example, points P5 and P10 are both far away from the base point, but close to each other. As expected, the wind

speeds at these two points are well correlated.

15

Fig. 6 shows three realizations of wind speed time series plots at three points obtained from the new phase increment model

(Veers red, ∆θ), Eq. 8. The phase increments are considered deterministic, and ∆θmk is fixed for all realizations. The random-

ness enters the time series only via random phase angles at the base point P1 with θm1 = 2πξm. As can be seen from the

figure, this does not result in a complete determination of the spatial relation between wind speeds at different points, since the

samples still contain different gusts and lulls at different instances in time.20
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Figure 6. Three realizations of wind speed time series at three points generated from the the new reduced order model with fixed phase

increments (Veers red, ∆θmodel).

Beyond this qualitative visual comparison of the wind speed time series the remainder of this section will show that the

phase increment model produces the same statistics as Veers’ original model (with only 20 frequencies) as well as the full

TurbSim model (with the full set of frequencies) for the most important statistical metrics.
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3.1 Cross-correlation

Fig. 7 compares the cross-correlation for two different point pairs, P1-P5 (90 m apart) and P1-P6 (1 m apart) as obtained from

six 99 s windows from a 600 s sample from our reduced model with fixed phase increments (Veers red, ∆θ), from Veers’ model

with 20 frequencies (Veers red), and from the full TurbSim simulation. To reduce noise and compare meaningful (rather than

possibly extreme) values the results are presented as averages of 100 realizations from different random seeds for both phase5

angles and phase increments.
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Figure 7. Wind speed cross-correlation for two point pairs generated from different models; a close pair (P1,P6) and a distant one (P1,P5).

As can be seen from the figure the
:::
Fig.

::
7
:::
the

:
cross-correlation in general agrees very well for both the close points and the

distant point pair. The results from our implementation of Veers’ model and from the phase increment model are almost iden-

tical and hence difficult to distinguishin Fig. 7. .
:
Note that the TurbSim data is smoother, presumably due to the significantly10

higher number of frequencies contained in the TurbSim data set.

Further investigation with the pair P5 and P10, two points close to each other but far away from the base point P1 (not

included in Fig. 7), shows that for all three models the cross-correlation is almost identical to the curve for P1-P6. This

confirms that with our phase increment model the cross-correlation of the homogeneous turbulence field, and with it the length15

scale of spatial structures, is indeed only dependent on the distance between two points, but not on the two specific points

themselves.

3.2 Covariance

Now we look at the covariance as a function of the distance between two points and compare data from TurbSim to the 20 fre-

quency of Veers’ model (Veers red) and to our reduced model with phase increments (Veers red, ∆θ). As above we use averages20

15



from 99 s windows out of 100 realizations of 600 s samples.

From Fig. 8 it can be seen that our implementation of Veers’ model agrees well with the results from TurbSim. The phase

increment model, however, yields slightly, but consistently less
:::
the

:::::::::
covariance

:::::
from

::
all

:::::
three

::::::
model

:::::
agrees

:::::
fairly

:::::
well.

::::
Our

:::::::::::::
implementations

::
of

::::::
Veers’

::::::
model,

:::::::
Veers red:::

and
:::::::::::
Veers red, ∆θ,

:::::
which

::::
both

:::
use

:
a
::::::
limited

:::
set

::
of

::::::::::
frequencies,

:::::
agree

::::::
almost

::::::::
perfectly.5

:::
The

:::::::
TurbSim

::::::
version

::::
with

:::
the

:::
full

:::
set

::
of

:::::::
roughly

:::::
3,000

:::::::::::
frequencies,

::
on

:::
the

:::::
other

:::::
hand,

:::::
yields

:::::::
slightly

:::::::
different

:
covariance. A

more detailed investigation reveals the reason for this: the covariance depends on the cross-spectrum and thus the spectrum

at each individual point. Consequently
:
, the discrepancy between the covariance functions is connected to the fact that Veers’

:
‘ model distorts the spectrum at each individual point, such that with Eq. 3 |Umk|=

√
S̃mk 6=

√
Smk (see discussion in sec-

tion
:
2.1). When we replace S

::
in

:::
our

:::::::::::::
implementation

:
by the distorted spectrum S̃ at each particular point Pk in Eq. 8 all three10

curves do match. However, S̃ does not in fact represent the prescribed Kaimal spectrum. Thus we conclude that our phase

increment model actually represents the desired covariance better than Veers’
:
‘
:
original model and TurbSim.

:::::::
TurbSim

:
.
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Figure 8. Wind speed covariance for points different distances apart.

3.3 Cross-spectrum
:::::
Power

:::::::
spectra

Next we compare the cross-spectrum, which is
::::
Wind

:::::
speed

::::::
power

::::::
spectra

:::
are

:
again obtained as the average spectrum

::::::
average15

from 100 realizations (from
:::
100

:
different random seeds). However, this time 6,000 s were sampled to obtain sufficiently

long data sets for a proper resolution of the low frequency components. Note that the same set of 20 frequencies [fk] ∈
[1/600,5] Hz are used for both the 20 frequency (Veers red) and the phase increment (Veers red, ∆θ) implementations. Hence

the T = 6,000
::::::::
T = 6,000 s signal repeats after 600 s. The spectrum is binned into discrete bins of frequencies fm equal to the
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Figure 9. Wind speed cross power spectral density for three point pairs from different models, together with the analytic results (Eq. 9) and

the prescribed Kaimal auto-spectrum. Left: the base point, and its closest neighbor. Middle: the base point and a point far away. And right: a

point pair close together, but far away from base point.

logarithmically spaced frequencies initially used to generate the wind speed time series.

:::
The

:::::
wind

:::::
speed

::::::::::::
auto-spectrum

:
is
::::::::
included

::
in Fig.

::
2.

::
By

:::::::::
definition

::::
(Eq.

::
8),

:::
the

:::::::
reduced

:::::
order

:::::
model

::::::::
produces

:::
the

:::::::::
prescribed

:::::
(auto-)

::::::::
spectrum

:::::::
exactly.

::::
Fig. 9 shows a comparison of the cross-spectra estimates for different point pairs obtained through

Welch’s periodogram method
::::::::::::
(Welch, 1967) employed on the full 6,000 s samples with no extra windowing(Welch, 1967). We5

study the base point, and its closest neighbor (P1-P6); the base point and a point far away (P1-P5); and a point pair close

together, but far away from base point (P5-P10). For reference, the prescribed Kaimal spectrum S is included, as well as the

analytic cross-spectrum obtained by:

Sij = Cohcoh
::

√
SiiSjj (9)

from
:::
with

:
the (auto-) spectra Sii = S and the coherence function Coh

:::
coh as defined by the standard IEC 61400-1, Ed. 310

(2005).

Again, the phase increment model (Veers red, ∆θ) in all cases reproduces the analytic spectrum well with only 20 random

variables. This time, however, the TurbSim
::::::
TurbSim results do not match as well. The reason is that TurbSim

:::::::
TurbSim chooses

the lowest frequency f1 and the frequency bin width ∆f such that ∆f = f1 = 1/T , and thus uses a wider frequency band for15

the first bin compared to our logarithmically spaced bins. When re-binning to the logarithmic range this results in excess power

(and an artificial peak) in the first bin and hence less power in higher frequency bins. Note, however, that this is an artifact of

the discrete spectrum and the frequency binning, and not a discrepancy in the underlying data.
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Figure 10. Blade thrust load probability distribution from
::::
Blade

:::::::
Element

:::::::::
Momentum

:
(BEM

:
) model based on wind fields generated with

either TurbSim
::::::
TurbSim or from the reduced order Veers model with constant phase increments.

3.4 Outlook: wind turbine rotor blade loads

To further assess the validity of the reduced order wind model, loads were calculated for one single blade on a three bladed

R= 35 m diameter wind turbine rotor spinning at a tip speed ratio λ= 6.1. Loads were obtained at ∆t= 0.1 s time steps

through a simple blade element momentum model supplied with wind generated either from TurbSim
:::::::
TurbSim, or from our

reduced model with fixed phase increments (Veers red, ∆θ) on a 15× 15 grid of data points over the rotor disc. The hub height5

is set to hhub = 90 m, with the hub height mean wind speed ū= 12 m/s, power law wind shear with power law exponent

a= 0.2 (according to Jonkman and Kilcher (2012)), and IEC normal turbulence model, class A (IEC 61400-1, Ed. 3, 2005).

Fig. 10 shows the probability distribution p(T ) of thrust loads T on one blade calculated from 100 realizations of a 600 s wind

field. TurbSim
:::::::
TurbSim used the full set of roughly 3,000 frequencies at each of the 15× 15 grid points. The reduced order

model, on the other hand, relied on only 20 frequencies with all 100 realizations generated one set of fixed phase increments.10

It can be seen, that the reduced order model, although relying on significantly fewer random variables (NR = 6.75 ·105 versus

NR = 20 for each realization, see Tab. 1), produces almost the same load probability distribution.
::
In

:
a
::::::::::
forthcoming

::::::::::
publication

::::::::::::::::::::::::::
(Fluck and Crawford, 2017b) we

::::
will

:::
use

:::
the

:::::::
reduced

:::::
order

:::::
wind

:::::
model

:::::::::
presented

::::
here

::
to

:::::::
develop

:
a
:::::::::
stochastic

::::
wind

:::::::
turbine

::::
blade

::::
load

::::::
model

::::::
(BEM),

::::
This

::::::::::
publication

::::
will

:::
also

:::::::
discuss

::::
these

:::::
blade

::::
load

:::::
PDFs

::
in

::::::
greater

:::::
detail.

:

3.5 Discussion15

As shown by the results presented in this section the phase increments wind model presented in section 2.2 can reproduce

important statistics (both of a wind field, as well as for resulting wind loads) with the same accuracy as
:::::::
accuracy

::::::::::
comparable

::
to the full model. At the same time, the phase increments model requires significantly less random variables. As indicated by

Fig. 6 the phase increments model does not produce identical spatial structures with each realization, even thought a large

18



part of the spatial randomness is neglected is
:
in

:
Eq. 8. This further illustrates the method’s ability to retain important stochas-

tic information.
::::
Like

::::::
Veer’s

::::::
model,

:::
our

:::::::
method

:::::
relies

:::
on

::
a

:::::::
spectral

::::::::::::
representation

::
of

::
a

:::::::
random

:::::::
process.

::::
The

::::
wind

:::::
field

::
is

::::::::
generated

::::::
through

:::
an

::::::
inverse

::::::
Fourier

:::::::::
transform

::::
with

::::::
random

:::::
phase

::::::::::
increments.

:::::
Thus

:::
the

:::::::::
underlying

::::::
process

::
is
::::
(per

:::::::::
definition)

:::::::
assumed

::
to

:::
be

:::::::::
stationary.

:::
As

::::
with

::::
any

:::::::
spectral

::::::
model,

:::::::
singular

::::::::
transient

::::
(and

:::
as

::::
such

::::::::::::
deterministic)

::::::
events

::::
like

:::::
fronts

:::
or

::::::::::
downbursts,

:::
can

:::::::::::
consequently

:::
not

:::
be

:::::::
modeled

:::::::
directly.

::
It
:::::
might

:::
be

:::::::
possible

::
to

::::::
model

::::
these

::::::
events

:::::::
through

:::::::::::
superposition

::
of

::
a5

::::::
discrete

:::::::::::
deterministic

:::::
event

::::
with

:::
our

::::::
random

::::::
model.

::::
This

:::::
could

::
be

::::::
similar

::
to

::::::::::::::::
Chay et al. (2006),

:::
who

::::::::::
superposes

:
a
:::::::::::
deterministic

::::::::
downburst

::::::
profile

::::
over

::
an

:::::::
ARMA

:::::
model

:::
for

:::
the

::::::::
turbulent

::::::::::
fluctuations.

::::::::
However,

::
it

::
is

:::
our

::::
goal

::
to

:::::
derive

:
a
::::::::::
formulation

:::
for

:::::
wind

::
as

::::
input

::
to

:::::::::
stochastic

::::::
models.

::::::
These

::::::
models

:::
will

:::::
have

:::::::::
difficulties

::::::
dealing

::::
with

:::::::
singular

:::::::::::
deterministic

:::::
events

::::::::::
themselves.

::::::
Hence

::
we

:::::
doubt

::
if
::::::::::
progressing

:::::
along

:::
this

::::
way

:::::
would

:::
be

:::::::::
beneficial;

::::::::::
Nonetheless,

::::
this

:::::
could

::::::::
obviously

::
be

:::
the

::::::
subject

::
of

::
a
:::::
future

:::::
study.

:

10

The results from sections 3.1-3.3 are generated from a set of 100 different phase increments generated from 100 different

random seeds. This was necessary because, due to the random equations, it was not possible to compare the results from a

single realization. This might have resulted in uncharacteristically bad (or good) agreement only by the chance of comparing

‘bad’ (or ‘good’) realizations. Instead only the averages over multiple realizations could be compared. For a stochastic analysis

as outlined in the introduction, however, only a very limited set of phase increment realizations would be used. Hence, some15

part of the randomness of the wind field will be lost. This is the price to be payed for using a reduced order model. In

section 2.2 we justify this choice. The results, particularly Figs. 6 and 10, support the notion that a very limited set of phase

increment realizations, or even a single one, can be sufficient. It is still to be determined, however, how many sets will actually

be necessary for adequate results, and how the associated reduction in randomness influences the relevant output quantities,

e.g. for a wind turbine analysis the resulting loads, especially the probability of extreme loads. Preliminary results for wind20

turbine blade loads calculated from a Blade Element Momentum model indicate that only one single set of phase increments

is sufficient to obtain almost the same statistical load distribution as from the conventional analysis based on standard TurbSim

:::::::
TurbSim wind fields.

4 Conclusions

Stochastic analysis and uncertainty quantification are generally very active fields of research in engineering with the developed25

methods increasingly adopted by industry. To enable practitioners to apply these methods to wind turbine aerodynamics and

more generally wind loading analysis on various structures, we presented a new method, which significantly reduces the num-

ber of random variables used in the wind model. This reduction is critical, because the computational effort of the common

stochastic solutions is very sensitive to the number of random variables involved.

30

The model introduced here employs a separation of the temporal (correlation in time) and spatial (coherence in space) part

of the random dimension of turbulent wind. While the temporal part is still determined from random variables, the spatial

part is collapsed into deterministic phase increments. Thus the number of random variables is reduced by several orders of

19



magnitude compared to the commonly used model developed by Veers and implemented in TurbSim
:::::::
TurbSim, currently the (de

facto) standard tool for synthetic wind generation. A comparison of the most important stochastic metrics (cross-correlation,

covariance, auto- and cross-spectrum) showed that the reduced order model based on phase increments still reproduces these

metrics as accurately as Veers’ equations or TurbSim
:::::::
TurbSim. Moreover, preliminary results were presented, which indicate

that the reduced order wind model based on phase increments also preserves wind turbine blade loads well. A detailed study5

quantifying the impact of using deterministic phase increments on the overall statistics of wind turbine loads is yet to be carried

out. Subsequent to the implementation of this reduced order wind model in a full wind turbine simulator, which is the focus of

ongoing work, these ultimate questions can be addressed.
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