
Responses to reviews of: Extreme fluctuations of wind speed for a

coastal/offshore climate: statistics and impact on wind turbine loads

Ásta Hannesdóttir

1 Review by anonymous Referee 1

The manuscript considers extreme fluctuations via a turbulence model per IEC to assess loadings on turbines. The model

follows data taken over the coast of Denmark. The manuscript is motivated using arguments as proposed in standards for gen-

erating the fields and then observing their influence on the blade and tower relating to the various moments associated. The

topic is of interest, by and large, to the wind energy and atmospheric science community. The manuscript provides justification5

for assumptions taken in almost its entirety, which is seen as positive. The manuscript is generally well written and its results

substantiated by data. The manuscript would benefit by considering the points below.

0.) The title should be modified to more accurately represent the content of the manuscript;

1.) Including salient results in the abstract;

2.) Reducing non-descriptive adjectives in the introduction (big, short, etc.);10

3.) Providing further detail on the site and measurements as these are critical to the overall framing of the manuscript;

4.) In figure 3 and 4, for example, subfigures are not discussed in their entirety - if not discussed then these should be removed;

5.) Placement of figures tend to occur prior to the narration;

6.) Comment on process for figure 4 to go from raw measurements to high-pass filtered measurements more carefully;

7.) When discussing design load cases and simulations, consider non-Gaussian fields as it is known that realistic fields may15

differ from Gaussian;

8.) Include literature on works considering conditional pdfs in regards to turbulence fields/statistics/wind power;

9.) Content/results on p12 should be expanded - this is the case with most results that physics based observations are missing.

In this case, given that the simulations are based on a model, it is relevant to justify their physicality;

10.) §5 is difficult to follow and should be revisited as well as explaining the results in more detail;20

11.) Figure quality may be improved;

12.) Conclusions can be presented in non-bullet form and at the present the discussion and conclusions sections may be com-

bined;

13.) Is it possible to extend the analysis to further cases for sake of comparison?

25

Reply to reviewer 1:

Thank you for very much for your constructive review and comments. We have considered your suggestions and made changes
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according to them. In the following we show our response in the same order as the comments:

0) We agree with you and have changed the title of the paper to: Extreme wind fluctuations: joint statistics, extreme turbulence,

and impact on wind turbine loads

1) More details of the results have been added to the abstract.

2) Adjectives have now been removed from the introduction.5

3) We have added a figure showing the location and a overview of the measurement site, also more text.

4) In Figure 3, the subfigures are mentioned on page 6, line 16, however it previously was not very clear. Thus we agree that it

is not necessary to include all the subfigures, as they are so similar. We have moved the subfigures in Figure 3 to an appendix,

so they can still be viewed by a reader interested in those details. For Figure 4 the explicit mention of each subfigure has been

made clearer.10

5) This was due to the WES latex package and recommendation, but we have manipulated it somewhat to show the figures

closer to the corresponding text.

6) We think this is a good suggestion, and we have added the expression for the frequency response function of the Butterworth

filter that we use. We also changed the the cut-off frequency for the high-pass filtering to be more conservative, and added a

subfigure where the data is filtered with even lower cut-off frequency. The measurements are high-pass filtered with cut-off15

frequencies of 1/600 Hz and 1/300 Hz, instead of 1/200 Hz only.

7) In § 4.3 we have added a consideration on non-Gaussian fields and state that the difference between Gaussian and non-

Gaussian turbulence as input to load simulations has been shown to give insignificant difference in load results. This has been

shown by Berg et al (2016).

8) We have added three references: Fitzwater et al.(2003), Saranyarsoontorn and Manuel (2006) and Moon et al. (2014) in §20

3.1

9) As you say, we do not have physical observations of wind turbine loads during these extreme variance events. This is why

we simulate them in HAWC2 which is a model. This model has been referenced in § 4.1, but we have included a more in-depth

explanation of the HAWC2 model.

10) Yes, § 5 has been polished for a hopefully easier flow. Figure 8 have been removed (moved to appendix B), as Figure 925

shows the binned and average values of Figure 8. The text is trimmed. The main points should now stand out more clearly,

while they have also been expanded on.

11) Figures 1,3-5 and 7-11 now have a higher resolution.

12) Yes, we have considered a more conventional conclusion section, without bullets. The purpose of the bullets is to give the

reader a quick overview and an easier focus on the main findings, and after trying both versions we have decided to keep the30

bullets.

13) Yes, it is definitely possible for future work, e.g including more measurement sites or by lowering the curve of the selection

criteria for the present site.
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Note: In the edited version of the manuscript the figure numbering differs from the original one, due to adding/removing of

plots. In the response we refer to the original manuscript figure numbering.

2 Review by anonymous Referee 2

This paper contains significant work that can assist in updating the Extreme Turbulence Model (ETM) of IE61400-1 in order

to improve the prediction of extreme tower base fore-aft loads in the extreme design load case 1.3. There are a number of5

researchers connected with the IEC 61400 series maintenance teams as well as the IEA Wind R&D groups who think that the

extreme wind condition modelling in the 61400 series does not reflect the kind of extreme wind events that occur in nature. This

work is promising, particular if it is extended to consider other extreme design load cases such as EOG, ECD and EWS.

The scientific approach appears valid. I did wonder why TI was used to isolate the extreme variance events though. Why not

just look at a plot of wind speed standard deviation versus wind speed? I also was not clear about the process of excluding10

measurements from the wake of nearby wind turbine. Was this exclusion of sectors covering 0 -180 degrees?

Presentation is very good in general. I have uploaded an annotated pdf with comments that may help to improve clarity. For

instance, I think that the caption Figure 6 should refer to z = 119 m since line 10 on page 12 mentions the time series are at

hub-height.

Please also note the supplement to this comment: https://www.wind-energ-sci-discuss.net/wes-2018-12/wes-2018-12-RC2-15

supplement.pdf

Reply to reviewer 2: Thank you for the positive comments and constructive suggestions. We have used some of your lan-

guage usage and phrasing suggestions (where appropriate) and made changes accordingly. We reply to your comments in the

same order as they appear the annotated pdf-file, disregarding usage/phrasing comments:20

“perhaps need to expand as per the abstract - The variance of wind velocity fluctuations manifested during these events is

not due to extreme turbulence; rather, it is primarily caused by ramp-like increases in wind speed associated with larger-scale

meteorological processes.”

Answer: We have expanded the text in the introduction as you suggest.25

“lighting mast? instrumented with lights for the test site? or lightning mast? with lightning rods to protect the turbines?”

Answer: It is a light mast, with aircraft warning lights on the top. We have added a footnote explaining this.

“ I presume wind speeds from the meteorological mast are used to correlate with power from the wind turbines and that is30

why is was important to compare lighting mast and main met mast (if you are later going to look at wind turbine performance).”
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Answer: The comparison of the met-mast data and the light-mast data is made to demonstrate that the extreme events are

large coherent structures, as seen in Figure 2 and discussed in the text.

“would be nice to have a figure here to show the site layout.”

Answer: We think this is an excellent suggestion and we have added a map of Høvsøre and an overview of the site.5

“can this Figure be sited closer to the reference to the Figure in the text?”

Answer: This was due to the WES latex package and recommendation, but we have manipulated it somewhat to show the

figures closer to the corresponding text.

10

“why not just look at sigma - the 10-minute standard deviations to find the extreme variance events? Low wind speeds may

give misleading high TI values.”

Answer: We agree with you and we have changed Figure 1 to show10-minute standard deviations as function of 10-minute

mean wind speed, instead of TI vs U.

15

“clarify here extreme turbulence model is a function all of the aforementioned parameters in the sentence??”

Answer: We mean that �1 is a linear function of hub-height wind speed (following the IEC 61400-1). It could be written as

�1(Vhub) in the standard, i.e. Vhub is the variable and other parameters are constants. We have clarified in the text.

“again could not low wind speed values influence the TI results. Can you say that the blue dots above the blue curve are20

events with high variance?”

Answer: It is now more clear as Figure 1 has been changed to: sigma vs U, according to your suggestion.

“again - helpful to have figure 3 closer to the text in which it is referred to. I assume this will be sorted out during publishing.”

Answer: Has been modified.25

“consider using ,respectively at the end of the sentence”

Answer: Has been changed according to your suggestion.

“fluctuated below 180 deg? i.e. including small fluctuations in wind direction? Is this just discounting certain sectors? What30

is meant by below?”

Answer: In a few cases the wind direction changed so it was temporarily from South (180 deg), while the mean direction

was still from West. The sentence has been changed to: Finally, events where the corresponding directional data fluctuated

below 180º are discarded, i.e. temporary directional data from South, to exclude measurements from the wake of the nearby

4



wind turbine.

“an illustrative diagram would be useful here”

Answer: We believe that Figure 5 serves to show the dimensions of the turbulence boxes.

5

“rotor speeds seem very low”

Answer: It does, but this is the correct value. At 9.6 rpm the tip speed of the blade is 90 m/s for the DTU 10 MW. For

comparison the NREL 5 MW has a rated rotor speed of 12.1 rpm and maximum tip speed of 80 m/s.

“are these corresponding to the six events as shown in Figure 2?”10

Answer: No, they are randomly synthesized seeds. The word synthesized has been added to the stance to clarify.

“source time series is perhaps a bit confusing - may be interpreted as measured time series?”

Answer: We think you are right, and have changed the legend in Figure 6 to say instead: Synthesized time series.

15

“if at hub-height ,then z =119m”

Answer: Thank you for pointing this out. This has now been changed.

“The layout of the figure could be made clearer. e.g. mark underneath

(a) DLC 1.320

(b) constrained

top panels - wind speed

bottom panels - moments”

Answer: They layout of the figure has been changed to make clearer.
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Extreme fluctuations of wind speed for a coastal/offshore
climate

:::::::::::::::::
fluctuations:

:::::::
joint

:
statistics

:
,
:::::::::::::
extreme

::::::::::::::::::
turbulence,

:
and impact

on wind turbine loads
Ásta Hannesdóttir, Mark Kelly, and Nikolay Dimitrov
DTU Wind Energy Dept., Technical University of Denmark, Roskilde, Denmark

Correspondence to: Ásta Hannesdóttir (astah@dtu.dk)

Abstract. For measurements taken over a decade at the coastal Danish site Høvsøre, we find the variance associated with

wind speed events from the offshore direction to exceed the prescribed extreme turbulence model
:::::
(ETM)

:
of the IEC 61400-

1 Ed.3 standard for wind turbine safety. The variance of wind velocity fluctuations manifested during these events is not

due to extreme turbulence; rather, it is primarily caused by ramp-like increases in wind speed associated with larger-scale

meteorological processes. The measurements are both linearly detrended and high-pass filtered in order to investigate how5

these events—and such commonly-used filtering—affect the estimated 50-year return period of turbulence levels.
::::::::
High-pass

::::::
filtering

:::
the

::::::::::::
measurements

::::
with

::
a
::::::
cut-off

::::::::
frequency

::
of

::::::::
1/300 Hz

:::::::
reduces

:::
the

::::::
50-year

:::::::::
turbulence

:::::
levels

::::::
below

:::
that

::
of

::::
IEC

:::::
ETM

::::
class

::
C,

:::::
where

:::
as

::::
linear

:::::::::
detrending

:::::
does

:::
not.

::::
This

::
is

::::
seen

::
as

:::
the

::::::::
high-pass

::::::
filtering

:::::
more

:::::::::
effectively

:::::::
removes

:::::::
variance

:::::::::
associated

::::
with

:::
the

::::::::
ramp-like

::::::
events. The impact of the observed events on a wind turbine are investigated using aeroelastic simulations,

that are driven by constrained turbulence simulation fields. Relevant wind turbine component loads from the simulations are10

compared with the extreme turbulence load case prescribed by the IEC standard. The loads from the event simulations are

generally
::
on

::::::
average

:
lower for all considered load components, with one exception: ramp-like events

:::::::::
Ramp-like

:::::
events

::
at
:::::
wind

:::::
speeds

::::::::
between

:::::::
8-16 m/s where the wind speed rises to exceed rated wind speed can lead to

::::
high

:::::
thrust

::
on

:::
the

:::::
rotor,

::::::::
resulting

::
in extreme tower base fore-aft loads that exceed DLC 1.3

:::
the

:::::::
extreme

:::::::::
turbulence

:::
load

::::
case

:
of the IEC standard.

1 Introduction15

The IEC design standard for wind turbine safety (61400-1 edition 3, IEC, 2005) outlines requirements that, when followed,

offer a specific reliability level which can be expected for a wind turbine. The standard prescribes various operational wind

turbine load regimes and extreme wind conditions that the wind turbine must be able to withstand during its operational

lifetime. So-called design-load cases (DLC’s) are described, following these prescribed regimes and conditions. One of the

IEC prescriptions is an extreme turbulence model (ETM), which gives the ten-minute standard deviation of wind speed, with a20

50-year return period, as a function of ten-minute mean wind speed at hub height. The ETM takes into account the long-term

mean wind speed at hub height and is scaled accordingly through the wind speed parameters of the IEC wind turbine classes.

The model is prescribed in a design load case (DLC 1.3) for ultimate load calculations on wind turbine components; this DLC

is considered to be important in wind turbine design, particularly for the tower and blades (Bak et al., 2013). For the standard
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to be effective, it must reflect the expected atmospheric conditions and the extreme events that a wind turbine may be exposed

to. Likewise, it is important that DLC 1.3 is representative of observed extreme turbulence conditions.

The IEC standard recommends the uniform-shear spectral turbulence model of Mann (1994, 1998) for generation of three-

dimensional turbulent flow, to serve as input to turbine load calculations. Gaussian turbulent velocity component fluctuations

are synthesized via the ‘Mann-model’ spectra, and assumed to be stationary and homogeneous (unless the model is modified,5

as in de Mare and Mann, 2016). The model requires three input parameters, which have values prescribed by the standard.

In Dimitrov et al. (2017) it is shown that the parameters of normal turbulence and extreme turbulence differ, and how these

differences influence wind turbine loads. There it is also shown how numerous 10-minute turbulence measurements from the

homogeneous land (eastern) sectors exceed the ETM model at the Danish Test Centre for Large Wind Turbines at Høvsøre,

indicating that the ETM model is not necessarily conservative.10

A further investigation of 10-minute turbulence measurements exceeding the ETM level is needed to identify what kind of

flow causes these extreme events and how they influence the estimated turbulence level at a given site. Fluctuation
::::::::::
Fluctuations

associated with mesoscale meteorological motion can have periods in the range of a minute up to hours (Vincent, 2010). In the

shorter end of this range the fluctuations have a big influence on the
:::
are

:::
the

::::
main

::::::::::
contribution

::
to

:::
the 10-minute variance estimate

(turbulence level). Short-time mesoscale fluctuations have been reported in connection with e.g. open cellular convection15

(Vincent et al., 2012), convective rolls (Foster, 2005) and streaks (Foster et al., 2006). The fluctuations are seen in measurements

as coherent structures with a ramp-like increase in wind speed (Fesquet et al., 2009). These studies have been made with respect

to identification, modelling, forecasting and wind power generation, but they do not consider the impact on wind turbine loads.

In this paper we aim to find and examine events where the 10-minute variance exceeds the ETM level; however
:
.
::::::::
However

here we consider them as non-turbulent events,
::
as

::::
they

::::
are

::::::
caused

:::
by

::::::::
ramp-like

::::::::
increase

::
in

:::::
wind

:::::
speed

:::::::::
associated

:::::
with20

:::::::::
larger-scale

:::::::::::::
meteorological

::::::::
processes,

:
which may be observed offshore or high above the surface layer. We use measurements

from the measurement site Høvsøre, focusing on the western (offshore) sectors. We demonstrate how these events influence

the estimate of 10-minute turbulence levels with a 50-year return period. This is done for the raw-, linearly detrended-, and

high-pass filtered measurements. The observed events are simulated by incorporating measured time series using a constrained

simulation approach, in order to get a realistic representation of the flow involved. The generated wind field realizations are25

fed to an aero-elastic model (Larsen and Hansen, 2015) of the DTU 10MW reference wind turbine (Bak et al., 2013), to inves-

tigate how they affect wind turbine loads. Finally, the load simulations with the observed events are compared to simulations

corresponding to DLC 1.3 from the IEC 61400-1 standard.

2 Site and measurements

The data analysis and load simulations are based on 10 Hz wind speed measurements over a 10-year period, from November30

2004 to December 2014, taken at
::::::::::::
measurements

:::::
from the Høvsøre Test Centre for Large Wind Turbines in western Den-

mark (Peña Diaz et al., 2016). Located over flat terrain 1.7 km east of the coastline, the site offers low-turbulence, near-coastal
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wind conditions. The site consists of five wind turbines arranged in a single row along the north-south direction, and multiple

measurement masts.

Figure 1.
::::
Left:

::::
Map

::
of

:::::::
Denmark

::::::
showing

:::
the

::::::
location

:::
of

:
H
:
ø
::
vs

:
ø
::
re.

:::::
Right:

:::::::
Overview

::
of

:::
the

::
H

:
ø

:
vs

:
ø
:
re
:::

test
:::::

center
:::::::

showing
:::
the

::::::
position

::
of

:::
the

:::
met

::::
mast

:::
and

::
the

::::
light

::::
mast

::::
with

::::
white

::::::
circles.

The primary data source used in this paper is a lighting mast
::::
light

::::
mast1 placed between two of the wind turbines; this

:
.
::::
This

mast has cup anemometers and wind vanes at 60 m, 100 m and 160 m heights installed on southward pointing booms. The

lighting-mast
::::::::::::
measurements

::::
span

::
a

::::::
10-year

:::::::
period,

::::
from

:::::::::
November

:::::
2004

::
to

:::::::::
December

::::
2014

::::
and

:::
the

::::::::
recording

:::::::::
frequency

::
is5

:::::
10 Hz.

::::
The

:::::::::
light-mast data is compared with data from the main Høvsøre meteorological mast, which is located south of all

wind turbines and approximately 400 m south of the lighting mast.
::::
light

::::
mast,

:::
as

:::
may

:::
be

::::
seen

::
in

::::::
Figure

::
1.

:::::
More

:::::
details

:::
on

:::
the

:::
site,

:::::::::::::
instrumentation

::::
and

::::::::::
observations

::::
may

::::
also

::
be

::::::
found

::
in

:::::::::::::::::::
Peña Diaz et al. (2016).

:

We consider measurements only from the western sector, with 10-minute mean wind direction between 225º and 315º. This

range of wind directions is chosen for two reasons: (i) to avoid measurements from the wakes of the wind turbines and flow10

distortion from the mast; (ii) data from this sector corresponds to coastal and offshore conditions.

2.1 Selection criteria of extreme events

The first step in
:::
For the selection of the extreme variance events is to calculate the observed apparent turbulence intensity

(TI) of
::
the

:
10-minute averages of horizontal wind speed from the westerly sector, I ⌘ �/U . Here � is the 10-minute standard

deviation of the wind speed , and U is the 10-minute mean wind speed. Next, the data is
::::::::::::
measurements

::
is

:
compared to the15

extreme turbulence model in the IEC 61400-1 standard (IEC, 2005), where the horizontal turbulence standard deviation is
1
::
The

::::
light

:::
mast

:::
has

:::::
aircraft

:::::
warning

::::
lights

::
on

:::
the

::
top.
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given by

�1 = c · Iref


0.072

✓
Vave

c

+ 3

◆✓
Vhub

c

� 4

◆
+ 10

�
. (1)

Here c is a constant of 2 m/s, Iref is the reference turbulence intensity at 15 m/s, Vave is the annual average wind speed at hub

height, and Vhub is the 10-minute mean wind speed at hub height, of which the model is a function
:
;
:::
the

:::::::
variable

::
of

::::::
which

::
�1::

is
::
a

:::::
linear

:::::::
function

::
of. For the ‘offshore’ westerly directions considered at Høvsøre the long-term (10-year) mean of 10-5

minute average wind speeds at 100 m height is U=10.4 m/s, which corresponds well to class I turbines within the IEC 61400-1

framework with Vave=10 m/s.

Figure 2. The dots correspond to 10-minute TI
::::::
standard

:::::::
deviation

::
of

:::
the

::::
wind

::::
speed as a function of U at 100 m height over a 10-year period.

The black and blue curves show the IEC extreme turbulence model, class C and class B respectively. The selected events (blue dots) are TI

::
�u values exceeding the extreme turbulence model class B.

The IEC standard has three turbulence categories: A, B and C, with A being the highest reference turbulence intensity, and

C the lowest. The corresponding reference TI for each class may be seen in Table 1. At Høvsøre, the (decade-long) average

TI corresponding to the IEC reference wind speed, i.e. 10-minute mean wind speeds of U = 15 ± 0.5 m/s, is below 0.12. This10

indicates that the reference turbulence class C and Iref of 0.12 will equal or exceed in severity the actual conditions at the site.

However, for the selection of events to analyze, a criterion corresponding to the IEC ETM model with turbulence class B is

used. This is done in order to limit the selection to a representative subset of the most extreme events, while also limiting

computational demands. The selected events can be seen in Figure 2 as blue dots that fall above the blue curve, i.e. these are

events that have a high horizontal wind speed variance. The events are selected from measurements at 100 m height.15

Figure
:
3 shows the horizontal wind speed at 100 m from the lighting

::::
light

:
mast and meteorological mast during six of

the selected events. The events typically include a sudden rise in wind speed, which gives the main contribution to the high

variance. Notice the sudden wind speed increase occurs approximately simultaneously at the two masts although they are

⇠400 m apart (for mean wind direction roughly perpendicular to the line connecting the masts), indicating that the events are

due to large coherent structures—rather than extreme stationary turbulence.20
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Turbulence class Iref

A 0.16

B 0.14

C 0.12

Table 1. The IEC turbulence classes and associated turbulence intensities.

(a) �̄ = 256º (b) �̄ = 263º

(c) �̄ = 237º (d) �̄ = 299º

(e) �̄ = 311º (f) �̄ = 278º

Figure 2. Comparison of horizontal wind speed measurements at the meteorological mast (green curve) and the light mast (blue curve). The

measurement height is 100 m at both masts, which are separated by ⇡ 400 m. The 10-minute averaged wind direction ✓̄ is from the light

mast.

Here we use the inverse first-order reliability method (IFORM) to estimate the 50-year return period contour corresponding

to the joint description of turbulence (�
u

) and 10-minute mean wind speed (U ). This method was developed by Winterstein

et al. (1993) and provides a practical way to evaluate joint extreme environmental conditions at a site.The first step in the

IFORM analysis is to find the joint probability distribution f(U,�

u

). According to the IEC standard the 10-minute mean wind

speed is assumed to follow a Weibull distribution 2, and the ‘strength’ (standard deviation) of turbulent stream-wise velocity5

component fluctuations (�
u

) is assumed to be log-normally distributed conditional on wind speed. In the standard, the mean of
2Here we use a 3-parameter Weibull distribution. This is done because after filtering out measurements with errors and missing periods, the lowest mean

wind speed is 2.2 m/s. One could also use a 2-parameter Weibull distribution and fit with weights in the tail to obtain the same result.

5

Figure 3. Comparison of horizontal wind speed measurements at the meteorological mast (green curve) and the light mast (blue curve). The

measurement height is 100 m at both masts, which are separated by ⇡ 400 m. The 10-minute averaged wind direction ✓̄ is from the light

mast.

3 Data processing

The data set used for the data analysis and simulation is the 10 Hz measurements from cup anemometers and wind vanes on

the light mast in Høvsøre.
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3.1 Estimation of 50-year joint extremes of turbulence and wind speed: IFORM analysis

The measurements shown earlier in Figures 2 and 3 are raw (not processed or filtered), though it is common procedure to

detrend data before estimating turbulence or associated return periods for a given turbulence level. Not all the extreme variance

events are expected to be influenced by linear detrending, nor is such detrending necessarily appropriate for non-turbulent

events; note e.g. the event shown in Figure 3c. Therefore we want to compare the 50-year return period of turbulence with the5

data, detrended in two different ways: linear detrending and high-pass filtering. Detrending is performed by making a linear

least-squares fit to the raw 10-minute wind speed time series, with the linear component subsequently subtracted from the raw

data.

The high-pass filtering is performed with a second-order Butterworth filter (Butterworth, 1930)having
:
,
:::::
where

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::
frequency

::::::::
response

:::::::
function

:::
(the

:::::
gain)

::
is

:::::
given

::
by

:
10

G(f) =

1p
1 + (f

c

/f)

4
::::::::::::::::::

(2)

:::::
where

::
f

c::
is

:::
the

:::::::
‘cut-off’

:::::::::
frequency.

:::
We

:::::::
perform

:::
the

:::::::
filtering

:::::
using a cut-off frequency of 0.005

:::::
0.0017 Hz . The

::::::::
(1/600 Hz)

::::
and

:::
also

::::
with

::
a
::::::
higher cut-off

::::::::
frequency

::
of

:::::::::
0.0033 Hz

::::::::::
(1/300 Hz).

:::
The

::::::
higher

::::::
cut-off

:
frequency chosen for the high-pass filtering

corresponds to fluctuations with periods of 200
:::
300 s (one third

:::
half of the sample period of the measurements). This choice

of cut-off frequency ensures removal of trends in the range 2–5
:::::
2.5–10

:
minutes (low-frequency transients), and is considered15

conservative enough to still include fluctuations associated with turbulent eddies.2

The mean and standard deviation of �

u

as function of wind speed at 100 m. Left : the raw data. Middle : the linearly

detrended data. Right : High-pass filtered data. The blue curves show the the IEC expressions, the grey dots show the measured

values and the green curves show a polynomial fit to the measurements.

Here we use the inverse first-order reliability method (IFORM) to estimate the 50-year return period contour corresponding20

to the joint description of turbulence (�
u

) and 10-minute mean wind speed (U ). This method was developed by Winterstein et al.

(1993) and provides a practical way to evaluate joint extreme environmental conditions at a site. The
:::::::
IFORM

::::::
method

::
is

::::::
widely

::::
used

::
in

::::
wind

::::::
energy

::
to

::::::
predict

:::::::
extreme

::::::::::::
environmental

:::::::::
conditions

::
or

:::::::::
long-term

::::::
loading

:::
on

::::
wind

::::::::
turbines,

:::
for

:::::::
ultimate

:::::::
strength

:::::::
analysis.

:::::
More

:::::::::
information

:::
on

:::
this

:::::::
method

:::
may

:::
be

:::::
found

::
in

:::
e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Fitzwater et al. (2003); Saranyasoontorn and Manuel (2006); Moon et al. (2014).

25

:::
The

:
first step in the IFORM analysis is to find the joint probability distribution f(U,�

u

).

According to the IEC standard the 10-minute mean wind speed is assumed to follow a Weibull distribution 3, and the

‘strength’ (standard deviation) of turbulent stream-wise velocity component fluctuations (�
u

) is assumed to be log-normally
2 Fluctuations with a period of 200

::
300 s at 4 m/s–25 m/s (the operational wind speed range of a typical wind turbine) correspond to length scales of

800
::::
1200 m–5000

:::::
m–7500 m. Length scales in this range are significantly larger than turbulent length scales that have been estimated at the Høvsøre site (e.g.

Sathe et al., 2013; Dimitrov et al., 2017; Kelly, 2018)
3Here we use a 3-parameter Weibull distribution. This is done because after filtering out measurements with errors and missing periods, the lowest mean

wind speed is 2.2 m/s. One could also use a weighted 2-parameter Weibull distribution fit with increased weights in the tail to obtain the same result.
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distributed conditional on wind speed. In the standard, the mean of �

u

is expressed as a function of U ,

µ

�u = Iref(0.75U + 3.8m/s), (3)

and the standard deviation of �

u

is defined as

�

�u = 1.4Iref. (4)

In Figure
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Figure 4.
:::
The

::::
mean

:::
and

:::::::
standard

:::::::
deviation

::
of

::
�u::

as
::::::
function

::
of

::::
wind

:::::
speed

:
at
:::::
100 m,

:::
for

:::
raw

:::
data

::::
(not

::::::::
de-trended

::
or

::::::
filtered).

:::
The

::::
blue

:::::
curves

::::
show

::
the

:::
the

:::
IEC

::::::::::
expressions,

::
the

::::
grey

:::
dots

:::::
show

::
the

::::::::
measured

:::::
values

:::
and

::
the

:::::
green

:::::
curves

::::
show

:
a
:::::::::
polynomial

::
fit

::
to

::
the

::::::::::::
measurements.

5

::
In

:::::
Figure

:
4, µ

�u and �

�u are shown as functions of 10-minute mean wind speed, from Høvsøre
::::::::::
unprocessed measurements

at 100 m (grey dots) and the expressions from the IEC standard (blue lines) with Iref = 0.12. The green lines show a third- and

a second order polynomial fit to the binned measurements of µ

�u and �

�u respectively (bins of 1 m/s). The IEC expression for

µ

�u is higher than that from the measurements, but has a similar slope for mean wind speeds above 15 m/s. The difference is

larger between the data and IEC expression for �

�u , where the assumption of no mean wind speed dependency does not fit well10

to the data. Comparing the raw data (left), linearly detrended data (middle) and high-pass filtered data (right) it is seen that the

detrending, and high pass filtering slightly lowers the values of µ

�u , while the reduction of �

�u is much greater, especially for

the high-pass filtered measurements.

The next step in the IFORM analysis is to obtain a utility "reliability index" � which translates the desired return period T

r

(here 50-years) into a normalized measure corresponding to number of standard deviations of a standard Gaussian distribution:15

� = �

�1

✓
1 � T

t

T

r

◆
= �

�1

✓
1 � 1

5n

m

◆
(5)
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Here �

�1 is the inverse Gaussian cumulative distribution function (cdf), T

t

is the duration of a turbulence measurement (here

10 minutes) and n

m

is the number of 10-minute measurements corresponding to a 10-year period (which equals the time span

of the data). Thus the reliability index equals the radius of a circular contour in standard Gaussian space, so that

� =

q
u

2
1 + u

2
2., (6)

Where
:::::
where the standard normal variables u1 and u2 are derived from physical variables using an iso-probabilistic transfor-5

mation, which takes correlations into account. We invoke the Rosenblatt transformation (Rosenblatt, 1952), which relies on the

fact that a multivariate distribution may be expressed as a product of conditional distributions: F (x1,x2) = F (x1)F (x2|x1).

In this analysis, only two variables are considered, and the transformation may be performed in the following way:

U = F

�1
U

⇣
�(u1)

⌘
, �

u

= F

�1
�u|U

⇣
�(u2)

⌘
(7)

where F

U

is the three-parameter Weibull cdf and F

�u|U is the conditional log-normal cdf.10

Figure

:::::
Figure

:
5 shows the joint distribution of mean wind speed and turbulence, with contours corresponding to the 50-year return

period. The contours are calculated based respectively on the measurements
:::::
(green

:::::::
curves), and the IEC expressions

::::
(blue

::::::
curves)

:
of µ

�u and �

�u ::::::::::
respectively. The parameters of the marginal distribution of the 10-minute mean wind speed data

were found with maximum likelihood estimation of the three-parameter Weibull distribution (scale parameter: 9.75 m/s, shape15

parameter: 2.02, location parameter: 2.20). The parameters for the conditional log-normal distribution were estimated with the

first and second moments, conditional on mean wind speed: µ

�u and �

�u , both with the IEC expressions in Eq
:::
Eqs. 3 and 4

and the third- and second-order polynomial fit to the binned data. It is seen both in Figure 4 and Figure 5
::::
when

::::::::::
comparing

::::::
Figures

::
5a

::
to
:::
5d that the variance of �

u

is significantly reduced by the high-pass filteringcompared with the linear detrending.

The 50-year return period contour estimated with the linearly detrended data
::::::
(Figure

:::
5b)

:
exceeds the one estimated with IEC20

turbulence class C , as the
::
in

:::
the

:::::
whole

::::::::::
operational

:::::
wind

:::::
speed

:::::
range.

:::::
This

::
is

:::::::
because

:::
the linear detrending does not affect

events like the one seen in Figure 3c, and these events influence the estimate of the contour. In Figure 5 (right)
:::::
Figure

::
5c

::::::
shows

::
the

:::::::::
high-pass

::::::
filtered

::::::::::::
measurements

::::
with

:
a
::::::
cut-off

:::::::::
frequency

::
of

::::::::
1/600 Hz,

:::
and

::::
here

::
it

::
is

::::
seen

::::
how

:::
the

::::::::
estimated

::::::
50-year

::::::
return

:::::
period

:::::::
contour

:::::::
exceeds

:::
the

:::
IEC

:::::::::
turbulence

:::::
class

::
C

::::::
contour

:::
for

:::::
wind

:::::
speeds

::::::::
between

::::
6 m/s

::::
and

::::::
22 m/s.

::
In

::::::
Figure

:::
5d, it is seen

how the high-pass filtering
::::
with

::::::
cut-off

:::::::::
frequency

::
of

::::::::
1/300 Hz

:
reduces the variance estimates to the extent that the 50-year25

contour obtained in this way gives turbulence levels lower than ETM IEC class C. These observed changes in turbulence levels

indicate that the extreme variance events are not necessarily associated with linear trends. Some events are associated with wind

speed fluctuations in a frequency range that may have a substantial impact on wind turbine loads. Therefore we investigate this

impact, with constrained turbulence simulations incorporating the raw measurements that have not been detrended in any way.
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(a) (b)

(c) (d)

Figure 5. The 50-year return period contours based on the measurements (green curves) and the IEC expressions (blue curves). The grey

dots show the measurements. a) Raw measurements. b) Linearly detrended measurements. c) High-pass filtered measurements with a cut-off

frequency: 1/600 Hz. d) High-pass filtered measurements with a cut-off frequency: 1/300 Hz. The dark grey circles indicate the extreme

variance events.

Figure 5 shows the joint distribution of mean wind speed and turbulence, with contours corresponding to the 50-year return

period. The contours are calculated based on the measurements (green curves), and the IEC expressions (blue curves) of µ

�u

and �

�u respectively. The parameters of the marginal distribution of the 10-minute mean wind speed data were found with

maximum likelihood estimation of the three-parameter Weibull distribution (scale parameter: 9.75 m/s, shape parameter: 2.02,

8

Figure 5. The 50-year return period contours based on the measurements (green curves) and the IEC expressions (blue curves). The grey

dots show the measurements. Left :
::
a) Raw measurementsMiddle : .

::
b)
:

Linearly detrended measurements. Right :
:
c)
:
High-pass filtered

measurements
:::
with

:
a
::::::

cut-off
::::::::
frequency:

:::::::
1/600 Hz.

::
d)

::::::::
High-pass

:::::
filtered

:::::::::::
measurements

::::
with

::
a

:::::
cut-off

::::::::
frequency:

::::::::
1/300 Hz. The dark grey

circles indicate the extreme variance events.

3.2 Time series for simulation

The peak and the corresponding location of each event is identified in the following way: A moving average is subtracted from

the wind speed signal and the maximum value of the differences identified:

u

peak

= max(u � ū60s

) (8)

where u is the horizontal wind speed signal and ū60s

is the moving average over 60 s. The peaks are not necessarily the highest5

value of the signal, but rather the highest value within a sharp wind speed increase.

Applying the selection criteria described in section 2.1 results in 99 identified events. Of these, 30 events are discarded as

they include periods of missing measurements. A lower threshold of 4 m/s is put on u

peak

to exclude events mostly consisting

of a linear trend or relatively insignificant peaks. Finally, events where the corresponding directional data fluctuated below 180º

are discarded,
::
i.e.

:::::::::
temporary

:::::::::
directional

::::
data

::::
from

::::::
South, to exclude measurements from the wake of the nearby wind turbine.10
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A remaining 44 events are chosen for load simulations. The measured time series including the extreme events are used to

generate constrained turbulence simulations (explained in more detail in Section 4.4) of 600 s duration. The time series period

is selected such that the sharp wind increase, or ramp, occurs approximately in the middle of the time series, i.e., approximately

300 s before and after the peak.

4 Load simulation environment5

4.1 HAWC2 and the DTU 10 MW

Wind turbine response in the time domain is calculated with HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd

generation, Larsen and Hansen, 2015). HAWC2 is based on a multibody formulation for the structural part, and the
:::::
where

::::
each

::::
body

:::::::
consists

::
of

::::::::::
Timoshenko

:::::
beam

::::::::
elements.

:::
All

:::
the

:::::
main

::::::::::
components

::
of

:
a
:::::
wind

::::::
turbine

:::
are

:::::::::
represented

:::
by

::::
these

:::::::::::
independent

:::::
bodies

::::
and

:::::::::
connected

::::
with

::::::::
different

:::::
kinds

::
of

::::::::
algebraic

::::::::::
constraints.

::::
The

:
aerodynamic forces are accounted for with blade10

element momentum theory (see e.g. Hansen, 2013) .
:::
with

:::::::::
additional

:::::::::
correction

:::::::
models:

::
a

::
tip

:::::::::
correction

::::::
model,

::
a
:::::::
skewed

:::::
inflow

:::::::::
correction,

:::
and

::
a
:::::::
dynamic

::::::
inflow

:::::::::
correction.

:::::::
HAWC2

::::::::::
additionally

:::::::
includes

:::::::
models

:::
that

:::::::
account

:::
for

:::::::
dynamic

::::
stall,

:::::
wind

::::
shear

::::::
effects

::
on

:::::::::
induction,

::::::::::::
tower-induced

:::::
drag,

:::
and

:::::
tower

:::::::
shadow.

All the load simulations are performed using the DTU 10 MW reference wind turbine (RWT), which is a virtual wind turbine

model based on state-of-the-art wind turbine design methodology. The main characteristics of the RWT may be seen in Table15

2 and a more detailed description may be found in Bak et al. (2013). The controller used for the RWT is the Basic DTU Wind

Energy controller (Hansen and Henriksen, 2013).

DTU 10 MW RWT

Rotor diameter 178.3 m

Cut-in wind speed 4 m/s

Rated wind speed 11.4 m/s

Cut-out wind speed 25 m/s

Cut-in rotor speed 6 rpm

Rated rotor speed 9.6 rpm

Hub height 119 m

Table 2. The main characteristics of the reference wind turbine.

4.2 Turbulence simulations in HAWC2

The Mann spectral turbulence model (Mann, 1994, 1998) is fully integrated into HAWC2, where a turbulence ‘box’ may be

generated for every wind turbine response simulation. The turbulence box is a three dimensional grid that contains a wind20

velocity vector at each grid point. The turbulence boxes in this study all have 8192 ⇥ 32 ⇥ 32 grid points, in the x-, y-, and

10



z-directions, respectively. The y-z plane is parallel with the rotor, and the distance between the grid points is typically defined

so that the domain extent in the y- and z-directions becomes a few percent larger than the rotor diameter. The length of the

x-axis (L
x

) is proportional to the mean wind speed at hub height, L

x

= U · T , where T is the simulation time. The turbulence

box is transported with the average wind speed at hub height through the wind turbine rotor.

The Mann model is based on an isotropic von Kármán turbulence spectral tensor, which is distorted by vertical shear caused5

by surface friction. Assumptions of constant shear and neutral atmospheric conditions in the rapid-distortion limit are used to

linearize the Navier-Stokes equations, which may then be solved as simple linear differential equations. The solution results

in a spectral tensor that may be used in a Fourier simulation, to generate a random field with anisotropic turbulent flow. The

Mann model contains three parameters:

• � is an anisotropy parameter, that when positive, �2
u

> �

2
v

> �

2
w

, which are the variances of the u-, v- and w-components10

of the wind speed, respectively. When � = 0, the generated turbulence is isotropic, �

2
u

= �

2
v

= �

2
w

.

• ↵"

2/3 is the product of the Kolmogorov spectral constant and the rate of turbulent kinetic energy dissipation to the power

of 2/3. The Fourier amplitudes from the spectral tensor model are proportional to ↵"

2/3, hence increasing ↵"

2/3 gives a

proportional increase in the simulated turbulent variances, but no change in the shape of the spectrum.

• L is the length scale which is representative of the eddy size that contains the most energy.15

The IEC-recommended values of the parameters are: � = 3.9, L =29.4 m (for hub heights above 60 m), and that ↵"

2/3 is set

to a positive value, to be scaled with �

2
u

. It has been shown in numerous studies that these parameters can change significantly,

e.g. with turbulence level (Dimitrov et al., 2017; Kelly, 2018), atmospheric stability (Sathe et al., 2013; Chougule et al.,

2017) and site conditions (Kelly, 2018; Chougule et al., 2015). As we do not want to investigate the effect of changing these

parameters, all turbulence realizations are chosen to have the same parameters. In the present study, the anisotropy parameter20

is chosen according to the IEC standard, � = 3.9. The turbulence length scale is chosen differently, because the DTU 10 MW

RWT is a relatively large wind turbine, and the turbulence length scale is expected to be of the same order of magnitude as the

hub height (Kristensen and Frandsen, 1982). Here the length scale is estimated via

L =

�

u

dU/dz

(9)

as derived by Kelly (2018). The final 200 s of simulation data, i.e. after the wind-speed ramps, are used to estimate the length25

scale of turbulence and thus exclude the large coherent structure. Here �

u

from 100 m height is used, along with dU/dz

estimated between z = 160 m and z = 60 m. Using (9) the length scale is found on average to be hLi ⇡ 120 m over all events

analyzed. The value chosen is therefore L = 120 m.

4.3 Design load case 1.3

The DLC is simulated based on the setup described in Hansen et al. (2015), where mean wind speeds at hub height of 4–26 m/s30

in steps (bins) of 2 m/s are used, and each simulation has a duration of 600 s.4.
:
The Mann turbulence model is used to generate

4In contrast with Hansen et al. (2015), here the simulations are performed without yaw misalignment.
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Gaussian turbulence boxes, with six different random
:::::::::
synthesized

:
turbulence seeds per mean wind speed. The simulation time

of the turbulence boxes is defined to be 700 s, where the first 100 s are used for initialization of the wind turbine response

simulation, and are disregarded for the load analysis.

::
In

:::
the

::::::
current

:::::
study

:::
we

:::::::
generate

::::::::
Gaussian

:::::::::
turbulence

:::::
fields

::::
only,

:::::
even

::::::
though

:
it
::
is
::::::
known

::::
that

::::::::::
atmospheric

::::::::
turbulent

:::::
fields

:::
can

::::::
exhibit

:::::::::::
non-Gaussian

:::::::::
character.

::::::::
However,

:::
for

:::
the

:::::::
purpose

::
of

::::
wind

:::::::
turbine

::::::::
response,

:::
the

::::::::
difference

:::::::
between

::::::::
Gaussian

::::
and5

:::::::::::
non-Gaussian

:::::::::
turbulence

::
as

::::
input

::::
has

::::
been

:::::
shown

::
to

::::::::
generally

::::
give

::::::::::
insignificant

:::::::::
difference

::
for

:::::::
turbine

::::
loads

::::::::::::::::
(Berg et al., 2016).

4.4 Constrained turbulence simulations

The aim here is to generate turbulence simulations resembling the measured wind field of the extreme variance events. This is

done by constraining the synthesized turbulence fields. The constraining procedure involves modifying the time series to rep-10

resent the most likely realization of a random Gaussian field which would satisfy the constraints, using an algorithm described

in Hoffman and Ribak (1991) and demonstrated with applications to wind energy in Nielsen et al. (2004) and Dimitrov and

Natarajan (2017). For the constraining procedure we define three different random Gaussian fields as a function of location,

r = {x,y,z}:

1. the constrained field, f(r), which is the generated field of the procedure, modified to resemble the measurements;15

2. the source field, ˜

f(r), which here is a random realization of the Mann turbulence model;

3. the residual field, which is the difference between the constrained field and the source field, g(r) = f(r) � ˜

f(r).

The constraints are a set of M values at given locations, C = {c1(r1), c2(r2), ..., cM

(r
M

)}, which the constrained field is

subject to, and is defined to have the required values at the given locations, f(r
i

) = c

i

. At the constraint points, the residual

field is given by g(r
i

) = c

i

� ˜

f(r
i

), and for all other locations the values are conditional on the constraints in C. The conditional20

probability distribution of the residual field is denoted by the multivariate Gaussian distribution function:

�(g(r)|C) =

�(g(r),C)

�(C)

(10)

The conditional probability function of the field may be described as a shifted Gaussian around the ensemble average of g(r)|C,

hg(r)|Ci = R

i

(r)R�1
ij

(C � ˜

f [r = r(c
i

)]) (11)25

where h...i is the ensemble average, R

i

(r) = hf(r)C
i

i are the cross-correlation terms between the field and the constraints,

R

ij

= hC
i

C

j

i is the correlation between the constraints, and ˜

f [r = r(c
i

)] are the values of the source field at the constraints’

locations.

A realization of the constrained field is generated by adding the conditional ensemble mean of the residual field to the source

field30

f(r) =

˜

f(r) + hg(r)|Ci (12)
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(a) (b)

(c) (d)

Figure 6. Comparison between u-velocity components from unconstrained turbulence simulations, and from turbulence simulations with

velocity jumps included using constrained simulation. a) seed 1003 without constraints, b) seed 1005 without constraints, c) seed 1003 with

constraints, d) seed 1005 with constraints. Constraint locations are shown with black dots.

4.4 Constrained turbulence simulations

The aim here is to generate turbulence simulations resembling the measured wind field of the extreme variance events. This is

done by constraining the synthesized turbulence fields. The constraining procedure involves modifying the time series to rep-
4In contrast with Hansen et al. (2015), here the simulations are performed without yaw misalignment.
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Figure 6. Comparison between u-velocity components from unconstrained turbulence simulations, and from turbulence simulations with

velocity jumps included using constrained simulation. a) Seed 1003 without constraints. b) Seed 1005 without constraints. c) Seed 1003 with

constraints. d) Seed 1005 with constraints. Constraint locations are shown with black dots.

Here the constraints consist of the u- and v-components of the wind velocity measurements from the light mast. The con-

straints are applied at three different heights : 79 m, 119 m (hub height) and 179 m, i.e. shifted up 19 m so the measurements

at 100 m represent hub height wind speed. The constraints are also applied at three different widths (along the y-axis): 89.6 m

(the middle of the turbulence box) ±70 m. This is done to ensure the coherent structure of the observed flow in the simulations.

Every third measurement is applied at each width along the y-axis, giving applied constraints at each y-location with a 3.33 Hz5

frequency.
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Figure 7. Comparison of unconstrained and constrained streamwise (u-) velocity component in the middle of the turbulence box, y=89.6 m,

z=119 m. Left: Seed 1003. Right: Seed 1005.

7 shows two examples of the u-velocity time series at hub height with and without applied constraints, for the same turbulence

seeds as shown in Figure 6.

For the purpose of load simulations, six different constrained turbulence seeds are generated from each extreme variance

event time series. Although applying the constraints makes the turbulence boxes similar in general, there are differences in

the parts of the boxes which are far from the constraint locations. As a result, there will be a seed-to-seed variation in loads5

simulated with constrained turbulence boxes, albeit much smaller than what is seen in the unconstrained case.

5 Load simulation results

In this section we compare the design load levels of the two simulation sets: DLC 1.3 and the constrained simulations with the

extreme variance. DLC 1.3 consists of 72 simulations (6 seeds per 12 wind speed bins) and the constrained simulations consist

of 264 simulations (6 seeds per 44 extreme variance event).10

5.1 Extreme loads

In Figure 8 the standard deviation of the simulated hub height u-component wind speed is shown as function of the mean hub

height u-component wind speed. Each dot shows the standard deviation averaged over six turbulence seeds. As the variance is

scaled to match the target both for DLC 1.3 and the constrained simulations, the scatter of the mean standard deviation over

the six different seeds is small. The standard error of the mean standard deviation is in the range of 0.008 - 0.013 m/s, and15

the standard error of the mean hub-height u-component wind speed is equal to, or less than 0.015 m/s. The standard deviation

from the constrained turbulence simulations (blue dots) is higher than that of DLC 1.3 with one exception. For this case, some

variance was lost as a consequence of changing the time interval selection to span ±300 s around the wind speed peak, and

data with a negative trend was cut off.

In Figure 9 the characteristic extreme loads from DLC 1.3 and the constrained simulations are compared. The maxi-20

mum/minimum load values of each 10-minute HAWC2 simulation are binned according to wind speed with a bin width of

14

Figure 7. Comparison of unconstrained and constrained u-velocity
:::::::::
stream-wise

:::
(u-)

:::::::
velocity component in the middle of the turbulence

box,y=
:::::
89.6 m,

:
z=89.6

::
119 m. Left :

::::
Left: Seed 1003. Right :

::::
Right:

:
Seed 1005.

In Figure 6 two turbulence boxes with different random seeds are seen. The u-component of the turbulent field is shown

with a color scale on slices along the time axis. The upper plots show the unconstrained turbulence boxes, and the lower plots

show the same turbulence boxes with constraints corresponding to measurements from two different extreme variance events.

Figure
:
7 shows two examples of the u-velocity time series at hub height with and without applied constraints, for the same

turbulence seeds as shown in Figure 6.5

For the purpose of load simulations, six different constrained turbulence seeds are generated from each extreme variance

event time series. Although applying the constraints makes the turbulence boxes similar in general, there are differences in

the parts of the boxes which are far from the constraint locations. As a result, there will be a seed-to-seed variation in loads

simulated with constrained turbulence boxes, albeit much smaller than what is seen in the unconstrained case.

5 Load simulation results10

In this section we compare the design load levels of the two simulation sets: DLC 1.3 and the constrained simulations with the

extreme variance. DLC 1.3 consists of 72 simulations (6 seeds per 12 wind speed bins) and the constrained simulations consist

of 264 simulations (6 seeds per 44 extreme variance event).

5.1 Extreme loads

In Figure
:
8 the standard deviation of the simulated hub height u-component wind speed is shown as function of the mean hub15

height u-component wind speed. Each dot shows the standard deviation averaged over six turbulence seeds. As the variance is

scaled to match the target both for DLC 1.3 and the constrained simulations, the scatter of the mean standard deviation over

the six different seeds is small. The standard error of the mean standard deviation is in the range of 0.008 - 0.013 m/s, and

the standard error of the mean hub-height u-component wind speed is equal to, or less than 0.015 m/s. The standard deviation

from the constrained turbulence simulations (blue dots) is higher than that of DLC 1.3 with one exception. For this case, some20

variance was lost as a consequence of changing the time interval selection to span ±300 s around the wind speed peak, and

data with a negative trend was cut off.

Figure B1 shows extreme moments as function of the u-component of the mean hub-height wind speed. Each dot shows the
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Figure 8. The mean standard deviation of the u-component of the simulated wind speed at hub height as function of mean wind speed at hub

height. DLC 1.3 (grey dots) and constrained simulations with extreme variance events (blue dots).

::
In

::::::
Figure

::
9

:::
the

:::::::::::
characteristic

::::::::
extreme

:::::
loads

::::
from

:::::
DLC

::::
1.3

:::
and

::::
the

::::::::::
constrained

::::::::::
simulations

:::
are

:::::::::
compared.

::::
The

:
maxi-

mum/minimum load value
:::::
values of each 10-minute HAWC2 simulation for the tower top (top panels), the tower base (middle

panels) and blade root (bottom panels)
:::
are

::::::
binned

::::::::
according

:::
to

::::
wind

:::::
speed

:::::
with

:
a
:::
bin

:::::
width

:::
of

:::::
2 m/s

:::
and

::::
then

::::::::
averaged.

::::
For

::
the

::::::::::
comparison

:::
we

:::::
omit

:::
the

::::
wind

:::::
speed

::::
bin

::
at

::::::
26 m/s,

::
as

:::::
there

:::
are

::
no

::::::::
observed

::::::
events

::::::
within

:::
that

:::::
wind

:::::
speed

::::
bin.

:::
The

:::::
error

:::
bars

:::::
show

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

:::::::
extreme

:::::
loads

::
of

::::
each

:::::
wind

:::::
speed

:::
bin. Both maxima and minima are shown for the5

tower-top moments, but for all other load components only the maximum moments are shown. It should be noted that the

in-plane blade root flap moment maxima are negative, due to the orientation of the blade coordinate system of the wind turbine

model in HAWC2. The simulations based on a particular extreme variance event may be identified as a cluster of six dots, as

they have been simulated with six different turbulence seeds. For DLC

:::
The

::::
two

:::
top

:::::
panels

:::::
show

:::
the

::::::::
extremes

::
of

:::
the

:::::
tower

:::
top

:::
tilt

::::
and

:::
yaw

:::::::::
moments,

::::::::::
respectively.

:::
In

:::
the

:::::
whole

:::::
wind

:::::
speed

:::::
range10

::
the

:::::
mean

:::::::
extreme

::::::::
moments

:::
for

::::
DLC

:
1.3 a cluster of six dots may be seen, as the simulations are performed with six turbulence

seeds per mean wind speed step. It is seen that the highest/lowest extreme loads are from DLC
::
are

:::::::
between

:::::
6400

:
-
::::::::::
21000 kNm

:::::
larger

::::
than

::
for

:::
the

::::::::::
constrained

::::::::::
simulations.

:

:::
The

:::
left

::::::
middle

:::::
panel

::::::
shows

:::
the

:::::
mean

:::::::
extreme

:::::
tower

::::
base

::::::
fore-aft

:::::::::
moments.

:::
The

:::::::
overall

::::::
highest

:::::
mean

:::::::
extreme

:::::::
moment

::
is

::::
from

:::
the

::::
DLC

:
1.3 simulation set, and the variation of the extremes for a given mean wind speed is also higher than that

:::::::
however15

::
for

:::
the

::::::::::
constrained

:::::::::
turbulence

:::::::::
simulations

:::
the

:::::
loads

:::
are

:::::
higher

:::
for

:::::
wind

:::::
speed

::::
bins

:
at
:::::
8 m/s

:::
and

::::::::
between

::::::::
14-20 m/s.

::::
The

::::::
largest

::::::::
difference

::
is

::::
seen

:::
for

:::::
wind

:::::
speed

:::
bin

::::::
16 m/s

:::::
where

:::
the

:::::
mean

:::::::
extreme

:::::::
moment

:
from the constrained simulations

:::::::::
simulation

::
is

:::::::::
50200 kNm

:::::
larger

::::
than

:::::
from

:::
the

::::
DLC

:::
1.3.

The extreme tower top tilt- and yaw momentsincrease/decrease with wind speed and for
::::
right

::::::
middle

::::
panel

::::::
shows

:::
the

:::::
mean

::::::
extreme

:::::
tower

::::
base

::::::::
side-side

::::::::
moments.

:::
In

::
the

::::::
whole

::::
wind

:::::
speed

:::::
range

:::
the

:::::
mean

:::::::
extreme

::::::::
moments

:::
for

:::
the DLC 1.3 the scatter20

in loads for a given wind speed is large.
:::
are

:::::::
between

::::
6000

:
-
::::::::::
22500 kNm

:::::
larger

::::
than

:::
for

:::
the

::::::::::
constrained

::::::::::
simulations.

:
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Figure 9. The
::::
mean

:
extreme moments from IEC DLC 1.3 (grey dots). The

::::
mean extreme loads from the constrained simulations (blue dots).

:::
The

:::
two

:::::::
bottom

:::::
panels

:::::
show

::
the

:::::
blade

:::::
root-

:::
flap

:::
and

:::
and

:::::
edge

:::::::
moments

:::::::::::
respectively.

::
In

:::
the

:::::
whole

::::
wind

:::::
speed

:::::
range

:::
the

:::::
mean

::::::
extreme

::::::::
moments

:::
for

:::
the

::::
DLC

:::
1.3

:::
are

:::::::
between

::::
800

:
-
:::::::::
6200 kNm

:::::
larger

::::
than

:::
for

:::
the

:::::::::
constrained

:::::::::::
simulations,

::::
with

:::
the

::::::::
exception

::
of

::::
wind

:::::
speed

:::
bin

:::::::
16 m/s,

:::::
where

:::
the

:::::
mean

:::::::
extreme

:::::::
moments

:::::
from

:::
the

::::::::::
constrained

:::::::::
simulations

:::
are

::::::::::
respectively

:::::::::
3000 kNM

::::
and

:::::::
400 kNm

::::::
higher

::::
than

:::
the

::::
DLC

::::
1.3.

The extreme tower
:::
top

::::
tilt-,

::::
yaw-

::::
and

:::::
tower base side-side moments generally

::::
show

::
a
::::::
general

:
increase with wind speed. The5

extreme blade root flap- and tower base fore-aft moments peak around rated wind speedand the differences in the magnitude

between the two simulation sets are not as large as for the other load components. For the extreme blade root edge moment it is

seen that the loads peak around rated wind speed for both simulation sets, but the main difference is that after 16 m/s the DLC

1.3 loads and the scatter increases with wind speed.

The mean extreme moments from IEC DLC 1.3 (grey dots). The mean extreme loads from the constrained simulations (blue10

dots).
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In Figure 9 the characteristic extreme loads per mean wind speed bin are compared, i.e. the values from Figure B1, binned

and averaged. For the comparison, we omit the wind speed bin at 26 m/s, as there are no extreme events within that wind speed

bin. The error bars show the standard deviation of the extreme loads of each wind speed bin. It is seen that for all considered

load components, the most extreme characteristic extreme loads are from DLC 1.3. However, the extreme tower-base fore-aft

loads are higher from the constrained turbulence simulations for wind speed bins at 8 m/s and between 14-20 m/s.5

Table 3 lists the overall characteristic loads from each simulation set (the extremes seen in Figure 9), together with their

ratio. The difference of the overall extremes from the two simulation sets is largest for the tower-top yaw moment, where the

extremes are lower from the constrained simulations. The overall extremes are of similar magnitude for the tower base fore aft

moment and the blade root flap moment.

Mean extreme moment DLC 1.3 [kNm] Constrained sim [kNm] Ratio (Const./DLC)

Tower top tilt 3.08 · 104 1.83 · 104 0.60

Tower top yaw �3.07 · 104 �1.21 · 104 0.40

Tower base fore-aft 2.20 · 105 2.14 · 105 0.97

Tower base side-side 6.38 · 104 4.12 · 104 0.65

Blade root flap �3.91 · 104 �3.51 · 104 0.90

Blade root edge 1.55 · 104 1.29 · 104 0.83

Table 3. The highest mean extreme moments for different load components

::::
Table

::
3
::::
lists

:::
the

::::::
overall

::::::::::::
characteristic

::::
loads

:::::
from

::::
each

:::::::::
simulation

:::
set

::::
(the

::::::::
extremes

::::
seen

::
in

::::::
Figure

:::
9),

:::::::
together

::::
with

:::::
their10

::::
ratio.

::::
The

::::::::
difference

:::::::
between

:::
the

::::::
overall

::::::::
extremes

::::
from

:::
the

:::
two

:::::::::
simulation

::::
sets

::
is

:::::
largest

:::
for

:::
the

::::::::
tower-top

::::
yaw

:::::::
moment,

::::::
where

::
the

::::::::
extremes

:::
are

::::::
lower

::::
from

:::
the

::::::::::
constrained

:::::::::::
simulations.

:::
The

:::::::
overall

:::::::
extremes

::::
are

::
of

::::::
similar

:::::::::
magnitude

:::
for

:::
the

:::::
tower

:::::
base

::::::
fore-aft

:::::::
moment

:::
and

:::
the

:::::
blade

::::
root

::::::::
flap-wise

:::::::
moment.

:

5.2 Time series of turbine loads

In the following, examples of 10-minute time series from DLC 1.3 and constrained simulation sets are shown side by side, for15

comparison and demonstration of the differences in the wind turbine response to different types of wind regime. A comparison

is made for the tower-base fore-aft moment, where the characteristic extreme loads from the different simulation sets are of

similar magnitude. We also consider and compare the tower top tilt- and yaw-moments, which give the largest differences

between the two simulation sets.

First, we compare two time series giving some of the highest extreme tower base fore-aft moments from each simulation20

set. For DLC 1.3 in Figure 10 the mean u-component hub-height wind speed is U = 12.0 m/s, with standard deviation of

�

u

= 2.7 m/s and the peak tower base fore-aft moment is 235961
::::::
236000 kNm. For the constrained simulation, U = 14.9 m/s

and �

u

= 3.5 m/s. The peak tower base fore-aft moment is 228003
::::::
228000 kNm. The peak tower base fore-aft moments are of

similar magnitude in the simulations, and in both cases this occurs when the pitch angle is zero degrees—right before the wind

17



Figure 10. Comparison of turbulence time series. Left:
:
a DLC 1.3 . Right: Constrained

::::
time

::::
series

:::
and

::
a

::::::::
constrained

:
simulation

:::
time

:::::
series

of an extreme variance event.Top

:::
Top

:::::
panels: u-component wind speedat three different heights. Bottom

:::::
Bottom

::::::
panels: The corresponding tower-base

:::::::::
Tower-base fore-aft

moment (blue) and pitch angle (grey).

turbine blades begin to pitch. Also,
:
at
::::

the
::::
time when the wind speed at hub height reaches rated wind speed, the wind speed

over the upper half of the rotor
::
at

:::::
179 m

:
is above rated wind speed, leading to higher loading there

::
on

:::
the

::::::
upper

:::
half

:::
of

:::
the

::::
rotor. From the turbulence simulations, the most noticeable difference in the wind turbine response is that in the constrained

turbulence simulation the time of the peak tower base fore-aft moment is very distinguishable at 390 s. While for the stationary

turbulence the peak response occurs around 150 s, but numerous times it reaches above 200000 kNm during the simulation.5

Note that the axes in the top panels are the sameand
:
,
::
as

:::
are the axes in the bottom panelsare the same. It is seen that although

the standard deviation of the wind speed is lower in the stationary turbulence simulation, the wind speed extremes are greater,

with instantaneous wind speed reaching below 2 m/s and above 22 m/s.

In Figure
:
11 we compare some of the most extreme tower top moments from the two simulation sets. The stationary turbu-

lence simulation in Figure 11, has U = 22 m/s, �
u

= 3.4 m/s, with a peak tower top tilt moment of 36601 kNm and a peak tower10

top yaw moment of �28917

::::::
�28900 kNm; in contrast the constrained turbulence simulation has U = 21.3 m/s, �

u

= 6.6 m/s,

with a peak tower top tilt moment of 30777
:::::
30800 kNm and a peak tower top yaw moment of �18560

::::::
�18600 kNm. As in the

previous example, the time of peak loads is very clearly identified in the constrained turbulence simulation, and the peak value

is significantly higher than the response for the remainder of the simulation. For the stationary turbulence simulation, the tower

top yaw- and tilt moments often reach high values throughout the simulation. Extreme tower-top moments tend to be observed15

when there is high shear across the rotor. In stationary turbulent flow the variation in wind speed across the rotor arises as

turbulent eddies sweep by, hitting only part of the rotor, leading to high wind shear. The extreme tower top loads from the

constrained simulations are in connection with high vertical wind shear arising during the wind speed increase (ramp event).
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Figure 11. Comparison of turbulence time series. Left:
:
a DLC 1.3 . Right: Constrained

::::
time

::::
series

:::
and

::
a

::::::::
constrained

:
simulation

:::
time

:::::
series

of an extreme variance event.Top

:::
Top

:::::
panels: u-component wind speedat three different heights. Bottom

:::::
Bottom

:::::
panels: The corresponding tower-top

:::::::
Tower-top

:
tilt (grey) and

yaw (blue) moments.

6 Discussion

In the load time series comparison, the general differences in the wind turbine response of the two simulation sets are visualized;

for the constrained simulations the peak loads are distinguishable and occur because of the velocity increase associated with

the ramp-like event. The discrepancies between the two simulation sets for the extreme tower top loads indicate that the short-

term wind field variability across the rotor is generally higher in the stationary turbulence simulation than for the constrained5

simulations. As shown in the time series comparison of Figure 11, the short-term vertical wind shear can be high in connection

with the extreme events, yet the tower top tilt moment does not exceed that prescribed via DLC 1.3. When non-uniformity in

the stationary turbulence fields occurs around rated wind speed, it can also lead to high extreme tower base fore-aft moments

that are connected to high thrust on the rotor. The extreme tower base fore-aft moments from the constrained simulations are

highest for mean wind speed bins between 8 m/s and 16 m/s. In this wind speed range, the wind speed is typically below rated10

wind speed at the beginning of the simulation and later increases beyond rated wind speed. When the wind speed starts to rise,

it does so coherently across the rotor plane, resulting in high thrust and tower base fore-aft moments, before the wind turbine

controller starts to pitch the blades. The tower base fore-aft moments for the extreme turbulence case (IEC DLC 1.3) were

expected to be lower than those of the extreme variance events; however, this was generally true only (on average) for certain

wind speed bins. The overall characteristic tower base fore-aft moment of DLC 1.3 is 3% higher than for the extreme events.15

The load simulation results show that the extreme turbulence case DLC1.3 indeed covers the load envelope caused by

extreme variance events. However, the differences seen in the time series and in the load behavior indicates that extreme

variance observations as events are entirely different from situations with stationary, homogeneous turbulence. This questions
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the basis for the definition of the IEC Extreme Turbulence Model (ETM) which is defined in terms of the statistics of the

10-minute standard deviation of wind speed. As most observations of the selected extreme variance events include a short

term ramp event, it would perhaps be more relevant to compare these events with other extreme design load cases in the IEC

standard, e.g. the extreme coherent gust with direction change, extreme wind shear or the extreme operating gust. Since these

are the absolute highest variance events observed at Høvsøre during a ten year period, they would also appear in the site-specific5

definition of the ETM model. Therefore, it may be necessary to exclude or re-assign such events to the relevant load case type.

The design and cost of a wind turbine may depend on how this consideration is done.

It was seen in the IFORM analysis in section 3.1 that the estimated 50-year return period contour of the linearly detrended

data exceeded the the 50-year return period contour of normal turbulence (corresponding to the ETM class C). This is consistent

with the findings of Dimitrov et al. (2017), who performed similar analysis of linearly detrended measurements from Høvsøre,10

though from the easterly (homogeneous farmland) sector. For the high-pass filtered measurements, the turbulence level was

reduced significantly as well as the estimated 50-year return period of turbulence. This is seen as the high-pass filtering effec-

tively removes variance of low frequency fluctuations with time scales larges than 200
:::
300 s, as the chosen cut-off frequency

was 1/200
:::
300 Hz. This finding suggests that for typical hub heights as considered (z ⇡ 100 m) at a coastal site like Høvsøre,

extreme variance events are not representative of homogeneous, stationary turbulence and can be filtered out by high-pass fil-15

tering. It should be kept in mind though, that these events may be considered for extreme design load case purposes other than

turbulence. In that case it is important not to use detrending of any kind on the measurements, as these extreme fluctuations

will then not be identified and characterized correctly.

7 Conclusions

The main objective of this study is to investigate how extreme variance events influence wind turbine response and how20

it compares with DLC 1.3 of the IEC 61400-1 standard. The selected extreme events are measurements of the 10-minute

standard deviation of horizontal wind speed that exceed the values prescribed by the ETM model and include a sudden velocity

jump (ramp event, transients in the turbulent flow), which is the main cause of the high observed variance. The events were

simulated with constrained turbulence simulations, where the measured time series were incorporated in turbulence boxes for

load simulations in order to make a realistic representation of the events, including the short term ramps and the coherent flow25

in the lateral direction as was seen in the comparison of measurements between the two masts in Figure
:

2. The constraints

force the turbulent flow of the simulations to be non-stationary and non-homogeneous.

Load calculations of the simulated extreme events were made in HAWC2 and compared to load calculations with stationary

homogeneous turbulence according to DLC 1.3. To summarize, we have found that:

• The extreme variance events are large coherent structures, observed simultaneously at two different masts with a 400 m30

(lateral) separation.

• Most extreme variance events include a sharp wind speed increase (short-time ramp) which is the main source of the

large observed variance.

20



• High-pass filtering
::::
with

:
a
::::::
cut-off

:::::::::
frequency

::
of

::::::::
1/300 Hz removes most of the variance corresponding to these ramp-like

events, to the extent that the estimated 50-year return period of (remaining) turbulence level is lower than that of IEC

ETM class C; linear de-trending may remove some of the variance but is not necessarily adequate.

• Compared with the DLC 1.3 of the IEC standard, the extreme loads are on average lower for the extreme variance events

in the coastal/offshore climate and heights considered.5

• For 10-minute mean wind speeds of 8–16 m/s, the events typically begin below rated wind speed and increase beyond,

leading to high thrust on the rotor; such events lead to high extreme tower-base fore-aft loads which can exceed the

DLC 1.3 prescription of the IEC standard.

Future related work includes further analysis and characterization of extreme variance events. In particular, ongoing work

involves extreme short-term shear associated with such events, and directional change. Load simulations of the events may be10

compared with other extreme DLC’s from the IEC standard.
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Appendix A

:::
The

::::::
Figure

::
in

:::
this

::::::::
appendix

::
is

:::::::::
equivalent

::
to

:::::
Figure

::
4,
:::
but

::::::
shows

:::
the

::::::::
processed

:::::::::::::
measurements.

Appendix A

The Figure in this appendix is equivalent to Figure 4, but shows the processed measurements.
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Figure A1. Notation same as Figure 4 but for a) linearly detrended data, b) high-pass filtered data with cut-off frequency of 1/600 Hz and c)

high-pass filtered data with cut-off frequency of 1/300 Hz.

Comparing the raw data in Figure 4, to the linearly detrended data and high-pass filtered data in Figure A1 it is seen that the

detrending, and high pass filtering slightly lowers the values of µ

�u , while the reduction of �

�u is much greater, especially for

the high-pass filtered measurements.5

Appendix B

Figure B1 shows extreme moments as function of the u-component of the mean hub-height wind speed. Each dot shows the

maximum/minimum load value of each 10-minute HAWC2 simulation for the tower top (top panels), the tower base (middle

panels) and blade root (bottom panels). The simulations based on a particular extreme variance event may be identified as a

cluster of six dots, as they have been simulated with six different turbulence seeds. For DLC 1.3 a cluster of six dots may be10

seen, as the simulations are performed with six turbulence seeds per mean wind speed step. Figure 9 shows the values from

Figure B1, binned and averaged.
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Figure A1.
::::::
Notation

::::
same

::
as

:::::
Figure

::
4

::
but

:::
for

::
a)

::::::
linearly

:::::::
detrended

::::
data,

::
b)

:::::::
high-pass

::::::
filtered

:::
data

::::
with

:::::
cut-off

::::::::
frequency

::
of

:::::::
1/600 Hz

:::
and

::
c)

:::::::
high-pass

:::::
filtered

::::
data

::::
with

:::::
cut-off

:::::::
frequency

::
of
::::::::
1/300 Hz.

:::::::::
Comparing

:::
the

:::
raw

::::
data

::
in

::::::
Figure

::
4,

::
to

:::
the

::::::
linearly

:::::::::
detrended

::::
data

:::
and

::::::::
high-pass

::::::
filtered

::::
data

::
in

::::::
Figure

:::
A1

:
it
::
is
::::
seen

::::
that

:::
the

:::::::::
detrending,

:::
and

::::
high

::::
pass

:::::::
filtering

:::::::
slightly

::::::
lowers

:::
the

:::::
values

::
of

::::
µ

�u ,
:::::
while

:::
the

::::::::
reduction

:::
of

:::
�

�u::
is

:::::
much

::::::
greater,

:::::::::
especially

:::
for

::
the

:::::::::
high-pass

::::::
filtered

::::::::::::
measurements.

:
5

Appendix B

:::::
Figure

:::
B1

::::::
shows

:::::::
extreme

::::::::
moments

::
as

:::::::
function

::
of

:::
the

::::::::::::
u-component

::
of

:::
the

:::::
mean

:::::::::
hub-height

:::::
wind

:::::
speed.

:::::
Each

:::
dot

::::::
shows

:::
the

::::::::::::::::
maximum/minimum

::::
load

:::::
value

:::
of

::::
each

:::::::::
10-minute

:::::::
HAWC2

:::::::::
simulation

:::
for

:::
the

:::::
tower

:::
top

::::
(top

:::::::
panels),

:::
the

:::::
tower

::::
base

:::::::
(middle

::::::
panels)

:::
and

:::::
blade

::::
root

:::::::
(bottom

:::::::
panels).

::::
The

:::::::::
simulations

::::::
based

::
on

::
a
::::::::
particular

:::::::
extreme

:::::::
variance

:::::
event

::::
may

:::
be

::::::::
identified

::
as

::
a

:::::
cluster

:::
of

::
six

:::::
dots,

::
as

::::
they

::::
have

:::::
been

::::::::
simulated

::::
with

:::
six

::::::::
different

::::::::
turbulence

::::::
seeds.

:::
For

:::::
DLC

:::
1.3

:
a
::::::
cluster

::
of

:::
six

::::
dots

::::
may

:::
be10

::::
seen,

::
as

:::
the

::::::::::
simulations

:::
are

:::::::::
performed

::::
with

:::
six

:::::::::
turbulence

:::::
seeds

:::
per

:::::
mean

:::::
wind

:::::
speed

::::
step.

::::::
Figure

::
9
:::::
shows

::::
the

:::::
values

:::::
from

:::::
Figure

::::
B1,

::::::
binned

::::
and

::::::::
averaged.

:
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Figure B1.
::

The
:::::::
extreme

:::::::
moments

::::
from

:::
IEC

::::
DLC

:::
1.3

::::
(grey

::::
dots).

::::
The

::::::
extreme

::::
loads

::::
from

:::
the

::::::::
constrained

:::::::::
simulations

::::
(blue

:::::
dots).
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