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Responses to reviewers, April 16, 2018 

Reviewer comments are typed in black. 

Responses by Worsnop et al. are typed in purple. 

We thank the referees for their comments, which have helped us clarify and improve the 
presentation of our work.   

Responses to reviewer, J. W. Messner   

This paper presents and compares different multivariate approaches for probabilistic wind power 
forecasting to forecast ramp events. Accurate ramp forecasting is a very relevant topic in the 
wind power forecasting community and I think this manuscript is a valuable contribution to this 
topic. The manuscript is well written and I enjoyed reading it very much.  

Even though, the data sets in the case studies are rather small, the results indicate advantages and 
disadvantages of the different methods, which are then investigated more closely in a simulation 
study. I like that the authors do not provide too many technical details, this facilitates the reading 
and I believe that it is still possible to reproduce most of the results.  

There is not much to criticize and I only have a few minor comments that I listed below.  

More specific comments:  

1. The result section focuses mainly on the differences between the different Schaake 
shuffle methods. Although this is certainly interesting I think the differences between the 
Gaussian copula and the Schaake shuffle are also very interesting and could be 
investigated and discussed a bit more. The Gaussian copula approach is probably better 
known in the wind power forecasting community and it would therefore be great to have 
a more extensive discussion on when and why this approach fails and Schaake shuffle 
approaches should be preferred.  

We	have	added	the	following	discussion:	

L630:	In	fact,	the	average	BSS	from	predicting	up-	and	down-ramps	using	the	Gaussian	
copula	method	is	highly	sensitive	to	the	empirical	range	parameter	used	in	the	exponential	
covariance	model	(Table	2).	For	example,	for	the	M5	location,	𝜐	=	4.5	yields	the	closest	BSS	
values	(Table	2)	to	those	calculated	for	the	Schaake	Shuffle	methods	(Fig.	11)	for	all	power	
thresholds	and	ramp	types.	This	value	of	𝜐	would	also	reduce	the	number	of	Gaussian	
copula	ramp	events	that	are	currently	over-forecasted	in	Fig.	9.	However,	based	on	the	
empirical	covariances	obtained	for	the	M5	tower	(Fig.	A1),	selecting	a	𝜐	value	this	large	did	
not	seem	plausible.	It	is	possible	that	the	assumption	of	an	exponential	covariance	model	
(suggested	by	Pinson	and	Girard	2012)	is	not	ideal	for	this	setup,	but	with	the	limited	
training	dataset,	we	felt	that	a	parametric	assumption	was	necessary	to	control	sampling	
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variability	of	the	estimated	covariance	matrix.	Even	then	Fig.	A1	suggests	that	stronger	
correlations	than	the	empirical	correlations	would	lead	to	better	results.	Our	conclusion	
from	results	in	Table	2	is	that	selecting	an	appropriate	𝜐	value	before	generating	the	
Gaussian	copula	scenarios	is	critical	but	difficult	to	achieve	with	the	usual	statistical	
diagnostics.	The	Schakke	Shuffle	approaches	do	not	rely	on	the	selection	of	a	sensitive	
parameter,	which	could	make	these	Schaake	Shuffle	methods	more	preferable.	
Additionally,	because	the	Gaussian	copula	method	uses	random	sampling	rather	than	
quantile	sampling,	the	Gaussian	copula	method	requires	many	more	scenarios	to	represent	
the	distribution	than	do	the	Schaake	Shuffle	methods.	From	an	operational	perspective,	too	
many	scenarios	(e.g.,	1000	vs	50)	may	add	unnecessary	complication	to	the	forecasting	
process.	

	

2. In the definition of ramp events, it is not fully clear to me how pmax and pmin are 
derived. From Figure 1 it appears to be the sum of consecutive power differences that 
have the same sign. Related to that, if e.g., there is an up-ramp that is interrupted by a 
short down-ramp (e.g. 0,0.5,0.4,0.9), is it then not classified as ramp?  

∆𝑝$%&	and	∆𝑝$'(	are	defined	as	the	largest	pairwise	difference	in	power	in	a	given	window	
of	time	(i.e.,	largest	increase	over	time	for	∆𝑝$%&	and	largest	decrease	over	time	for	∆𝑝$'().	
If	the	largest	increase	or	largest	decrease	in	that	window	exceeds	a	defined	power	
threshold,	then	a	ramp	(either	an	up-	or	down-ramp)	will	be	classified	in	that	window.	Up-	
and	down-ramp	events	are	allowed	to	happen	in	the	same	window	of	time.	However,	a	
large	down-ramp	interrupted	by	a	small	up-ramp	(such	as	the	up-ramp	that	occurs	from	
hours	8-9	in	the	ramp	window	from	hours	7-10	in	Fig.2)	will	still	be	classified	as	a	down-
ramp	as	long	as	the	overall	down-ramp	meets	the	power	threshold	criteria.		

We	added	an	additional	sentence	to	clarify	how	a	ramp	is	classified	if	a	small	interruption	in	
the	ramp	direction	happens.		

L183:	If	a	small	up-ramp	(down-ramp)	interrupts	an	overall	large	down-ramp	(up-ramp),	the	
ramp	will	still	be	classified	as	a	down-ramp	(up-ramp)	as	long	as	the	large	ramp	meets	the	
power	threshold	criteria.	

3. The description of the fitting approach for the predictive distributions (Section 3.2) is also 
a bit unclear. As far as I understand, ordinary least squares regression is used to fit the 
transformed observations to the forecasts (and the forecasts to the seasonal cos and sin 
terms). Forecasts from this OLS model and its residual standard deviation are then used 
to derive parameters of truncated normal, truncated logistic or gamma distributions. How 
are the OLS outputs related to the distribution parameters? Did you simply use the 
method of moments? Some- how OLS assumes the residuals to follow a normal 
distribution and therefore this approach, if I understood it correctly, seems a bit weird. 
Why are you not using a distributional regression (i.e. EMOS like) approach where you 
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directly fit the distribution parameters as functions of the NWP forecasts and use a 
maximum likelihood or minimum CRPS framework?  

Correct,	we	first	power-transform	the	data	to	remove	heteroscedasticity	caused	by	an	
increase	of	uncertainty	with	increasing	wind	speeds,	then	used	OLS	to	fit	a	model	for	the	
seasonal	cycle	and	removed	the	seasonal	cycle.	After	this	data	transformation	the	data	are	
approximately	homoscedastic,	and	while	the	residuals	are	not	perfectly	Gaussian,	they	are	
reasonably	close	to	Gaussian	to	justify	an	OLS	fit.	In	order	to	match	the	OLS	parameters	
(conditional	mean	and	standard	deviation)	to	the	distribution	parameters	of	the	gamma	
distribution	we	use	a	method	of	moments.	For	the	truncated	Gaussian	and	truncated	
logistic	distribution	we	do	not	use	an	exact	method	of	moments	but	instead	matched	the	
OLS	parameters	with	the	moments	of	the	respective	untruncated	distributions.	For	80	m	
wind	speeds	this	approximation	seemed	justified	because	observations	are	sufficiently	far	
away	from	zero	for	the	truncation	to	be	negligible	(see	Fig.	3b).	

The	advantage	of	this	approach	is	its	simplicity.	It	only	requires	standard	OLS	regression	
while	still	accounting	for	all	sources	of	heteroscedasticity.	An	EMOS-like	approach	would	be	
required	and	more	adequate	if	some	of	the	heteroscedasticity	were	explained	by	an	
additional	predictor	(e.g.	ensemble	spread).	To	address	the	increase	of	wind	speed	
uncertainty	with	expected	wind	speed	magnitude	via	EMOS,	a	more	complex,	parametric	
model	for	the	standard	deviation	of	the	predictive	distribution	would	be	required,	and	we	
therefore	chose	the	alternative	modeling	approach	and	addressed	this	issue	via	data	
transformation.	

We	added	some	additional	detail	to	Section	3.2	to	make	our	rationale	clearer.	

Minor comments:  

1. L70, why is it a disadvantage to use nonparametric methods.  

We	reworded	our	statement	so	that	nonparametric	methods	are	not	perceived	as	a	
disadvantage	(L69).	We	also	added	a	sentence	that	highlights	the	benefits	of	using	a	
parametric	approach	for	this	study	(L76).		

2. Section 2.2: What are the lead times that are regarded. 1-12h? How long does it take the 
HRRR model to compute these forecasts and when do they become available? I.e., if the 
computation takes more than 1 hour the 1h forecast is not very useful.  

For	our	analysis,	we	consider	lead	times	1-12	h	from	initialization.	Some	spin-up	time	is	
required,	although	this	time	is	reduced	by	the	digital	diabatic	filter	initialization	(DDFI),	
which	acts	to	remove	gravity	waves	excited	by	the	prior	data	assimilation	process.	From	
initialization,	the	model	can	sometimes	require	about	an	hour	to	stabilize.	We	included	the	
first	hour	of	lead	time	as	likely	would	be	done	in	an	operational	setting	and	to	include	more	
valuable	sliding	windows	in	the	analysis	to	look	for	ramp	events.	For	the	ramp	calculations,	
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several	other	lead	times	are	considered	in	the	window	of	time	in	which	we	search	for	ramp	
events,	so	we	do	not	expect	the	inclusion	of	the	first	lead	time	to	affect	the	overall	skill	of	
the	methods.		

3. Caption of Figure 2: I think a window size of h=4 not h=3h is shown  

Thank	you	for	this	observation.	However,	only	three	hours	are	considered	in	the	window	
size.	For	instance,	in	Fig.	2a,	hours	2-3,	3-4,	and	4-5	are	the	hours	used	in	the	window	(gray,	
shaded	region).	There	are	four	data	points	used,	but	those	equate	to	three	hours.		

4. P9L219: Not only the red dots but also black dots show the annual cycle.  

That	is	correct.	We	modified	the	sentence	to	reflect	that	the	black	dots	show	the	annual	
cycle	too.			

L246	now	reads:	The	scatter	in	the	red	and	black	regression	dots	in	Fig.3c	illustrates	how	the	
annual	cycle	influences	the	regression;	depending	on	the	time	of	year,	the	transformation	
value	can	be	different	because	of	the	annual	cycle.		

5. P12-13: In the description of the Gaussian copula approach, it should be clarified that the 
exponential covariance model (ECM) is an estimate of the covariances and that random 
number generation is based on a multivariate Gaussian distribution with these estimates 
as covariance parameter.  

L336-339	now	reads:	An	appropriate	value	for	𝜈	is	selected	empirically	so	that	the	resultant	
ECM	for	a	given	value	of	𝜈	most	resembles	the	decay	of	the	empirical	correlation	values	
(Appendix	A).	A	covariance	matrix	based	on	the	ECM	and	the	estimated	value	of	𝜈	is	then	
set	up	and	employed	to	randomly	generate	scenarios	of	multivariate	Gaussian-distributed	
values.	

6. Section 3.3.3: I expect η to be a quite important parameter and its optimal value clearly 
depends on the size of the data set. How did you select η = 50 and did you test the effect 
of this selection on the results?  

The	value	of	η	is	a	compromise	between	representing	the	distribution	well	and	making	sure	
that	there	are	a	sufficient	number	of	historical	scenarios	to	select	from.	We	tested	the	impact	
of	selecting	20	and	50	scenarios	on	the	results	earlier	on	in	the	research	process	(not	shown),	
but	did	not	see	a	significant	difference	between	the	two	selections	for	the	Schaake	Shuffle	
methods.	We	opted	to	move	forward	with	η	=	50	scenarios,	which	is	a	typical	ensemble	size	
used	for	operational	purposes.	Additionally,	for	the	StSS	method,	it	is	advantageous	to	select	
scenarios	that	are	still	within	the	same	season	of	the	forecast	day,	so	a	much	larger	η	may	
penalize	the	StSS	method	over	the	MDSS	methods.	The	Gaussian	Copula	method	needs	more	
scenarios	 to	represent	 the	distribution	well,	because	 it	uses	random	sampling	rather	 than	
sampling	the	marginal	distributions	systematically	by	a	set	of	quantiles.	This	characteristic	is	
why	we	allowed	1000	scenarios	for	the	GC	method.		



	 5	

7. P19,L451-452: "On the other hand, we have shown that systematic over- and under-
forecasting biases can be reduced with statistical post-processing". I did not find any 
results showing this in the manuscript.  

We	have	changed	the	sentence	at	L513	to	now	read:	However,	we	will	show	that	systematic	
over-	and	under-forecasting	biases	in	the	climatological	frequency	of	ramp	events	can	be	
reduced	with	statistical	post-processing	(see	Fig.	9).	

8. Last paragraph on page 24: I do not fully agree that StSS is more competitive than MDSS 
and MDSS+. The differences mostly do not seem to be significant and e.g., for down-
ramps at PNW StSS actually performs worse.  

We	rephrased	this	sentence	to	be	more	consistent	with	the	results	in	figures	10	and	11.		

L646:	The	most	surprising	result	from	the	analyses	is	that	the	MDSS	and	MDSS+	methods	
are	not	overall	significantly	better	than	the	StSS	method	despite	their	preferential	selection	
of	historical	scenarios.	

9. Caption of Figure 11: There are no Gaussian copula results shown  

Thank	you	for	catching	this	mistake.	We	corrected	the	caption.		

10. Summary and discussion: It could be summarized here again, why multivariate methods 
are required to predict ramp events.  

We	added	the	following	sentence	to	the	summary	and	conclusion	section:		

L792:	Because	ramp	events	require	simultaneous	forecasts	of	multiple	forecast	lead	times,	
multivariate	statistical	methods	are	a	necessity	for	accurate	ramp	prediction.	
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Responses to reviewer, E. Simon:   

The research work utilizes operational HRRRv2 NWP data, along with four methods of 
statistical post processing to transform deterministic wind speed forecasts into hourly 
probabilistic up and down-ramp predictions over sliding windows for two sites with complex 
terrain. The article is well written and is presented clearly and concisely. Ramp forecasting is a 
very important field which can lead to significant reductions in wind power balancing costs, and 
I believe that this original research work makes a valuable contribution to the topic. Therefore I 
recommend to the editor that this article is accepted for publication. The scientific approach is 
clear and well thought out, and the methods are presented in a reproducible and logical manner. 
 

I have a few points that I ask the authors to consider for the final manuscript:  

1. The observations themselves also have underlying uncertainties. Has the instrumentation 
been recently calibrated? You can likely disregard this (but still good to mention) since 
the time averaging will reduce the statistical uncertainty (type A)  

NREL	is	accredited	by	the	American	Association	for	Laboratory	Accreditation,	so	the	
instruments	meet	requirements	to	ensure	quality	data.	The	M5	tower	instruments	were	
calibrated	before	installation	and	were	recalibrated	as	required.	

The	PNW	tower	is	owned	by	a	private	wind	power	company,	but	the	authors	have	verified	
that	the	instruments	were	calibrated	upon	installation	and	if	needed	afterwards.			

2. How far are both sites from the HRRR model grid point? If the resolution is 3km, the 
closest point may not be representative (especially in complex terrain). Including a map 
with the mast locations and grid points would be a good addition.  

We	added	a	figure	(Fig.	1)	showing	the	M5	tower	location	and	the	neighboring	grid	points.	
We	were	not	permitted	to	show	the	PNW	location,	but	this	area	is	in	less	complex	terrain	
than	at	the	M5	site.	The	PNW	tower	is	located	in	the	Oregon	side	of	the	Columbia	River	
Gorge,	within	20	km	of	the	river,	between	Wasco,	OR	and	Boardman,	OR.		
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At	L136:	We	also	added	text	describing	the	distance	between	the	model	grid	point	used	and	
the	actual	tower	locations.		

3. A comparison of these methods with a baseline (e.g. persistence or climatology) would 
strengthen the results  

We	used	the	climatological	probabilities	of	occurrence	of	ramp	events	as	the	
reference/baseline	forecasts	in	our	Brier	skill	score	calculations.	We	added	more	detail	in	
Section	4.2	to	describe	why	persistence	may	not	be	the	best	choice	of	a	baseline	forecast	
for	ramp	events.		

L588-591:	Climatological	probabilities	of	occurrence	of	up-	and	down-ramp	events	with	a	
particular	𝜉	and	h	are	used	as	the	reference	forecast.	Persistence	forecasts	are	another	
commonly-used	baseline	for	wind	power	forecasting,	but	because	ramp	events	can	change	
magnitude	and	even	direction	in	a	short	period	of	time,	persistence	is	often	not	a	practical	
estimate	of	ramp	events.	

4. Is there a reason to not first evaluate at a site with less complex flow, where the local 
observations are better correlated with model predictions? Especially since these methods 
have not been demonstrated before  

This	is	a	good	point.	We	wanted	to	investigate	wind	power	forecasts	starting	from	the	
NOAA	HRRR	model,	so	we	were	geographically	limited	to	the	US.	Additionally,	we	wanted	to	
use	the	most	updated	version	of	the	model.	The	corresponding	observations	required	for	
statistical	post	processing	needed	to	overlap	the	dates	of	the	model	availability	and	also	
had	to	be	available	for	more	than	a	year.	Because	of	this	criteria,	we	were	only	able	to	find	
tall	tower	data	at	these	two	sites.	Now	that	we	know	the	complexity	of	the	site	has	so	much	
of	an	impact	on	the	ramp	forecasts,	it	would	be	interesting	to	analyze	these	methods	for	
less	complex	sites	and	for	other	numerical	models.	We	mention	these	ideas	as	next	
directions	for	this	research	in	the	concluding	paragraph.			

5. It isn’t entirely clear, since you say that M5 obs are averaged to 10 minutes, while PNW 
are averaged to 1 minute. Is that only raw data and then they are both averaged again later 
to 1-hour?  

The	raw	tower	data	were	available	at	1	minute	and	10	minute	averages	for	the	PNW	and	
M5	towers,	respectively.	Some	spiking	issues	were	present	for	the	raw	20Hz	data	from	the	
M5	tower,	but	were	not	a	problem	in	the	available	10-min	average	data.	Since	the	HRRR	
model	output	is	instantaneous,	we	did	not	further	average	the	tower	data	to	one	hour.	We	
looked	at	1-hr	discretized	model	data,	but	we	did	not	average	any	data	over	an	hour.	We	
made	sure	that	the	times	of	the	observations	matched	the	time	of	the	model	output	(i.e,	at	
the	beginning	of	each	hour).	Some	averaging	of	the	observations	is	desired	because	
although	the	model	output	is	valid	at	the	output	time,	it	represents	the	grid	cell,	so	some	
smoothing	of	the	model	data	occurs.		
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We	added	more	detail	in	the	text	to	clarify	this	point.	L139:	The	HRRR	output	is	
instantaneous	at	every	hour,	but	because	it	represents	a	3-km	grid	cell,	comparing	this	
output	to	averaged	observations	is	preferred.	

6. Do you expect any improvements with the HRRRv3 model changes?  

We	can	expect	some	improved	forecasts	of	wind	shear	in	the	lowest	100	m	and	below	hub	
height.	Although	many	other	improvements	are	expected,	the	wind	speeds	at	hub	height	
may	not	see	a	significant	improvement.	In	regions	of	complex	terrain,	the	addition	of	
“geometric	diffusion”	in	HRRRv3	may	slightly	improve	wind	variables	as	it	performs	
horizontal	mixing	along	Cartesian	coordinates	opposed	to	sigma	coordinates.	We	do	not	
expect	significant	improvements	in	the	ramp	results	if	the	analyses	were	performed	with	
HRRRv3.		

7. A note about processing time and ability to run these forecasts operationally would be 
useful information to provide  

We	added	the	following	details	to	the	conclusion	section:		

L859-865:	The	processing	time	for	these	methods	is	practical	for	real-time	forecasting.	Most	
of	the	processing	does	not	even	need	to	be	run	in	real	time.	Only	the	multivariate	methods	
need	to	be	run	in	real	time	to	generate	probabilistic	forecasts	of	ramp	events.	The	Gaussian	
copula	method	is	nearly	instantaneous	to	compute,	because	it	uses	a	random	generator	to	
produce	scenarios.	The	MDSS	and	MDSS+	methods	require	the	most	time	to	process	as	they	
need	to	search	through	historical	scenarios	for	the	best	matches	to	the	current	forecast.	
Nevertheless,	they	only	required	approximately	three	seconds	to	find	50	historical	scenarios	
for	one	forecast	day	and	initialization	time.	However,	more	time	will	be	required	to	process	
the	MDSS	and	MDSS+	methods	for	larger	historical	datasets.	

8. Skill scores for the M5 site using synthetic data are not shown (Figure 11 only for PNW). 
Are the results similar?  

We	technically	did	not	generate	synthetic	data	and	calculate	skill	scores	for	the	PNW	site	
either.	The	caption	for	Figure	12	was	confusing,	so	we	corrected	it	to	be	more	precise.	We	
actually	generated	synthetic	data	based	on	higher	correlation	coefficients	between	
modeled	and	observed	wind	ramps	than	were	found	using	real	data	for	the	PNW	site	(i.e.,	
correlations	coefficients	of	up-	and	down-ramp	events	in	Fig.	8).	We	used	the	correlation	
coefficients	calculated	from	the	PNW	site	as	a	bench	mark	and	then	generated	synthetic	
data	based	on	if	the	forecasts	were	much	better	(i.e.,	much	higher	correlation	coefficients	
between	synthetic	forecasts	and	observations).	The	correlation	coefficient	between	
synthetic	modeled	and	observed	wind	speed	ramp	events	(calculated	in	the	same	way	as	
Fig.	8	for	the	PNW	and	M5	correlation	coefficients)	was	on	average	0.72.	This	is	much	higher	
than	the	0.23-0.37	values	for	the	correlation	coefficients	calculated	using	the	real	data.	The	
benefit	of	generating	the	synthetic	data	is	that	we	can	generate	longer	and	better	quality	
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forecasts.	These	better	forecasts	in	turn	allow	us	to	really	tell	the	differences	between	the	
Schaake	Shuffle	methods	(i.e.,	the	spread	of	the	box	plots	in	Fig.	12	are	not	as	wide).				

We	also	added	this	explanation	of	the	synthetic	data	to	the	text:	

L701:	The	synthetic	forecasts	were	purposefully	generated	to	be	better	forecasts	than	that	
of	the	real	data	so	that	differences	among	the	different	Schaake	Shuffle	methods	would	be	
more	apparent.	

9. The caption on pg. 26 should be on the same page as the figure. Same with pg. 27 to 
reduce whitespace  

Thank	you.	We	corrected	this.		

 

 

 

 

 

 

 

 

 

 

	


